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*%
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ABSTRACT

In many space vehicles, attitude control is best accomplished with
combination systems using reaction wheels for momentum exchange and
storage, plus jets for periodic momentum expulsion. Design of the
reaction-wheel control involves evaluating the time history of system
response to disturbances, many of which are either sinusoldal or impul-
sive.

As an aid to such evaluation, this paper developes basic response
relations--vehicle attitude, control torque, wheel motion, mechanical
power, and energy consumption--for a vehicle subjected to both types of
disturbance. Limiting values are calculated, assuming no standby losses.
(The possibility of exchanging momentum with minimum energy loss is dis-
cussed.) The resulting normalized numerical relations are intended to
serve as an order-of magnitude basis for preliminary design estimates
and comparisons.

The response relations are derived first for a single-axis model.
Then their applicability to three-axis design is discussed. A control
system i1s postulated which decouples vehicle dynamics so that vehicle
motions are exactly single axis. (Some advantages of such control are
discussed in References (2) and (3).)

The resulting control-wheel motions may be complicated by gyroscopic
coupling due to the spinning wheels. In control to a rotating reference
extra power is consumed also because the spin momentum of the roll and
yaw wheels must be passed back and forth from one to the other.

Control systems which merely damp the natural motions of stable,
local-vertical satellites can be smaller and simpler and use less power
but, of course, furnish less precise control. (They are generally use-
ful only in nearly-circular orbits.)

*Based on work done for Systems Corporation of America, under con-
tract with the U.S. Air Force, WADD Flight Control Laboratory, AF 33(616)-
66Tk, and on research supported by a grant to Stanford University by the
NASA. Part of the results in this paper are reported in Reference (1).

**¥Assoc. Prof. of Aeronautical and Electrical Engineering, Stanford
University
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NOMENCLATURE

Aerodynamic Surface.
} Fig. 1
Aerodynamic Moment arm.

Energy consumed by control system

Naperian base. Also, orbit eccentricity (Introduction only).

Vector angular momentum of a system.

Initial angular momentum of reaction wheels.

Vehicle moment of inertia.

Reaction wheel moment of inertia.

Unit vector along imaginary axis of s-plane.

Control system gain (see Fig. 3).

Proportionality constant for attitude-dependent torques.
External torque on vehicle.

Laplace transform ofl_.

External torque on a system.

Constant angular velocity of a local-vertical reference
a circular orbit.

Power required by control system.

Syg@ol representing the operation of differentiatioﬁ:
P= 5 -

Parameter used in Laplace transform.

Torque exerted on vehicle by control device.

Laplace transform of 'TC.

Time.

Unit vectors along principal axes of vehicle.

Unit vectors along reference axes.

Unit impulse.
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T Time constant of controlled-vehicle response.

6 Vehicle attitude deviation from the reference direction.

C] Laplace transform of 4.

o A control system parameter (Fig. 3).

s Phase angle.

Q Reaction wheel speed.

QO Initial reaction-wheel speed.

@ Laplace transform of Q.

w Angular velocity of reference frame. (When  1is constant

it equals n.)

Wp Forcing frequency.

Subscripts

1,2,3 Component of a quantity along vehicle axis 1, 2, or 3.
J i, 2, or 3.

v Pertaining to vehicle.

max. Maximum value.

r Pertaining to reference.

d Pertaining to damping system of last section.

P,Tr,y Pitch, roll, yaw.
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INTRODUCTION

Combination Systems.

For common space vehicle attitude control systems a combination
of both momentum expulsion devices (e.g., jets) and momentum storage
devices (e.g., reaction wheels or gyros) are often used as actuators.
The jets and momentum storage devices complement one another, the storage
devices countering cyclical torques on the vehicle without loss, and
the jets countering long-term secular torques by periodically expelling
momentum from the storage system as the storage devices near spin satura-
tion.

Dynamic Considerations in Design.

In combination systems the jets usually operate as stand-by devices.
Typically, the momentum stored in the storage elements is monitored and
the appropriate jets are fired when stored momentum reaches some percentage
of total storage capacity. In such systems design requirements for the
Jjet system are evident: (l) the total stored gas must represent a momen-
tum capacity somewhat larger than the total secular impulse anticipated
over the life of the vehicle; (2) the maximum torque capacity of the jets
must be somewhat larger than the maximum torque anticipated on the vehicle--
for example, the misalignment torque during on-orbit maneuver rocket fir-
ing; and (35 the impulse of the Jjet system (moment times time) should be
controllable to within a few percent of the total storage capacity of the
momentum storage system (so that momentum can be expelled from the storage
system with precision). In all of these requirements the dynamic behavior
of the jet-controlled vehicle is of secondary importance compared with
precision control of the jet thrust level and the thrust time.

The momentum storage elements must be capable of storing, without
saturation, the largest cyclical impulses anticipated plus the secular
momentum change between momentum expulsions.

But, in addition, the momentum storage section draws also the assignment
of furnishing the specified attitude-control precision and speed of re-
sponse. Moreover, it must consume minimum power and energy in the pro-
cess. Dynemic behevier is therefore of Prime imroriance here.

The present paper is concerned with this latter aspect of attitude
control system design--the dynamic behavior and attendant mechanical
power requirements of reaction-system-controlled space vehicles. In
the first section of the paper response relations are developed for a
single-axis model of a space vehicle controlled by a reaction wheel.

In the two succeeding sections three-axis behavior of a vehicle is
studied for control using a set of reaction wheels.

Ir. subsaguent papers the benavior of gyrc-ccrirolled sysiems
will also be studied.



Typical Disturbances.

Two forms of disturbance torque--an impulse and a sinusoid--
have been chosen for the study of dynamic response. Sinusoidal dis-
turbances commonly predominate for a vehicle in a circular orbit
about a planet. For example, on a space vehicle whose reference is
inertially fixed (such as the orbiting astronomical observatory) the
aerodynamic torque will vary sinusoidally at orbital frequency and the
gravity-gradient torque at twice orbital frequency. (At the OAO
altitude gravity-gradient torque will predominate.)

For a vehicle controlled to the local vertical aerodynamic torque
may also be sinusoidal (at orbital frequency) if the orbit is slightly
eccentric, as shown in Fig. 1*.

Figure 1 also shows that if the orbit eccentricity is somewhat
larger, aerodynamic torque on the vehicle is essentially an impulse.
The reason is, of course, that atmospheric density falls away so
rapidly with altitude that in an eccentric orbit the vehicle spends
only a small portion of its orbit period in the effective atmosphere.

For intermediate values of eccentricity the aerodynamic torque may
be represented by a Fourier series, involving the first few multiples
of orbit frequency, so that, again, sinusoidal response is of interest.
(The Fourier series approach has been employed, for example, by
Schrello in Reference (4).) Sources and magnitudes of disturbing torques
have been discussed in a number of papers (c.f. References (h), (5),
(6)). Certain of their effects will be discussed further in Reference
3).

Other instances of impulsive disturbances may occur (e.g., meteorite
impact). More generally, impulse response furnishes a goed starting
point for analysis of response to random disturbances. In the present
paper sinuscidal and impulse disturbances of typical size will be used
to illustrate the form and order of magnitude of salient response rela-
tions.

*%
SINGLE AXIS CONTROL

Figure 2 offers a single-axis godel of a space vehicle with a
reaction wheel for attitude control. It is shown in the next section
that this model can represent the actual situation quite well in many
situations of interest; namely, when the attitude stays near a reference
which is inertially non-rotating, wheel speeds are slow, wheels are
accurately aligned to vehicle principal axes, and the vehicle is

*
Calculations for Fig. 1 are by Roger Bourke, Stanford University.
**

*Parts of this section are repeated in Reference (2).

The variatles are attitude deviation, 6, and wheel speed, . L
is an external disturbing torque, and [, is the internal control torque
between the wheel and the vehicle. _ 3 -
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symmetrical with respect to external torques. In such situations dynamic
behavior about each axis is decoupled and may be treated independently.
Moreover, as will be shown, single-axis results furnish a most useful
reference for three-axis studies.

In the present simple study it is assumed also that control will
be "stiff" compared with physical restoring torques, such as gravity-
gradient or aerocdynamic O-dependent torques, and these torques will be
omitted at this point. Their effect is discussed at the end of the
present section, and also in the next section.

*
Dynamic Equations

Three equations of motion can be written for the system of Fig.
2, any two of which constitute an independent set in the variables ©6
and 8. Newton's Second Law is applied, in turn, to the systems of
Fig.)2(a) (vehicle plus wheel), 2(b) (vehicle only), and 2(0) (wheel
only).

From Fig. 2(a), for the vehicle plus wheel:
(I +J3)6 +J0=1L ,
or, after Laplace transformation:
(T + J)52@ + Jsd)= L (1a)
From Fig. 1(b), for the vehicle only:

I8 = L + Tc (1p)

From Fig. l(c), for the wheel only:

JsQfL+ s@) = -Tc (lc)

*
The equations of motion for a much more general situation have
been derived by Roberson. cf., Reference (7)
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In Eq. (1) T is the control torque, applied by the control sys-
tem between the whéel and the vehicle. 2 is the angular velocity of
the wheel relative +to the vehicle. Note that friction torque and
back e.m.f. between wheel and vehicle are assumed zero in this study.

Control System.

A simple control system is shown in Fig. 3 for controlling the
attitude of the vehicle in Fig. 2. An attitude sensor (e.g., a star-
sight system) is assumed to report 6 .

The upper part of the block diagram in Fig. 3 is taken directly from
Eq. (1b). To this is added a simple control loop employing proportional
plus derivative control. For simplicity the control gain is set so that
the system characteristic has two equal real poles, as given by the root
locus picture in Fig. 3b. The gain required for this is:

in which T is the final time constant of the system.

With this gain setting, the overall system transfer function is

2
T 1

= —— (2)
I (rs + 1)2 °

= Ko

Response to Initial Attitude Error.

The response of the system of Fig. 3 to an initial value of 6 1is:

t
6 = 9(0)<l + %)e- T

Response to initial 6 is plotted to a linear scale in Fig. lLa,
and to a semi-log scale in Fig. 4b. Choice of T for adequately fast
recovery from initial errors can be made from Fig. 4. For example, if
the initial misalignment must be reduced by a factor of 100 in 1500
sec. then, from Fig. 4b, 6.6T must equal 1500, and the required system
time constant is T < 230 sec.

(3)

Response Relations for Impulse Disturbance.

(a.) Attitude Excursion

ir L isan impulse of magnitude £ = L At, as shown in Fig. 5a,
then its Laplace transform is L{s) = £, and fne system response is given
by
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This relation is plotted in Fig. 5b.

The maximum deviation of the vehicle occurs at t = 7, and has the
value:

_ 41
emax. T Ie (5)

For purposes of numerical calculation, for specific design problems,
it might be convenient to have available a set of response curves for
various values of T. Such a set is given in Fig. 6, from which not
only can the maximum vehicle deviation (from its reference attitude) be
read, but also the length of time the deviation will exceed any specified
value.

For example, suppose the appropriate control-system time constant is

*
to be chosen for a vehicle of moment of inertia é\}o gm\\m? whose pesak
L

attitude excursion, under an impulsive disturbance of dn cm sec, is
to be held under 10 mr, and--further--whose misalignment may exceed {mr

for no longeg than 200 sec after the same disturbance. The first specifica-

max _ i\€2
Yhs (ﬁ\§)/2 L0

made less than about th\f%c. But the second specification requires that

8 1 _ .
275 be larger than ﬁ\\/é\%o = 5 for no longer than 200 sec which,

from Fig. 6, means T must be less than about 50 sec.

tion gives = 50, for which, from Fig. 6, T must be

(b.) Control Torque Required.

From Fig. 3 and Eq.(2) wheel control torque is to be related to
vehicle disturbing torque by the transfer function:

' I (21s 1)
Tc = - :5 (2rs +1)6 = - z%;—:izg§ L (6)

from which, for L an impulse of magnitude £ , the time response is:

= |t

T @®=-20-De (7)

This response is plotted in Figure 7. Note that the control torque has
its peak magnitude at t = O, the instant at which the disturbing impulse
occurs. JIts value is:

»*
The symbol \. is used to abbreviate "x10"." TFor example, E\Z

means 2x107.

-10 -
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T --2 (7a)

A more direct way to derive the desired control is to solve Eq.(la)
for (L or (ib) for T,, after substituting for L from the desired-
. . ¥
response function, (2). The result is”:

7 = - Jsll= + Is2e - % (Ts+1)2®=-%(215+1)@ s :
or ¢ T T
Jl _ I 21s+l o (Ba)
JT s

I
T = -T—E (21s +1) & ,

the last expression being the same as (6).

(c.) Wheel Motion Required.

From Eqs. (1e) and (6) or (2) and (8a)the relation between the
vehicle disturbing torque and control wheel motion is given by:

+
- L (ors 122 L (8b) -
Js (1s + 1) :
Again, if the disturbance is an impulse, the time response is:

t
Q(t)=§-[l+(%-l)e T]+Qo , (9) .

which is plotted in Fig. 8 for initial speed, @ = O. The wheel, of
course, rotates in a positive direction (by the convention of Fig. 2),

so that it, rather than the vehicle, will have the momentum change required
by the application of torque impulse £ to the overall system.

(d.) Power and Energy Required.

The minimum value of power required by the control system will be
that needed to accelerate the reaction wheel, assuming no fr%ction, and
assuming that no power is dissipated in electrical losses. This
power is simply the product of control torque and wheel speed relative
to the vehicle. (This is a dot product--that is, it involves the sign
of both quantities).

* 2
Term Js @ is dropped in (la) on the grounds that % < < 1.
*¥
Only this limiting value of mechanical power is considered in the
present paper.

-13 -




FIG.7

FIG. 8

CONTROL TORQUE RESPONSE TO IMPULSIVE DISTURBANCE

WHEEL SPEED RESPONSE TO IMPULSIVE DISTURBANCE
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Thus, for an impulsive disturbance, power is given by the product
of -T.(t) from Eq.(7) and £(t) from Eq.(9). (The minus sign on T,
is necessary because Eq.(7) gives torque on the vehicle while the present
calculation is concerned with torque on the wheel. Note that the sign
convention in Fig. 2 considers torque on the wheel and wheel wvelocity
positive in opposite directions.) For the special case that Qy =0
the power is:

t
2£2 £y T £y 2T
P(t) = 5 [(1 -=)e T -Q-30e (102)
P(t) is plotted in Fig. 9a. Maximum power is required at about t = %

and has the wvalue:

P = .66 —

max TJ

Note that the power, as plotted, actually becomes negative after
time t = 21, when the wheel 1s being decelerated as it approaches its
final speed. This result is based on the premise of recovering energy
from the spinning wheels when they are to be slowed down, and storing
the energy (for example, in another wheel spinning in the opposite
direction) The feasibility of such energy conservation is discussed in

7Fw4»ZV”L Appendix B. If energy cannot be recovered then, of course, the magnitude
oniyAshould be read in Fig. 9. (;Z2L$1p~aLf«4rvu ‘f}mbd”b"¢‘4aéi
/&LW LLM)
The total energy consumed is fo v integratiing Eq.(10a) or find-

ing the area under the curve in Fig. 9a. The value obtained is:

Lo~p 1 (11a)

E=-.5 T max

assuming, again, that negative values in Fig. 9 represent recoverable
power. Energy consumed would, of course, be slightly larger if no
recovery were assumed.

If a wheel is spinning with some high initial speed, Qo, when
the vehicle is disturbed (e.g., by impulse, £), then a much higher power

level is required to accelerate the wheel. In this case the power is
given by an amended version of (10) (obtained by multiplying (7) by (9)):

t
2 2L
P—gig—li(l-l)eT

2 24 2 -t
= = -1 -2a-YHe TJ —2(1 - ) e T (100)

in which the last term may be much larger. When this is so the power
consumed will look like Fig. 9b, and the energy will also be much larger:

E =40 (11v)

That is, the torquer must expend much additional energy to chase the

- 15 -
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spinning sheel. This energy is larger than the zero-initial-wheel-speed
energy by the ratio

22 I h
—5 _T2—=2-
505/T y) £

in which h is initial wheel momentum.

Response Relations for Sinusoidal Disturbance.

Suppose that the system just described is disturbed by a sinusoidal
external torque:

L=L cos wt (12)
o] il

Then, from (2) (using, for example, the steady-state portion of the
Laplace transform):

o = emax cos (wft + wé) s

in which >
LT 1
6 =2 — (13)
max I (vs + 1) =
5=JW,
and ¥ - 1
6 (7s + l)2
s=jh>f

Usually ®_ will be orbital frequency, while 71 will be shorter than
l/2n' times the orbital period, so that Tw_ < 1, and the relations are

4 . T
simpler: L o
T
0
For T, <1l; 6 =-7—cos wft (14)

The corresponding values of control torque and wheel speed are,

from (6) and (8):

(‘

Tc = - Lo cos Wt (15)
For 7w, < 1<

k = J—w—; sin Wt (16)

Then the power required is:

- 17 -



L.2 sin 2w_t
P = -TCSZ—_:wa > (17)

which is plotted in Fig. 10.

It is important to note that the power has no secular component,
which might have resulted from rectification when two sine waves were
multiplied together. There will never be rectification (for the ideal,
no-damping model assumed here) because & is always the exact integral
of Tc: they will always be 90° out of phase.

If energy can be recovered as the wheels are driven, then the net
energy per cycle will be zero. But if, on the other hand, a drive-then-
brake methed is used, then the energy consumed will be the shaded area
in Fig. 10 (braking involves no power):

l_o2 Fmau(.
E = 5 per cycle = 2 —— PO de/c(18)
[4%)
wa f

As an example, suppose a vehicle having moment of inertia
I-= éQO gm cm® is controlled to an inertial reference with wheels of Inertia
J = 2\\ gm cm~ and with a time constant of 100 sec. Suppose . the vehicle is in
a slightly eccentric orbit such that the sum of aerodynamic and gﬁavity-gradient
torque is sinusoidal, at orbit Ffrequency, with peak magnitude 1\ dn em.
Then, from (1k4), (155, (16), and (17), the peak values of vehicle attitude
excursion, control torque, wheel speed, and power required will be,

respectively, 5

L2 \H(\?)

emax = N = 2\%0 = ,005 rad.
T; = Lb = i\3 dn cm

max

Lo 1\h /
Q = = = 500 rad/sec.
mE g (2\) (@\)

b 2
I Q _1.a\) (N = 25 watts
max 2 ¢ max 2 \8
max 1

(The factor 1\3 converts dn cm/sec. to watts.)

Without energy recovery, the energy used per cycle, by (18), is:
2 N2
L (1\)
E = = = 500 watt-sec.

wa2 (2\F) (1\-3)2 T

- 18 -




FIG. 10 POWER CONSUMED DUE TO SINUSOIDAL DISTURBANCE

-19 -




In cases where Tw_ ig larger than 1 (i.e., the system time con-
stant can be made longer than an orbital period; or a high-frequency dis-
turbance is involved) the above quantities may be attenuated, as indicated
by the functions of s in (2), (5) and (8). This is discussed further
in the last section of this paper.

Effect of Physical Restoring Torgues.

Sometimes, if the system time constant is to be very slow, physical
f-dependent torques--particularly gravity-gradient or aerodynamic torques--
may be important factors in the dynamic characteristices of the system.

In such cases the external torque on the vehicle consists not only
of the independent component,L , in Eq.(la), but also of a H-dependent
component. In the case of a local-vertical satellite, and for the very
small 6's we are congsidering, this torque may be written as a linear
funetion, -k@. Then Eq. (1a) becomes

Is°0 + Jad= L - k6
or
2
(Is“ + x¥)e + JsQ= L (19)

In applications where positive, precise control is indicated, the
presence of such additional torques may be taken care of by having the
control system cancel them out. That is, the term k& in (19) would
be countered by amending the control torque equation, (8a),as follows:

Js{)= [ 1—2- (21s + 1) -k’J e (20)

T

With this control the attitude response of the vehicle will be exactly
as given by (2), as can be seen by substitution of (20) into (19)0
Control torque and wheel speed would, of course, be altered by the addi-
tional control term k6. As a practical matter, however, the magnitudes
of physical torques will be small, compared to control torques involved
in precise attitude control, so that only small percentage changes in
Té and £ would be involved.

Occasionally only light attitude stability is required and only
approximate attitude angle must be maintained. In such cases it may be
possible to use physical restoring torques to supply the main stabilizing
torque, with the attitude control system functioning only to supply
damping. This situation is depicted in Fig. 1lla, which is similar to
Fig. 3, except that the vehicle dynamics now include the physical re-
storing torque (e.g., due to gravity gradient). The corresponding root
locus picture for the case that k is positive (stable restoring.torque),
is shown in Fig. 11b. Without the control system, the vehicle would
oscillate indefinitely at its own natural frequency. The control system

supplies damping, so that natural motions of the vehicle are damped out
in time.

-20 -
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The use of passive stabilization (with control system.damping) is
probably confined to those applications in which the orbit can be
counted upon to be nearly circular (e.g., eccentricity < .001). Otherwise,
as some studies have shown, (c.f. References (8) and (9)), the gravity
gradient torque may actually cause dynamic instability for some initial
conditions of the vehicle.

THREE -AXIS CONTROL

Dynamic Equations.

The equations of motion for a space vehicle with internal moving
parts have been written elsewhere for quite general circumstances.
(c.f. Reference (7).) However, it will be convenient to rederive the
dynamic equations briefly for the special case of interest here.

__ Consider the space vehicle shown in Fig. 12 with principal axes

1, 2, and 3 fixed in the vehicle, and assume the special case that the
three control wheels have their spin axes aligned exactly along the
principal axes of the vehicle, as shown. The attitude of the vehicle

is to be controlled to the reference axes ly, 2,., and 3., which are
also an orthogonal set. (In general, the reference axes may be
inertially fixed or may rotate in some specified manner). Let the
orientation of the vehicle with respect to the reference axes be defined
by ang%es 91, 62, 93, as shown. (It is assumed that ©6's are always
small.

Next, assume further that the reference system is either an inertial
one, or is orbit-oriented to the local vertical and the orbit axis.
In the latter case, to simplify the equations, we let the 2, axis co-
incide with the orbit axis and the 3, axis coincide with the vertical,
s0 that the reference system has an angular velocity, say W, about the
2, axis only. (Except for a perfectly circular orbit, w will vary
with time.) The equations written for this reference system can be
quickly specialized to the inertial reference case by letting W equal
Zero.

The system of Fig. 12 has three degrees of freedom to locate its
mass center, plus six more to define motion with respect to the mass
center (three for the rigid vehicle, plus one each for the wheels
relative to the vehicle). It can be shown that, for situations of
interest, motions about the mass center will have a negligible effect on
motion of the mass center. TFor present purposes, therefore, we can con-
sider variables defining motion of the mass center as independent, and
write just six dynamic equations for motion about the mass center. We
shall write them using the three vehicle attitude angles, 6, plus the
three wheel speeds, & as the dependent variables. (In each case we
write the well known extension of Newton's Second Law for motion of a
system of rigid bodies about their mass center.)

-2 -
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For the first set of three equations we elect to write the law for
motion of the entire system--vehicle plus three wheels:

H system =" veh. + ﬁw =W

Details of the derivation are given in Appendix A, The result is:

I + (12—13)w2 + 30 3%,p  (I,-I+I;)wp + I.& - J2.p
-JQSP 4 Qlw) I2p2 J(le - st) )
-(11-12+13)wp - I5é + J92p -Jalp 13p2 + (12-11)w2+J32w

j) o) w 0

+J|0 p ofl%=M- |10 (A-1)

w0 P 0
in which p represents the operation g%-, the components of ]
are attitude angles 64, 65, 6z , the components of & are the

angular velocities of the three wheels, &,, &, &z, and the components of
M are the body-axis components of external torque, Ml’ M, M3. (J nhas
been lumped with I in the 6 terms.)

Often external torques are attitude dependent, as discussed in the
preceding section. Typically, aerodynamic torque will have a specific
time variation if the vehicle remains always oriented exactly to its
reference axes; but if the vehicle deviates, then the torque may vary
also as a function of attitude angle 6. In the above equations, there-
fore, it will be convenient to divide total external torque M into a
component, L_, which is independent of attitude plus the 6-dependent
components, which we assume can be written as linear functions of 6
because we shall confine ourselves to very small 6. Then the above
equations become:

2

Ilp + (12-I3)w2 + Jggwkll Jﬂsp + k12 (Il-I2+IS)0’p+Ilﬁ)-J92P+k13
_JQSP - I 0+ k21 I2p2 + k22 Jle - mJSw )
-(Il-12+13)wp - 13& +IRp + kg I + Ky, 13p2+(12-11)w2+JQ2a&
P 0 w 0
+Jlo p o|8=L - (21)
w 0 p | o




Note that the k's can be either positive or negative, and can be time
varying. Further, although the k's due to gravity gradient will appear
only on the diagonal of the matrix, because 1, 2, 3 are principal axes
in Fig. 12, other torques--for example the aerodynamic k's--may not be
symmetrical (e.g., because of paddles unsymmetrically deployed): hence
the off-diagonal k's in Eq.(21).

In this paper we wish to study some response relations for the
system under the simplifying assumptions that the equations are linear
with constant coefficients. In some cases these assumptions will be
quite accurate. For example, if changes in the wheel speeds are to be
small in a given response, then the perturbation technique can be used
to linearize the (JQ)& terms. If, further, the orbit is circular,
then W is constant. (If the reference is an inertial one, ® is
zero.) Under these conditions Egs. (21) become linear with constant
coefficients.

In other cases the assumption of linearity and/or constant coeffi-~
cients can serve only as a first approximation, the utility of which
mist be evaluated in each specific case.

The second set of three dynamic equations is obtained by writing
Newton's law for each of the wheels about its spin axis;

J(sz'j + ej) = - ch

in which j =1, 2, or 3. (As before, the minus sign occurs because

Hhe >P7z}Atorque between the wheel and the vehicle, is considered positive on
the vehicle and negative on the wheel.) In most cases of interest, 60
will always be very small (of order J/T) compared to Q , and will there-
for be dropped:

JQ. = -T (22)
J ¢

Control to an Inertial Reference.

Note, first, that Eqs.(2l) can be linearized and completely decoupled
on the basis of a specific set of assumptions. These are (1) that the
reference frame is an inertial one, (2) that the wheel speeds are
initially near zero and do not change much during the motions of interest,
and (3) that the vehicle has aerodynamic, as well as inertial, symmetry
with respect to its principal axes so that cross-torques, kij) are all
zero. These assumptions produce, respectively, the following simplifica-
tions in (21): (1) w= 0, (2) (JR)6 = 0, and (3) k;; = O. Then all off-
diagonal terms disappear, all on-diagonal terms are iinearized, and (21)
may be Laplace transformed (if desired) giving:
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2
Ils + kll 0 0
2 — _
(3] =
o I + ky, 0 +3sll=T  (23)

2
0 0 ISS + k33

Each of Eqs.(23) is an independent linear equation analogous to
Eq.(la)° Correspondingly, Eq.(22) is analogous to (lc). Therefore,
all of the results of the sectlion on single axis control apply verbatim
to the system described in the preceding paragraph.

Consider next the situation in which we remove special assumptions
(2) and (3) above, but retain assumption number (1) (that the reference
is an inertial one). In this case, since we are permitting the wheels
to have high initial speeds, the terms (JR)6 in (21) will be of first-
order importance. However, if the changes in wheel speed during a
period of interest are small compared to the initial speed, then the
equations can still be linearized by using the perturbation technique.
That is, we assume that each wheel speed consists of a constant initial
valueplus a small perturbation:

Then, after Laplace transformation, Eqsa(2l) become

2
1,87+ kll) (hSS + kle) (—h2s + k)

(-ngs + k) (1252 +iy) (B + k)| F 4 JsQ= T (2h)

2
(h2s + kg (-hls + kse) (I3s + k35)

in which h = JQO. The gyroscopic coupling terms are very much in
evidence.

It is shown in Reference (2) that there is considerable advantage
in choosing the control equations for a coupled system on the basis of
desired performance and, further, of specifying that the responses about
the three axes be decoupled from one another. Specifically, let it be
required that a disturbance about the principal axis of the vehicle pro-
duce a critically-damped response about that axis (as in the single-
axis case) and no response about either of the other axes. That is,
the response is to be:

2
I <1§-+—1> 0 0
1 T 5
0 I <ﬂ> 0
2 T >
0 0 I <?s+f>
3\ T
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which has already been plotted in Fig. 5 for I an impulse.
tion between T

and Opgx is given in more

The rela-

detail in Fig. 6. Equation

(24) can now be solved directly for.{l , substituting for L from (25):

T (21s+l)
T, z L - (hgs + k) hos - ki3 h
O = — (2Ts+l) -
Q=53 hgs - Ky I 2 kpp - (b5 + ko) 8
(2Ts + 12
- (bys + ky) hys - kgp I 2 - Kzz
(26)

Thus, while the vehicle response to a disturbance is identical with
the single-axis case, the wheel-speed response involved is now more

complicated.

It can be obtained directly in

terms of disturbance L by

substituting (25) into (26) and solving fordY},. The result is:

— k T k h.T k
2Ts+l-']':£ 1-2 :—[3— Ts + I—l% 72 1—2- TS = fl-zl 'réj
1 ) 2 3 3
I Ky 2 pretl kp b7 Kz o -
= ( )2 Il T8 - Il T Ts+l - f;— T - T;— T8 + T;_ T
Ts+1
b7 koo o2\ BT Koo o prasl K:5 2
t_I Ts+-i-—-1' I—'—TS-I—T TS -f—‘r _
1 p) 2 3
1 (27)

Each of the terms in (27) is of the form:

If L

in (27) will resemble
sponse given by Eq.(95

———F—= L(s
° (s + %)2 ( )

is an impulse, then the time response

son of terms in (27) with (9).

corresponding to each term

in both form and magnitude, the single-axis re-
and plotted in Fig. 8, as is evident from a compari-

The point indicated by Eqs.(27) is that with high initial wheel speed
the wheels will be two or three times as busy and will respond to inputs
about all three axes.

The terms
trol system and the natural restoring (or destabilizing) torques.

kT2
I

in (27) represent the relative "stiffness" of the con-

In the

usual case, the control system will dominate, so that these terms will be

small.

We therefore drop them at this point.

(Their inclusion adds a little

complication, but is straightforward, as was discussed in the Single-Axis
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Section.

The special case of a control system which damps natural motions

of a local level system is discussed in the last section of the paper.)

Terms
large as

hrt
T

represent the coupling strength, of course, and may be as
1 for high-capacity wheels.

The control torques involved in accelerating the wheels as specified

in (27) are available from (22):

- Jsfl

in which the components of ) are given by (27).

T
c

response will therefore be like that given by Eq. (7) and plotted in

Fig. 7.

The form of torque

To obtain power consumption we recall that we have selected the case
in which change in wheel speed is much smaller than the initial value,

5. The power will therefore be given, closely, by:

That is;

P, (s)

P(s) |=

PS(S)

P=-T %

(21s+1) Q

(Ts+l)2 10

h_T TS

h T TS

1

—_—
('rs+l)2 20

—sQ
I, [(rs1)® O

h,T

I

TS

(TS+l)

(prs+1

(r

el

1o

s+l)2

TS

(1s+1)

2 QlO

Q
20

2 QSO

TS
(Ts+l)
TS

(Ts+l)

(2Ts+l) Q

('rs+l)2

Two forms of time response are obtained from (28), namely:

(2 - E) e

.t
=

, and

(l - %) e

t
-

These are plotted in Fig. 13 over time periods of interest.

2 QlO 1

2 Q20 2

30

g

L
(28)

The total energy consumed by the control system during its response

to a set of impulses,

by

E =k/~m [Pl(t) + P2(t) + Ps(t)] dt

t=0

-28
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From the results of Fig. 13, the total energy can be written exp11c1tly for
two cases: (1) energy 1s not recovered

e ?7/ /3; /Awwv?, @

» ;f h.T h. T b

_ yy 1 (2 3

E = (1 + 2>Qlo + e 2. + - 920>

€ 1 1 J
}! )( h,t th )
1 1 (3 L

+ zg (1 + 2> 5220 + -3 Qlo + - QSO> (29a)
€ 2 2 .
é. .dz' b7 bt
=_1Q = _ S

+ <1 + 2> 30t 8 * 910>
e e 13 I3

(2) energy is recovered (areas in Fig. 13 are added with signs as shown) :

_ '
E = 21910 + g2920 + zsgso ' (29%)

The last result suggests the striking possibility that energy con-
sumption may be reduced to the conservative, single-axis level (Eq.(llb))
without storage, by effecting the appropriate transfer of energy from one
control wheel directly into another, the proper transfer program to be
specified by the computer.

In the absence of energy recovery the total energy, (29a) will be
somewhat higher than for the single-axis case.

Response to Sinusoidal Disturbance.

If the time constant of the control system is short compared to the
period of a sinusoidal disturbance to which the system is subjected,
then--as discussed under single-axis response--the response of the system
is greatly simplified because terms TWr can be dropped compared to 1
in expressions like (25). Commonly the disturbing frequency is orbital
or twice orbital frequency and the system time constant is many times
faster, so that this is a good approximation.

If the disturbance is

L=L w
o cos ft

and if TW, < 1, then the attitude response (which is single-axis be-
cause of the decoupling control) is, from (25):
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FIG. 13 TIME FUNCTIONS RESULTING FROM EQUATIONS (28).
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cos Wt

J Ij f

about each axis (which is the same response as (ﬂ+)).

The wheel speed and control torque--and hence power and energy--
also revert to the single-axis form because all coupling terms in (26)
contain wa . Thus &, T,, P, and E are given by single-axis rela-
tions (16), (15), (17), and (18), respectively.

CONTROL TO A ROTATING REFERENCE

If the reference frame is rotating, at angular velocity w, then
two conditions are necessary to linearize Egs. (21): (1) 6 must be
small compared to W, (2) @ must be small compared, for example, to

J
I W, If both these conditions are met then (21) can be linearized and

s R w — .
Laplace transformed, giving (wlth nean n)
2 2 - — —
I,s° + (12—13)n + Xk, 0 (11-12+13)ns s o n
0 Is° +k 0 8|0 s of T
2 22
~(I.-I 4TI )ns 0 I s°+(I.-I )n°+k n o s
S R M 3 172 33 U °)
(30)

provided only that the vehicle has symmetry with respect to external
torques. (If this is not true, then the © matrix will have ki.’s
in place of its O'sS and the analysis will be somewhat more compiicated,

but straightforward.

In studying the response to sinusoidal disturbance at orbital
frequency condition (l), above, reduces to

né < n
max
which is met by the restriction to small 6. (6 is deviation from the
reference axis system.) For faster transient motions condition (l) may
be met only approximately, and must be assessed in each case.

*
Except for terms kij (e.g., aerodynamic coupling due to non-

symmetry). In the unusual case that these are large enough to cause
serious coupling the present analysis must be modified accordingly.
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Condition (2) is met exactly,of course, only by a circular orbit.
Deviation from condition (2) depends on orbit eccentricity, and must also
be evaluated in each case to determine the applicability of linear analysis
based on (30). (If deviation is too large then, of course, linear analysis
can give only a rough approximation to the behavior, and non-linear tech-
niques or computer solutions are indicated.)

It is convenient to divide systems for controlling a local-level
vehicle into two classes: precise control systems, and systems for damping
natural motions.

Precise Control System;

If precise, relatively fast control of the vehicle represented by
(30) is required then (l) the torques involving n and k 1in the 6
matrix of (30) will turn out to be small compared with the control
torques, and will have negligible effect on the dynamics, but (2) the
n terms in the & matrix have an important effect involving initial
wheel speed.

To show these two points most directly we choose a decoupling con-
trol system, such that vehicle motion will be given, again, by:

— 2
Ts+l )
L (55 0 0
2
Ts+l = _ =
0 12(T ) o] & =L
2
Ts+1
o0 0 I, (=)

The required wheel speed relations are, from (30):

k
2trs + 1 - igg T2
_ 2 .
Js% = 5 L, + J$22(o) (pitech)
(Ts + l)
N K e -(1,-T+T, )nsr”
1 1
s n|l L g, (o)
1
('rs+l)2 I (Ts+l)2 .
= 1 +J
I -T k
2 2122 33 2
-n s E)S (Il-IE+IS)nST 2T1s+1~ Is n T - 13 T (o)
. + L Q. \0
JdL 3 2
- i Is(Ts+l)2 (s + 1)2 JU L
(roll-yaw) (31)
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in which pitch and roll-yaw have been decoupled, and initial wheel speeds
have been included.

For precise control 1 will be very short compared to either
l/J 7I or l/n and corresponding terms may be dropped from (31),
proving point (15. Then (31) becomes:

21s+l
Js()z = L. +J2 (o) ,
(TS+1)2 2 2

s n &Ll Ll Ql(o
278+1
J = == +
(Ts+l)
-n s || L, 93(0

Sclving for N's explicitly:

Q- Eg (2TS+1)2 . 92(0) , .
e J s(Ts+l) s
L L
a El s - Eé n (27s+1) sQ (o) - nQ (o) (32)
= +
1 (Ts+l)2 s2+n2) (s +n )
L L
3§ s + 31 n(2Ts+l) sQ (o) + nQ (o)
f, = +
2 (Ts+l)2 (s2+n2 (s +n ) |

<

From Eqs.(32) the pitch wheel motion in orbit behaves Jjust as in
the single-axis case (compare with (8)), but the roll and yaw wheels
have now also a sinusoidal motion at orbital frequency. This motion will
persist--if there is an initial wheel speed--even in the absence of
disturbances. This is point (2).

Physically the reason is that the momenftum vector stored in the
wheels must be maintained fixed in space and, therefore, must be passed
from one wheel to the other as the vehicle rotates at angular velocity
n. This requires control torque, of course, and therefore power.

The power required is obtained by combining (22) with (32). For
no disturbance and 92(0) = 0, for example the amount is

2 sin 2nt (33)

P=4dn Ql(o) )
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which may represent a substantial proportion of the total mechanical
power required.

The above situation is investigated in greater detail in Reference
(3). In particular it is shown there that if decoupling control is not
used the momentum exchange must be accompanied by an attitude error which
may be very large.

It should be pointed out that the only way to avoid the requirement
to accelerate and decellerate in a local-level satellite is to use spin-
ning members which are so mounted that their spin axes are free to remain
inertially fixed--as with the reaction sphere.

System for Damping Natural Motions.

From (30) the possibility is evident of using physical restoring
torques (e.g., k's) to stabilize a local-vertical satellite. The most
commonly used torque 1s the gravity gradient.

The natursl dynamic characteristics of a rigid vehicle in a
gravity-gradient field have been described carefully elsewhere (c.f.
References (8) (9) and (ll).) To summarize briefly, the corresponding
values of the k's in (30) are, for a symmetrical vehicle:

3K
= - £
k) (I2 13) 3 (ro11)
3K
ko, = (11-13) R——gs (piteh)
k53 = 0 (yaw)

in which Ko 1is a gravitational constant. Further, for a circular
orbit, Kg/R3 = n° , so that (30) becomes

I-I
2 173 2 _
12 [s + T 3n :l@e + st“c. = L2

2
r— - —
T s%4+(1 -1 )hn° i L) L
15 H(I,-I)kn (Il-IE+13)ns 6, 8 n Jai L,
+ 3y , = (3k4)
2 2
-(I_-1 - -
(Il 2+IS)HS IBS +(I2 Il)n @5 n s J]S L3
— ~__J~J e - ) —

in which Jd is the inertia of the damping wheel.
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Evidently, with the proper relative magnitudes of the I's the
vehicle will be neutrally stable due to gravity-gradient alone--i.e.,
with the wheel speeds zero. That is, it will perform undamped oscilla-
tions about all three axes at simple multiples of orbit frequency.

For example the celebrated dumbbell confi ation oriented so that
12 = I, I, =0, will oscillate at frequency ~¥3 n in pitch and 2n in
r6ll. "Moré generally, requirements on the I's are that either
I,>I >1I, or part of the region I. > 13 > I, for stability. Dynamic
cﬁarac%eris%ics of rigid satellite veh}cles are aescribed comprehensively
in Reference (ll). Note that yaw stability is achieved because of roll-
yaw inertial coupling produced by the rotating reference frame. Basically,

this is a form of gyrocompassing.

From (34) it is easy to see how light damping of a naturally-stable
vehicle can be accomplished. In pitch, for example, we can convert (3&)
to

2 5 2 _
12(5 + er + wp) 6, = L2 (35)
by letting
= 2
\{L2 = JTd @2 (36)

(wp is an abbreviation for the vehicle natural frequency in pitch,

A2
—;Efé'Bn s T3 is the time constant of the damping envelope, and

2
Jd is damping wheel inertia).
From (35) the response to an impulse disturbance, L2 = Egé(t), will
be
1 -E
6, ==5—¢e 4 gin W __t (37)
I w
2 1% pd
. . . 2 1
(1n which is the damped natural frequency, W a =AW - - ).
Correspondingdwheel speed will be P P Ts
t
24, T Ta (
Q = —=— ¢ sin @__t 38)
w
2 Jde bd pd
and control torque:
24 -=— cos(w t + ¥
T,= —2. Td ( pd : (39)
2 T cos ¥ d
d
¥ = sin - ¢

for € < 1.
- 35 -



i)

(t 1is the damping ratio, { =

T W
dp
Power is given by the product of (38) and (39):
hﬁze -2 %, sin 2w dt _ 5
P = —5— e d — P2 _ tan ¥ sin‘w dt (ko)
J.T. W 2 iy
dd pd

Comparison of (37), with (h), shows that for the light-damping sys-
tem attitude excursions will be larger than for precision control by
/T

w
pd

Comparison of (38) with (8) shows that, for the same control-wheel
speeds, the damping wheel may be made smaller by:
7
J

= 2§

w

Td pa

In this case comparison of (39) and (MO) with (6) and (9) shows that

control torque and power will both be lower, by Tal T for the damping
system:

P
damper ~ Tprecision controller (hl)

P . s
precision controller Tdamper
Equation (41) is a convenient relation for preliminary design studies.

In roll-yaw the decoupling principle is again useful, and we can
specify response by

2 2 2

= W

Il(S+TdS+ r) 0 6, L,
= (k2)
2 2 2
0 IS(S+T s+wy) o L,
d
I -T : I-T
in which W 2,23 hne , W 2 - —g——l-n2 . (The same -~
r Il y 13 . d

is chosen in all three axes in this example.)

Then the wheel program required will be, from (34):




ll\)

- - e
s n Il = (I1 12+13)n 1
= 43
Jd s ( )
2
-n s (11-12+13)n I, - o,

From (hE) the attitude response in roll and yaw will be the same as
in piteh, (37).

The wheel motion (and therefore, also, torque and power) in roll-
yaw will be somewhat more involved than in pitch because of the off-
diagonal terms in (43). Substituting for © from (L2) the response
of wheel 1 to an impulsive torque (about an axis in the roll-yaw plane)
is given by:

I _-I +1 I
2 3
o4 S_(i._e_.__3 ( )

2 = c (O
1 ZT )7 T 17t I A s
N = s 1 + ni_s d_1 2
1 J.T (s2+ %— s+wr2)(sz+n2) I3 3 (52+ g—s+w:y2)(52+n2)

d d a Td

The expression for f), is similar. The first denominator gquadratic
leads to a time response similar to (58). But, in addition, the second
denominator quadratic leads to a component of wheel speed which is
sinuscidal at orbital frequency, just as there was in (32). Again,

this is necessary to keep the wheel momentum vector fixed in space when
there is no disturbance, and cannot be avoided in control to a local-
vertical reference with the system of Fig. 12. (Note that when n=0,
the above equation becomes Jjust like (36).) Moreover, for the present
system in which ®,. and W, are slow, of order n, the peak power re-
quired to accelerate and decelerate the wheels during the orbits follow-
ing a single impulse will be as large as that required to damp the transient
attitude motions produced by the impulse.

Sinuscidal Response.

For a damper system the sinusoidal response relations are more in-
volved than for a tighter control system simply because the forcing
frequency is no longer much lower than the natural frequency of the system,
but, on the contrary, may be somewhere between % the natural frequency
(for disturbance of a dumbbell in roll at orbital frequency) to several
times the natural frequency (e.g., for disturbance of a more nearly
iso-inertial vehicle.)

For a gravity-stabilized vehicle it is assumed that the natural

frequency of the vehicle--e.g., I -1 5 in pitch--will be at least

N
W




a sizeable fraction of orbital frequency. Otherwise gravity stabiliza-
tion would be too weak to be useful in the presence of other torques.

To illustrate the relations, the frequency response of a vehicle
in pitch is shown in Fig. 14. Accompanying plots show wheel speed and
torque response. It is seen to be advantageous to avoid resomence, if

possible.

Eccentric Orbit.

It must be emphasized again that the present analysis assumes a
near-circular orbit. When the orbit is eccentric the gravity gradient
may actually be destabilizing, so that more positive control is required
and the technique of merely damping natural motions cannot be used.

(oo Wf*)
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FIG. 14 RESPONSE OF DAMPING SYSTEM TO SINUSOIDAL DISTURBANCE IN PITCH.
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SUMMARY

In the common attitude control system which utilizes a combination
of momentum-expelling and momentum-storage mechanisms the latter draws
the job of furnishing control precision and speed of response with
mirimum power.

Design of a reaction wheel system for required response is aided by
basic response relations for initial error and impulsive and sinusoidal
disturbances, as illustrated in Figs. L4 through 10 and Egs. (13) through
(18) of the present paper. Specifically, controlled-system time constant
can be chosen from allowable attitude escursion in Fig. 6, for an impulsive,
or Eq. (14) for a sinusoidal disturbance; or from allowable initial re-
covery time in Fig. 4. Torquer capacity and wheel size can be determined
from Figs. 7 and 8, for an impulsive disturbance,,or from Egs. (15) and
(16) for a sinusoidal one. Peak power and energy are given by Fig. 9
and Eq. (11) for an impulse, or by Eq. (17) and (18) for a sinusoidal
disturbance.

While the above relations are derived for the single axis case,
their applicability to three-axis design is established. For precision
control to an inertial reference the postulation of decoupling control--
which offers several advantages--results in vehicle response which is
identical with the single-axis case, but control wheel activity may be
greater by a factor of 2 or 3, due to gyroscopic coupling, if the initial
wheel speeds are high. Even so, if a technique can be devised for re-
covering mechanical energy, then energy consumption may be reduced to
the single-axis level. The possibility of mechanical energy conservation
i1s discussed in Appendix B.

For precision control to a rotating reference the single-axis vehicle
response may still be achieved, but control activity is now complicated
by the continuous angular velocity of the vehicle. In particular, spin
momentum must be transferred back and forth between the roll and yaw
wheels--at significant expense in power--to keep their momentum vector
fixed in space. An accompanying attitude error can be avoided only by
using decoupling control.

A control system which merely damps the natural motions of a local-
vertical satellite can be used if precision control is not required and
if the satellite has a stable configuration and is in a nearly-circular
orbit. Then the response of the vehicle will be larger and slower, roll
and yaw motions being generally coupled, but smaller wheels can be used
(Eq.(39)), and power consumption will be lower by the ratio of damping
time, in the damper system, to the control time constant of the precision
system.

*
Only mechanical power, required by an idealized torquer, is
calcuiated.
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APPENDIX A: EQUATIONS OF MOTION FOR SYSTEM OF FIG. 12

Refer to the assumptions stated under "THREE-AXIS CONTROL'.

The angular velocity of the vehicle-fixed coordinate system 1,2,3,
is

sveh _ —veh/ref , gref (A-1)

For the assumptions given, that the 8's are small, and that the refer-

ence system rotates about E} only, (A-1) can be written:

ﬁveh ~0+2 w
r

~T(6 + © 0) +2(6, + @) +3(65 - woy)

(a-2)
That is, products of Euler angles and their derivatives are neglected.

The angular momentum of the vehicle is given by:

Il 0 0]
-ﬁVEh - [I] 5V€h - 0 I2 0 6Veh
0 0 I
u 3

and the angular momentum of the wheels by:

SE =7 @0 +7)

in which @ is defined (as in the text) as a vector made up of the wheel
spin velocities;:

oy
= A
Q=10
Q
— 3—
—syst = —
Then, with B7°0 = B'°P 4+ 5§, we can write:
*
. )
— t - — — -
Hsys _ Hsyst + Qveh X Hsyst =W (A—3)
¥ O -
H means the derivative of.H ag segn by an observer on the vehicle---
i.e., the derivative of Hwith I =2 = 3 = O.

- 41 -




the small products of Euler angles and their rates, and also

to 1, the result is:

2 2

I,p +(12-I3)a> +J JQ3p

-J(Q,p4+02, w) I p2
34 2

-(11-12+13)mp-{g»J92p -JQ, P

in which p é g._t .

(

Il- 12+I

J(le-Q

2 2
I3p +(12-Il)a> +JQ W

with respect to vehicle coorgdinate system I,—2-,3.

—

3)wp-JS'22p+Il(l>

3®)

o -

If, again, one drops

T compared
_ r 0O o|]_ _ 0
6+J 10 p O]l Q =M - Igd)
-0 p 0
(A-1)
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APPENDIX B

THE FEASTBILITY OF CONTROLLING MOMENTUM WITHOUT ENERGY CONSUMPTION

The purpose of this appendix is simply to show that, in principle,
the net momentum of a flywheel system can be varied as desired over an
indefinite period of time with loss in energy which, in the limit, may
be zero. To this end an all-mechanical, energy-conservative system is
offered, for demonstration only, in Fig. B.

Two coaxial reaction wheels are arranged with an idler-wheel drive
between them. The idler is positioned by a carriage, as shown in the top
view.

If the carriage position, x, is zero, then the twc wheels run
at equal speed, in opposite directions, and the net momentum of the
pair is zero. Let this initial wheel speed be Ao). When x has a
non-zero value the ratio of the reaction wheel speeds is given by the
geometry, and the net momentum of the system can have any value between
(in the limit) plus and minus ¥2 J2(o), depending on x.

For example, for the position shown, x = £/2, the lower wheel must
be running three times as fast as the upper wheel, and the net momentum
of the system is 2J2,, directed downward. Moreover, if the system was
moved from x =0 to x = £/2 without energy loss, then %5 can be
shown to be .45 2(o) (amd @ = 1.34 2(0)), so that the net momentum
of the system is .89 J%(o).

When a change in x is made the necessary accompanying transfer
of momentum, from wheels to vehicle, takes place, of course, via the
torque impulse the idlers exert on the carriage (and thence on the
vehicle) about the reaction wheel axis. (Unfortunately, the system
shown also exerts a small torque impulse about an axis parallel to
the idler axes. This must be eliminated, by design, or compensated by
the control computer, for three-axis operation.)

To show that operation with negligible energy loss is reasonable
we consider, first, that there is viscous friction between the idler and
the reaction wheels. Next we let the friction become high and note the
limiting values of momentum change and energy change. Finally we consider
the energy necessary to position the idlers.

If the idlers in Fig. B are assumed to be massless, and if the
friction between idlers and reaction wheels is considered viscous, then
the response of the system to a sudden change* in x, from x; to xp,
turns out to be given by:

*
The sudden-change response is pursued because then x, which
appears as a multiplier in the differential equations, is constant.

- bk o



(l - XE/Z) xl x2
S+‘(————7—yl-Xlz (l+77)0

sls + (1 + x§/£2)0

Q =2
‘a a(o)

in which o 1is the reciprocal of the time constant of one reaction wheel
skidding against a clamped idler located at radius £.

If a large change in x 1is made suddenly from x; to xp, then
considerable energy is lost to friction. But if the change is made
gradually, over a time which is long compared to the time constant of
the idler system, l/o(l + xg/zQ), then the energy lost goes to zero.

That is, by making the momentum change gradually it can be made reversibl:,
in the limit.

But since o 1is proportional to viscosity the speed with which
momentum can be changed, with negligible energy loss, can be made as
fast as desired by increasing viscosity as needed.

We must consider also energy required to move the idlers. Here a
possible refinement for reducing skidding is to make the idler wheels
steerable, like the wheels of a car. Then a tiny force can steer the
wheels rapidly to any desired position with energy loss which, again,
can be made very small.

The system presented in this appendix is pot operationally optimum
for several reasons. (For example, only l/ 2 times the total momentum
capacity of the pair of wheels is utilized.) But the point is made, it
is believed, that it is quite feasible to operate reaction wheel systems
satisfactorily for long periods with the torquer system turned off.
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