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SUMMARY

This paper treats the RMS-errors associated with the position and ve-
locity of a satellite or spacecraft when tracked by all types of present day
tracking systems. These errors are based on uncertainties in measurements
made with the systems as well as those associated with their location.

The present paper (Part I) is principally a theoretical treatment which
establishes the mathematical models necessary to solve for the errors in
satellite position and velocity. It is presumed throughout the paper that these
errors are to be determined for discrete points in the satellite's orbit. This
approach enables one to calculate the error propagation during short time
intervals (order of seconds). This is of particular interest for instance for
evaluation of a guidance system during a short burning phase. A least square
solution of non-simultaneocus observations would diverge (matrices involved
become ill-conditioned). This condition imposes a constraint on the method
of solution which is, that either one tracking system can measure both posi-
tion and/or velocity, or that several tracking systems observe the satellite
simultaneously to produce the equivalent effect. Both these alternatives are

considered in Part I .

A rigorous derivation of the ''"Method of Least Squares" is also presented
for completeness, since it is used to a large extent.

Part II (presently in preparation) will show in detail the application of
the equations derived in Part I assuming simultaneity as well as non-
simultaneity. In the latter case position and velocity need not be fully deter-
mined by the tracking system or system complexes. A number (i>6) of
range, range-rate, or angular measurements are adequate. Thus the con-
straint mentioned above and applicable for Part I does not exist, hence mak-
ing the method more general. Numerical examples and results based upon
known errors associated with the systems and systems locations will be pre-
sented for simultaneous and non-simultaneous derivations.
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TRACKING SYSTEMS, THEIR MATHEMATICAL
MODELS AND THEIR ERRORS
PART | - THEORY

by
F. O. Vonbun and W, D. Kahn
Goddard Space Flight Center

INTRODUCTION

In recent years, requirements of satellite and spacecraft tracking accuracies have
increased considerably; consequently more and more tracking systems and stations have
been employed. From this situation, the question evolved: How accurately can the posi-
tion and velocity of a space vehicle to be determined when it is tracked by a combination

of tracking systems?

This paper attempts to present a detailed study of the propagation of errors in data
obtained from satellite tracking systems. For establishing satellite orbits, both the posi-~
tion and velocity vectors of the satellite must be known. Usually, these two vectors are
obtained from observations of the satellite made with various types of tracking systems.
Since no tracking system can be considered completely free of errors, the observations
obtained from such systems obviously contain errors, of which the most important are:

(1) Tracking system errors,

(2) Station position errors,

(3) Trajectory errors; i.e., satellite orbit errors.
These three kinds of errors will be discussed in detail here.

A separate treatment of errors due to atmospheric and ionospheric refraction (Ref -
erences 1-6) will not be necessary. These errors are assumed to be included in the system
rms errors, that is, in the errors of the measured quantities such as range, range rate,
angle, and angular rate.

To avoid too voluminous a paper, the work has been divided into two separate parts.
Part I mainly treats the theory; Part II (in preparation) will treat the application of Partl
by means of high speed computers, and will present concrete examples.
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Part I is devoted entirely to an error analysis of tracking systems. The systems con-
sidered are complexes formed by the combination of radars; angle and angular rate systems
(e.g., interferometers); and range and range rate systems. The errors sought in this analy-
sis are those resulting from the tracking system itself as well as those due to the uncertainty
in the systems location. The errors for these tracking systems have been assumed to be
uncorrelated, on the basis of practical experience which showed that the slight existing cor-
relation does not appreciably alter the result obtained under that assumption. To permit
the calculation of these errors it is necessary also to assume knowledge of the orbit or
trajectory. The latter assumption imposes no restriction on an analysis of this type, since
the errors considered here are independent of orbit or trajectory errors. It has further
been assumed that the tracking systems and complexes are capable of determining the posi-
tion and velocity vectors independently of an assumed orbit. In brief, for some of the dis-
cussed systems, simultaneity is the minimal constraining condition for the solution. For
instance at least three range and range rate systems, or one radar system, is required.

Nevertheless, to facilitate computation, an orbit has been assumed. (Available orbit
generators permit immediate evaluation of the partial derivatives involved in the computa-
tions.) Because of the independence of the orbit — at least for a first order approximation —
approximate orbits or trajectories derived from nominal injection parameters (provided in
all satellite system operations plans) or from available observational tracking data will be
adequate for the error analysis.

The aim of this paper is to obtain equations which permit the calculation of all errors
resulting from any combination of tracking systems (such as radars, interferometers, or
range and range rate systems). The coordinate systems used were so chosen that these
errors could easily be transformed into orbital element.

Part II will apply the equations derived here assuming simultaneous and non-
simultaneous observations. Numerical examples will be given illustrating the propagation
of errors for discrete points and intervals along an orbit. The influence of the number as
well as the distribution of tracking stations around the globe on the position and velocity
errors will also be discussed. Treated will also be the minimum number of observations
necessary for establishing an orbit of a stipulated accuracy with given tracking systems
and their global distribution.

A. DEFINITION OF SYMBOLS
The following symbols will be employed throughout the development:

¢ Geodetic latitude of the tracking station

by Geodetic longitude of the tracking station



B.

Height above geoid of the tracking station
Equatorial radius of spheroid used to represent the earth, (for Hayford Spheroid
a, = 6378388 meters)

Square of eccentricity for spheroid, (for Hayford Spheroid o2 = 0.0067226700223)
Greenwich Sidereal Time at 0" Universal Time (U.T.), obtained from the various
almanacs

Greenwich Sidereal Time at U.T. of observation

U.T. of observation

Azimuth of the object being tracked

Elevation of the object being tracked

Slant range of the object being tracked

Semimajor axis of satellite orbit

Right ascension of satellite

Declination of satellite

Eccentricity of satellite orbit

Inclination of satellite orbit

Longitude of ascending node

Argument of perigee

Eccentric anomaly

Period of revolution of satellite

Radius of curvature along Prime Vertical

Magnitude of station position vector

Magnitude of the radius vector to the satellite in the inertial coordinate system

MATRIX NOTATIONS

Since a large portion of this paper deals with transformation of coordinate systems,

it will be useful to present a brief introduction to the transformation theory relevent to the

material presented herein. A franslation indicating a shift in coordinates is represented

in matrix form as

X = Y-S (B—l)



or, expanded in components,

(xx' Xy xy) = (y1 TSy ¥y TS, Yy T Sa) : (B-2)

A rotation on the other hand indicates an angular shift of two coordinate axes about a
third axis — the chosen axis of rotation. In matrix notation a rotation is represented as

Z = ROY, (B-3)

where  is the argument of the rotation and the index i refers to the axis of rotation in the
y -coordinate system. For instance,

1 0 0
Rl(y) =10 cos ¥ siny . (B-4)

0 -siny cosYy
(3x3)
The rotation illustrated in Equation (B-3) represents a rotation of a Y -coordinate
system around its y, -axis through an angle y. This similarly holds for rotations around
the y, or y,-axes.

In this paper extensive use is made of rotation matrices; therefore, it is now appro-
priate to mention the following useful properties of such matrices:

(1) RIT( = R ()

2 T ) = R.(-

(2)  RT(y (=) (B-5)
(3) R, »IRT(») = 1

where i = 1, 2, or 3, and I is the identity matrix, which can easily be seen from Equa-
tion (B-4).

C. DEFINITIONS OF COORDINATE SYSTEMS

1. Coordinate Systems Used
The following coordinate systems are used:

X Inertial Cartesian coordinate system (Figure 1);

X = [xl, LI xa],

x, -axis directed towards vernal equinox,



X3 Y3

_z,
/yl g(sl. Sy S3) 2

(GREENWICH)

Figure 1—Geometric representation of the coordinate systems referred to the earth
ellipsoid.

x, -axis normal to both x, and x,-axes,
x, -axis directed along earth's axis of rotation.
Y Earth-centered and earth-fixed coordinate system (Figure 1);
y, -axis directed towards Greenwich,
y, -axis normal to (y,, v,) axes,

Y, -axis directed along earth's axis of rotation.

|

Coordinate system parallel to the Y-system, centered at the observer.

7 Local Cartesian coordinate system centered at the observer (Figures 1 and 2);
z, -axis directed towards local East,

z, -axis directed towards local North,

z,-axis directed along normal to local horizon plane.

S Position vector of observer with respect to Y-system (Figure 3 and Appendix A).
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Figure 2—Cross-section of the elliptical assumed earth (Hayford ellipsoid)

2. Relationships Between Coordinate Systems

Some relationships between the various coordinate systems discussed should also be
given: The transformation from the X-system to the Y-system by simple rotation is

Y = R (BG)X ' (C-1)
where
6 = g, * 0t
J = 0.26251595 radians/hour
and



SATELLITE
S

X3
EARTH'S ROTATIONAL
AXIS 3 Sa PROJECTION OFf
SATELLITE INTO THE

HORIZON PLANE z,, z,

EQUATOR

EXTENDED
EQUATCRIAL
PLANE

Figure 3—Artificial satellite orbit as referred to the local horizon coordination system

The transformation from the Y -system to the Y -system by translation is

Y = Y-S, (C-2)
where
(N +h) cos & cos A
s = 8 = (N+h) cos ¢ sinA (C-3)
[N(x-ef) +h] sine |
and

g

[1 - e2sin?¢]'?

N =

The transformation (double rotation) from the Y-system to the Z-system (Figure 1)
can be written

z = R(F-e)R(5+N)T . (C-4)



To simplify the notation, let

_ ki il
R = R1(7 - ¢)R3(—2 * }‘) ’ (C-5)
then the transformation of the X-system into thez, -system can be written:

Z = RR,(6,)X-RS,

or in partitioned matrix form

- ' X i
Z(3"1) ) [R 33(610) ' lﬂ‘(axs) [Slsxx) (C-7)

Next the coordinates of the satellite in its orbital plane U will be transformed into the
Cartesian coordinates of the inertial system X. (Figure 4) In this paper it is assumed that
the earth's center of mass and the center of the sphevoid representing the earth are coinci-
dent. This, in turn, implies that the origins of X and U coincide; hence only rotations are

EXTENDED EQUATORIAL
PLANE (x,, x,)

LINE OF
APSIDES

P’ PROJECTION OF P
ONTO x,, x, PLANE

Uy

Figure 4—Orbit in the inertial frame of reference



necessary to perform the required transformation. The equation for this (via the Eulerian
angles) is expressed as follows:

X = RU-O R {-i) Ry (=) U (C-8)

where

(3x1)

and the elements of U actually represent the Cartesian coordinates of a Keplerian ellipse in
the orbital plane.

0. MATHEMATICAL MODELS OF TRACKING SYSTEMS AND THEIR ERRORS

The primary purpose of any tracking system is to determine the position vector T(t)
and the velocity vector v = dr. dt of an object moving in space. The position vector can

be expressed as

-l

e (D-1)
where r = |7| is the magnitude of ¥ and r° is the unit position vector. Differentiating

Equation (D-1) directly gives the velocity vector v of the object:

—

dr o L dr dr?
Kt C v T o a T troae o (D-2)

The four basic tracking systems which exist and which satisfy Equations (D-1) and (D-2)
will now be described.

The Radar System

Herein it is assumed that a radar measures the range r (which in actuality is a com-
puted value based upon the travel time of the radar wave), the azimuth o, and the elevation
angle ¢. From these, the position vector T is fully determined. The time derivatives T,

4 and ¢ are excluded in this treatment of a radar system because of the relatively large
errors involved, The latter omission, however, should not give the impression that a radar
system measuring r, a, €, 1, and ¢ cannot be treated by using the equations developed
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in this paper. For such a case, the equations for one range system and one angle and an-
gular rate* system should be used.

The Angle Measuring System

An angle measuring system is best illustrated by the radio interferometer (Refer-
ences 7 and 8) which measures the difference in the arrival times of the wave front from
a distant point source at a pair of receiving antennas separated by a known distance or
"baseline''. This radio path difference is measured by comparing the phase ancgles of the
signals received at the two antennas. Two such baselines are employed (four antennas);
and from the resultant differences in phase angle A¢ along both baselines, the direction

cosines for two components of the unit position vector 7® are determined from the following

relations:

[ = Ny
Tod

1

A¢2
B (12

no- (1—/2—m2)'2

where d, is the baseline length (in electrical degrees) directed, for example, in the east-
west direction, and d, is the baseline length (in electrical degrees) directed in the north-
south direction. From the calculated values (7, 7, and n) the azimuth a and the elevation
angle ¢, can be derived, or, in the inertial coordinate system, the right ascension >’ and
the declination 3.

The unit vector 7 is obtained at discrete times t_, where i = 1, 2, .-+ n: therefore

can also be obtained. This means that each observation consists of (a, 4, e, &) at t,. For

a good determination of ¥ and v which satisfies Equations (D-1) and (D-2), simultaneous
observations from two stations are required to determine the three components of r and the
three components of v. In actuality this is an over-determined set of observation equations,

*Angular rate information, not measured by a radar system, can be calculated numerically (also see the section on smoothing)
by fitting a polynominal to the measured angular information.



11

since the number of measurements is greater than the number of unknown parameters; that
is, the least squares condition is satisfied and could be applied for determining ¥ and v'.

The Range Only Svstem

It is presumed that this system measures only the slant range r in the manner de-
scribed next for the radar system. Because only one measurement r is made at time
t, (i = 1,2, n)arange system is inadequate for determining the three components of
the vector r. To make it possible to determine T at t,, simultaneous observations must
be made from at least three tracking stations whose positions are known; it is also pos-
sible to determine roughly the vector (Reference 6):
AT (t,)

1

VoT A,

i

from discrete measurements T (t;).

The Range Rate System

A range-rate system measures d/dt |f|. To determine the velocity vector v, at
least three simultaneous observations are required from three stations in order to deter-
mine the components of v and satisfy the vector Equation (D-2) (see Reference 15). As in
the foregoing determination, the quantity "determined', fin this case, is actually a calcu-
lated quantity; it is obtained from observing the Doppler shift &¢, of a frequency v, For
a first approximation i = c(&v, /) where c is the velocity of light (299.7929 X 10° m/sec).

Advanced tracking systems are combinations of the aforementioned basic systems -
for example, Azusa and Cyclops. In order to treat these various types of tracking systems,
their mathematical models, derived from the ¥ and v vectors, are now presented and the
corresponding variational equations lead finally to the determination of tracking system

errors.

1. The Radar System

A radar system fully determines the satellite position vector T whose components in
the local Cartesian coordinate system are (z,, z,,z,). We shall now derive the varia-
tional equation relating system uncertainties in range, azimuth, and elevation to the com-
ponents of r.



12

Since it is convenient, in this case, to z,
work in spherical coordinate systems, the ‘
components of the position vector r' in the lo-

p p —

\ DUE NORTH

Z2

cal coordinate system (shown in Figure 5) can
be written in matrix notation as

4)0

n® —»
z, rsinacos € OF SPHERO!D
Z(axx) Tz, = l’COS(VICosé (D-3)
rsine

z
3 ax1y (3x1)

z-)
DUE EAST
used later for the error calculations, are de- Z3 2
rived from the first order terms of the Taylor

series as applied to Equation (D-3) and are

The variations (37) of r, which will be

Figure 5—Satellite position with reference to
. _ local coordinate system
expressed in matrix form by

Ti’_zl dz, c?Z?
5 ar da de
z .
1 dz dz dz ]ﬂb’w
, N _2 2 . D-
5Z 3.1y = |32y T |adr da de L‘)‘IJ (D-4)
5 5
oz, (3x1) dz, «9—z§ dz, € (3x1)
Ldr da ae_(3x3)

By evaluating the coefficient matrix in Equation (D-4) from Equation (D-3) we obtain

cos € sina I Cos € Ccos a -rsin€sina Sr
Y A = COS € COS A -rcos €sina -rsine€cosa Sa
(3x1) \ (D-5)
sine€ 0 I Cos € Se
(3x3) (3x1)

or

cos € sina ~cos a -sin€sina or
= cos € a ina ~sin € cos a - ) 3
5Z(3x1) S € cos sin s r cos € da (D-6)
sin € 0 cos € roe
(3%x3) (3x1)

where the coefficient matrix of Equation (D-6) is now an orthogonal matrix J which gen-
erally simplifies the necessary matrix operations. In matrix form Equation (D-6) now

becomes

§Z = J DK, (D-17)
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where J is the orthogonal matrix in Eguation (D-6) which contains only the trigonometric
functions of ¢ and a, and the matrices D and sK are defined as

1 0 0
D 0 - rCosE€ 0 ;
0 0
(3x3)
or
8K da
de

(3x1)

The matrix D is introduced only to separate compulational values from values based upon
obsevvational errors such as »r, 5¢, and 8a. The known values of Equation (D-7) are J, D
(from an assumed orbit), and &K (from a tracking system). Because of the orthogonality
property of the J-matrix (JT J = I is the identity matrix), it follows from Equation (D-7)
that

D 5K = Jr . 82 .
(3x3) (3x1 3x3) 3x1)
’ ‘ ‘ (D-8)

The form of Equation (D-8) will prove to be more desirable in combination with other
types of tracking system equations to be used later. Only the position vector 7 is fully
determined by Equation (D-3). The velocity vector v =7 , on the other hand, cannot be
precisely determined for a radar system because of two factors: (1) The relatively poor
angular rate data sa, $¢ (Reference 7); and (2) The relatively large uncertainties in the
incremental range measurements which are to be used for the velocity determination
(References 9, 10, and 11).

2. The Angle and Angular Rate Measuring System

Variational equations reflecting uncertainties in azimuth, azimuth rate, elevation, and
elevation rate will be developed now for the purpose of relating these uncertainties to the
components of the ¥ and v vectors of the satellite in the local Cartesian coordinate system.

The unit position vector r° can be written by using Equation (D-3) with r = 1:

sin a cos €
O = =
Z(3x1) COS a CcOos €
sin €

(3x1)

(D-9)
(3x1)
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Since n = (1 -12- mi’) ¥? is a derived quantity (in Minitrack, Azusa, Mistram, etc.),
Equation (D-9) should be restated as follows:

[l] B [sinacos e:] (D-10)
m (2x1) COS a CoSs € (2x1)
A variation of the above equation is
51 cos a -sina ¢
|:6 } i [ 'S cos ] [C?S 6 NJ . (O-11
m(le) = sina - Ccos a (2%2) Sin € o€ (2x1)
From Equation (D-9) it is seen that
l z
[:} = % 1 y r2 = z 2 4 z 2 4 z 2 ;
n z 1 2 3
(2x1) 2 2xay

and, again, the variation equation can be written*:

51 1] (1-12 -1 - In !
[5 ] -1 (1-12) m n sz, (D-12)
" (2x1) - im 1-m? -mn “"”L&z
(3x1)
By combining Equation (D-11) with Eyuation (D-12) to give
Sba = F(ézl, 0z,, 523) )
se = gldz,, 8z,, 5z,)
we obtain the following result:
bz1
[—rcoseéa:} ~ [ - cos a sin a 0 ] 5
. - . . - Z -
r de (et -sinesina -sine€cosa €os € | 5u3y , 2 (D-13)
3

(3x1)

*The form of the variational equation requires knowledge of r which is usually obtained from nominal computed trajectory
information with accucacy sufficient for Equation (D-12); for example ¢=* ot (¢ + Ar)~* with Ar/¢ £ 1072 does not alter
Equation (D-12).
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Comparison of Equation (D-13) with Equation (D-8)* suggests that Equation (D-13) can
also be obtained if we multiply Equation (D-8) with an operator matrix F, (where the index
a refers to angular data) which must be of the form:

1
. _ [o o} .
2x3) 0 0 1],

Expressing the variational Equation (D-13) by using the given parameters &k in con-

junction with F_, we obtain*:

= T
F.(2x3) D(3x3) BK(:<1x1) Fn(2x3)-](3x3) 51‘(3x1) ! (D_14)

from Equation (D-8).

For simplicity, as well as consistency with Equation (D-8) (which will be useful later),

we let

0 - rcos € 0
Da° = F, D = ‘: B
(2x3) 0 0 Tl ax3)

and

T

of P 0] sina -cosa
Je FO5 7 i ' D-15
(2%3) sine€ cos €cosa  COSESING ], 4 (D-15)

Now Equation (D-14) can be written:

D? 8K = J° sZ ,
faxay D Jaionsy P (D-16)

which is the form of our basic variational equation (D-8).

The operator matrices such as F, (here) and F_ (in succeeding sections) were intro-
duced for notational purposes only. On the other hand this complicates the computational
scheme owing to redundant computer multiplications. This difficulty will be avoided by
complementing the generalized equation with an equation more suitable for computer uset.

*Since Equation (D-8) fully determines 51, it becomes our fundamental equation.

fThis was suggested by Mr. R. Sandifer.
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From an interferometer type tracking system, both angular and angular rate data are
obtained with great precision. Therefore, an equation describing angular rates is necessary
for a complete description of the interferometer system.

Utilizing the fundamental Equation (D-7) we obtain the following by differentiation with
respect to time:

D K

z = . :
(3%x3) 7(3x1) (D-17)

(3x1) J(3"3)

which is a direct analog to (D-7) but contains the time derivative of the parameters r, «,
and ¢ instead of their variations. From Equation (D-17) and using J* J = I, we can calculate

D 5xa)K(anry = J<T3x3) Ly (D-18)
which is consistant with the fundamental variational Equation (D-8).
Varying Eguation (D-18) and rearranging the form we obtain
~
D33, Sl.(<3><1) ) [(BJT)Z B (smk}(m) * I3y any
where ﬁ (D-19)
&t
8K 31y = ba
ka1 J

By substituting for K from Equation (D-18), calculating 5]JT, sD, and combining terms, we
have the following equation:

: - T ; T
D axs) BKisary Jaxsy ®Lianry * Visaay J(3may 8Zsny (D-20)

which is the form consistent with Equations (D-8) and (D-14). The matrix Vv = [Vij] in

(D-20) now has the following elements:

1/, . .
v = —T(zlcosa-zl Slna)
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1/.
- _ 1 . . 45 , oo i
Vis r(z]smesma z,sinecosa Z, COS&),
_ sec € ¢/, R .
Vaa T T z,sina tz,cosal,
_ tan e ¢/, . .
Vas T zxcosa z,sinaj .,

Vig —-;(il cos € sina + izcosecosa + iasin E) ,
Vig T T Vg
Vi T T Vayo
Vaz T Va2

which were obtained by expanding Equation (D-20) into its component form. It can be seen

from above that matrix V, is skew-symmetric; that is v;, = -v ;.

Equation (D-20) can now be modified in a manner similar to Equations (D-8) and (D-16)
to contain only the angular parameters a, ¢, and nol r.

The range r was included in Equation (D-18) because the matrices involved are square
non-singular ones, which simplifies the matrix algebra necessary to obtain Equation (D-20).
By multiplying both sides of Equation (D- 20) by the matrix F and then using Egua-
tion (D-15) we have the variational equation, in matrix form, Wthh relates uncertainties
in azimuth rate and elevation rate to uncertainties in the components of the vectors ¥ and
v of the satellite; that is:

DO
#(2x3)

.Y A

+ T
5K 3x1) ooy Ly T Fa Veaxay Jeaxa) 82¢any

(D-21)

where

DOSK - ‘i—rédcose:i
e r &€
(2x1)

It should be noted that Equation (D-21) is consistent with Equations (D-8) and (D-186).
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3. The Range Measuring System

A variational equation relating the uncertainty in range to the uncertainties of the
components of the satellite position vector will now be derived. Since |7|2 = 777, the re-

sulting variational equation is

1 T
v 57 = 70 LY A

Z “(3x1) (1x3) Pcaxay (D-22)

E T
sr(lxl) (1x3)

The variation sr of r can also be expressed (as for the angle and angular rate system) by
introducing another operator matrix F_ (the subscript r stands for range) which permits to
use the fundamental Equation (D-8):

= ol = = o] .
BT (e l"(pds) Ko F'(xxa)[]””)sK(s”) nr(lxs) ENCUP (D-23)
where (see page 16)
r (1x3)

Similarly, the matrix z°

Cix3) in Equation (D-9) becomes, in terms of the JUXJ)
Equation (D-17),

T T

0 - T . oqof .
L\, P’(1x3) Jiaxay, 7 Iy (D-24)

Equation (D-22) can be restated consistent with Equations (D-8) and (D-16) by using
Equations (D-23) and (D-24):

_ qyoT

T(1x3) 5K ax1y ~ Jr(1x3)51(3x1)' (D-25)

4. The Range Rate System

Next, the variational equation relating the uncertainty in range rate to the components
of the satellite position and velocity vectors will be derived in matrix notation. Instead of
considering the variation of Equation (D-25) we shall consider its time derivative instead,
so that Equation (D-24) is combined with Equation (D-25) and replaced by

. - T -
F'(lxa) Kesay Fr(1)<3)'I(3><3) L3y

(D-26)
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The resulting variational equation can be obtained immediately by application of the opera-

tor matrix F, from Equation (D-23) to Equation (D-20):
(1x3)
0 y - oT ) T (D-27)
D’(1x3) 8K(3x1) Jr(lxs)sz(axl) * F’(1x3) V(3x3) J(axa) 5Z(axl) '

Equation (D-27) represents the desired form of the range-rate variation.

Considering only those errors {ér, o1, 8a, 3a, 8¢, $¢) pertinent to the tracking systems
discussed above, we are able to calculate the error components in the local Cartesian co-

ordinate system Z for each individual system.

As an analogous problem let us consider a general set of linear equations of observa-

tions which can be represented in the following matrix form:

Y b A(n)(m) x(mxl) ' (D‘28)

(rx1)

where n is the number of observations, »> =, and = is the number of degrees of freedom
in the system. It is well known that Equation (D-28) can only be solved by the Method of
Least Squares (Appendix B); and to solve it for X we proceed in the following manner:

AT Y = ATAX

(D-29)

e
"

[ATA}1ATY

5a. Error Equations for Tracking Systems in the
Local Coordinate System Z

From Equation (D-28), when applied to Equations (D-5) through (D-2T), we are able to
write the equations pertinent to the various types of tracking systems by assuming the fol-

lowing station complex:

(1) For o Radars,* the error equation (Equation D-8) becomes:

= T D-30
D sax3) 8Kz Jsaxsy 8 3y » ( )

where a 21 insures over-determination in position,

*Hece g represents a row index and oot an angular quaatity.
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(2) For s Angle and Angulay Rate measuring systems, Equation (D-16) becomes

T
Do 5 = 0 . (D—31)
2028x3) Keaxt) 8 (28x3) 8Z(3x') !
and Equation (D-21) is
. T .
0 K. .. = JO 57 + Ts7 : (D-32)
*28x3y (3D J"utm) F’(sza)vJ (3x1)

where o> 2.

(3) For y Range Measuving Systems, Equation (D-25) becomes

S ot (D-33)
Fr('y)(i) SK(SXI) r(yxa) 5Z(3><l) ’
where » > 3,
(4) For s Range Rate Systems, Equation (D-27) becomes
. - ; o7 .
F,(m) 8K 3x1) F’(st) Voaxsy Jaay 82 5ay) 7 J,(Sm 8Z 5y - (D-34)

where §>6 ,

The foregoing variational equations relate the uncertainties in the parameters meas-
ured by a particular tracking system to the uncertainties in the satellite position and ve-
locity vectors. There are fwo existing ways which can be used to evaluate the unknowns
in these equations — in this case, the uncertainties associated with the satellite fand ¥
vector components:

(1) The determination of the unknowns (8z,, sz )by simultaneous solution implies that
the number of variational equations is equal to the number of unknown parameters; for ex-
ample, consider the radar Equation (D-30) for o« = t. This means that an exact determina-
tion of the uncertainties in the position vector components of the satellite is made without
the method of least squares being required.

(2) The determination of the unknowns (6z,, 5z, ) with the method of least squares
(Appendix B) implies that the number of equations exceeds the number of unknowns to
be determined; that is, the system is over-determined. It is possible to meet the condi-
tion of over-determination in two ways: (1) By using n different tracking systems making
one measurement; or (2) by using one tracking system making » different measurements
where n is greater than the number of unknowns. From a practical point of view, however,
the latter is not desirable because an orbit derived in that manner would be poorly deter-
mined in orientation and shape (Reference 12).
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As an example of an over-determined system, we shall again consider Equation (D-30)
for a>1 . This type of solution for the unknown parameters reduces the uncertainties since
redundancy is a well known condition for enhancing the precision of measurements. Thus
an over-determined system of variational equations is always more desirable than one in
which the number of equations equals the number of unknown parameters,

All the mathematical models under Sections D1 through D4 were presented in the
local coordinate system z. This follows logically from the fact that all measurements are
made locally.

Since not all the stations are in close proximity, their station location uncertainties
8S 3.1y aT€ reflected in the satellite position and velocity errors. The value &S ;,,,,0n
the other hand, is referred to the geocentric coordinate system Y, (as shown in Figures 1
and 2). Thus it would seem logical to use the Y-coordinate system in the entire analysis.
This is not true, however, since the position and velocity errors depend upon the earth's
rotation (i.e., the station location changes with the earth's rotation). Therefore all equa-
tions will be written in the inertial coordinate system X. An additional advantage is the
ease with which these errors can be transformed into those of the orbital elements if de-

sired (Part II of this analysis will treat this point in more detail).

5b. Error Equations for Tracking Systems in the Inertial
Coordinate System X

The variational form §Z ,,,, and the variational form of the time derivative bi( 3x1)
of Equation (C-6) relating the local coordinate system Z to the inertial system X will now
be used for the transformation of the error equations in Section D1 through D4:

8Z 31y R<3x3>R3(°G)(3x3,5x(3x1) = Risasy 850 (D-35)

and
. : 6, d .36
81(3)(1) = B(sxa) Rs(ec)(3x3)sx(3x1) T d R(3x3) d@G Ba(ec) s 5x(axl) ) (D- )
(3x3)

The equations in Sections D1 through D4 are written in the inertial coordinate system
X by using Equations (D-3 5) and (D-36) and by rearranging terms. For a radar systems,

these equations are:

(1) For a vadars,

D(saxs) 5K 3. * [JTRES](““) - L(aaxs) BX(SXI)' (D_37)
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where a > 1 and

I"(3‘“0)

[ITRR, (5,)]

(3233)

(2) For g angle and angular vate systems (interferometers),

0 + [ T ] = g0
D"(zﬂn) 8K(3x1) F,J"R&S (28%1) L'(mx3) sx(m) s
and
0 Y, T 0 0
D 8K(3x1) + [FEVJ RSS](mxl) Ma(wxa)sx(m) + La(wmsx(am )

®(28x3)

where 522 and

de

L.O(w)e) = [Fa [‘](zﬁxo) ’
Miaxsy = VJTRRJ(QG) +
0 - .

M'(Zﬁm [F’M ](Zﬁxs)

(3) For+ range systems,

D° 8Ky, *[F,JTR8S|

T(rx)
where v 2 3 and

LD

fyx3)

(4) For s range rate systems,

D’o(sxs)sK(axn ¥ [F, VITR ss]

where § 2 gand

(8x1)

LO
T(5x3)

MO

T(5x3

Lo

(¥x1) T (yx3)

[

i

FrL]”xa)

0
T (8x3)

LAYy

[Fr M](an :

ax(m) +

3 J
dt {JT R {—(ﬁ R, (ac):l} ,
(3x3)

sx(m) )

, .
L'(Smsx“”"”'

(D-38)

(D-39)

(D-40)

(D-41)
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6a. Fundamental and Smoothing Time Intervals

Since any physical measurement requires time, here we shall assume that a basic time
interval At, is required to make a single measurement which can be, for instance, a range

r,, angles a;, e, ,0r a range rate i,. In actuality, the measured value m, already

i’

represents an average value over the time interval At[; thatis
m R J m ¥ dt
T At i 9t oo
Eae, (D-42)

where mi* represents an instantaneous "non-measurable' quantity. The values of =, as
seen from Equation (D-42) already represent a "smoothed" measurement.

With a time interval 7 >>At, modern tracking systems are able to measure a large
number (i >> 1) of quantities =, during 7. To reduce this number to a practical level and
also reduce the errors, the concept of "smoothing' is introduced.

Now the problem arises of finding the maximum smoothing time, say 7 = 7, (Figure 6).

\ 1’ yn. vk, y /3 e-2 ;¥ (iz P=2)

AtI MEASURED

at, l at VALUES yk

le——————— T,=i, At ——————>

o Te=lp Aﬂ

Figure 6—Geometry of the smoothing process.
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For a large value of 7, (such as one-tenth of a period for a near earth satellite) the
observations of y = y(r, 1, a, a, ¢, ¢) are of course nonlinear. Since the "real" values
y(p—®) of these quantities are never known, we are forced to solve this equation by the
least squares method, since the number of measurements i far exceeds the number of
unknowns n. For most practical cases a development of the values y is the polynomial

Yo ° Z ax]) (D-43)

¥=1
where the number of measurements within 7 is « = 1, 2, --+ i; or, in matrix form,
Y(ixl) - C(ixp) r(pxl)’
where
C(iXp) = [x]]“xp) .

Solving Equation (D-43) by using the least squares method Equation (b-12), (Appen-
dix B), we obtain for the coefficients a, in matrix form:

r(pxx) - (CT C)_l CT(pxi) Y(ixx) ' (D—44)

(pxp)
where
r = :
(px1) [87](‘,“)

The measure of '"goodness of {fit" for a single observation is obtained from Equa-
tion (b-14) of Appendix b:

y = yin,
where
i i P
- 1 1
V=1) v - TZ 2 a, x (D-45)
K=1 K=1 Y=0
and

n = i[(‘i—}n_)z (yK-i)zJ : (D-46)
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Equation (D-45) can also be utilized for an estimation of the maximum smoothing time
Ty As can be seen from Equation (D-45), the "best" value y for an assumed order p of
polynomial is a function only of the number of measurements i made during the time in-
terval = = iAt (where At is the constant basic time interval necessary for making a single
measurement y). Therefore an arbitrary increase of the time 7 cannot be made, since the
values of 7, calculated from a series of the order p, would deviate more and more from the
nominal values (Figure 6). For example, 2 second order polynomial (p =2 ) cannot fit a
third order curve over any interval. Thus a criterion for the maximum tolerable smooth-
ing time for a given polynomial of degree p is
(D-47)

(i, p) =5l p) =¥ (i p) - 9(is p)
where i, <i, and i, <i, etc. Should the above inequality reverse itself, the order of the

polynomial must be increased (Figure 6).

6b. Introduction of Smoothing into the Error Equations

During the course of this error analysis it was assumed that the uncertainties sr, Ja,
se, 5t , o4, and 3¢ for the different tracking systems were known and were represented by
the systems' uncertainty matrices 8K ;,,, and BK(JXI) Equations (D-7) and (D-19).

The term "'smoothing process' means simply that the aforementioned uncertainties are to
be improved {reduced) in the statistical sense. This means that each value sr, sr - must
be divided by the square root of the number of measurements i made during the time in-
terval 7. Expressed in matrix form and applied to sk and &K, the smoothed error equations

are
5K” = W
K3 (3x3)%K(3x1)y
and
* = y D-48
8K (3x) Wi3x)8Kam) ( )
where
1
W - =1

(33) Yi (3x3)

and I is the identity matrix.
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The time of smoothing is then given by*

T o= iAt . (D-49)
It should be noted that the value of i is finite (uncertainties do not disappear completely)
since, as was previously mentioned, 7 and A7 are finite.

Ta. Error Equations in Position and Velocity Assuming Random Errors

By using the error equations presented in Section 5b it is now possible to construct
two generalized equations providing rms-errors in satellite position and velocity, includ-
ing smoothing. The error equation for position errors is

Apay © B o) sx(axl) ’ (D-50)
where
— —
* T |
l](3r1><3) 8K(3x1) + [J R SSJ(;«)ax]) [
A = |l po 5K ' +{F, JTRsS ;
{(px1) n(2,8>0) (3x1) [ aJ (28x1)
1] T
D sy TRty (FJTR s8],
— (px1)
and
- _
L(saXS)
- 0
B(Px3) - 8(25)(3) !
Lr0
L (7x3)J(Px3)

with p2 3 , where
p = (3a+28+y).

For every case three uncertainty components of the station are always included. Thus one
range system (» = 1), for example, is sufficient to determine the position error, since an

*In this equation the quantity i is not to be confused with the inclination i of an orbit.
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orbit is presumed. This statement is academic, however, since this is not a practical way
to determine spacecraft position errors. Knowledge of the orbit is only necessary for
evaluating the coefficient matrices D, J and V of 5X,5S and &K, respectively. For an error
analysis of this type any nominal orbit can be used for evaluating the coefficient matrices,
since an error in the assumed orbit does not influence the position and velocity error de-
rived herein; i.e., the errors do notf depend on the first order of the ''real” position or
velocity.

The solution of Equation (D-50) by the least squares method is
25x(3><1) - (“T B) E;xs) B(T3xp) A(pxl) . (D-51)
which represents, in the inertial coordinate system, the total variations in each component

of the satellite position vector.

As was previously mentioned, the uncorrelated errors in the components of the posi-
tion vector t are desired (Figure 5). These errors can be obtained from

Hiwgy © sxuxl)ax(Txxs) ’ (D-52)
which contains the correlated terms; H' is formed by assuming that the correlated terms

are zero, that is,

! = 2 .
Hi sy o, 0 (D-53)
0 0 2
31(33)

n, = +<Z T;fi>m : (D-54)

The position errors determined above can now be used in determining the velocity

errors, for which the matrix equation is

(gx1) ; B(fl><3) sx(3>‘1)’ (D—55)
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-

where
- oy [ "R ss] Cyo |
D oy Sy [Fa VITRSS] 0y LA
A(qx]) T T T T T T T e __. B
}00 * +[F VJTnas] - MO
; f(S)G) (3x1) r (8x1) : r(8x3) (3x1) J(Q"X)
:’-Lo T
_ | T2y |
(@x3)  © { ********* 1
Lo ;
L | gmay
and* with q > 3
q " {28+ o),

Solving Equation (D-55), as before, by the least squares method, we have

X - (RT m)-t @®r
sx(m) (B B)<3xa)B<3xa> "(qm :

Thus the velocity errors are obtained:

H = " .T .
H 3, X 3x0)8X 1)

And again assuming no correlation in the matrix:

77,;12 0 O—I
_, B ,
H(st) 0 i 0
0 0 n2 |
X%J(3x3)

Therefore the total rms error in satellite velocity is given by

(D-56)

(D-57)

(D-58)

(D-59)

*If the position error componeats are not computed from Equations (D-50), (D-51), and (D-52), then, of course, q >6 (e.g.,

six range rate stations or three angular rate stations).
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The general error equations — Equations (D-50) to (D-59) — can be solved from two
points of view:

(1) By letting the indices (a, 4, ¥, or &) represent number of stations which observe
the satellite; or

(2) By letting (a, 8, ¥, or 8) represent the total number of observations made by each
type of tracking station.

The former approach will require less computer storage, since the evaluation of the
partial derivatives — see Equation (D-4) — comprising the coefficient matrices of 5K, 58S,
and sX is kept at a minimum. For example, if the latter method were chosen for o radars,
30 sets of partial derivatives would have to be evaluated per second instead of the 3 per
second for the first approach. It was presupposed in this example that the radar sampling
rate is 1 measurement every 1/10 second. By introducing the concept of smoothing into
the first approach a result equivalent to the second is obtained.

In the case of a tracking system not capable of measuring T and v independently of
knowledge of the orbit, then the second method is more desirable, For example, consider
the evaluation of the position and velocity error components of the satellite using one range
and range rate system. In this case the error is no longer independent of the orbit, since
knowledge of the orbit is required; and independence of the orbit can be presumed only in
the case of tracking systems or tracking system complexes (e.g., three range and range-
rate stations) which are capable of determining T and v independently of the satellite orbit.
In some cases, therefore, the precision of the orbit must be incorporated in the position
and velocity error components of the satellite.

7h. Bias Errors

Every measurement no matter how carefully it is made, is subject to errors. Experi-
ence has shown that repeated measurements of the same quantity do not give the same re-
sult. The two kinds of errors influencing the results are: (1) constant or bias errors
whose magnitudes depend on parameters such as boresight errors etc. and (2) accidental
errors referred to here as "uncertainties™ which have no fixed cause and hence follow no
fixed physical law. For example, a measurement of some quantity can be represented in

mathematical form as follows:
m = my tAm 1t dm (D-60)

If m, represents the "most probable value' then (Am *m) must represent the errors in
the measurement. Those errors characterized by Am are defined as "bias errors', whereas

the accidental errors or ''uncertainties' are those represented by 1ém.
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One possible way to determine the bias errors is to use a precise orbit (determined
by other means, for instance optical observations) which is to be compared with the track-
ing systems measurements. The arithmetic average of the resulting residuals will then
give a good estimate of the bias errors. A more detailed discussion on the determination
of bias errors combined with numerical examples will be presented as a separate paper.

8. Comments on Tracking System Uncertainties

Proper precautions must be exercised in using the error equations derived herein.
For combinations of tracking systems simultaneously tracking a satellite or a spacecraft,
care must be taken in selecting the uncertainties (sr, sf, 5a, 84, 3¢, $¢) related to the par-
ticular systems. Consider the case of one, two or three radars used to determine the posi-
tion vector of a spacecraft. For one radar, the uncertainties ( &r, sa, 8¢) are used, In the
case of three radar stations the position of the spacecraft is fully determined by the three
range measurements alone (Reference 6), Therefore only ér,, or, and sr, need be con-
sidered, and the angular uncertainties sa,, de, can be assumed to be zero since they are
ret required for this case: ér << (r dacose€), Or §r << (r s¢) .

In the case of two radars, a very simple "assumption' can be made — multiply the angu-
lar errors by the factor 1/2. A weighting of the angular errors of 1, 1/2 and 0 seems rea-
sonable for these three cases. Similar weighting procedures will have to be considered for
other tracking system combinations,

In brief, when the solution is over-determined the uncertainties contributing the most
to the overall error should be eliminated,

ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance given by Mr. R. Sandifer in reading
the manuscript and suggesting modifications in the equations for better computer adapt-
ability; and by Mrs. E. C. Brooke in programming the equations

REFERENCES

1. Harris, S. M., "Refraction Compensation in a Spherically Stratified Ionosphere," IRE
Trans. on Antennas and Propagation AP-9 (2);:207-210, March 1961,

2. Berning, W. W,, "Earth Satellite Observations of the Ionosphere," Proc. IRE 47 (2):
280-288, February 1959,

3. Tischer, F, J., "Propagation-Doppler Effects in Space Communications," Proc. IRE
48 (4):570-574, April 1960,






10.

11,

12.

31

. Boudouris, G., "A Method for Interpreting the Doppler Curves of Artificial Satellites,”

J. Brit. IRE 20 (12):933-935, December 1960,

. von Handel, P. F, and von Hoehndorf, F., "High-Accuracy Electronic Tracking of

Space Vehicles," IRE Trans. on Military Electronics MIL-3 (4):162-172, October 1959.

Vonbun, F. O., "Analysis of the 'Range and Range Rate’ Tracking System,'” NASA
Technical Note D-1178, February 1962, p. 10.

rSatellite Instrumentation Network Facilities Report,” Goddard Space Flight Center,
External Document No. X530-62-3, (NASA Document No. N-99357), April 1962,

. Mengel, J. T., "Tracking the Earth Satellite, and Data Transmission, by Radio,"

Proc. IRE 44 (6):755-760, June 1956.

Ardler, S. B., "Application of Pulsed Radar to Space Tracking," RCA Memo, June 10,
1961, p. 7 (unpublished).

Barton, D., and Sherman, M., "Pulse Radar for Trajectory Instrumentation,' Paper
presented at the National Flight Test Instrumentation Symposium, San Diego, May
1960, p. 13.

Barton, D., "Evaluation of Radar Velocity Errors for Global Range,” RCA Memo
50.126, April 1959, pp. 1 and 7 (unpublished).

Baker, R. M. L., Jr., and Makemson, M. W., "An Introduction to Astrodynamics,"
New York: Academic Press, 1960, p. 240.



Appendix a
Transformation of Cartesian Coordinates into Spheroidal Coordinates

From Figure 2 (page 7) we can write the equation for the elliptical cross section of

the earth as (Reference al):

2 2
i Vs (a-1)

where the semimajor axis is

4 7 <y12 N y32) v (a-2)
and
y, = agcos¢’
(a-3)
vy T a@sin ¢ .
The unit normal to the spheroid in the y,y,-plane is
1 (Y1 = Y, -
RO = ol it k| -
n m \:3@2 : a2 (1 _ez) } (a-4)
where
¥ 2172
¥ T
= +
" a; 1 1 - (312
From Figure 2 it follows that
=0 T = - _1._yl. .
0 .1 = cos¢ m a; (a_5)

33
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And by using Equation (a-3) with Equation (a-5) we see that

COS¢E + tanzi'_ v -1
L (1 -ef) '

or, simplifying,
tang¢’ = (1 - 012) tan ¢
We also find from Figure 2 that

Ncos¢ = a®cos¢’;

and from Equations (a-1), (a-4), and (a-8), we have

a
[

N = ———
1 - el2 sin? ¢
from which it follows that
¥y, = Ncosg¢ ,
y, - N(I-elz) sing
But
$; T ¥y, * hcosg¢,
S Ty, + hsing ;
and thus
s, - (N+h)cos ¢ ,
S, ° (N(l-ef) + h) sing ,
Since in Euclidian space
§ = § +s

(a-6)

(a-17)

(a-8)

(a-9)

(a-10)

(a-11)

(a-12)
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where
§'l = sl[cosAT*sir\A;],
(a-13)
sy 7 s3k
we have
(N +h)cos ¢cos i ‘}
S % S5ay T {(N+h)cos ¢gsinA . (a-14)

| I:N(l ‘012) + h:' sin¢ (3x1)
REFERENCE
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Appendix b
The Method of Least Squares

The discussion which follows is a brief exposition on the method of least squares,
neglecting the conditions of constraint.

In order to treat the generalized case of the method of least squares, we assume a set
of n-observation equations in the following form:

_ N
Yo 7 fl(xl' Xy 7770 xk) ’
v, = f{x x xk) ,
; (b-1)
y, ° fn(xl, Xyo xk) , y

where the equations are subject to the condition that » >k, which implies that the system
of equations must be over-determined.

Since any observation is subject to errors, we shall rewrite Equations (b-1) as

v, tey T fl(xl MRS TERE SRR Y X tOx,)
y, t €, = f2(x1 + Axl x, * sz yox, Axk)
(b-2)
Yo v €, 7 fn(xl thxy,ox, tOx, voX t Axk)
where the values ¢, and Ax with i =1,2, ---, nand j =1, 2, -, k, represent the errors

in the observations y, and the corrections to the independent variables X,

37
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In order to determine the quantities of interest Ax,, We assume that the relative errors
are small, i.e,, ij/x’. <<1; then Equation (b-2) can be developed in a Taylor's series by
using only the linear terms. The following result is obtained:

k
Jf,
vy, * € = fi(xl, T E e (higher order terms) ,
=
or
kot
E‘ vt ? axJ AXJ
=1 (b-3)
where i = 1,2, --- n.

b

From Equation (b-3), we obtain:

koof h
61 N z axj ij

i=1

k af

o OF )T [ (b-4)

1=1 Y,
and
kL af, h
vl = E1 _Z (?Xj AX’
i=1
K, of,
Vo T & _Z dx; by > (b-5)
i=1
ko of,
v, = E"—Z ax, Ax] ,
=1 J
where v, (with i = 1,2, --- 1n) represents small residuals resulting from the general

equation (b-3).
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Gauss (References bl-b5) made an assumption stating that the "best" values of Ax
are those for which

¢ = Z w, v} - minimum . (b-6)

i=1

where w, represents a weighting factor. Equation (b-6) is known as the condition for least
squares. For the following discussion we shall assume that w, = 1, i.e., all measurements
are to contain errors of equal importance.

In order to simplify the algebraic notation, the symbolic matrix notation will be used.
Thus Equation (b-5), restated in matrix form, is

v(nxl) - g{nxl) N p(nxk) Ax(kxl) ’ (b-7)
where
vy Eﬂ Axl
v € Ax
= 2 . = 2 . = 2
Vinay ' Enxy ' X e ;
L Vn] Loy L% J oy
and
[ af, af, af ]
6x1 ! ax, ' IX,
af, af, af,
ET; Exz ! axk
p(nxk) -
af, af, af,
ax, ° ax, ' Ix
L 1 2 k—4(n><k)

The matrices Vand &can be considered as n-component vectors, whereas AX is a k -com-
ponent vector,

The Gaussian assumption, therefore, may be considered in terms of vector algebra
as the inner vector product which in matrix form simply becomes:

¢ = V'V - minimum , (b-8)
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where

VT = transposed matrix V of Equation (b-7) .
By introducing Equation (b-7) into Equation (b-8), we have
¢ = €€ -€TPaX - AXT PE + AXT PT P AX - minimum . (b-9)

The minimum of Equation (b-9) can be determined by differentiation with respect
to aX:

X |, O (b-10)

which gives

ETP - aAXJPTP

11
<

(b-11)

But the minimum condition also requires that d2¢/3aX? be positive and from Equation (b-11)
it is found that

¢

JaX? X=X,

= pTp

I PP is positive definite, ¢ is a minimum.

Equation (b-11) is called the "normal equation”, and is easily solvable by using the
standard method of multiplying both sides of Equation (b-11) by the inverse matrix of PTP,
designated as [PTP] "%

= T -
O(kxl) [P P] (}(xk)P;rkxn) €(nx1 N (b-12)
For ease of notation we let
Q(kxk) = [PT p];ll(xk)
and write Equation (b-12) as
= T
O kxt) iy Plusny Egmary (b-13)
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where

Tof,
p(""k) - [pij](nxk) - 6Xj :

(nxk)

and N N

Q kx) [qij](kxk) - {qJ‘](kno'

Equation (b-13) gives the "most probable" values, in the Gaussian sense, of ax at X,.

Next, we shall determine the measure of "goodness of fit", or the root-mean-square
error n. Since in most cases the observed data (for measurements such as range, range
rate, angle, angular rate) will not obey the normal distribution law, the usual symbol o is

replaced by 7.

By substituting Equation (b-11) into Equation (b-9), and having now evaluated aX,, we

determine »? in the usual manner

(O L —rlee-eTr ). (b-14)

where n>k, n = total number of observations, k = total number of unknowns, and 7 is the
measure of ""goodness of fit" or the rms-error of a single observation.

One question still remains: how accurate are the calculated values aX, ? To answer
this, we must consider H:

AX = AX, tH, (b-15)

where H is the uncertainty associated with each component of aX,.

To calculate the components of H, we must first evaluate the components of ax, indi-
vidually. This can be accomplished by expanding Equation (b-11) as follows:

n n n n W

. = 2 : A
z Piy g Bxoy 2 P2 T Xy, PPy, * A, z PPy

i=1 i=1 i=1 171

7 n n
= A i E 2 ... E
2 P; € Bxoy PiPy1 T By P57 Ay PjaPjk
' (b-16)
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Now Equation (b-16) can be solved for values Ox,, by using a simple method of eliminatiow.
For example, if we select element q;; of Equation (b-13) we can determine Ox,, as follows:

n n n N
= 2 “a.
., Z P Axgy quz Pyt *ayy Bxgy z PPk
ji=1 i=1 i=1
n n n
= P a3
9y, z Pia%; Bxgy 9y, 2 PiaPip * Ay, Mgy z PiaPix
i=1 i=1 i= > (b-17)

n n

n
= , . 2
9k z Pik€; Doty y 2 PixPj, * t gy Bxgy P - J

1=1 =1 i=1

Summing Equation (b-17) by columns, gives in the first element of the vector aX, in
Equation (b-13). Furthermore, by definition of the matrix Q given in Equation (b-12),

O(kxk) (pr>(kxk) - I(kxk) )

The elements in the first row of this matrix multiplication are:

i n n ~
2 -
9y, 2 P *ta,, z Pj,Pj, * * g 2 PixPj1 1
i=1 j=1 i=t
n
2 =
95, 2 Pi1Pja 7 4y, 2 P * tag, 2 PPk 0
j=1 i=1 i=1 r (b_18)
n n n
2 =
914 2 PiiPix T qy, 2 PiaPii * A 2 P 0.
=1 ji=1 =1 J
from which we obtain
n n n
Bxgy T oay, z Pi1€; tdy, Z P&y v tay, 2 P& - (b-19)
i=1 i=1 i=1



43

By expanding Equation (b-19), we find an equivalent relationship for AX,,

K K
Axyy 7€ z 93P t & ; QyiPy; * 00 F Enz 9iPaji - (b-20)

ot ” (b-21)

Ax = g€, tae,. t ot a € . (b—22)

01 171 272 non

To use the result obtained in Equation (b-18), we multiply Equation (b-21) by the ele-

ments of the first column of the matrix P,

= 2
P11 P17 PP T 43P Pk h
- 2
Py1% a,1Py1 * 942P21Pag 7 T 4Py Pax
g (b-23)
= 2 -
Pry%n 9,Pr1 t 91,Pn1Prg t t 9 Pu P D,

By summing the terms of Equations (b-23), we obtain

n n n

= 2 P
Z Pi1%; Ay 2 AT PP Z PPy 7 * g z PPk - (b-24)
i=1

j=1 i=1 i=1 1=
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Comparing the latter with Equation (b-18), we find that

n N

z Pj1%

i=1

I
—

T ; (b-25)

1=1 /

Returning to Equation (b-21), multiplying each equation with a. and expanding the sums,
we obtain:

2 = + + o ee 4 ™
&y Q1P 7 92P 1% 9 kPri%y
2 = + 4+ .. 4+
e A11P21%2 7 A39P2 % A1kPyk®,
> (b-26)
2 = Foees
y Qu1Pa1 % F AP, F AP, - J

Summing Equation (b-26), we obtain
n n n i
Z al = quanai +qxzzp;2aj o +q1kZp;‘ka; : (b-2T)

=1 i=1 i=1 i=1

and comparing Equations (b-27) and (b-25) we immediately see that

Z a2 = aq, . (b-28)

Similar relationships exist for the other main diagonal elements of the matrix Q.
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In Equation (b-22) we have, corresponding to each ¢ (with j =1, 2, -, n), an =, such
that the total rms error 7y associated with ax,, is

1/2
= 4 25,2 4+ ... 4+ 2 2] .
Th, [ax i % M (b-29)

But by definition of »in Equation (b-14) we see that 72 = n}2 = -+ = n} = 7% thus

n 172
™, - {"Z ] , (6-30

which, with the use of Equation (b-28), becomes

= ¢+ 1/2 |
Ty 79y (b-31)
And likewise, we have
= 1/2
", M 4ayy
Ty tnql/?

k

Returning to Equation (b-15), we now can say in general that

= 1/2
bx, BMxg; £ mq" - (b-32)
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