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SUMMARY

Results of an investigation in the Langley T- by 1l0-foot wind tun-
nel to determine the parasite drag characteristics of several helicopter
fuselages and fuselage-appendage combinations are presented. Also
included are the lateral and longitudinal characteristics of the basic
fuselages. Test results of four fuselage shapes, faired and conventional
landing skids, and several hub-pylon combinations are presented. These
results indicate that, through streamlining, the parasite area of some
small helicopters could be reduced by as much as 60 percent. The
greatest reductions arise from improvements in landing skid and fuse-
lage design. The largest remaining drag contribution is the hub-pylon
installation, which may be 20 to 30 percent of the total configuration
drag.

INTRODUCTION

The parasite drag of the helicopter fuselage with its protuberances
end appendages absorbs a large portion of the total power required in
cruising flight. Since the helicopter has been utilized primarily for
low-speed short-range missions, aerodynamic cleanliness has not been of
prime importance. (see ref. 1.) Recently, however, the military has
expressed a need for a new light observation helicopter with improved
cruising efficiency; thus, a high degree of aerodynamic cleanliness is
required. It has also been forecast that commercial operations at speeds
up to 180 knots would be economical provided low parasite drags are
achieved. (See ref. 2.) Available fuselage drag studies exemplify
qualities necessary for low fuselage drag. (See refs. 3 to 7.) Also,
the benefits of fairing and sealing of minor components have been demon-
strated. (See refs. 8 to 10, for exsmple.) Data are available from
which the drag of pylons, rotor hubs, various landing gears, and miscel-
laneous fuselage protuberances can be estimated. (See refs. 11 to 19.)
However, some extensions to available information are required inasmuch
as these reference data do not provide adequate guidance for either drag
or downloads at attitudes peculiar to the helicopter in cruising flight.



The present investigation was made to obtain drag, download, and
static stability date over a range of helicopter cruising flight atti-
tudes for several fuselages and appendages. Tests of four fuselages,
two landing skids, two rotor hubs, and two variable geometry pylons
were made. Basic fuselage measurements of two of the models are com-
pared wi?h results of full-scale tests of the same shapes. (See
ref. 20.

SYMBOLS

All force and moment data are referred to the wind system of axes.

The positive sense of forces, moments, and angles is indicated in
figure 1.

q dynamic pressure, E%E, 1b/sq ft
p mass density of air, slug/cu ft
v free-stream velocity, ft/sec
CL 1lift coefficient, EE—
gbc
Fp drag, 1b
Fy, 1lift, 1b
Fe side force, 1b
wa rolling moment, ft-1b
MYw pitching moment, ft-1b
MZW yawing moment, ft-1b
b span, ft
c chord, ft
a angle of attack of fuselage reference line, deg

angle of sideslip, deg

incremental force or moment
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APPARATUS AND TESTS

Typical model installations in the Langley T7- by 10-foot wind tunnel
are shown in figures 2 and 3.

Models

The fuselages tested were l/5-sca1e representations of a four-place
light observation helicopter. Basic model dimensions and general charac-
teristics are given in table I. A list of the configurations tested is
given in table II.

Description of test fuselages.- Model A (see fig. 4(a)) is generally
"fish" shaped and presents airfoil-shaped sections when intersected by
horizontal planes parallel to the resultant velocity over the normel
range of helicopter cruising attitudes. Model B (fig. 4(b)) represents
a minimm wetted area design enclosing the cabin and engine compartments.
Models C and D were identical except that model D had an increased cargo
volume With a resultant abrupt change in planform. (See fig. 4(c).)

Models A, C, and D were provided with motor-driven rotor shafts for
the hub tests. The shaft axis located 1.72 feet from the nose, passed
through the assumed center of gravity, and was perpendicular to the fuse-
lage reference line. To insure fixed transition, all models were tested
with carborundum transition strips located approximately 6 inches from
the nose.

lons.- The elements of the rotor support pylons tested are shown
in figures 5 and 6. The height of these pylons could be varied so that
several hub-fuselage clearances could be simulated. Two basic pylon
sizes were tested: one large enough to accommodate engine and transmis-
sion; the other wide enough to house only shaft and rotor controls. The
base of the wide pylon was also used with the alternate ramp top. (See
fig. 6.) Both wide and narrow pylons were designed to Navy No. 1 strut
ordinates (ref. 21) and had a fineness ratio of 3.

Rotor hubs.- Two rotor hubs representing conventional and stream-
lined designs were tested. (See fig. T7.) The discus shape of the
faired hub was designed large enough to totally enclose the mechanism
of the articulated design. (The resulting hub had 66 percent greater
projected frontal area than the articulated design.) Both hubs had
stub blades which extended to the 20-percent radius of an assumed rotor,
appropriate in size for the models tested. The hubs were rotated at
approximately 300 revolutions per minute. There was no appreciable
effect of hub rotational speed on the aerodynamic forces as indicated
by preliminary tests.



Landing skids.- Figure 8 shows the two types of landing skids tested,
tubular and faired. The tubular skids are representative of types in cur-
rent use. 1In an effort to reduce the drag of these skids, fairings were
added to the tubular support members and all unnecessary Jjunctures and
acute angles eliminated as suggested in reference 17. The faired strut
sections were set with a 5° positive incidence with respect to the fuse-
lage reference line and the runners of both skids inclined 5° nose down.

Test and Accuracies

All models were tested in thelr basic configuration and then with
various appendages added. These tests were made at an average dynamic
pressure of approximately 110 pounds per square foot. This value corre-
sponds to a Reynolds number of about 1.9 X 106 per foot. Forces and
moments were measured about three axes with a strain-gage balance mounted
within the models. 1In order to avoid overstressing the balance, it was
necessary to add horizontal-tail surfaces to all models. The locations
and dimensions of these surfaces are given in table T.

All data presented have been corrected for horizontal buoyancy,
solid blockage, and support strut interferences. A stream angle correc-
tion to angle of attack (-0.75°) was not applied. The accuracy of the
measurements, in terms of full scale, are believed to be as follows:
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Fr/a, sq ft . +0.35
Fp/a, sq ft . . 10.25
Fo/@, S FE o v v v e v s e e s e e e e s e e e e e e e ... T0.%0
wa/q,cuft......—.....................J_ro.6o
My @ cuft o v o vt i e e e e e e e e e . ... $5.00
Mzw/q, CUTE o o o o i et i e s e e s e s s e e s e e e e e .. F2.00

Angle of attack, deg . . . « & . . ¢ ¢ . . i 4 e 4 s e e ... .. 10,5
Angle of sideslip, A8 « « « o o &+ &+ o 4 4 & s s o 4w = . = s s . . T1.00

Although the overall accuracy of the drag is only 10.25 square foot,
the repeatability of these data is believed to be within #0.08 square
foot.

RESULTS AND DISCUSSION

Presentation of Results

The data presented herein are referred to the wind system of axes
with the origin at the center of gravity of the fuselages (1.72 ft from
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nose on the fuselage reference line). The positive directions of forces,
moments, and angles are shown in figure 1.

Two scales are used for the force and moment data presented; one for
the data as measured, the other corresponding to a full-scale helicopter
five times larger. These data will be discussed in full-scale terms.

The longitudinal characteristics of the fuselages with and without
appendages are presented in figures 9 to 13. The various configurations
tested are described in table II. It should be noted that these model
characteristics (figs. 9 to 13) include the effects of horizontal-tail
surfaces which, for the most part, did not trim fuselage moments to zero.
éSee fig. 13.) However, calculated horizontal-tail characteristics

fig. lh), based upon the flat-plate data of reference 22, show that
this lack of trim does not significantly affect the drag data presented

in figures 9 to 12.

Comparisons of the basic fuselage aerodynamic characteristics as
affected by angle of attack and sideslip are then shown. (See figs. 15
to 23.) The incremental drag of several different hub-pylon configura-
tions, tested on model A, are compared (fig. 24) and the effect of fuse-
lage shape indicated (fig. 25). Note that all incremental data presented
include changes in fuselage aerodynamics in addition to the increment due
to the appendage itself. The characteristics of conventional and faired
landing skids are discussed (figs. 26 and 27) and then the parasite drag
of a small helicopter estimated. Finally, the fuselage characterilstics
of models C and D are compared with results from full-scale tests of
these same shapes. (See fig. 28.)

Basic Fuselages

The characteristics of the basic fuselages, obtained by subtracting
calculated horizontal-tail characteristics (fig. 14) from basic fuselage
data, are shown in figure 15. (Note that the effects of tunnel stream
angle were included in the calculation of the horizontal-tail
characteristics.)

The calculated total drag of the fuselages and vertical-tail sur-
faces, based upon a wetted-area drag coefficient (pp. 6 to 16 of ref. 9),
are compared with measured values at o = 0° in the following table:
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Model (FD/ q )me e (FD/ q)calc
A 0.92 0.89
B 1.20 .79
c ) N
D 1.50 .79

The good agreement between theory and models A and C measurements
indicates that pressure drag due to separation is not present. However,
pressure drag apparently accounts for a considerable portion of the
total drag of models B (34 percent) and D (47 percent). The rapid
closure of the fuselage pod of model B to the tall boom is believed to
result in flow separation. Note that the expected drag increase by
the addition of a pylon to this model was apparently offset by mutual
improvement in the flow over the top of the fuselage. (Compare fig. 9(a)
with fig. 10(a).) Evidence of flow separation on model D in the region
of abrupt planform change (fig. 4(c)) was indicated by tufts as well as
the drag measurements. However, full-scale tests of the same shape
showed no evidence of flow separation. This result 1is probably due to
the greater Reynolds number of the full-scale tests (about twice that of
the present tests). The present tests do suggest, though, the suscepti-
bility of this shape to separation. It should be noted that in both
investigations the fuselages were smooth and free of the usual surface
defects. Also flow disturbances and distortions due to the presence of
a rotor were absent,

Figure 15(b), the variation of fuselage downloads with angle of
attack, shows that the lift-curve slopes of fuselages A, B, and C are
essentially zero for small angles of attack. Similar results were
obtained from tests of a fuselage having deep elliptic sections. (See
ref. 23.) The increased width of model D resulted in a lift-curve slope
that was about the same as a fuselage having circular cross sections.
(see ref. 2k4.)

The measured slopes of fuselage pitching moments (fig. 15(c)) are
compared with theoretical calculations (ref. 25) in the following table:

s |
adl —= a\ —
Model q
da meas da Jegic

A 3.3 4.8

B 2.9 3.0

Cc 2.9 .2

D 3.9 bk
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If these fuselages employ a horizontal tail to trim these moments
to zero, some additional drag and appreciably larger downloads can be
incurred. (See fig. 16(b).) For example, if a helicopter, utilizing
model C or D fuselage design, were traveling at 110 knots in a normal
cruise attitude (3°© to 6° nose down), downloads of 7O to 100 pounds
would be expected. However, these trim downloads could be eliminated
by designing the fuselage for zero pitching moments at the expected
cruise attitude or possibly by employing a canard rather than a con-
ventional trim surface. (See ref. 26.)

Fuselages in Sideslip

The lateral characteristics of the basic fuselages (horizontal tail
on) are shown in figures 17 to 22. Only a 0.2- to 0.3%-square-foot
increase in drag occurred for the small sideslip angles (2° to 3°)
normally encountered in cruise. (See fig. 17.) Sideslip tests of
models A and D with appendages added (fig. 23) indicate that any addi-
tional interference drag between components due to sideslip is small.

Figure 18 shows that no important changes in 1lift with sideslip
occur for any of the models for the range of angles tested.

The increase of diving moments with increased sideslip (fig. 19) for
models A, C, and D 1s believed to result from fuselage flow interferences
on the horizontal tail. A higher aspect ratio tail and/or another tail
location may reduce these moment changes.

All test fuselages (vertical tail on) exhibited yaw instability par-
ticularly in level and nose-up attitudes. (See fig. 20.) This insta-
bility is believed to result primarily from a reduction of the effective-
ness of the vertical tail when it is immersed in the flow field of the
fuselage.

Calculations of the slopes of the unstable fuselage yawing moments
with sideslip (ref. 25) and the stabilizing effect of the vertical tails
(ref. 27) are compared in the following table:

d MZW dl ¥§E>

Model a q
dp fuselage dp vertical teil
A -11.8 11.5
B -7.8 10.0

C and D -7.5 L.2




Generally, fuselage instability with respect to sideslip increases as

the square of local fuselage depth (fuselage width for calculating angle-
of-attack stability) and with increasing fineness ratios. (See ref. 25.)
Tests of reference 4, for example, showed significantly lower sideslip
instability for circular fuselages than for shapes having greater depth.

Rotor Hub and Pylon Drag

Results of drag tests of many different hub designs are available.
(See refs. 14 and 15.) The present tests are intended to indicate
effects of fuselage hub clearance and angle of attack on drag. These
results, obtained on model A fuselage, included tests of conventional
and faired rotor hubs on both wide and narrow pylons. (See fig. 24.)

The intermediate hub height (disk plane 21 inches above fuselage)
resulted in the least drag for most of the hub-pylon configurations
tested. The differences between most of the arrangements tested were
small (approximately 0.3 sq ft) except for the ramp-pylon—faired-hub
combination. Here, the drag was as much as 0.8 square foot greater than
the best configuration. A tuft study of the ramp pylon and faired hub
combination indicated that a downward flow emanating from the rear por-
tlons of hub and pylon resulted in separation on the fuselage near the
pylon base. It is believed that a sizable portion of the measured drag
increment of this configuration is due to fuselage pressure drag.

It is important to note that no particular advantage was indicated
for the faired hub, the effects of streamlining being offset by increased
frontal area and interference velocities. However, the tests of refer-
ence 15 demonstrated that the total drag of a conventional three-blade
articulated hub can be reduced by approximately 12 percent by merely
adding cuff-type fairings over the blade shanks and hub mechanism.

The effect of three fuselage shapes (models A, C, and D) upon the
installed drag increment of a particular hub and pylon is shown in fig-
ure 25. The largest drag increments occurred on model D as a result of
separation on the fuselage.

Landing Skids

The incremental characteristics of the conventional and tubular
landing skids are presented in figure 26. The large drag (3.5 sq ft) of
the tubular skids was reduced by approximately 63 percent by fairing and
relocating the support legs to minimize interference effects. Further
reductions are possible through the use of well streamlined sections.
(See ref. 20.) The differences between the 1lift and pitching-moment
curves of the tubular skids obtained from tests of models C and D are
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believed to arise from alrflow differences about the two fuselages. Note
the unexpected inverse lift and pitching-moment curves of the faired skids
with angle of attack. (See figs. 26(b) and 26(c).) Additional data
points from sideslip tests were added to the 1lift plot to aid in defining
the hysteresils present. These reversals and the hysteresis are attributed
to the faired support legs and are a function of Reynolds number, nose
shape, and fineness ratio. (See ref. 28.)

Appropriate section data for calculating the aerodynamics of the
faired skids are not available; however, the section 1lift of several
strut sections (ref. 29) are presented in figure 27 to indicate the
effect of Reynolds number and nose shape on force reversal. These
reversals, which may be undesirable during maneuvers or landing flares
can be easily avoided by selecting a well faired strut section which has
a fineness ratio greater than 2.5. (See ref. 30.) An indication of simi-
lar force and moment reversals was found during an analysis of the skid
tests of reference 20.

Drag Estimate For a Small Helicopter
The equivalent parasite drag of an aerodynamically clean four-

passenger helicopter based on representative test results and estimates
is indicated in the following table:

F
Component —Dj sq ft Reference
q

Fuselage .« « o o s « o« o o o o 0.8
Hub and pylon « « « ¢ & o &« o & & 2.0 Present paper
Faired landing skids . . « « + & 1.0
Tail rotor power and hub drag . . 0.8 32
0.8
N

Leakage « o o o o = o o s s s s o 7

Total v o o o s o« s o = 5 o s » 5.

Note, however, this estimate neglects downloads and increased drag
due to actual flight attitudes. In practice some forward shaft tilt
(2° to 3°) is frequently used. Hence nose-down attitudes and, conse-
quently, drag and downloads will be reduced. However, a calculation
indicates that, for cruise speed of 110 knots, the fuselage would still
have to be inclined 3° to 4° nose down in order to minimize rotor flapping
motions. At this attitude the configuration drag would be increased by
about 0.3 square foot. Allowing for a nominal amount of sideslip (29 to
%0) results in another 0.2 square foot. (See fig. 23.) If the fuselage
moments were trimmed to zero with a horizontal tail, the additional rotor
power required, expressed in terms of parasite area, is about 0.6 square
foot for fuselage C or D and gbout 0.2 for fuselage A or B. The
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resultant parasite area now becomes 6.1 to 6.5 square feet. A more
detailed drag estimate (see ref. 20) indicates about 7 square feet for a
small helicopter (approximately 2,000 to 2,600 pounds gross weight).

A comparison of this drag estimate wilth the drag of some current
helicopters of comparable size indicates that drag reductions of as much
as 60 percent are possible. (See ref. 31.)

Comparison of Model and Full-Scale Data

A comparison of full-scale and 1/5-scale model test results for
models C and D is presented in figure 28. Note that the drag of model C,
both small and full scale, is in reasonable agreement, as 1s the 1lift.
However, the drag of model D, 1/5 scale, is nearly twice that of the full-
scale model. This difference, as pointed out earlier, results from flow
separation on the small model and is related to low Reynolds numbers.

Although the slopes of the pitching-moment curves for both the full-
scale and 1/5-scale models agree reasonably well, large differences were
found to exist between the angles of attack for zero pitching moments.
In an effort to explain these differences a stream angle survey of the
Langley 7- by 10-foot tunnel with the model support strut installed was
conducted. However, only small stream angle effects, -0.75° a for the
fuselages and about -1.0° o for the horizontal tail, were found. As a
result the reasons for the moment differences can be only partly
explained. The measured data presented herein have not been corrected
for tunnel stream angle except for the purpose of comparing l/5-scale
and full-scale model results. (See fig. 28.)

CONCLUDING REMARKS

The reference material listed and the data presented herein have
demonstrated that it is feasible to achieve high cruise efficiency for
helicopters through drag reduction. Improved landing skid and fuselage
streamlining and the avoidance of large downloads can result in appre-
ciable reductions in rotor power requirements. The rotor-hub-pylon
installation, however, remalns as the largest single drag penalty
(about 20 to 30 percent of the total configuration drag). This large
drag is of considerable concern, although it is not completely unexpected,
as a review of available literature will indicate. Some minor hub drag
reduction i1s indicated through the use of cuff-type fairing and by proper
choice of fuselage-hub clearance to minimize interference velocities. It
is expected that any major improvement would result only by reducing hub
frontal area.

O3+



In general, it can be concluded that adherence to good stream-
lining in the early design stages cannot be substituted for by modifi-
cations and fixes in the production helicopter.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 11, 1962.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF TEST MODELS

15

Model
A B C D

Overall length, ft . . . . . . .« . . 5.65| 5.83] 5.82| 5.82
Location of rotor shaft and model

moment center from nose, ft . . . 1.72{ ===~ 1.72 1.72
Rotor hub height above |Low . . . . 0.8%6| -===-- 0.820| 0.820

fuselage reference

line for narrow, Intermediate . 0.019) -=-====cmcmmm (e ==

wide, and ramp

pylons, ft « . . . . |High « « + « « | 1.086|--ceme|emmmon|mammn
Distance from model moment center to

the quarter chord of horizontal

tail, £t . « . ¢ ¢ o o 0 o0 . . 3.22 3.22| 3.22] 3.22
Tail incidence angle with respect to

reference line, deg . . . . . . . . .|5%0.5 [0t 0.5{0%0.5/0%0.5
Area of horizontal tail, sq ft . . . . .| 0.19% | 0.113| 0.194| 0.19k4
Projected frontal area of basic

model, 8@ £ « o« « & & + o o o« + & 0.757 | 0.709| 0.749| 0.791
Volume of basic model, cu ft . . . . . .| 2.018 | 1.558| 1.544( 1.631




I~-1708

o' T X X X X X 9
T€0° T X X X X X 4
696" X X X X A
L6g” X X 4
626° X X 2
%Ll 0 X T
«KT'0 ﬁf 10 ltoce | meee- G600 290°0 20T 0 16Lo
- JO BaJB TBIUOIT DPoroaford
d TSPOK
TS0 T X X X X X s
656" X X X X ¢
128" X X X g
L IAd] X T
g0 | mee-- Lltoco | - GG0"0 | 290°0 m———— 64l 0
| - Jo Boaw Twuoxy pagoalold )
D TSPON
g8L° X X b ¢
[P X X X <
60L°0 X T
..... : b 600°0 0lo0 €00 m=-= - 6ol 0
- Jo waJaw Twvjuoxy pajoaloxg
€ T9POH
16 X X X X i
, clg” X X X X <
| £1g° X X X 2
ﬁ L&lro X T
.......... T100°0 0L0°0 G600 290°0 20T°0 1Gleo
- Jo ®ale TeIUOIJ pajosfoxg
V T®POH
13 be asseq dogy _ doy
M TeTnqany, PaItTRy 1 TBUOTIUIATUOY paatTed
Boxe uothd apiM direng _ 7Y afwraony uoT3eIB TIUeD
TBIUOLS otaByg
Te30% TR 84UsMAT® UOTAL sqny

16

ﬁuvﬁa&d anTEA FOY0USD NH_

CHISAL SNOLIVMNDTANOD A0 ISTT -°IT ITEVIL




17

*SqUSWOW PUB S$90J0J JO SUOTFOSITP 9AT3Tsod SUTMOUS UOT3BIOU 90I0F PuB SIXY =°*T 2INITH

QUIT @ouUeIeJox eFeTesny

]
-~
PUTA OATIBTOH
u:ol,os Buimex
—
90J0F OPTE
QUL 90uUeILJRI eFBTesNy @0USJISJOI TBJUOZTJIOH
/lh _ juemom BujTTOM
B
uaq S I
/ s
juemom JuTyd3Tqd

-

PUTA @AT3ETSY

3371




18

Tare strut

L-60-6580 .1
Figure 2.- Model A with tare strut installed, mounted in the
Langley T7- by 10-foot wind tunnel.
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Figure 4.- Continued.
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Figure 25.- Comparison of the incremental drag of two hub-pylon con-
figurations when tested on several fuselage shapes. The wide pylon,

low height was used in all cases. }
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(a) Drag increment.

Figure 26.- Comparison of incremental aerodynamics of tubular and faired
landing skids.
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(c) Pitching-moment increment.

Figure 26.- Concluded.
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Figure 28.- A comparison of %-—scale and full-scale results for models

and D. Tunnel stream angle corrections have been applied.
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