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TRACKING SYSTEMS, THEIR MATHEMATICAL

MODELS AND THEIR ERRORS

PART I - THEORY

by

F. O. Vonbun and W. D. Kahn

Goddard Space Flight Center

SUMMARY

This paper treats the RMS-errors associated with the position and ve-

locity of a satellite or spacecraft when tracked by all types of present day

tracking systems. These errors are based on uncertainties in measurements

made with the systems as well as those associated with their location.

The present paper (Part I) is principally a theoretical treatment which

establishes the mathematical models necessary to solve for the errors in

satellite position and velocity. It is presumed throughout the paper that these

errors are to be determined for discrete points in the satellite's orbit. This

approach enables one to calculate the error propagation during short time

intervals (order of seconds). This is of particular interest for instance for

evaluation of a guidance system during a short burning phase. A least square

solution of non-simultaneous observations would diverge (matrices involved

become ill-conditioned). This condition imposes a constraint on the method

of solution which is, that either one tracking system can measure both posi-

tion and/or velocity, or that several tracking systems observe the satellite

simultaneously to produce the equivalent effect. Both these alternatives are

considered in Part I .

A rigorous derivation of the"Method of Least Squares" is also presented

for completeness, since it is used to a large extent.

Part II (presently in preparation) will show in detail the application of

the equations derived in Part I assuming sinmltaneity as well as non-

simultaneity. In the latter case position and velocity need not be fully deter-

mined by the tracking system or system complexes. A number (i>6) of

range, range-rate, or angular measurements are adequate. Thus the con-

straint mentioned above and applicable for Part I does not exist, hence mak-

ing the method more general. Numerical examples and results based upon

known errors associated with the systems and systems locations will be pre-

sented for simultaneous and non-simultaneous derivations.



J



CONTENTS

Summary ................................... i

INTRODUCTION .............................. 1

A. DEFINITION OF SYMBOLS .................... 2

B. MATRIX NOTATIONS ........................ 3

C. DEFINITIONS OF COORDINATE SYSTEMS ......... 4

1. Coordinate Systems Used ................... 4

2. Relationships Between Coordinate Systems ....... 6

D. MATHEMATICAL MODELS OF TRACKING

SYSTEMS AND THEIR ERRORS .................

I. The Radar System ....................... II

2. The Angle and Angular Rate Measuring System .... 13

3. The Range Measuring System ................ 18

4. The Range Rate System .................... 18

5a. Error Equations for Tracking Systems in the

Local Coordinate System Z ................. 19

5b. Error Equations for Tracking Systems in the

Inertial Coordinate System X ................ 21

6a. Fundamental and Smoothing Time Intervals ....... 23

6b. Introduction of Smoothing into the Error Equations.. 25

7a. Error Equations in Position and Velocity Assuming

Random Errors ......................... 26

7b. Bias Errors ........................... 29

8. Comments on Tracking System Uncertainties ...... 30

ACKNOWLEDGMENTS .......................... 30

References .................................. 30

Appendix a--Transformation of Cartesian Coordinates

into Spheroidal Coordinates .............. 33

Appendix b--The Method of Least Squares ............. 37

°°°

111



TRACKING SYSTEMS, THEIR MATHEMATICAL

MODELS AND THEIR ERRORS

PART I THEORY

by

F. O. Vonbun and W. D. Kahn

Goddard Space Flight Center

INTRODUCTION

In recent years, requirements of satellite and spacecraft tracking accuracies have

increased considerably; consequently more and more tracking systems and stations have

been employed. From this situation, the question evolved: How accurately can the posi-

tion and velocity of a space vehicle to be determined when it is tracked by a combination

of tracking systems ?

This paper attempts to present a detailed study of the propagation of errors in data

obtained from satellite tracking systems. For establishing satellite orbits, both the posi-

tion and velocity vectors of the satellite must be known. Usually, these two vectors are

obtained from observations of the satellite made with various types of tracking systems.

Since no tracking system can be considered completely free of errors, the observations

obtained from such systems obviously contain errors, of which the most important are:

(1) Tracking system errors,

(2) Station position errors,

(3) Trajectory errors; i.e., satellite orbit errors.

These three kinds of errors will be discussed in detail here.

A separate treatment of errors due to atmospheric and ionospheric refraction (Ref-

erences 1-6) will not be necessary. These errors are assumed to be included in the system

rms errors, that is, in the errors of the measured quantities such as range, range rate,

angle, and angular rate.

To avoid too voluminous a paper, the work has been divided into two separate parts.

Part I mainly treats the theory; Part II (in preparation} will treat the application of Part I

by means of high speed computers, and will present concrete examples.



Part I is devotedentirely to anerror analysisof trackingsystems. Thesystemscon-
sideredare complexesformedbythe combinationof radars;angleandangularrate systems
(e.g., interferometers);andrangeandrangerate systems. Theerrors soughtin this analy-
sis are thoseresultingfrom thetrackingsystemitself aswell asthosedueto theuncertainty
in thesystemslocation. Theerrors for thesetrackingsystemshavebeenassumedto be
uncorrelated,onthebasisof practical experiencewhichshowedthat theslight existingcor-
relationdoesnotappreciablyalter theresult obtainedunderthat assumption.To permit
thecalculationof theseerrors it is necessaryalsoto assumeknowledgeof theorbit or
trajectory. Thelatter assumptionimposesno restriction onananalysisof this type,since
the errors consideredhereare independentof orbit or trajectory errors. It hasfurther
beenassumedthat thetracking systemsandcomplexesare capableof determiningtheposi-
tion andvelocityvectorsindependentlyof anassumedorbit. In brief, for someof thedis-
cussedsystems,simultaneityis theminimalconstrainingconditionfor thesolution. For
instanceat leastthree rangeandrangerate systems,or oneradar system,is required.

Nevertheless,to facilitate computation,anorbit hasbeenassumed.(Availableorbit
generatorspermit immediateevaluationof thepartial derivativesinvolvedin thecomputa-
tions.) Becauseof the independenceof theorbit -- at least for afirst order approximation--
approximateorbits or trajectories derivedfrom nominalinjectionparameters(providedin
all satellite systemoperationsplans)or from availableobservationaltrackingdatawill be
adequatefor theerror analysis.

Theaimof this paperis to obtainequationswhichpermit thecalculationof all errors
resultingfrom anycombinationof trackingsystems(suchasradars, interferometers,or
rangeandrangerate systems).Thecoordinatesystemsusedwereso chosenthatthese
errors couldeasilybetransformedintoorbital element.

Part II will apply the equationsderived here assumingsimultaneousand non-
simultaneousobservations.Numericalexampleswill begivenillustrating thepropagation
of errors for discretepointsandintervalsalonganorbit. Theinfluenceof thenumberas
well asthedistributionof trackingstationsaroundtheglobeonthepositionandvelocity
errors will alsobediscussed.Treatedwill alsobethe minimumnumberof observations
necessaryfor establishinganorbit of a stipulatedaccuracywithgiventrackingsystems
andtheir globaldistribution.

A. DEFINITION OF SYMBOLS

The following symbols will be employed throughout the development:

¢ Geodetic latitude of the tracking station

\ Geodetic longitude of the tracking station
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Height above geoid of the tracking station

Equatorial radius of spheroid used to represent the earth, (for Hayford Spheroid

_,_ = 6378388 meters)

Square of eccentricity for spheroid, (for" Hayford Spheroid e] = 0.0067226700223)

Greenwich Sidereal Time at 0h Umversal Time (U.T.), obtained from the various

ahnanacs

Greenwich Sidereal Time at U.T. of observation

U.T. of observation

Azimuth of the object being tracked

Elevation of the object being tracked

Slant range of the object being tracked

Semimajor axis of satellite orbit

Right ascension of satellite

Declination of satellite

Eccentricity of satellite orbit

Inclination of satellite orbit

Longitude of ascending node

Argument of perigee

Eccentric anomaly

Period of revolution of satellite

Radius of curvature along Prime Vertical

Magnitude of station position vector

Magnitude of the radius vector to the satellite in the inertial coordinate system

B. MATRIX NOTATIONS

Since a large portion of this paper deals with transformation of coordinate systems,

it will be useful to present a brief introduction to the transformation theory relevent to the

material presented herein. A transhltion indicating a shift in coordinates is represented

in matrix form as

X : ¥-S (B-l)



or, expanded in components,

(x,, x 2, x3) : (Yl- s,. Y2- s2' Y3- s3) (B-2)

A rotation on the other hand indicates an angular shift of two coordinate axes about a

third axis -- the chosen axis of rotation. In matrix notation a rotation is represented as

Z = R i(_,) Y , (B-3)

where y is the argument of the rotation and the index i refers to the axis of rotation in the

y-coordinate system. For instance,

1 0 0y 1
R 1 (T) = 0 cos y sin

0 - sin :y cos _j (B-4)
(3×3)

The rotation illustrated in Equation (B-3) represents a rotation of a Y-coordinate

system around its y_-axis through an angle :y. This similarly holds for rotations around

the Y2 or y3-axes.

In this paper extensive use is made of rotation matrices; therefore, it is now appro-

priate to mention the following useful properties of such matrices:

(1) R[(_) = Ri-' (y)

(2) RtT (Y) = Ri(-T)

(3) ll_(_)R_ (_) : I

(B-5)

where i = 1, 2, or 3, and I is the identity matrix, which can easily be seen from Equa-

tion (B-4).

C, DEFINITIONSOF COORDINATESYSTEMS

1. Coordinate Systems Used

The following coordinate systems are used:

X Inertial Cartesian coordinate system (Figure 1);

X _ Ix,, x2, x3],

x, -axis directed towards vernal equinox,



5
X3, Y_

z3

\

z'_

I
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/Y' £ (sl, s=,s,) Z' z

(GREENWICH)

Figure ]--Geometric representation o£ the coordinate systemsreferred to the earth
ellipsoid.

x 2 -axis normal to both x I and x3-axes,

x 3-axis directed along earth's axis of rotation.

¥ Earth-centered and earth-fixed coordinate system (Figure 1);

yl-axis directed towards Greenwich,

Y2"axis normal to (Yl, Y3) axes,

Y3-axis directed along earth's axis of rotation.

¥ Coordinate system parallel to the Y-system, centered at the observer.

Z Local Cartesian coordinate system centered at the observer (Figures 1 and 2);

z z -axis directed towards local East,

z_-axis directed towards local North,

z 3-axis directed along normal to local horizon plane.

S Position vector of observer with respect to Y-system (Figure 3 and Appendix A).
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Figure 2--Cross-section of the elliptical assumed earth (Hayford ellipsoid)

2. Relationships Between Coordinate Systems

Some relationships between the various coordinate systems discussed should also be

given: The trans[ormation from the X-system to the Y-system by simple rotation is

Y = %(%)x , (c-1)

where

_c " + Ot= CTGo

0 _ 0.26251595 radians/hour

and

0 < _ < 2v .
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EARTH'S ROTATIONAL
AXIS

SATELLITE

S_

S'. PROJECTION OF
SATELLITE INTO THE

HORIZON PLANE z_, z2

EQUATOR

EXTENDED

"_ I EQUATORIAL

_--i _-_ PLANE

Figure 3--Artificial satellite orbit as referred to the local horizon coordination system

The transformation from the Y-system to the V-systeln by translation is

V = Y-S,

where

and

S_ _ S =

I (N +h) cosCcos £ 1
(N+h) cos 4_ sin X

IN(l-el2 ) +tl] sine ( 3xl)

IN " [1 - e, 2 sin _¢]''2

(C-2)

(C-3)

The transformation (double rotation) from the Y-system to the Z-system (Figure 1)

can be written
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To simplify thenotation,let

n = B1 - +x , (C-5)

thenthetransformationof theX-systeminto theZ-systemcanbewritten:

or inpartitionedmatrix form

z = (C-6)

Next the coordinates of the satellite in its orbital plane U will be transformed into the

Cartesian coordinates of the inertial system X. (Figure 4) In this paper it is assumed that

the earthts center of mass and the center of the spheroid representing the earth are coinci-

dent. This, in turn, implies that the origins of X and U coincide; hence only rotations are

EXTENDED EQUATORIAL
PLANE (x. x2) _2

X 1

(T)

)UATOR

,.I. _ X2

_,_

P' PROJECTION OF P

ONTO x], x 2 PLANE

u 1

Figure 4--Orblt in the inertial frame of reference



necessary to perform the required transformation.

angles) is expressed as follows:

9

The equation for this (via the Eulerian

where

X = ||3(-_) II1 {-i) R3 (-_:! U

U = a (1-e2)'_2sinE

0 (3×1)

(c-8)

and the elements of U actually represent the Cartesian coordinates of a Keplerian ellipse in

the orbital plane.

D. MATHEMATICALMODELSOF TRACKINGSYSTEMS AND THEIR ERRORS

The primary purpose of any tracking system is to determine the position vector Fit )

and the velocity vector _; - dF dt of an object moving in space. The position vector can

be expressed as

: !_i 7°

= r F ° (D- 1)

where r - !r" i is the magnitude of r" and 7 ° is the unit position vector. Differentiating

Equation (D-l) directly gives the velocity vector F of the object:

dr" dr dF °
<It " _ -dY 7° + r _- (D-2)

The four basic tracking systems which exist and which satisfy Equations (D-I) and (D-2)

will now be described.

The Radar System

Herein it is assumed that a radar measures the range r (which in actuality is a com-

puted value based upon the travel time of the radar wave), the azimuth a, and the elevation

angle e. From these, the position vector 7 is fully determined. The time derivatives _,

5 and _ are excluded in this treatment of a radar system because of the relatively large

errors involved. The latter omission, however, should not give the impression that a radar

system measuring r, _, c, _, h and _ cannot be treated by using the equations developed
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in this paper. For such a case, the equations for one range system and one angle and an-

_,nalarrate* system should be used.

The Angle Meas_ring System

An angle measuring system is best illustrated by the radio interferometer (Refer-

ences 7 and 8) which measures the difference in the arrival times of the wave front from

a distant point source at a pair of receiving antennas separated by a known distance or

"baseline". This radio path difference is measured by comparing the phase ankles of the

signals received at the two antennas. Two such baselines are employed (four antennas):

and from the resultant differences in phase angle A_ along both baselines, the direction

cosines for two components of the unit position vector F° are determined from the following

relations:

(1- _2 -}-2) l 2

where d 1 is the baseline length (in electrical degrees) directed, for example, in the east-

west direction, and d 2 is the baseline length (in electrical degrees) directed in the north-

south direction. From the calculated values (_, _, and r_) the azimuth a and the elevation

angle e, can be derived, or, in the inertial coordinate system, the right ascension }._' and

the declination _.

The unit vector r"° is obtained at discrete times t_, where i = 1, 2, ... n: therefore

d_'O AF ° (ti)

dt _ At i

can also be obtained. This means that each observation consists of (a, 5, c, _) at t,. For

a good determination of }" and _which satisfies Equations (D-l) and (D-2), simultaneous

observations from two stations are required to determine the three components of _ and the

three components of _. In actuality this is an over-determined set of observation equations,

*Angular rate information, not measured by a radar system, can be calculated numerically (also see the section on smoothing)

by fitting a polynominal to the measured angular information.
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since the number of measurements is greater than the number of unknown parameters; that

is, the least squares condition is satisfied and could be applied for determining _" and Y.

The Range Only System

It is presumed that this system measures only the slant range r in the manner de-

scribed next for the radar system. Because only one measurement r is made at time

t i ( i = 1, 2, ... n) a range system is inadequate for determining the three components of

the vector 7. To make it possible to determine _ at t i, simultaneous observations must

be made from at least three tracking stations whose positions are known; it is also pos-

sible to determine roughly the vector (Reference 6):

• bT(t_)
= --

bt j

from discrete measurements _"(t i).

The Range Rate System

A range-rate system measures d,/dt I_']. To determine the velocity vector _, at

least three simultaneous observations are required from three stations in order to deter-

mine the components of _ and satisfy the vector Equation (D-2) (see Reference 15). As in

the foregoing determination, the quantity "determined", _ in this case, is actually a calcu-

lated quantity; it is obtained from observing the Doppler shift 5vo of a frequency %. For

a first approximation ? -- c(_%/,0)where c is the velocity of light (299.7929 × 106 m/sec).

Advanced tracking systems are combinations of the aforementioned basic systems --

for example, Azusa and Cyclops. In order to treat these various types of tracking systems,

their mathematical models, derived from the _ and _ vectors, are now presented and the

corresponding variational equations lead finally to the determination of tracking system

errors.

1. The Radar System

A radar system fully determines the satellite position vector _"whose components in

the local Cartesian coordinate system are (za, z2, z 3 ). We shall now derive the varia-

tional equation relating system uncertainties in range, azimuth, and elevation to the com-

ponents of r'.
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Since it is convenient, in this case, to

work in spherical coordinate systems, the

components of the position vector ?" in the lo-

ca/ coordinate system (shown in Figure 5) can

be written in matrix notation as

Z(3×l > -- z 2 : cos_cos (D-3)
r sin e

Z3 (3xl) (3xl)

The variations (_F) of F, which will be

used later for the error calculations, are de-

rived from the first order terms of the Taylor

series as applied to Equation (D-3) and are

expressed in matrix form by

Z3

OF SPHEROID

Figure 5--Satellite position with reference to

local coordinate system

_Z3_(3xl)

_Z 1 _Z 1 _Z_

_Z 2 _z 2 3z 2

3r Oa 3c

z s az s Oz__s
3r O_ OE

_iiI(3×1)

(3xs)

(D-4)

By evaluating the coefficient matrix in Equation (D-4) from Equation (D-3) we obtain

COS £ sina r COS E COS

_Z(3xl ) : |COS _ COS a - r cos E sin a

L sin ¢ 0 5E
rcos_ J(3×s)L ]<a×i

or

(D- 5)

I 1I tcos E sina -cosa -sinesina 6r

8Z(axl) : cos _ cosa sinct sin E cos a - r cos ¢ _a _ (D-6)

L sin_ 0 cos e rS_
(ax3) (3xi)

where the coefficient matrix of Equation (D-6) is now an orthogonal matrix J which gen-

erally simplifies the necessary matrix operations. In matrix form Equation (D-6) now

becomes

8Z : J D 6K, (D-7)
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where J is the orthogonal matrix in Equation (D-6) which contains only the trigonometric

functions of E and a, and the matrices D and BK are defined as

8K

E1 ° !10 - r cos e

0 0
(3x3)

(3xt)

The matrix D is introduced only to separate comptUalional values from values based upon

observational errors such as _r, _e, and _a. The known values of Equation (D-7) are J, D

(from an assumed orbit), and 5K (from a tracking system). Because of the orthogonality

property of the J-matrix (jT j : I is the identity matrix), it follows from Equation (D-7)

that

T

D(3x3) 8K(3xl) = J(3×3)eZ(a×x) •
(D-8)

The form of Equation (D-8) will prove to be more desirable in combination with other

types of tracking system equations to be used later. Only the position vector F is fully

determined by Equation (D-3). The velocity vector U - _ , on the other hand, cannot be

precisely determined for a radar system because of two factors: (1) The relatively poor

angular rate data _a, _ (Reference 7); and (2) The relatively large uncertainties in the

incremental range measurements which are to be used for the velocity determination

(References 9, 10, and 11).

2. The Angle and Angular Rate Measuring System

Variational equations reflecting uncertainties in azimuth, azimuth rate, elevation, and

elevation rate will be developed now for the purpose of relating these uncertainties to the

components of the F and _ vectors of the satellite in the local Cartesian coordinate system.

The unit position vector r ° can be written by using Equation (D-3) with r : 1..

Z_3xl) : COS _ COS

sine (3xl) IZa I (
t___ -_J

(3xl)

3xl )

(D-0)
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Sincen = (1 - z 2 -rn2),,.2 is a derived quantity (in Minitrack, Azusa, Mistram, etc.),

Equation (D-9) should be restated as follows:

[z]
TT/ ( 2xl

A variation of the above equation is

_ [sinacose]
) COS (z COS E (2xl

(D-10)

S (2xl) -sina

From Equation (D-9) it is seen that

-cos a sine 5_
(2x2) (2Xl

(D-11)

['] : ,
m (2xl) Lz2U(2xl)

and, again, the variation equation can be written*:

r 2 : + z22 +Z12 Z32

8m (2xl) L - Z,_ 1-m 2

 z,q

[- aJ_3xl )

By combining Equation (D-11) with Equation (D-12) to give

8a : F(Szl, 5z2, 5z3) ,

we obtain the following result:

(D-12)

?.q
[-rcosc51 = [ -cosa sina 0 ] t 8 2Iz

r _e (2xl) -sinesina -sinecosa cose (2×3)[ _z3 [
L.- 2._](3xl

(D- 13)

*The form of the variational equation requires knowledge of r which is usually obtained from nominal computed trajectory

information with accuracy sufficient for Equation (D-12); for example r -_ or (r + Ar) -_ with ,_/r -_ 10 -a does not alter

Equation (D-12).
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Comparison of Equation (D-13) with Equation (D-8)* suggests that Equation (D-13) can

also be obtained if we multiply Equation (D-8) with an operator matrix F (where the index

a refers to angular data) which must be of the form:

F_2×3) 0 1

Expressing the variational Equation (D-13) by using the given parameters _K in con-

junction with F., we obtain*:

Fa(2×3) D(3x3) 6K(3x1) : F'(2x3)J(_×3) 6Z(3×1) (D-14)

from Equation (D-8).

For simplicity, as well as consistency with Equation (D-8)

we let

(2x3) 0 2×3)

which will be useful later),

and

0T [ o sin_ -cosa |--- F. JT : J (D-15)Ja(2x3) sine cos e cos a cos e sina (2x3)

Now Equation (D-14) can be written:

D0 0 T

"(2x3) 8K(3xl) = Ja(2x3) 8Z¢3*J)' (D-16)

which is the form of our basic variational equation (D-8).

The operator matrices such as F. (here) and F r (in succeeding sections) were intro-

duced for notational purposes only. On the other hand this complicates the computational

scheme owing to redundant computer multiplications. This difficulty will be avoided by

complementing the generalized equation with an equation more suitable for computer use *.

*Since Equation (D-8) fully determines 6-/, it becomes our fundamental equation.

?This was suggested by Mr. R. Sandifer.
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From an interferometer type tracking system, both angular and angular rate data are

obtained with great precision. Therefore, an equation describing angular rates is necessary

for a complete description of the interferometer system•

Utilizing the fundamental Equation (D-77 we obtain the following by differentiation with

respect to time:

Z(3×1) = J(3×3) D(3x3) K(3×l) '

(D-177

which is a direct analog to (D-7) but contains the time derivative of the parameters r, _,

and E instead of their variations. From Equation (D-17) and using jT j = I, we can calculate

JVD(3x3)K(3xl) -- (3×3) Z(3×l)

which is consistant with the fundamental variational Equation (D-8).

Varying Equation (D-18) and rearranging the form we obtain

T 8"
D(3x3) 6K(3×1) : I(sJT) _'- (6D)K](3×I)+ J(3×3)Z(3×l)

where

8K(3×1 ) _ 5h

5 3xl)

(D-187

(D-19)

By substituting for K from Equation (D-18), calculating 8j T, sD, and combining terms, we

have the following equation:

T JT ,D(3×3) 8K(3×1) : J(3x3) 8Z(3×1) ÷ V(3x3) (3x3) 6Z(3×I) (D-20)

which is the form consistent with Equations (D-87 and (D-147.

(D-20) now has the following elements:

= 0
VI1

i( )V12 = _- 11 cosa - :_1 sina

The matrix ¥ : Iv ij] in



1( )v13 = - T zj sin e sinct + _2 sinecos_ - _3 cos _ ,

17

secE( )v22 T zl sincL + _2 cos a ,

_ tao ( )v23 r zl cos a - z2 sina ,

'( )v33 = - T zl cos e sina + _2cos ecosa + _3 sine

V23 : - V32 ,

which were obtained by expanding Equation (D-20) into its component form. It can be seen

from above that matrix V, is skew-symmetric; that is v ii = - vii.

Equation (D-20) can now be modified in a manner similar to Equations (D-8) and (D-16)

to contain only the angular parameters _, c, and not r.

The range r was included in Equation (D-19) because the matrices involved are square

non-singular ones, which simplifies the matrix algebra necessary to obtain Equation (D-20).

By multiplying both sides of Equation (D-20) by the matrix F_ and then using Equa-
(2x3) --

tion (D-15) we have the variational equation, in matrix form, wnicn relates uncertainties

in azimuth rate and elevation rate to uncertainties in the components of the vectors ? and

U of the satellite; that is:

o T

D:(2:,c3)SK(3×l) : Ja(2×a ) 8Z_3×_) + Fa(2x3 ) V(3×3) J(3xa)6Z(3×l)
(D-21)

where

Do_R : I-rS_c°sE 1
r _ (2xl)

It should be noted that Equation (D-21) is consistent with Equations (D-8) and (D-16).
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3. The Range Measuring System

A variational equation relating the uncertainty in range to the uncertainties of the

components of the satellite position vector will now be derived. Since !r_l2 = ZrZ, the re-

sulting variational equation is

1 T 0 T

Sr(l×l) r Z(i×3) _Z(3×,) = Z(,×3) _Z(3xl) (D-22)

The variation 5r of r can also be expressed (as for the angle and angular rate system) by

introducing another operator matrix F_ (the subscript r stands for _'ange) which permits to

us e the funda mental Equation (D- 8):

§r(lxl ) = Fr(lx3) _K(3×I) = Fr(I×3)D(3x3) _K(3xl ) : llr_ i_3) sK(3×') (D-23)

where (see page 16)

F r _ [1 0 0](i×3)

0T

Similarly, tile matrix Z(,×3 ) in Equation (D-9) becomes, in terms of the J(3×3)

Equation (D- 7),

0T T 0T

Z(I×3) : Fr(Ix3 ) J(3×3) _ J(ix3)" (D-24)

Equation (D-22) can be restated consistent with Equations (D-8) and (D-16) by using

Equations (D-23) and (D-24)

0 T

F,(I×3) _K(3×1) -- Jr(l×3)6Z(3×I) " (D-25)

4. The Range Rate System

Next, the variational equation relating the uncertainty in range rate to the components

of the satellite position and velocity vectors will be derived in matrix notation. Instead of

considering the variation of Equation (D-25) we shall consider its time derivative instead,

so that Equation (D-24) is combined with Equation (D-25) and replaced by

F,(1×3 ) 1_,(3×1) = Fr(lx3)JT Z(3×
(3×3) 1) " (D-26)
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The resulting variational equation can be obtained immediately by application of the opera-

tor matrix F from Equation (D-23) to Equation (D-20):
r(lx3)

D o " oT " T (D-27)
r(lx3 ) 6K(3xl) = Jr(l×a)6Z(axl) + Fr(lx3 ) V(3×3) J(ax3) 6Z(axl) •

Equation (D-27) represents the desired form of the range-rate variation.

Considering only those errors (_r, _;, _, 8&, _e, _) pertinent to the tracking systems

discussed above, we are able to calculate the error components in the local Cartesian co-

ordinate system Z for each individual system.

As an analogous problem let us consider a general set of linear equations of observa-

tions which can be represented in the following matrix form:

Y(n×,) : A(.×m) X(m×,) , (D-28)

where a is the number of observations, r_> _, and _ is the number of degrees of freedom

in the system. Itis well known that Equation (D-28) can only be solved by the Method of

Least Squares (Appendix B)I and to solve itfor X we proceed in the following manner:

A T y : ATAX

X = [A +A] -l ATy
(D-29)

5a. Error Equations for Tracking Systems in the

Local Coordinate System Z

From Equation (D-28), when applied to Equations (D-5) through (D-27), we are able to

write the equations pertinent to the various types of tracking systems by assuming the fol-

lowing station complex:

(1) For _ Radars,* the error equation (Equation D-8) becomes:

8Z (D-30)T
[}(3ax3) 6K(sxl) = J(3ax3) (3×1) '

where a >_I insures over-determination in position.

*Here _ repcesents a row indez and not an angular quantity.
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(2) For /5 Angle and Aug_dar Rate measuring systems, Equation (D-16) becomes

D O o T

a(2Bx3) 8K(3×1) : Ja(2_x3) 5Z(3×1) ;
(D-31)

and Equation (D-21) is

D° "" : J °T ST. ÷ F_<_Z×a)VJTSZ(a×Ia(2_×3) 5K(3×1) a(2Bx3) ) '
(D-32)

where _ 2

(3) For ), Range Measuring Systems, Equation (D-25) becomes

0 T

F BK(3x1) BZ(3xI ) ,r(_x3) : J_(_×3)

where ,_ > 3.

(4) For a Range Rate Systems, Equation (D-27) becomes

= T + jo T "
Fr(sx3 ) 61((3xl) Fr(sx3 ) V(3x3) J(3x3) 8Z(3xl) r($×3 ) _Z(3xl

(D-33)

) ' (D-34)

where _>6.

The foregoing variational equations relate the uncertainties in the parameters meas-

ured by a particular tracking system to the uncertainties in the satelliteposition and ve-

locity vectors. There are two existing ways which can be used to evaluate the unknowns

in these equations --in this case, the uncertainties associated with the satelliteF and _"

vector components:

(i) The determination of the unknowns (_z_, _A,)by simultaneous solution implies that

the number of variational equations is equal to the number of unknown parameters; for ex-

ample, consider the radar Equation (D-30) for a = I. This means that an exact determina-

tion of the uncertainties in the position vector components of the satelliteis made without

the method of least squares being required.

(2) The determination of the unknowns ($z_, 5z_) with the method of least squares

(Appendix B) implies that the number of equations exceeds the number of unknowns to

be determined; that is, the system is over-determined. It is possible to meet the condi-

tion of over-determination in two ways: (1) By using n different tracking systems making

one measurement; or (2) by using one tracking system makmg n different measurements

where rz is greater than the number of unknowns. From a practical point of view, however,

the latter is not desirable because an orbit derived in that manner would be poorly deter-

mined in orientation and shape (Reference 12).
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As an example of an over-determined system, we shall again consider Equation (D-30)

for a> 1 . This type of solution for the unknown parameters reduces the uncertainties since

redundancy is a well known condition for enhancing the precision of measurements. Thus

an over-determined system of variational equations is always more desirable than one in

which the number of equations equals the number of unknown parameters.

All the mathematical models under Sections D1 through D4 were presented in the

local coordinate system z. This follows logically from the fact that all measurements are

made locally.

Since not all the stations are in close proximity, their station location uncertainties

8S( 3x_ ) are reflected in the satellite position and velocity errors. The value s S( 3× _), on

the other hand, is referred to the geocentric coordinate system Y, (as shown in Figures 1

and 2). Thus it would seem logical to use the Y-coordinate system in the entire analysis•

This is not true, however, since the position and velocity errors depend upon the earth's

rotation (i.e., the station location changes with the earth's rotation). Therefore all equa-

tions will be written in the inertial coordinate system X. An additional advantage is the

ease with which these errors can be transformed into those of the orbital elements if de-

sired (Part II of this analysis will treat this point in more detail).

5b. Error Equations for Tracking Systems in the Inertial

Coordinate System X

The variational form 8Z( 3×, ) and the variational form of the time derivative _z( 3 ×, )

of Equation (C-6) relating the local coordinate system Z to the inertial system X will now

be used for the transformation of the error equations in Section D1 through D4:

and

_Z(3×l) : R(3×3)R3(OG)(3x3)SX(3×I) -- _(3×3) 85(3×I) (D-35)

• " d6_ I-_-c )1 • (D-36)
(3x3)

The equations in Sections D1 through D4 are written in the inertialcoordinate system

X by using Equations (D-35) and (D-36) and by rearranging terms. For _ radar systems,

these equations are:

(1) For a radars,

D(3_×3) el<(3×,) + [jrRsS](3_×,) = L(3_×3) sX(3×, ) , (D-37)
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wherea _>1 and

(2) For /_ angle and angular rate systems (interferometers),

[ 1 = "°
D°"(2/3_) BK(3xl) ÷ Fa jT RB5 (2Bxi) a(2Bx3) 8X(3xz) '

and

(D-38)

(D-39)

where / ->2 and

M(3x3)

M o
a(2Zx3)

JTRR3/0G) + dt _J R_dS° R3(06 (
3×3)

(3) For _, range systems,

where y > 3 and

D°(.y_)6K(3×z) + [F, jTR6S](_,_t ) : L or(Tx3 ) 6X(3×1) '

L o _= [Fr L ](7×3)
r (yx3)

(D-40)

(4) For $ range rate systems,

OrO(sx3)TK(3xl ) + [FrY JTR _S]($xl)

where _ > 6 and

L o
r($x3)

: Mr°(_×3)SX (3xl)

IF L](,×3) ,

+ L,° oi .... ), (D-41)

Mo -= [F_M](s×3) .
r($ x3)
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6a. Fundamental and Smoothing Time Intervals

Since any physical measurement requires time, here we shall assume that a basic time

interval At i is required to make a single measurement which can be, for instance, a range

ri, angles ai, Ei ,or a range rate _. In actuality, the measured value m_ already

represents an average value over the time interval At i; that is

1 / _ * (it
_'li = Ati 3a i (D-42)

t i

where m * represents an instantaneous "non-measurable" quantity. The values of m_, asi

seen from Equation (D-42) already represent a "smoothed" measurement.

With a time interval 7 >> At, modern tracking systems are able to measure a large

number (i >> l) of quantities a, during T. To reduce this number to a practical level and

also reduce the errors, the concept of "smoothing" is introduced.

Now the problem arises of finding the maximum smoothing time, say z = _2 (Figure 6).

%

\ pn, y,, y ] p (i, p=2) _y (i., p:2)
/ /

\ / /"
\ I ./

' / I

\. \\ /" ./.P • _<,,o+-
I = y nom.

MEASURED

VALUES yk

Figure 6-Geometry of the smoothing process.
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For a large value of _2 (such as one-tenth of a period for a near earth satellite) the

observations of y = y( r, _, % &, c, _) are of course nonlinear. Since the "real" values

2(p _) of these quantities are never known, we are forced to solve this equation by the

least squares method, since the number of measurements i far exceeds the number of

unknowns r_. For most practical cases a development of the values y is the polynomial

P

YK : Z `% ×[
)'= 1

where the number of measurements within T is _ : 1, 2, ... ,

(D-43)

i; or, in matrix form,

where

¥(i×I) : C(i×p) l'(pxl) ,

x_/
C(ixp) _ [ K](ixp).

Solving Equation (D-43) by using the least squares method Equation (b-12), (Appen-

dix B), we obtain for the coefficients a in matrix form:

r(p,,> = (CT C)-' Y( (D-44)(pxp) CT(p xi ) ixl) '

where

r =[%]
(pxl) (p×l)"

The measure of "goodness of fit" for a single observation is obtained from Equa-

tion (b-14) of Appendix b:

y = _+77,

where

K=I K=I T=O

(D-45)

and

1 K=i I 1/2

L K=I

(D-46)
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Equation (D-45) can also be utilized for an estimation of the maximum smoothing time

z2" As can be seen from Equation (D-45), the "best" value _ for an assumed order p of

polynomial is a function only of the number of measurements i made during the time in-

terval r = iZ_t (where At is the constant basic time interval necessary for making a single

measurement y). Therefore an arbitrary increase of the time _ cannot be made, since the

values of _, calculated from a series of the order p, would deviate more and more from the

nominal values (Figure 6). For example, a second order polynomial (p = 2 ) cannot fit a

third order curve over any interval. Thus a criterion for the maximum tolerable smooth-

ing time for a given polynomial of degree p is

(D-47)

where i, < i 2 and i 2 < _3 etc. Should the above inequality reverse itself, the order of the

polynomial must be increased (Figure 6).

6b. Introduction of Smoothing into the Error Equations

During the course of this error analysis it was assumed that the uncertainties _r, _,

5E, _, _, and 5_ for the different tracking systems were known and were represented by

the systems' uncertainty matrices sK(3×,> and s_(3_,) Equations (D-7) and (D-19).

The term "smoothing process" means simply that the aforementioned uncertainties are to

be improved (reduced) in the statistical sense. This means that each value 5r, _ "" must

be divided by the square root of the number of measurements i made during the time in-

terval _. Expressed in matrix form and applied to _K and S_, the smoothed error equations

are

6K_3Xl ) = W(a×3)SK(3 ×1 )

and

S[_(3 xl) : W( 3 :,,:3) 5 [_ ( 3 ×1 ) (D-48)

where

1

and I is the identity matrix.
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The time of smoothing is then given by*

: iAt . (D-49)

It should be noted that the value of i is finite (uncertainties do not disappear completely)

since, as was previously mentioned, _ and AT are finite.

7a. Error Equations in Position and Velocity Assuming Random Errors

By using the error equations presented in Section 5b it is now possible to construct

two generalized equations providing rms-errors in satellite position and velocity, includ-

ing smoothing. The error equation for position errors is

where

and

with p> 3 , where

A(p_) : B(pX3 ) 6X(s×1 ) , (D-50)

A(pxl)

(3_×3) SK:3×t) + [ JTR _S](a_×,) --

(pxl)

B(pX3)

L(3cL×3)

L o

a(2g×3)

L o
r (_x3)

-- - (px3)

p I3a + 2J + _) .

For every case three uncertainty components of the station are always included. Thus one

range system (y = 1), for example, is sufficient to determine the position error, since an

*In this equation the quantity i is not to be confused with the inclination i of an orbit.
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orbit is presumed. This statement is academic, however, since this is not a practical way

to determine spacecraft position errors. Knowledge of the orbit is only necessary for

evaluating the coefficient matrices D, J and V of 5X,sS and sK, respectively. For an error

analysis of this type any nominal orbit can be used for evaluating the coefficient matrices,

since an error in the assumed orbit does not influence the position and velocity error de-

rived herein; i.e., the errors do not depend on the first order of the "real" position or

velocity.

The solution of Equation (D-50) by the least squares method is

: (.7.)-, (D-51)(3x3) (3×P) A(pxl)

which represents, in the inertial coordinate system, the total variations in each component

of the satellite position vector.

As was previously mentioned, the uncorrelated errors in the components of the posi-

tion vector F are desired (Figure 5). These errors can be obtained from

sX ×1 5xT × (D-52)H(3x3) (3 ) (l 3) '

which contains the correlated terms; !l' is formed by assuming that the correlated terms

are zero, that is,

i

H(3×3)

0 0 7)2
x

3x3)

(D-53)

The total rms error in satellite position is then given by (Reference 15):

vx : -+ 7_, (D- 54)
i=l

The position errors determined above can now be used in determining the velocity

errors, for which the matrix equation is

A(q×l) : B(q×a)_X(3×1) ' (D-55)
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where

m

A(qxl)
(2fl:,¢]) (a I) L a ](2,_xl) a(2_x3) (3Xl)

D O 8"* + [Fr V jr 1| BS]( -Mr_ _-- r($x3 ) K(3xl) _×1) x3) 6X(3×1) J(q×l)

and* with q > 3

u

B(q×3)

i LO

,L i

q - (2/J + c,).

Solving Equation (D-55), as before, by the least squares method we have

-- - 1 BTsx<3_ _ : (Br B)<3×3_ (3_._ '_'<q×_> (D-56)

Thus the velocity errors are obtained:

• .

H(3x3 ) = 8X(3xl)6X'_t×3 ) ; (D-57)

And again assuming no correlation in the matrix:

o

- 0
= i _.2

H'_3×3) '_2 " (D-58)

Therefore the total rms error in satellite velocity is given by

=1

(D-59)

*If the position error components are not computed from Equations (D-50), (D-51), and (D-52), then, of course, q __>6 (e.g.,

six range rate stations or three angular rare stations).
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The general error equations- Equations (D-50) to (D-59) --can be solved from two

points of view:

(I) By letting the indices (% ,J, 7, or _) represent number of stations which observe

the satellite; or

(2) By letting (% 2, :y, or s) represent the total number of observations made by each

type of tracking station.

The former approach will require less computer storage, since the evaluation of the

partial derivatives- see Equation (D-4)- comprising the coefficient matrices of sK, _S,

and _X is kept at a minimum. For example, if the latter method were chosen for _ radars,

30 sets of partial derivatives would have to be evaluated per second instead of the 3 per

second for the first approach. It was presupposed in this example that the radar sampling

rate is 1 measurement every 1/10 second. By introducing the concept of smoothing into

the first approach a result equivalent to the second is obtained.

In the case of a tracking system not capable of measuring F and _"independently of

knowledge of the orbit, then the second method is more desirable. For example, consider

the evaluation of the position and velocity error components of the satellite using one range

and range rate system. In this case the error is no longer independent of the orbit, since

knowledge of the orbit is required; and independence of the orbit can be presumed only in

the case of tracking systems or tracking system complexes (e.g., three range and range-

rate stations) which are capable of determining F and U independently of the satellite orbit.

In some cases, therefore, the precision of the orbit must be incorporated in the position

and velocity error components of the satellite.

7b. Bias Errors

Every measurement no matter how carefully it is made, is subject to errors. Experi-

ence has shown that repeated measurements of the same quantity do not give the same re-

suit. The two kinds of errors influencing the results are: (1) constant or bias errors

whose magnitudes depend on parameters such as boresight errors etc. and (2) accidental

errors referred to here as "uncertainties" which have no fixed cause and hence follow no

fixed physical law. For example, a measurement of some quantity can be represented in

mathematical form as follows:

m = mo + Z_m± _m (D-60)

If m0 represents the "most probable value" then (_m + Sml must represent the errors in

the measurement. Those errors characterized by _n are defined as "bias errors", whereas

the accidental errors or "uncertainties" are those represented by ±_m.
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Onepossiblewayto determinethebias errors is to usea preciseorbit (determined
byothermeans,for instanceopticalobservations)whichis to becomparedwith thetrack-
ing systemsmeasurements.Thearithmeticaverageof theresultingresidualswill then
givea goodestimateof thebias errors. A moredetaileddiscussiononthedetermination
of bias errors combinedwith numericalexampleswill bepresentedasa separatepaper.

8. Comments on Tracking System Uncertainties

Proper precautions must be exercised in using the error equations derived herein.

For combinations of tracking systems simultaneously tracking a satellite or a spacecraft,

care must be taken in selecting the uncertainties (_r, _, _, _a, _e, _) related to the par-

ticular systems. Consider the case of one, two or three radars used to determine the posi-

tion vector of a spacecraft. For one radar, the uncertainties ( _,r, 5_, BE) are used. In the

case of three radar stations the position of the spacecraft is fully determined by the three

range measurements alone (Reference 6). Therefore only _rl, Sr 2 and _r 3 need be con-

sidered, and the angular uncertainties _%, _c_ can be assumed to be zero since they are

m_t required for this case: _r << (r _cosE),or _r << (rbel •

In the case of two radars, a very simple "assumption" can be made -- multiply the angu-

lar errors by the factor 1/2. A weighting of the angular errors of 1, 1/2 and 0 seems rea-

sonable for these three cases. Similar weighting procedures will have to be considered for

other tracking system combinations.

In brief, when the solution is over-determined the uncertainties contributing the most
to the overall error should be eliminated.
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Appendixa

Transformation of Cartesian Coordinates into Spheroidal Coordinates

From Figure 2 (page 7) we can write the equation for the elliptical cross section of

the earth as (Reference al):

Y12 Y32 (a-l)
-- + = 1 ,

where the semimajor axis is

and

a : (yl 2 + y_ '" (a-2)

Yl : a cos ¢'

Ya = a sine'

(a-3)

The unit normal to the spheroid in the yzy3-plane is

: 7 ,

where

(a-4)

From Figure 2 it follows that

T0 . _'

Yl

I/2

(a-5)

33
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AndbyusingEquation(a-3)withEquation(a-5)weseethat

cos¢ +(, _°2)2] = ,, (a-6)

or, simplifying,

tan¢' : (1 - e, 2) tan¢ (a-7)

We also find from Figure 2 that

Ncos¢ = a scos¢' ;

and from Equations (a-l), (a-4), and (a-8), we have

(a-8)

a

}/1 - el2 sin 2 _b

(a-9)

from which it follows that

But

: N cos ¢Yl

: N(1-e.2/ sin<_
Y3

$, : Yl + hCOS_

(a-10)

and thus

Since in Euclidian space

s 1

S 3

s3 : Y3 + hsin¢

(N+h) cos¢ ,

l (a-11)

: _l + _3 (a-12)
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where

(a-13)

wehave

_' z 8(3×1)

(N +h) cos @cos _. ¢J

(N+h) cos @sinL

h (3)<1)

(a-14)
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Appendixb

The Method of Least Squares

The discussion which follows is a brief exposition on the method of least squares,

neglecting the conditions of constraint.

In order to treat the generalized case of the method of least squares, we assume a set

of a-observation equations in the following form:

Yl = [1 (xl' x2' "" "

Y2 = f2(xl ' x2' "'"

Yn = fn(xl ' x2' "'"

xk)

xk)

xk)

> (b-l)

where the equations are subject to the condition that n > k, which implies that the system

of equations must be over-determined.

Since any observation is subject to errors, we shall rewrite Equations (b-l) as

Yl + El : fl(xl + AxI' x2 + lSxa' "'' ' Xk + _Xk)

Y2 + c 2 : f2(x 1 + Ax 1, x 2 + ZLx 2, -'', x k + CLxk)

(b-2)

Yn + _n = fn(xl + Axl' x2 + £x2' "'" xk + gLxk)

where the values E i and ZXxj, with i = 1, 2, "-', hand j = 1, 2, ..-, k, represent the errors

in the observations Yi and the corrections to the independent variables xj.

37
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In order to determinethe quantities of interest Axj, we assume that the relative errors

are small, i.e., 5xj/×j << 1; then Equation (b-2) can be developed in a Taylor's series by

using only the linear terms. The following result is obtained:

or

OfiYi + _i = fi(×l, x2. "", xk) + _ _xj + (higher order terms),
j=l

where i : 1, 2, ..., a.

From Equation (b-3), we obtain:

Of_
E i _ _ _Xj

j=l (b-3)

and

1 _ Ax i

j=l

2 Of 2
J=l

Ofn_-Q -%
J=l

(b-4)

where v i (with i = I, 2, --.,

equation (b-a).

V t =

V 2

E l -

E 2 -

V r;

j=l

Of 2

j=l

Of_

j=!

-[

I

J

(b-5)

n) represents small residuals resulting from the general



39

Gauss(Referencesbl-b5) madeanassumptionstatingthatthe "best" valuesof Axj
are thosefor which

minimum. (b-6)
i=l

where wi represents a weighting factor. Equation (b-6) is known as the condition for least

squares. For the following discussion we shall assume that wi = 1, i.e., all measurements

are to contain errors of equal importance.

In order to simplify the algebraic notation, the symbolic matrix notation will be used.

Thus Equation (b-5), restated in matrix form, is

V(,_×I) = _(_×x) - P(_×k) aX(k×l) (b-7)

where

and

V(nxl)

v 1

v 2

; _(n xl) : 2 ; AX(kxl) : ;

E (ttXl) L Xk.-_ (k×l)

P(nxk)

Of x Of 1

Ox1 ' Ox2
• ° .

• ° .

m

Of_

Ox k

'?f 2

ax k

Ofn Of n Of_

Ox a , Ox2 , , Oxk
nxk )

The matrices V and c_can be considered as n-component vectors, whereas AX is a k-com-

ponent vector.

The Gaussian assumption, therefore, may be considered in terms of vector algebra

as the inner vector product which in matrix form simply becomes:

¢ = Vr V - minimum , (b-8)
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where

vT ._ transposedmatrix Vof Equation(b-7) .

By introducingEquation(b-7)into Equation(b-8),wehave

¢ : _T_ _ _Z p AX - AXT PTC_ + AXT pT p _,/_ minimum.

The minimum of Equation (b-9) can be determined by differentiation with respect

to to_:

(b-9)

which gives

_, l : o.
_L_XI x=xo (b-10)

_W p - _jpr p = o . (b-ll)

But the minimum condition also requires that a2¢/_X 2 be positive and from Equation (b-ll)

it is found that

a2¢ X=Xo : pT p_AX2

If pTp is positive definite, _. is a minimum.

Equation (b-ll) is called the "normal equation", and is easily solvable by using the

standard method of multiplying both sides of Equation (b-ll) by the inverse matrix of pT p,

designated as [pT p] -1:

nXo(k×,) : [pz p])t×k_k×_) _¢_x,)" (b-12)

For ease of notation we let

Qck×k) _ [pT P](_×k)

and write Equation (b-12) as

aXo(k×, ) : Q(k_) P_k×,_) _(_×1) ' (b-13)



where

and

[Ofi]
(n×k)

Q(k×k) : [qJ J]fk×k) : [q' i](k*k) '

i : 1, 2, "'" ;l

j : 1, 2, ..-, k
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Equation (b-13) gives the "most probable" values, in the Gaussian sense, of txX at Xo.

Next, we shall determine the measure of "goodness of fit", or the root-mean-square

error _,. Since in most cases the observed data (for measurements such as range, range

rate, angle, an@alar rate) will not obey the normal distribution law, the usual symbol _ is

replaced by 7.

By substituting Equation (b-ll) into Equation (b-9), and having now evaluated t_Xo, we

determine _3 in the usual manner

r? _ a-k r_-k ' (b-14)

where a > k, n : total number of observations, k : total number of unknowns, and w is the

measure of "goodness of fit" or the rms-error of a single observation.

One question still remains:

this, we must consider tt:

how accurate are the calculated values aX o ? To answer

t_X = AXo +- It , (b-15)

where !! is the uncertainty associated with each component of tOlo.

To calculate the components of II, we must first evaluate the components of aXo indi-

vidually. This can be accomplished by expanding Equation (b-ll) as follows:

Pjl 6j = AXo_ pj2 _ + _,Xo2 _5_ pjapj2 + "'' + _Xok_ PjlPjk

j=l j =1 j=l j =1

i
j=l

Pj26j : AxOl _ pj2Pj1 + Ax02 _ pj22 + "'" + AX0k _ Pj2Pjk

j =1 j =1 j =1

_ Pjk6j = AX01 _ PjkPjl + AX02_ PjkPj2 + "'" + £Xok fi_ pj_

j =1 j =I j =1 j=l

(b-16)
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Now Equation (b-16) can be solved for values 5Xoi by using a simple method of eliminat,otl.

For example, ifwe select element q,j of Equation (b-13) we can determine Ax0i as follows:

2 ± ?.qll Pjiej = Ax01qll Pj21 + "'" _ qiIAX0k PjlPjk

j =I j =I j =I

± = ± ±q12 Pj2+j AX01 q12 Pj2Dj 1 " q12 +A+X0k Pj2Pjk

i =t j =1 i =I

qlk L Pjk£ j = _kY01 ql k _ PjkPj 1 + "'" + qlk _'X0k£ Pj 2

j=l j=l j=l

(b-17)

Summing Equation (b-17) by columns, gives in the first element of the vector tiXo in

Equation (b-13). Furthermore, by definition of the matrix 0 given in Equation (b-12),

O(k×k) (pTP)(k×k) = ](k×k) "

The elements in the first row of this matrix multiplication are:

q,, _5_ PT, +q,2_ Pj2Pjl + "'" +qlk£ PjkPjl

j =1 j =1 j =1

j=! j=l j:l

qllLpjlPjk +q12Lpj2Pjk "1-... +qlkLpj2 k

j =I j =i j =i

= I

= o

= o ,

(b-18)

from which we obtain

_X>;Ol --qll L p) l_i + q12 £ Pj26j + "'" + qlk L P) ke ) •

J=l j=l j=l

(b-19)

Similar relationships exist for AXo_, -.-, 5Xok.



By expandingEquation(b-19),wefind anequivalentrelationshipfor kXol

k k k

_xo,=_,Zq,_,_+_Zq,_ _-.._Z_,l_
i=l i=l i=l
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(b-20)

For purposes of simplicity we let

1

(L
2

k

_- Z qliPli

k

Z qli P2 i

i_l

k

Z qliPnt

i=l

(b-21)

so that Equation (b-20) may be rewritten:

_X01 = _lgl + C_2E 2 + "'" + %_. • (b-22)

To use the result obtained in Equation (b-18), we multiply Equation (b-21) by the ele-

ments of the first column of the matrix P
( n×l¢ ) :

Pll_l : qllPl21 + QI2PlIPl2 + ... + qlkPllPlk

P21_2

Pnlan

= qllP/l + q12P21P22 + .-, + qlkP21P2k

: qllP_ + ql2PnlPn2 + ..- + qlkP_lPnk

(b-23)

By summing the terms of Equations (b-23), we obtain

± ± ±Pjlaj = qli pj21 + q12 PJlPJ2 + "'" + qlk PjlPjk '

j =1 j =1 j =1 J =t

(b-24)
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Comparingthelatter withEquation(b-18),wefind that

pj k a)

j=l

= 1

= o

= o

(b-25)

Returning to Equation (b-21), multiplying each equation with % and expanding the sums,
we obtain:

ct 12

c_ 2
2

qllPll_l + q12P12_l + ... + qlkPlkal

qllP21a2 + q12P22¢_2 + .., + qlkPlk_2

: qllPnl_n + ql2Pn2_n + ... + qlkPnk_n

>- (b-26)

Summing Equation (b-26), we obtain

_ ctj 2 = qll _ pjlctj + q12 _ Pj2c_j + "'' + qlk _ pjkcLj

j =I j =1 j =l j =1

and comparing Equations (b-27) and (b-25) we immediately see that

; (b-27)

_j2 : qll "

j=!

Similar relationships exist for the other main diagonal elements of the matrix 0.

(b-28)



In Equation(b-22)wehave,correspondingto eachej(with J = 1, 2, ..., n), an vj

that the total rms error _"1 associated with 5x0, is

(b-29)
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such

But by definition of v in Equation (b-14) we see that v, 2 = v/ ..... v_ = v2; thus

_H 1 = ± %2 , (b-30)
L j=l

which, with the use of Equation (b-28), becomes

VHx = ±Vq'"/2 (b-31)

And likewise, we have

= ±_ 1/2
7)H2 q22

"r]Hk -- + "0 qklk / 2

Returning to Equation (b-15), we now can say in general that

_.X i = _XOi ± 7)qili/2 (b-a2)
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