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SUMMARY

Thirteen stainless-steel ring-stiffened cylinders were subjected to a pure

bending load and heated rapidly until buckling occurred. For most of the cylin-

ders the heating was not uniform around the circumference so that appreciable

axial thermal stresses were present. Elementary thermal stress theory was found

to be inadequate for the prediction of these thermal stresses, but a method was

developed that would give satisfactory thermal stress results. By properly"

accounting for the thermal stress, the buckling load could be correlated with a

theory for the buckling of an axially compressed ring-stiffened cylinder that is

uniformly heated.

INTRODUCTION

A ring-stiffened cylinder used as a structural component in a missile or

launch vehicle may undergo aerodynamic heating which, in general, is not uniform

around the circumference or along the length. The resulting temperature varia-

tion causes axial thermal stresses, and the presence of cooler rings causes cir-

cumferential thermal stresses in the vicinity of the rings. These thermal

stresses can cause reductions in the load carrying ability of the cylinder. The

reduction of the axial compressive buckling load due to circumferential thermal

stresses resulting from uniform heating is treated in reference l, where a com-

parison of theoretical results and experimental data is also given. If the cyl-

inder is heated nonuniformly around the circumference, varying axial thermal

stresses as well as circumferential thermal stresses are present. References 2

and 3 present a theoretical analysis of the buckling behavior of a cylinder under

a varying axial stress distribution. The results indicate that, theoretically,

the maximum axial compressive stress at buckling is essentially the classical

buckling stress for uniform compression.

In order to determine the effect on buckling of combinations of axial and

circumferential thermal stresses and load-induced stresses, an experimental

investigation was conducted and the results are reported in this paper. Ring-

stiffened cylinders were loaded by a pure bending moment and then heated non-

uniformly until buckling occurred. An analysis of the axial thermal stress pres-

ent in the cylinder is given in the appendix. The results of this analysis in



combination with the theory of reference i is shownto give satisfactory correla-
tion with the load-induced stress at cylinder buckling.

SYMBOLS

A - Et'R6
E'IL3

ain, bin

Et,R2B -
GtL2

Cin, din

E

E'

G

I

i

L

m

n

q

R

T

AT

2

Fourier coefficients in expansion of shear flow in bay i

Fourier coefficients defined by equations (A4)

Young's modulus of sheet material

Young's modulus of ring material

shear modulus of sheet material

moment of inertia of ring

index for bay or ring

length of cylinder between rings

number of last bay in cylinder where first bay is zero (m + i bays

in a cylinder)

general number of Fourier coefficient

shear flow

radius of cylinder

temperature

maximum cylinder temperature

temperature expressed as a function of _ only and obtained by

averaging temperature along bay length for a given value of

change in T from initial or room-temperature value

change in T from initial or room-temperature value



I

_T'

t

t'

U

Uin, U'in

x

average temperature rise of ring

skin thickness

skin thickness that is effective in carrying axial loads

axial displacement

Fourier coefficients in expansion of ui

axial coordinate

coefficient of linear thermal expansion

i

n2(n 2 - 1) 2

v, X,

_x

_T

Oin, e'in

constants defined by equations (AI2), (AI7) , and (A20), respectively

general notation for axial stress

maximum axial compressive stress due to applied bending moment

thermal stress

Fourier coefficients in expansion of ci

circumferential coordinate

TEST SPECIMENS

The test specimens consisted of thirteen 19-inch-diameter cylinders having a

nominal wall thickness of 0.030 inch with a resultant value of R/t of approxi-

mately 300. All cylinders were of the same overall size with a total length of

4_ k inches but there were two different ring spacings. Ten specimens had nine

rings and three specimens had five rings with a resultant value of L/R of 1/2

and l, respectively. The cylinders were fabricated by spotwelding. Because of

limited sheet width it was necessary to have three longitudinal splices. Fabri-

cation details of the specimens are shown in figure l, and the ring spacing and

cylinder wall thickness for each specimen are given in table I.

The wall material was extra hard type 301 stainless steel and the Z-secti0n

rings were spun from type 304 stainless steel. The wall material was chosen so
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that the variation of Young's modulus with temperature would be small and the

expected stress levels would be well within the elastic range of the material.

The results then would not be a function of wide changes in material properties.

TEST PROCEDURE

Rapid Heating Tests

A general view of the test setup and a detailed view of the heater installa-

tion are shown in figure 2. One end of the cylinder is supported by a heavy back-

stop; a pure bending load is applied at the other end by a weight cage acting

through a loading frame with pin-connected linkages. Rollers between the frame

and support allowed lateral and longitudinal movement which minimized any extra-

neous loads. The tip fixture was counterbalanced to eliminate any shear force on

the cylinder.

The cylinders were heated rapidly by a 25-inch-long quartz lamp heater. For

most of the tests the heater extended over approximately one-third of the circum-

ference and was symmetrically located about the bottom extreme compression fiber

of the cylinders, as shown in figure 2(b). In a few tests the heater extended

around the entire cylinder in order to produce uniform heating around the
circumference.

The procedure for each rapid heating test was to apply a bending moment less

than the room-temperature bending strength and then heat the cylinder at a rate

of approximately 20 ° F/sec until buckling occurred. During each test temperatures

at several ring and skin locations were recorded, and in some tests strains were

measured with resistance-type strain gages. The vertical deflection of the tip

fixture was continuously recorded in order to identify the instant of buckling.

By varying the applied load in different tests, a buckling interaction curve for

load-induced stress and temperature was obtained.

Conventional room-temperature wire or foil gages were successfully used in

regions where temperature did not exceed 175 ° F. The gage response due to tem-

perature alone was not large compared with the overall strains being measured;

therefore, the strains determined from these gages by using an appropriate

temperature-response calibration curve were believed to be reasonably accurate.

An attempt was made to measure strains in the heated portions of the cylinder

with high-temperature strain gages. However, the gage response due to tempera-

ture was large compared with the strains being measured in the temperature range

of interest. The data obtained from the high-temperature strain gages were incon-

sistent and generally could not be used as an accurate measure of strain in the

cylinder.

Room-Temperature Tests

A limited number of tests conducted at room temperature were made in order

to get an idea of the scatter to be expected in the data and to determine the



reduction from the classical buckling stress for cylinders of the material and
construction that were used. The room-temperature bending strength was determined

L _ i _ = i. Test procedure
for two cylinders having R 2 and one cylinder having R
was similar to that indicated for the rapid heating tests except load was applied
in the absence of heating by meansof a hydraulic jack instead of the weight cage.

RESULTSANDDISCUSSION

Buckling

The results of the investigation are given in table I and are plotted in
figure 3. For each specimen the maximumload-induced compressive stress is
plotted as a function of the maximumcylinder temperature at time of buckling.
The maximumcylinder temperature was taken as the temperature at the bottom or
extreme compressive fiber of the cylinder and midwaybetween rings in the bay
nearest to the middle of the cylinder. This temperature was the actual maximum
or nearly the maximumfor all cylinders tested.

It is of interest to comparethe results at room temperature with predictions
based on experimental cylinder buckling coefficients which are available from
tests on aluminum cylinders (ref. 4). It can be seen in figure 3 that the exper-
imental room-temperature buckling data for the steel cylinders indicate a buckling
coefficient less than the average but greater than the lower limit of the data
on aluminum cylinders. There are not enough test data to establish whether any
real difference in cylinder buckling coefficient exists for the two materials_
however, any difference is probably small.

If a cylinder were heated slowly and uniformly around the circumference so
as to produce no thermal stress, the cylinder buckling stress would be reduced
in proportion to the reduction in E. The amount of this reduction is indicated
by the short-dash curves in figure 3. Rapid but uniform heating causes circum-
ferential thermal stresses in the vicinity of the cooler rings. The interaction
of axial and circumferential stress results in a reduced buckling stress as shown
by the circle test points in figure 3. The solid-line curve is based on the
theory of reference i and tends to overestimate the test results somewhat. As in
reference i, it is necessary to modify the theoretical predictions based on the
reduction in room-temperature cylinder buckling strength from the classical value.
Inasmuch as this reduction had not been established for the type of cylinders
tested, the results of the three room-temperature tests that were madewere aver-
aged and this value was used in determining the reduction in buckling stress from
the classical value. The results of reference i are in the form of an interaction
curve of axial compressive stress and the difference of the average skin and ring
temperatures. In order to express the results in terms of Tmax it is necessary
to know the variation of these two average temperatures with Tmax. This varia-
tion is given in figure 4 where the average temperature of the interior bays and
rings and also the difference in these temperatures are plotted as a function of
Tmax. The variation of _ and E with temperature, which is also necessary for
the calculations, is given in figure 5.
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For nonuniform heating, the load-induced stress at buckling is further

reduced as evidenced by the square test points in figure 3. For this condition

axial thermal stresses are present which might be expected to add directly to

the load-induced stress so that buckling would occur when the total compressive

stress (load-induced stress plus axial thermal stress) is equal to the buckling

stress for uniform heating, as calculated from reference 1. Support for such an

assumption is given in references 2 and 3, where buckling of a cylinder under

varying axial compressive stress is shown to be relatively insensitive to the

stress distribution but dependent on the maximum value of the compressive stress.

When the load-induced stress at buckling is estimated by subtracting the axial

thermal stress from the buckling stress for uniform rapid heating as calculated

from reference l, the long-short-dash curves in figure 3 result. Reasonable

agreement is obtained except at the highest stress level where the results are

somewhat unconservative for both the uniform and nonuniform heating tests. In

the test of cylinder 6, failure occurred almost immediately after the heating

started and the buckling temperature was much lower than was expected on the

basis of results from the other tests. The values of the load-induced stress and

buckling temperature were rechecked and no discrepancies were found. Therefore,

a similar test was made on cylinder 7_ this result was in agreement with the

trend established by the other data.

Calculation of thermal stress in cylinders involves more than the elementary

thermal-stress computation, in which plane sections are assumed to remain plane,

even if the internal region of the cylinder has a temperature distribution inde-

pendent of length over many bays. The common practice, which applies to solid-

section beams, of assuming that the effect of ends can be neglected at distances

from the ends of the order of the beam depth is not a good assumption for cylin-

drical shells. A method of calculating cylinder thermal stresses for a general

temperature distribution is given in the appendix. This method was used in deter-

mining the long-short-dash curve in figure 3- A detailed discussion of the ther-

mal stress present in the test cylinders is given in the next section.

The behavior of the specimens at buckling was typical of cylinders loaded

in pure bending. Diamond-shaped buckles which extended to the vicinity of the

neutral axis snapped in suddenly at the buckling temperature. Figure 6 is a

photograph of cylinder 9 after buckling had occurred.

Temperature and Thermal Stress Distribution

A typical experimental temperature distribution along the bottom or most

severely heated portion of the cylinder is indicated in figure 7 for a cylinder

with _ = !. The curves shown were faired through a number of data points. Tem-
R 2

peratures were essentially symmetric about the center line and this symmetry was

used in all calculations. Note the heat-sink effect of the rings and that the

four interior bays received approximately equal heating. For the cylinders with
L
- = 1 the temperature distribution was essentially that which would be obtainedR

from figure 7 by removing the heat-slnk effect at the even-numbered ring stations.
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In the circumferential direction, temperature variations as shown in fig-

ure 8 occurred midway between rings for cylinders heated on one side only. The

curves shown are an analytical approximation of the data which was used in some

of the thermal-stress calculations.

The axial thermal stresses in the cylinders tested were calculated by using

the analysis given in the appendix. A comparison between theoretical and exper-

imental thermal stresses is shown in figure 9 where both longitudinal and circum-

ferential thermal stress distributions are shown. The thermal stress is of most

interest at the bottom (_ = 0) of the cylinder where the temperature is the

greatest and where the load-lnduced compressive stress is a maximum. The bottom

of the cylinder is the region assumed critical for buckling even though, as shown

in the lower portion of figure 9(b), it is not the region of maximum compressive

thermal stress. The compressive thermal stress is somewhat greater 20 ° away from

the bottom because of the essentially constant temperature over a considerable

portion of the cylinder circumference. However, the sum of the load-induced

stress and thermal stress is a maximum at the bottom of the cylinder for most of

the tests. At the higher temperatures the stress at the bottom of the cylinder

is slightly less than the maximum stress. Nevertheless, the bottom is still

probably the most critical region for buckling because the circumferential ther-

mal stress which is also involved in the buckling is a maximum at the bottom of

the cylinder and decays to zero in the unheated portion of the cylinder.

As mentioned previously, accurate values of experimental thermal stress were

not obtained over portions of the cylinder heated directly by the lamps. However,

the comparison of measured and calculated stresses for the cooler areas does give

an indication of the expected accuracy in calculating the thermal stress in the

heated areas which are critical for buckling. In general, agreement between

experiment and theory is good except that results of the calculations are greater

than experiment in certain areas. The dashed curves in figure 9(a) correspond to

the elementary thermal stress in each bay and are seen to be considerably differ-

ent from either the experimental or theoretical thermal stresses.

One factor which was not accounted for in the theory was the effect of

splices which are located at _ = ±67½°- and _ = 180 °. Along the splice at

= 180 ° which was the top of the cylinder and not in the region critical for

buckling, the magnitude of the experimental stresses was, for the most part, less
than that of the calculated stresses. Another factor which was not accounted for

was the variation in the quantity _E. Above 600 ° F, _E decreases with tempera-

ture so that the calculated thermal stresses are probably too high in this tem-

perature range. The comparison of calculated and experimental buckling stresses

(fig. 3(a)) also indicates that the theoretical thermal stresses are greater than

the actual thermal stresses at the higher temperatures.

CONCLUDING REMARKS

The results of bending tests of rapidly heated, ring-stiffened stainless-

steel cylinders have been presented. A few tests were made at room temperature

and the experimental buckling coefficients were found to be essentially the same
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or only slightly less than those which have been obtained for aluminum cylinders.

The test results for uniform heating around the circumference could be correlated

satisfactorily with a theory for the interaction of axial compressive stresses

and circumferential thermal stresses. When the heating was nonuniform, substan-

tial axial thermal stresses were present. These stresses, which were consider-

ably different from those predicted by elementary theory, showed reasonable agree-

ment with a theory that takes into account radial deflections of the skin and

rings. The load-induced stress at buckling for the nonuniform heating tests could

be satisfactorily predicted by subtracting the calculated axial thermal stress

from the predicted buckling stress for uniform rapid heating.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., August 29, 1962.
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APPENDIX

AXIAL THERMAL STRESS IN A RING-STIFFENED CYLINDER

WITH AN ARBITRARY T_4PERATURE DISTRIBUTION

The elementary theory of thermal stress can be used satisfactorily for

solid-section beams if the interior portion has a temperature distribution essen-

tially independent of length. In the vicinity of a free end the thermal stress

must decay to zero. However, this condition usually is of little concern because

only the maximum thermal stress which occurs away from the ends and which can be

calculated by elementary theory is generally required. The elementary theory,

when applied to a ring-stiffened cylinder, does not account for radial deflec-

tions of the rings or cylinder wall. Inasmuch as the dimensions of most ring-

stiffened cylinders are such that these deflections cannot be ignored without

introducing appreciable inaccuracies in analytical results, the elementary theory

must be modified so as to satisfy continuity between rings and sheet as well as

the equations of statics. The following development yields self-equilibrating

stress distributions which can be superimposed on the elementary thermal stress

distribution so as to maintain the continuity of the cylinder. The method is

essentially the same as that of reference 5 where self-equilibrating stress

distributions were found that could be superimposed on the stresses obtained

from the elementary theory of torsion and bending to yield the correct stress

distribution for a cylinder subjected to lateral loads.

General Theory

For purposes of analysis the cylinder is divided into bays small enough

that the temperature in each bay is a function of @ only or

Ti : Ti(¢)

where i denotes the bay number of the cylinder which has a total of m + 1

bays_ The bay notation and coordinate system are shown in figure lO. The bar

in Ti(_) denotes that at a given value of _ an average temperature over the

bay length is used. The most satisfactory arrangement is obtained when the ring

spacing is small enough that equation (AI) is a reasonable approximation of the

temperature for bay widths equal to the ring spacing. If the temperature varia-

tion in the axial direction is too large between rings, several bays may be

required between rings. In this case the bays between the actual rings are

assumed to be separated by a fictitious ring having a moment of inertia based on

the effective sheet material in each bay. With this assumption it is seen that

the bay length and ring spacing are not necessarily equal.

The thermal stress in the cylinder may be obtained by a process similar to

that used in elementary thermal stress problems. If each bay is rigidly con-

strained_ the resulting stress distribution is given by
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In each bay this stress system is independent of xi, but for equilibrium the

constraints at the end of each bay are loaded by forces with intensity ait'i

where qi is given by equation (A2). If a loading intensity of -_it'i is

applied to the cylinder at the ends of each bay, the forces on the constraints

are removed. Therefore, the constraints are no longer needed to maintain the

cylinder in equilibrium. Thus, the thermal stress is calculated by adding the

stress given in equation (A2) to the stress system obtained from loading the

cylinder at the end of each bay with stresses equal but of opposite sign to those

given in equation (A2).

Solution of stress-distribution problem.- In solving this stress-distribution

problem it is convenient to express the applied stresses at the end of each bay

as a Fourier series

c_iEi a-Ti = _ (Cin cos n¢ + din sin n¢)

n--0

(A3)

The Fourier coefficients Cin and din may be determined as

fO 2_

i
Cin = _ _iEi AT i cos n¢ d_

fO 2_
i

din = _ (_iEi AT i sin n¢ de

(A4)

The stress distributions corresponding to ci0 _ Cil , and dil are a uniform

axial stress distribution and two bending-moment distributions about two perpen-

dicular axes. These stresses do not vary with x i and are seen to yield the

elementary thermal stress solution for bay i when added to equation (A2). The

remaining terms (n > i) represent a self-equilibrating stress distribution which

decays with increasing distance away from bay i.

The solution of the stress-distribution problem for n > i can be obtained

by an extension of the method presented in reference 5. In the theory of refer-

ence 5 it is assumed that the strain in the circumferential direction is zero.

All material which resists axial stresses (including longitudinal stringer

material) is represented by an effective thickness t'i# whereas the actual

thickness t is assumed to resist only shear stresses. By using these
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assumptions, the self-equilibrating shear flow and direct stress in bay i
the associated axial displacements can be written as follows (see ref. 5):

qi(_) = _,(ain sin n_ + bin cos n_)

n=2

ai(xi3_) = _, _in(Xi) Cos n_ + G'in(Xi) sin n_

n=2

co

_ Ein(Xi)C°s n' + U'in(Xi)sin n_
n--2

where

Gin xi = Rt'i ain + ain(O

nxi r _i
- bin + g'in_0_i

_'in(Xi) Rt, i

and

(AS)

(A6)

(AT)

(AS)

and

= ain + xi + Uin(O)
2-EiRt 'i Ei

= bi n + i_ xi + U,in(O )
2EiRt 'i Ei J

(A9)

The complete stress distribution can be obtained once the Fourier coefficients

ain and bin are determined. The solution for ain and bin for the problem

considered herein is the same as that in reference 5 except that the equations

for equilibrium of forces at a ring (see fig. 10) are changed as follows:

E_i_l_n(Li_l)- ci-ijn_t'i_l = _in (0) " Cin]t' li_'i-13n(Li-l) - di-l,n] t'i-I = [_,in(O) _ din_t, (A10)

In reference 5 the thicknesses t' i are omitted in error and there are no

applied in-plane stresses so that Cin and din do not appear.
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From equation (A3) it can be seen that the coefficients Cin correspond
to symmetrical loadings and the coefficients din correspond to antisymmetrlcal
loadings. Since the solution for either loading is essentially the same, only
the solution for the symmetrical terms, corresponding to the heating condition
for the cylinders reported herein, are considered in the following development.
A recurrence formula for the symmetrical shear-flow coefficients ain is
obtained as in reference 5 in the form

-ai-l,n 'i_iIi_l,E'i_iI±_ I 6Bi_ I - n21 v_
+ + +

E'ili 6Ai_x7 /

+ aln +
E'il i

+

E 'i+iIi+l

+ V3 + V4n2

E 'i+iIi+l 2E 'iliAi_

f v2 v_- ai+l, n 'i+IIi+l E'i+iIi+ 1

E' I
i+l i+l

E 'i+21i+2

+ 6Bi+ I - n211 w3

n [ VlLI2-1 /c t 'i-l,n)

- 2R_7_i_l--_;i_--ikin 'in- Ci-l,nt 2v3Li+ 1

(ci+it 'i+l - Cint'i
Ei+lt 'i+l

(2__i__m-a)

(All)

where

_ 1 f Eit'iLi-i + Li-i 1

Vl Li2_l\El_it ,i_iL i Li+i/

= i {ZLi + Eit 'iLi_l

El_it 'i_iLi+l

+

il it'iLi-i° +

Eit 'iLi_l
+

Ei-i t 'i-iLi+l

+

Eit'i )Ei+it'_+ I'

Ei-lEi+lt 'i-1t 'i+lLi + Ei+lt 'i+

(A..t2)

12



and

1

_<n_-i)_

Eit 'iR6

Ai E 'ili L3

Eit 'iR2

Bi Gi _ j

(AI3)

Boundar_ conditions.- Equation (All) applies to any interior bay i when

there are at least two adjacent bays on both sides of the given bay. This con-

dition is not satisfied at the ends of the cylinder and special equations are

necessary which are determined by the boundary conditions. In all cases one

boundary condition is that the radial deflection of the cylinder wall is equal

to the radial deflection of the ring at the end of the cylinder. When there is

no axial stress on the end cross section, which is sometimes referred to as a

free end, an additional boundary condition is

gon(O) - COn = 0 (Al4)

The following equations are obtained as a result of these boundary conditions:

aOn_'010\ + ElliS-_ + -_ ) + E,1I--_ + 2E_OAO _

1+ -- + + -- + a2n
- aln E,2I 2 6AIF / E'II

n__q__I_kl_2COn h2_Cln 1

: _\ ",o +-7/ (#a5)

and

-aon - 2E,oIoAo7 / aln + E,2I 2 A-_17 ) + E,2I 2

+_"_-_°_'_ _J_t _'_-_ _' U+_

= 2-_7L_1 + E2t,2(C2nt'2- Clnt'

(A_6)
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where

LoLl

X2 = ]-

f_ o ,ot'A
+

_k4 _ 1
LIL 2

= 1 (E0t'0L2 + Eot'0_

k5 L_ tE2t '2L1 Elt '1/

t' L i)
k6 = l_l t 1_2 +

(AI7)

If the end of bay zero is clamped, the axial dis)lacements due to an axial

force and a bending moment may be allowed, but the displacements due to the self-

equilibrating force system are constrained so that uo(O,_ ) is equal to zero

which implies UOn(O ) is equal to zero. The following equations are obtained

for a clamped end:

lXIE,_ _ Ix2 (1 E'OIo 6Bo - n2/ #3n2 y1aon + _ + E'lI1 + _A_Z / + 2E 'OIoAo

- a_ FlXl l1 E'II1 6B1 - n2 / lx_. __ + a_ ( B1

±n_'lI1 \ + E'2I---_ + U77 7 + E'lIl_ _tE'212/

n Clnt'l - COnt '0

2R57 Elt 'l
(Az8)

and

-aOn_ li1 + _ + E,II1 + -_71] + aln 2

+ + _ _ /_4
- a2n E'}I 3 _j + E'2I + 3n{E--V_)

B L 2 2 -]

n _6 0 /c t' _L2 /'c t' 'i

= 2R_Y_oti------_k in I- COnt'O) .....E2t '2 [ 2n _ in t
(_a9)

14



where

= 1 {_2Lo + Eot'

B3 =_-2 E t' + _ii = h3
LO_ I i

"4--  \ lt,lLO÷

i #2E0 t '0LI + E0t'0L2 + I_

E2t '2L0 7

f ot  0to)

= iIElt '.0L2 Eft 'IL 2

"7 L2 \E2t '2L 0 + E2t'2L I
E0t 'oL2 i)

+ +

E2t ' 2Lo

(AeO)

The notation used in equations (All) to (A20) is essentially that of reference 5

except for the presence of a different Young's modulus for each bay and ring.

Boundary conditions for the opposite end of the cylinder, which is denoted by

bay m, may be obtained from equations (AI5) to (A20) by a suitable change of

subscripts. The subscripts which refer to bay numbers O, i, and 2 are replaced

with the subscripts m, m - i, and m - 2, respectively. Subscripts 0, i, 2,

and 3 which refer to ring numbers and occur in the term E'il i are replaced by

m + i, m, m - i, and m - 2, respectively. It is also necessary to change the

algebraic sign of the right-hand side of equations (AIS), (Al6), (AI8), and

(Al9). The condition of zero radial deflection of the cylinder wall at the ends

can be specified by allowing the appropriate ring moment of inertia (I0 or Im+ j

to approach infinity. For the limiting case of rigid rings where all moments of

inertia Ii approach infinity, the governing equations are greatly simplified.

The application of equation (All) and the appropriate boundary conditions

results in m + 1 equations for the determination of the m + 1 different

values of ain. If the stress at the end of a cylinder is specified as zero,

the axial stress distribution can be determined from the coefficients ain and
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the use of equations (A8) and (A10). If the axial displacement is specified as

zero at the ends, the axial stress distribution is determined from the coeffi-

cients ain and equations (AS) to (A10). Solutions for unsymmetrical loadings

can be obtained by replacing ain with -bin in equations (All), (AI5) , (AI6),

(Als),and(Al9).

The axial thermal stress at any ring can now be written for the general

case as

=- iEi + %0 + Cilcos + %1 sin

oo

+ _, [_in(O)cos n_ + _'in(O)sin n_

n=2

(A21)

There is a linear variation of qTi between each ring. Note that the first

four terms on the right-hand side of equation (A21) represent the elementary

thermal-stress solution for each bay.

Application of Equations to Test Cylinders

The equations presented thus far are very general in that each bay length

and ring size may be different. Also material properties may be different for

each bay and ring. However, the material properties are assumed to be constant

around the circumference for a given ring or bay; this means some average or

effective value of E must be assigned to each ring and bay if there is a

circumferential variation in E. The manner in which E appears in the recur-

rence formula and boundary conditions is in the ratio of E for the material

in one bay or ring to E for the material in a nearby bay or ring. These equa-

tions involve, at the most, five adjacent cylinder bays; if E does not vary

greatly within these bays, the ratio of the values of E for different bays may

be assumed to be unity. With this assumption the actual (or effective) value of

E is not required for the solution of equations (All), (AIS), (Al6), (AIS),

and (Alg)- This assumption is made in the calculations for the test cylinder of

this report. The calculation of Cin and din also involves E but only in

the product cue which tends to be more constant with temperature than either

or E. A constant value of 0.24 ksi/°F was assumed in all calculations.

The axial thermal stress for the test cylinders may be determined by the

following procedure. A schematic diagram of a typical test cylinder is shown

in figure ii which also includes the dimensions and ring moments of inertia

necessary for the calculation. All cylinders were of the same overall size but

there were two values of ring spacing. The idealization shown in figure ii has

L _ i For L = i the same bay length isequal bay lengths corresponding to _ - _.

used but the even-numbered ring locations, which correspond to midway between

rings in the actual cylinder, are assigned a moment of inertia equal to that of

the wall material one bay wide. The end bays are actually shorter than the other
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bays and terminate at a 3/16-inch adapter ring which is fastened to a very heavy

attachment ring. (See fig. 1.) The whole assembly is then bolted on one end to

a very stiff tip fixture and on the other end to a backstop. Because of this

stiff end attachment 3 the end bays were assumed to be clamped and to have a

length equal to that of the other bays. The heating is assumed symmetrical about

= O; therefore, only the equations involving ain are needed. Because of

symmetry about ring 5, _n = -a4n' a6n = -a3n' and Csn = C4n; thus, equations

for only five bays have to be considered. With these assumptions and boundary

condition, the equations determining ain can be obtained from equations (All),

(A18), and (A19) in a simplified form as follows:

h
3Rt 'n i

aon(24A17 + 18B + 3n 2) - aln(24A17 + 6A27 + 6B - n2) + a2n(6A27) = _Cln - COn )

-%n(18A17 + 6B - n 2) + aln(18Al7 + 18A27 + 12B + 4n 2)

-a n(BA ,+ + +"3n(6A ')

3Rt 'n fc
= _ 2n - Con)

aon(6Al7 ) - aln(6Al7 + 18A27 + 6B - n2) + a2n(18A17 * 18A27 + 12B + 4n 2)

- a3n(18A17 + 6A27 + 6B - n 2) + a4n(BA27 )

3Rt 'nr
- Z _C3n- Cln)

aln(6k27 ) - a2n(18A17 + 6A2_ + 6B - n2) + a3n(18A17 + 18A27 + 12B + 4n 2)

- a4n(12A17 + 18A27 + 6B - n2)

_ 3Rt 'n
L (c4n- C2n)

a2n(6A17 ) - a3n(6A17 + 24A27 + 6B - n 2) + a4n(36AlY + 24Ag + 18B + 3n2)

3Rt 'n, c
- Z [4n- C3n)

(A22)
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In equations (A22) the subscripts on L, B, and t' have been dropped inasmuch

as there is no change in these quantities with bay number. For cylinders with

: i there are two independent values of Ai given by AI and A2.
R

The calculation of the coefficients Cin by use of equations (A4) requires

some special consideration. The final determination of the thermal stress often

involves small differences of large numbers. An error of less than i percent in

determining Cin in some instances can easily cause errors greater than i0 per-

cent in thermal stress. Thus, it is especially important to obtain an accurate

consistent set of values for Cin. Graphical or numerical integration of equa-

tions (A4), unless done very accurately, may lead to serious errors in the final

result. For this reason, an analytical expression for the temperature distribu-

tion was obtained that yielded an analytical expression for Cin. Thus, Cin

could be determined as accurately as necessary and all values would be consistent

with each other. The expression for the temperature rise was applied to all bays

and is given by

ATi - cos ¢ + 0.05 sin 3¢ (O° <= ¢ _- 600
m

ATi(O)

Am i
m

 Ti(O)

 i(o)

- COS

= cos 80 ° e-0"0623(¢-80°)

(6o° _ ¢ _ 80°

(8o° < ¢ < 18o°

(A23)

_is temper_ure distribution was t_en to be symmetrical _out ¢ = O. _e bars

denote an averse temper_ure rise over a bay length. This averse temperature

rise in a given b_ was essential_ a constant times the te_er_ure rise at

midb_. _us, the expressions on the right-hand side of equ_ions (_3) apply

well to the ratio ATi/_i(O). The cu_es of fibre 8 were calc_atedequal_

from equ_ions (_3) by replaci_# _i/_i(O) with _i/_i(O), _d the _ree-

ment between measured _d calculated values is indic_ive of the accuracy of

equ_ions (_3) for both the averse _d midbay temper_ures. Values of ATi(O)

and _i(O), which are necessa_ to calcul_e the te_er_ure distribution, were

obtained for each bay from the measured te_er_ure distributions and are given

in fibre 12 as a function of the m_im_ cylinder te_er_ure.

_ter the coefficients ain have been determined, _n(O) can be obtained

from equ_ions (_) to (_0) with the use of the conditions UOn(O) = U5n(O) = O:

qon(O) = _ _t' _n + 7aln + 5a2n + 3a3n + a4n

- (Cln + C2n + C3n + C4n - 4COn)_
(A24)
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The remaining coefficients ain(0) are determined from the first of equa-

tions (AS). The thermal stress in the test cylinders was calculated by using

equation (A21); a comparison of the calculated and experimental thermal stresses

is shown in figure 9. Terms up to n = lO were used in the calculations. This

number of terms resulted in suitable convergence except for the stresses in

bay 2, which are estimated to deviate less than 5 percent from the value that

would be obtained by taking many more terms. This behavior is believed to be

caused by the steep longitudinal temperature gradient in this bay. The assump-

tion of clamped ends is supported by the agreement of experiment and theory in

the vicinity of the ends. A characteristic of cylinder behavior which is con-

trary to that observed in solid-section beams is the slow decay of the thermal

stress away from the heated area. (See fig. 9(a). ) The stress distribution is

affected by ring stiffness as illustrated in figure 13 where the axial thermal

stress along the bottom of the cylinder is plotted for three values of ring stiff-

ness. The ring stiffnesses used were: completely rigid (I i = _), the actual

stiffness as measured by the calculated ring moment of inertia, and one-half the

calculated stiffness. Little difference is seen between the curves for rings of

finite stiffness but the stress distribution obtained by assuming rigid rings

exhibits a much greater rate of stress decay. Even though the rings used were

reasonably stiff by most standards, their behavior for thermal stress was far

from that of a rigid ring.
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TABLEI

RESULTSFORBENDINGANDHEATINGTESTSOFRING-STIFFENEDCYLINDERS

t 3

Cylinder in.

1

2

3
4
5
6

7

8
9

I0

ii

12

13

0.0306

.O3Ol

.o3o5

.0305

.0303

.0306

.0306

.0307

.0304

.0305

.0304

.0301

.0311

_x, Tmax, Type of

L/R ksi OF heating

112
1/2

1
l/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

1

1

35. i

38.1
4o.4
29.4

24.4

29.4

29.4

24. i

19.1

16.9

11.85

25.1

19.2

Room

Room

Room

38o
8oo

12o

25o

45o
625

833

910

4oo
635

None

None

None

Uniform

Uniform

Nonuniform

Nonuniform

Nonuniform

Nonuniform

Nonuniform

Nonuniform

Nonuniform

Nonuniform
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(a) General view of test setup. L- 6l- 6326 .l 

(b) Detail view of heater installations. L- 6l-6327 

Figure 2 .- Method of loading and heating test cylinders. 
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Figure 3.- Test results for cylinders loaded in pure bending and rapidly heated.
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Figure 6.- Buckle pattern for cylinder 9. L-60-344 
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Figure 7.- Typical experimental longitudinal temperature distribution.
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(a) Variation of axial thermal stress in longitudinal direction.

Figure 9.- Comparison of theoretical and experimental thermal stresses.
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Figure 9.- Concluded.
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Figure ll.- Idealization of test cylinders for analysis.
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