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SUMMARY
i

A typical low-thrust Mars orbiter mission using the Snap-8 power-
generating system has been studied from a guidance viewpoint. The
mission trajectory was divided into the three characteristic phases,
namely, the outward escape spiral, the heliocentric transfer, and the
inward capture spiral. The sensitivity of the final trajectory state
(velocity, position, and mass) due to errors in the initial trajectory
state and to thrust-vector errors was determined for each phase of the
mission. The analysis and numerical solutions are based on the methods
of linear perturbations and adjoint functions.

During the escape-spiral phase, any of the following minimum errors,
if left uncorrected, is sufficient to cause the escape direction to be
180° out of phase: a O.l-percent error in either initial orbital alti-
tude or initial vehicle mass, a 0.l-percent error in the thrust masgnitude
acting over the entire trajectory, or a 2.8° error in the thrust angle
acting over the entire trajectory.

During the heliiocentric transfer, final position and velocity errors
of the order of several hundred thousand kilometers and 10 meters per
second will result :from elther an escape-direction error of 1/20,-a
thrust-magnitude error of 1 percent, or a thrust-angle error of l/2°.

During the capture-spiral phase, if the initial velocity vector were
in error by only 1 meter per second and 1 milliradian, and if the nominal
thrust program were followed exactly, the vehicle would spiral down into
_ the Martisn surface.

In general, low~thrust trajectories are highly sensitive to errors.
Open-loop trajectory control is thus completely out of the question; that
is, repetitive trajectory determination and corrective guidance maneuvers
are required to ensure a successful mission.




- INTRODUCTION -

In the past several years, theoretical and experimental analyses
have shown that electric rocket systems are practical and offer high
performance in advanced space missions. First-generation spacecraft
flights are scheduled to begin around 1965 with an ion engine powered
by the Snap-8 nuclear turboelectric system currently under development.
A feasible mission that has been proposed for the 80-kilowatt version
of Snap-8 is a sclentifically instrumented Mars orbiter. Such a mission
would begin in a low-altitude Earth-satellite orbit and end in a similar
orbit about Mars. Since the vehicle would penetrate a large portion of
the near-Martian space as it slowly transverses the capture-~spiral tra-
Jectory, an accurate survey of radiation and surface conditions may be
obtained and transmitted back to Earth.

The question of how accurately the vehicle can be guided to its
given target 1s of great consequence to the success of the mission. As
yet, little attention has been given to the problem of low-thrust guid-
ance in the presence of random or systematic perturbations arising from.
such error sources as thrust-vector control, navigational measurements,
and an approximate system model. 1In a preliminary analysis of this
subject (ref. 1), linear perturbation theory and the method of adjoint
functions were used to derive the fundamental guidance equation for
low~thrust trajectories. This equation provides a means of studying
the effect of error perturbations and corrective guidance perturbations.
The specific problem treated in reference 1 is an error analysis of the
heliocentric-transfer trajectory between Earth and Mars covering a wide
range of propulsion characteristics and transfer times. This report is
an investigation of the guidance problem for a typical Mars orbiter
mission considering, in turn, the escape-spiral phase, the heliocentric~
transfer phase, and the capture-spiral phase. The purpose of this in-
vestigation 1s to determine the sensitivity of the final trajectory state
for each phase to initial trajectory state errors and thrust vector
errors. It should be emphasized.that this study is a fixed-time anal--
yeis} that is, perturbations refer to the difference between the actual
and. reference trajectories at a particular instant of time. The choice
of time as the independent variable is computationally convenient and
is a good criterion of comparison for the problem at hand.

SYMBOLS
a semimajor axis, m
c Jjet velocity, m/sec

e eccentricity



thrust force, newtons

function of thrust vector perturbations (eq. (19))
gravitational constant of central attracting body, m3/sec2
vehicle mass, kg

semilatus rectum, m

radial position, m

apogee distance, m

perigee distance, m

time, sec or days

radial velocity, m/sec

total velocity, m/sec

matrix of weighting functions

thrust-error weighting function

general trajectory state variable

general thrust-vector perturbation variable
thrust angle, radians or deg

large variation from reference quantity ( )

small variation from reference quantity ( )
matrix of sensitivity coefficients

error sensitivity coefficient, varisble in adjoint equations (8)
to (12)

angular position, radians
angular velocity, radians/sec

scalar product of vectors



Subscripts:
C beginning of coast period

des design thrust level

E Earth

£ final value

iJ general indexes

M Mars

n values at tp - beginning of control interval
o initial value

Superscripts:

T transpose of matrix

! second~order perturbation
time derivative

vector

ANATYSIS
Vehicle and Mission Characteristics

In this report an investigation of the trajectory sensitivity and
control problem for a particular Earth-Mars instrumented space probe
utilizing the Snap~8 electric propulsion system is presented. Rather
‘than proceeding directly to the analysis, it is appropriate here to
present the propulsion characteristics of the vehicle that have been
assumed and to discuss briefly the mission and trajectory characteristics.

Vehicle-propulsion characteristics (unpublished NASA data). - The
Snap-8 vehicle will be placed into a nearly circular, low-altitude
satellite orbit utilizing a multistaged chemical booster. Typically,
an initial gross weight of 4080 kilograms (9000 1b) is placed in a
927-kilometer (500-naut.-mile) orbit. The design electric power and
specific powerplant mass are 60 kilowatts and 22.7 kilograms per kilo-
watt, respectively, and the resulting powerplant - initial-gross-weight




ratio is 1/3. With a propellant utilization of 90 percent and a power
efficiency of 76.2 percent assumed, a design specific impulse of 3600
seconds is obtained. The available thrust force is 2.32 newtons
(0.524 1b), and the propellant mass rate is 5.68 kilograms per day.

Mission characteristics. - The mission under consideration 1s a
415.4-day, one-way trip to Mars beginning in a 927-kilometer Earth-
satellite orbit and terminating in a similar satellite orbit sbout Mars.
Figure 1 is a schematic illustration of the overall interplanetary-
transfer maneuver. It is convenient to discuss the mission in terms of
three distinct phases, namely, the escape spiral, the heliocentric trans-
fer, and the capture spiral.

(1) During the first 139 days of the trip the vehicle increases its
energy relative to Rarth according to a continuous-power tangential-
thrust progrem. Solar gravitational effects are neglected during this
phase.

(2) At the hyperbolic-escape condition, the gravitational effect of
the Earth is neglected, and the vehicle initiates a 223-day heliocentric
transfer employing an optimum constant-thrust program. The power-coast-
power sequence is 27.7, 160, 35.3 days, respectively. The heliocentric-
transfer angle is 159°.

(3) At 362 days the vehicle is in the viecinity of Mars and initiates
the energy-decreasing capture spiral, again employing a continuous-power-
tangential-thrust program. After 53.4 days, the 927-kilometer satellite
orbit has been established. Solar gravitational effects are neglected
during this phase.

The overall trajectory has been pieced together from a series of
two-body solutions in order to simplify the analysis. This procedure
has been commonly used by investigators of the low-thrust interplanetary
migsion. In most cases, the approach taken is to terminate the escape
spiral when parabolic escape energy has been attained. After this, the
vehicle is assumed to be moving in the Earth's orbit with Earth's orbital
velocity relative to the sun, and the Earth's gravitational effect 1s
then neglected. A similar procedure is used at Mars. Frequently, the
parsbolic energy condition occurs at a position well within the planet's
sphere of influence. The essential difference in the approach taken in
this analysis is an extension of the escape~ and capture-spiral phases
past the parabolic energy condition. Transformation to or from the
heliocentric system is arbitrarily made at a point where the solar and
the planetary gravitational effects are approximately equal. The main
reason for extension of the spiral phases is that in the vieinity of
the hyperbolic escape or capture condition the motion of the vehicle is
approximately along the asymptote of a hyperbola, which is a useful
target criterion for guidance purposes.




Figure 2 describes the escape-splral trajectory in detail, where
the last of 500 revolutions about Earth is plotted. Parsbolic escape
energy is reached at a distance of about 100 Earth radii and at a time
of 125.5 days after launch. At a distance of 298 Earth radii, the escape
phase is terminated, and, at this point, the relative velocity of the
vehicle is 1577 meters per second. The direction of the velocity vector
was arbitrarily chosen to be parallel to Earth's velocity. The perpen-
dicular distance from the center of the Earth to the hyperbolic asymptote
is referred to as the asymptotic displacement and, in this case, is

0.675X109 meters.

As previously mentioned, the heliocentric-transfer trajectory is
of the optimum constant-thrust type; that is, the thrust program employed
was one that minimized the propellant expenditure subject to the follow-
ing constraints: (1) The thrust must be equal to its maximum design
value or equal to zero, and (2) the transfer is to take place in a spec-
ified time, namely, 223 days. Details of the optimization procedure
are fully presented in reference 2.

A plot of the capture-spiral trajectory is shown in figure 3. Ini-
tially, the vehicle's relative position and velocity are 418 Mars radii
and 1454 meters per second, respectively. The direction of relative
velocity is parallel but opposite to Mars' orbital velocity. Thus, the
planet is catching up with the vehicle. The asymptote of the capture
hyperbola is displaced by 0.209%x109 meters. With the use of reverse
tangential thrust, a 927-kilometer satellite orbit 1s achieved during

the 1098 spiral turn.

Trajectory Sensitivity Analysis

The motion of the vehicle during each phase of the mission is de-
scribed by a set of nonlinear differential equations. Consider that a
solution of such a set corresponding to a specified thrust program and
satisfying prescribed boundary conditions has been obtained and is
termed the reference solution. If the major assumption is made that
perturbations (e.g., guidance errors) are sufficiently small so that
the actual vehicle trajectory does not vary significantly from the
reference trajectory, it 1s possible to study these variations and the
required corrective maneuvers by linear perturbation techniques. The
perturbed differential equations of motion represent a linear system with
time-~varying coefficients, which are determined from the known reference
trajectory. The general solution of the perturbed equations is best
facilitated by the method of adjoint functions as suggested in refer-
ence 3. Application of the adjoint method to various trajectory sensi-
tivity and control problems is found extensively throughout the litera-
ture, for example, references 1, 4, and 5.



Bquations of motion. - During each phase of the mission, the vehicle
is assumed to travel in a vacuum under the influence of an inverse-square
_central gravitational field in addition to its own thrust acceleration.
A two-dimensional geometry is used, and the vehicle motion is described
in a rotating pblar coordinate system centered at the appropriate central
body. With reference to figure 4, the differential equations of motion
to be satisfied along the flight path are given as ‘

G=vo? - M4 F oginp (1)
p2 m

h = ~%:m + 5% cos B (2)

r=u (3)

¢ =w (4)

fi= -2 (5)

Differentiation with respect to the independent varisble time 1s denoted
by a superscribed dot. The state variables of interest are radial ve-
locity u, angular velocity w, radial position r, angular position o,
and mase m. The propulsion or control variables are the thrust magnitude
F and the thrust angle B, which is measured with respect to the local
horizontal (circumferential) direction., The effective jet velocity ¢

is equal to the product of specific impulse and a conversion factor and

is considered constant in this analysis.

The fact that the angular position ¢ does not appear in the non-
linear equations of motion is very significant in that large variations
in @ may be admitted without invalidating the linear perturbation
analysis. The possibility of very large variations in this quantity,
relative to 2% radians, during the escape-spiral phase is evident, since
the vehicle makes several hundred revolutions around Earth in the process
of escaping.

Fundamental guidance equation. - The derivation of the linearized
equations of motion and their solution by adjoint methods are reported
in reference 1. The development needed for the present study is presented
in appendix A. In the following discussion, the symbol & 1s used to
represent small variations from reference quantities, that is, by def-
inition

5x(t) = x(t) - x*(t)



where x 1is any state or control varisble, and the asterisk denotes
the reference value.

The fundamental guidance equation expresses the variation in state
variables at the final reference time +tf in terms of the variation in
state variables at some time t along the path and in terms of the
integrated effect of thrust-vector variations during the interval

(t, tf). This equation is written with the use of matrix notation for
conciseness, as

[~ n

dur %u(tﬂ O
swe da(t) 5T
dre| = A(t) [or(t)] + W at (6)
5pp 3p(t) 58
B dm(t)
where A is a 5 by 5 matrix of sensitivity coefficients and W is a

5 by 2 matrix of thrust sensitivity or weighting functions.

By
definition

1 I E PR NP N 7] [en
. Nop - . - Mg . . .
A=1}].] = . W=l . {=1. . (7)
sl | P Ass | 75 | |51 ws2]
The elements Ajj; and w;; are determined from a set of adjoint dif-

ferential equations discussSed in the next section.

The fundemental guidance equation has two basic interpretations.
First, the sensitivity of final conditions due to a variety of error
sources may be determined, and the analyst thereby provided with in-
formation regarding the navigational and control-accuracy requirements.
For example, if the final variations have some prescribed tolerance
level, (8F, 8B) may be regarded as constant bias or random variations
acting over the path, and their tolerance level may be computed. Also,
if at time t +the variations ©u, dw, and so forth are measured, the
uncertainty in these variations due to instrumentation errors causes
uncertainty in the knowledge of final conditions that may be determined
from equation (6). Thus, something might be inferred sbout the measure-
ment accuracy requirements. The second interpretation of the equation
has to do with the formulation of an active guldance technique. With
the assumption that corrective maneuvers are required to null some or
all final variations, which have been determined by measurements su(t),




sw(t), and so forth, the necessary corrective~thrust program is implic-
itly contained in the integral terms of equation (8). The form of

(8F, 8B) will depend on the particular control criteria and constraints
imposed.

In this report the major concern in the evaluation of the effect of
errors in initial conditions and thrust vector.on the final-state vari-
ables, that is, the evaluation of the right side of equation (6) when
t = to. For example, if the error in radial velocity at tg is of
interest equation (6) yields

up = (M18u + A Bw + A =BT + A 480 + Ajgdm)t,

tp
+ / (wllSF + wlzss)dt
tO

From the form of this equation, the sensitivity coefficients may be
interpreted as partial derivatives; for example,

_ Oup
Malte) = 550

Also, if BF and BB are constant along the path, the following partial
derivatives could be defined as

o
dup tr
. to

The extension of these definitions to the remaining variables follows
directly.

Adjoint equations. - The sensitivity coefficients %ij(t) are deter-

mined from the solution of the following adjoint differential equations
(see appendix A):

N1 = <§r9> M2 - M3 (8)
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7.\12 = - (ZT(D)?\il + <2%)7\12 - 7\1‘4 (9)
2GM 2uw - F cos
?\15 = - <:-r-g— -+ (J.)2> 7\11 - <r2 = rzm B)?\iz (10)
Xié =0 (11)
s (F sin B F cos B\, .
Mg = <T>7‘il + <“—1;I;2——>7\12 (12)

The time-varying coefficients in parenthesis are known from the particular
reference trajectory of interest. These equations were integrated
backward in time from tp. The initial conditions specified at tg have
the form

that is,
A(te) = I(unit matrix) (13)

The sensitivity coefficients and B are continuous functions of
time even if & discontinuity in F is admitted, as it is during nominal
coasting periods (see ref. 2). From equations (11) and (12) it is noted
that N4 1s a constant and that Ay{5 is constant during coasting
periods (F = 0). When boundary conditions are specified as in equa-
tion (13), the fourth column and the fifth row of the matrix A are
time invariant and may be given directly without numerical integration:

(Mas A24s A34s Mg Asa) = (0,0,0,1,0)
(14)
(%51: N52, N535 N54s 7\55) = (O)O:O:O:l)
The elements of the matrix W are, from appendix A,
| A+ As s
Wi = —%; sin B + ;%E cos B - —%g- (15)
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On substitution from the second of equations (lé),'WSl and o Sim-
prlify to

=0 (17)

The thrust-angle weighting function Wio is continuous only during the

nominal powered periods and is zero during the nominal coast period

(F = 0). A discontinuity exists at the initiation and the termination
of the coast period. This result is as it should be, since thrust-angle
variations have no physical meaning when thrust is shut off.

Nonlinear thrust-~vector perturbations. - In the derivation of the
fundamental guidance equation (eq. (6)), it is assumed herein that thrust-
vector perturbations are sufficiently small so that only first-order or
linear variaticns need be considered. If, however, large variations in
thrust magnitude or direction are allowed, the linear form of the inte-
grand in equation (6) must be modified; that is,

OF
W ~ [£;(aF, o8)] i=1,. 4 «,5
[o¥e]

where AF and A3 may be considered large variations. The need for
such modification arises when consideration 1s made of the problem of
guidance maneuvers (corrective thrust programs). For example, if the
guidance maneuver requires that thrust be cut off for a specified time
during the nominal powered period or that thrust be turned on during

a nominal coast period, than AF = FF, which is certainly not small.
Another reason for deriving the exact f; functions is that a check on
the conclusions drawn from the linear-sensitivity analysis is available
when the first-order sensitivities appear to be negligible.

The perturbation analysis (see appendix A) involves two essentially
unrelated types of linearization, that is, linearization of the state
variables and linearization of the control variables. This separation
is evident in the results of equation (6). The validity of the trajectory
perturbation solution, however, depends only on the validity of the
linearization of state varisbles.. Note that the adjoint solution A(t)
is independent of control-variable linearizations. Consequently, as
long as large thrust-vector perturbations do not result in large trajec-
tory perturbations, it is necessary to modify only the integrand terms
in equation (6). From appendix A the result is

tr
5x(tr) = A(t)dx(t) +/ [£ilat (18)
t
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>

£; = == [(F + AF)sin( + AB) - F sin ]

A2 N5
= [(F + AF)cos(B + AB) - F cos B] - - (F + AF) - F]

After expansion of the trigonometric functions and with the use of
equations (15) and (16), the alternative form is

A W Ns
Ty = Gvil + —?—)AF cos AR + <—11?—2>AF sin AR - <—%—EL)AF

| M5
+ Flwgy + —=)(cos &8 - 1) + (wip)sin AB (19)

When AF and AB are small, AF =~ 3F, sin AB =~ 3B, and cos A8 = 1.
Equation (19) thus degenerates into the approximate linear form derived
previously:

f3 % W 0F + wy0f

In the previous section it is noted that wy2 is discontinuous

at the beginning and at the end of a coast period (F = 0) and is zero
during this period. The quantity wys/F, which appears in equation (19),
however, is always continuous and, in general, is nonzero, as can be
seen from equation (186).

Several special cases of equation (19), used later in this report
are as followst

F =03 AF = Fyoq3 OB arbitrary

Ae s As |
i5 i2) . iS
fi B Fdes [Q’il + ——C—->COS AB -+ (—F—>31n AB - <""""C >] (20)

M3 = 03 -AF arbitrary
£5 = wiy AF (21)

F = Fgegs AF = 8F < F; AB = 3B, small butléecond-order effects
significant; sin AB ~ 8B; cos AB - 1=~ - % 5p2
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F A5
f; = wi1dF + wigdB - des 6711 + —-)532 (22)

RESULTS AND DISCUSSION

The overall low-thrust trajectory for the 415.4-day Mars orbiter
mission has been pieced together from a series of two-body solutions.
The equations needed to calculate the reference trajectories were pro-
grammed for an IBM 704 digital computer. Numerical integration was
performed by the Runge-Kutta technique with an automatic step-size con-
trol to Limit truncation error. The computer program was developed for
the study presented in reference 2, and only minor modifications were
required to adapt it to this investigation. Basically, this modification
involved increasing the integration loop by the addition of the adjoint
equations (8) to (12).

In the following sections, each phase of the mission is considered
separately, and the results show the sensitivity of the final trajectory
state due to errors in the initisl trajectory state and thrust-magnitude
and ~-direction errors. Two examples of simple corrective guidance are
presented.

Trajectory Sensitivity -~ Escape-Spiral Phase

Reference trajectory. - Characteristic parameters of the escape-
spiral trajectory are given in figure 5. The thrust angle B, which
corresponds to the tangential-thrust program, is plotted in figure 5(a).
Thrust direction is seen to be within 2° of the horizontal throughout
the first 100 days, and thus a circumferential-thrust program would
result in approximately the same trajectory up to this point as the
tangential program. Aside from the fact that tangential thrust is very
efficlent in terms of propellant expenditure, trajectory control is
enhanced, since the local vertical (local horizontal) may be easily
sensed. Past the knee of the curve, B increases at an average of
about 3° per day.

Radial velocity is shown as a function of time in figure 5(b), and
the similarity to the thrust-angle program is noted. The vehicle's orbit
is essentially circular up to 100 days at which point the eccentricity
is only 0.028. A characteristic of the function u(t), which is entirely
masked out in figure 5(b), is its oscillatory nature over the flat region
of the curve. A close examination of the digital-computer results, in
a region where output is called for at every integrating step, shows that
u oscillates with an increasing period and decreasing amplitude as time
increases. The period is approximately equal to the orbital period
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during & given revolution. Initially, the amplitude of oscillation is
of the order of several meters per second. At t = 25 days, the ampli-
tude has decayed to a small fraction of 1 meter per second. A corre-
sponding oscillation is also exhibited by the thrust angle and the
eccentricity.

The angular velocity o decreases with time by almost four decades,
as shown by figure 5(c). An approximation of the average orbital period
may be made at any time by Zﬂ/w. For example, at + = 15 days 1 rev=-
olution is made in sbout 0.1 day, while at + = 82 days one revolution
requires about 1 day. Figures 5(d) and (e) show the time histories of
radial and angular positions, respectively.

Initial-condition variations. - With reference to equation (8), the
effect of errors in velocity, position, and mass at t = t5 = O on these
same quantities at +tpy = 139 days is given by A(to).. The elements of.

this matrix have been cbtained from the adjoint-equation solution and
are given as

Bug Blg Bro (elos omg

dup | 7.39x107% | 7.20x108 | 1.99x107° | o0 | -2.13

swp | 5.69x1075 | ~2.01x1073 | ~5.43x10™13| o | 5.19x10-10

Alto) = 8re | 1.51X108 1.44%x1015 | 4.00x10% 0 |-3.80x108
5¢f | ~4.41x10~4 | -1.23x107 | -3.41x10"3 | 1 0.768
dme 0 0 0 0 1
(23)

Consider, for example, a variation in the initial-circular-orbit
altitude of' 10 kilometers, that is, drg = 104 meters. Assume also that

Bdug = 5P, = dmg = 0. Since
fGME
Wg = ;g—

e
ZE org = - 2L prg = - 2.08x1076 radian/sec
r3 2 ro

the variation in @y 1is

Bdwg = ~ %
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From the second and third columns of A(ty) the following are obtained:
due = 5.00 m/sec
Bwe = -1.25X107Y radian/sec
re = 1.00x107 u
8@p = -8.49 = ~2.21 radians = -127°

The final errors Juf, dwr, and dry are each of the order of 1/2 percent.
Tf there were no error in the angular position, a transformation to
heliocentric coordinates would show an extremely small perturbation on
the initial heliocentric conditions. This 1is not the case, however,

since @p is the parameter that is related to a heliocentric reference

direction and is in error by -127°. The perturbed escape trajectory

mey be visualized by a 127° clockwise rotation of the reference trajectory
in figure 2. Qualitatively, the result is a very significant error in
heliocentric coordinates.

The preceding example has served to focus attention on the extreme
sensitivity of final angular position relative to the sensitivity of the
other state varisbles. There is, however, an essential difference in
the nature of the sensitivities. That is, the magnitudes of ?dur, dWF,

and dre increase proportionally with initial-condition errors, whereas

the principal magnitude of B@e varies between O and = in a cyclical,

triasngular fashion. As an example, consider each initial-condition
error independently and compute the error magnitudes that cause @p toO

be 1 radians out of phase. From the fourth row of the matrix A(to)

if ®pp == (2n + 1)w, where n =0, 1, 2, « « -,
59
sug = 7 £ = F (2n +1)(7.10<10%) m/sec
4.41X10”
8
B, = F £ == ¥ (2n + 1)(2.55x10~7) radian/sec
1.23X10
50
3.41X10
50
Bpo = * —i£»= + (2n + 1)x radians
59
dmg = * 0.728 =+ (2n + 1)(4.09) kg
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The minimum errors are found when n = O. From the previous results,

it may be concluded that &u, is several orders of magnitude greater
than any reasonable error that may be expected. In contrast, a 0.04-
percent error in wy or a O.l-percent error in either the initial orbital
altitude or my is sufficient, if left uncorrected, to reverse the di-
rection of the escape asymptote.

Thrust-vector variations. - Consider next the sensitivity of velocity
and position components at the nominal escape condition to varistions
in thrust magnitude and direction. This information is expressed by the
integral terms in equation (6), where the elements of the weighting
matrix W are given by equations (15) and (16) and are plotted against
time in figure 6. Each weighting function, except Wy1, €xhibits an

oscillatory characteristic the amplitude and period of which increase
with time. As in the case of the radial-velocity characteristic, the
period of oscillation approximately coincides with the orbit rotational
period of the vehicle. In figure 86, only the last cycle of the weighting
functions is shown; however, the envelope of oscillation is plotted.

Qualitatively, the weighting functions illustrate the relative sen-
sitivity to thrust-vector errors during any two arbitrary time intervals.
Figures 6(b), (d), (f), and (h) show that final velocity and position
components are relatively insensitive to first-order thrust-angle errors
during the first half of the escape phase, whereas figures 6(a), (c), and
(e) show a significant and essentially constant sensitivity to thrust-
magnitude errors during this same interval. In particular, figure G(g)

.illustrates a result that could easily have been predicted, namely, that
¢p 1s most sensitive to BF occurring during the early tightly wound

spirals and that the sensitivity is essentially zero during the last
spiral turn (t > 120 days).

A convenient gquantitative measure of the sensitivity to thrust errors
is cbtained by considering ®F and ®f to be constant; thus, the time
integrals of the weighting functions yield the desired sensitivity. The
results are presented in the following matrix form, where B3F and Bf
are measured in newtons and radians, respectively:

oF BB

dup | 3.73x103 | 11.7

e Bwp | -9.11x2077 |-2.77x1077
t

sr_ | 6.68x109 | 7.32x107

8P, |-1.35X10% | -2.92
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Consider the effects of a thrust-magnitude error first. OSince an
appreciation for the serious consequences of a large error in @f has

been gained, the sequence of BF wvalues, which causes Pe to be

radians out of phase, are computed. From equation (24)
(2n + 1)x

BF = % ~-———t= = ¥ (2n + 1)(2.33X10"3) newton n=0,1,2,. ..
1.35X10

The minimum value of dF required is thus 2.33X102 newton, or a 0.1~

percent error. Since it is unlikely that such accurate thrust control

is possible, it must be concluded that the requirement of guided flight
is of major importance for low-thrust missions.

The effects of a *0.l-percent error in F on the velocity and
radial-position components at tp are

Bup = = (3.73X10°)(2.33x1073) = %8.70 m/sec
Bwe = £ (-9.11X10-7)(2.33%1073) = ¥2.12x10~° radian/sec
®p

Bro =% (6.68x10%)(2.33%1073) = +1.56X107 m

Bach of these final variations when divided by its respective reference
quantity represents an error of less than 1 percent; therefore, the
resultant perturbation on the heliocentric trajectory is due almost
entirely to d@e = .

Tor discussion of the effects of a thrust-angle error, an error
of 10 milliradians, or about 1/20, is assumed as a typical order of
magnitude. The final velocity and position errors that result are then
given by equation (24) as

Supe = *0.117 m/sec
Bwp = F2.77X1079 radian/sec
drp = £7.32¢105 m
8¢p = ¥0.0292 radian = F1.67°
which are all first-order effects. The error magnitudes due to the first-
order variation of B appear to be quite small; however, before a con-

clusion can be drawn the effects of second-order variations of £ must
be computed. From equation (22),
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tr
¥ As
= des 15
SXj‘_(tf) = 5Xi(tf) due to SBZ = = = 852 G‘Til + —c—>d_t
to
In this study, Fdes/z is of the order of unity. Also, computer results

show that MA;s/c is small compared with wyp for all values of 1.

Thus, the second-order effects are very well approximated by the integrals
of Wiy, which are given in the first column of the matrix equation (24)

multiplied by &B% = 10-4:

J

du) = -0.373 m/sec

dwy = 9.11x10"11 radian/sec

Brl = -6.68%10° m

6@% = 0.135 radian = 7.749

A comparison of the first- and second-order effects shows that second-
order effects are of the same magnitude or greater except in the case
of angular-velocity errors. The total errors in velocity and radial-
position components are quite small. The total angular-position error
is less than 10°. If, however, 88 were increased to 2.8%9, the final
angular~position error would increase to gbout 180°.

Trajectory Sensitivity ~ Heliocentric-Transfer Phase

Reference trajectory. - The time required to transfer between plan-
etary orbits was chosen as 223 days, and the trajectory was optimized
to minimize the propellant expenditure. The congtraint imposed here
was that the thrust must be equal either to the design value or to zero.
Characteristic variables of the reference trajectory are plotted in fig-
ure 7 where the time scale chosen has been reinitialized to zero. The
optimum-thrust-angle program is shown in figure 7(a). Thrust direction
is outward with an average rate of change of 0.86° per day during the
first powered period and inward with an average rate of change of 0.56°
per day during the second powered period. Velocity and position time
histories are shown in figures 7(b) to (e).

Initial-condition variations. - Digital-computer solutions of the
adjoint equations (8) to (12), which correspond to the boundary conditions




A(tf) = unit matrix, are plotted as functions of time in figure 8.
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The

effects of initial-condition variations on final conditions are given

by -A(to):
dup dWo dro 2Po dmp
Bup | =-0.366 2.6510 | 6.46¢10-7 | 0 -0.149
s |-1.86x10-12 | -5.48 | -8.07x10-18| 0 | 8.0710-12
Altg) = dre | 2.20x10° 4.57x1018 10.9 0 | -1.27x107
8P, -1.02x10~4 | -3.11x107 | -8.44x10~11| 1 | 1.00x10-4
dimg 0 0 0 1o 1

(25)
Variations in initisl velocity, position, and mass will be due to errors
incurred during the escape-spliral phase. Expressions are derived in
appendix B that relate the two sets of errors. Suppose, for example,
at the termination of the escape phase that the angular position is in
error by only 10 milliradians, while all other errors are zero. With
the use of equations (B6), (B7), (B12), and (Bl4), the initial-
heliocentric-velocity and -position errors are found to be

Bup = ~15.8 m/sec
8o = 2.47X10711 radian/sec
8r, = ~1.78X107 m

£.50x10™° radien

5¢g =
dmg = O
Then from equation (25) the final-condition errors will be
Sup = 0.770 m/sec

e = 8.69x10711 radian/sec

drp = -1.16x108 m
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8ps = 2.39X107° radian; rdee = 5.43x10% m

dme = O

With reference to figure 3, the resultant errors show that at the nominal
final time the vehicle is both below and ahead of its nominal position,
and its motion relative to Mars is essentially parallel to the nominal
capture trajectory. Hence, the incoming asymptotic displacement is in

error by some 1.16X108 meters. The requirement for midcourse corrective
guidance to compensate for the escape errors is evident.

Thrust-vector variations. - The elements of the matrix W are
plotted as functions of time in figure 9. Recall that the nominal coast-
ing period extends over the interval 27.7 <+t < 187.7 days. Since it
is reasonable to assume that no thrust errors will occur during this
interval, the weighting functions are of interest here only during the
nominal powered periods. The significant result illustrated by figure 9
is that the final velocity and position components are relatively more
sensitive to thrust~vector errors that occur during the first powered
period. In particular, the radial-position perturbation due to either
5F or BB 1is relatively 15 times greater during the first powered
period, while the angular-position perturbation due to BF 1is relatively
25 times greater.

The time integrals of the weighting functions over the powered
regions of flight have been evaluated as

5F 58
dup 211 -604
| dwe |-1.14x1078 | 2.45x10-8
ws s Attt = (26)
4 ered +d srp | 1.80x10%0 | -2.15x1010
periods - ,
GO 0.142 0.0384

As an example, the velocity and position perturbations resulting from a
l-percent error in thrust magnitude or a 10-milliradian error in thrust
angle are
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F = 2.32X107% newton 858 = 10~ radian

Bdup = 4.90 m/sec dugp = -6.04 m/sec

swp = -2.64x10710 radian/sec  Bwp = 2.45x10710 radian/sec
dre = 4.17x108 m drp = -2.15X108 m

e = -3.29X107° radian 8pp = 0.384X10"7 radien

The resultant errors and, in particular, the position errors are
of sufficient magnitude to require midcourse guidance corrections.

Trajectory Sensitivity - Capture-Spiral Phase

Reference trajectory. - Variables that describe the capture-spirsl
trajectory are plotted as a function of time in figure 10. The thrust
angle B, corresponding to the energy-decreasing tangential-thrust
program, is shown in figure 10(a) in which B is shown as a second
guadrant angle, since the thrust vector in this case is parallel but
opposite to velocity vector. As in the case of the escape-spiral
trajectory, the thrust direction 1s essentially circumferential over &
large region. In this region, t > 25 days, the vehicle travels in a
nearly circular orbit with a decreasing semimajor axis. These results
mey readily be inferred from the radial-velocity and -position curves
shown in figures 10(b) and (d). Again, as in the case of the escape
spiral, a characteristic of the function wu(t), which is entirely masked
out in figure 10(b), is its oscillatory nature over the flat region of
the curve. The period and amplitude of oscillation decrease and increase,
respectively, with time, although the largest amplitude 1s quite small.

Variational parameters of final satellite orbit. - It may be more
illuminating to consider the sensitivity of the final satellite orbit
gbout Mars in terms of orbital parameters such as semilatus rectum D,
semimajor axis a, eccentricity e, perigee Ty, OF 8pogee Tg. If the

orbital orientation is not of interest, any two of these parameters will
define the orbit. The parameters ap and pp may be expressed in

terms of the radial-position and -velocity components as

1
z b+ (rp0p)°

Tp ' GMM

af=
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4 2
£Or
GMyr

=

be =

The eccentriéity, perigee, and apogee are given as

P
eg =1 - £
g
T g = af(l - ep)
Ta,f = af(l + ef)

When the reference orbit is circular, the following special relations -
occurs

ap = Pr = Tp, £ = Tg,f = If

1/2
GM
Vo=1r0, = <f—29

f fr I‘f

Expansion of ap and pe 1In a Taylor seriles keeping only first- and

second~order terms and utilization of the previous specilal relations
yields

ar r {or
_ £ Y R i W= f\. 2 15 2 20

(27)

2r T
_ £ £\. 2 6 \. 2 8
App = (w——f >6wf + Brp + <w_2>8mf + (—rf>5rf + (w——f>8wf8rf (28)

by

Variations in eccentricity, perigee, and apogee may then be calculated
from

2 Dap - Opp

ARy =
Lry p = lap - (rp e + Dap Nep) (30)
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Note that, even for very small variations in velocity and position, equa-
tions (29) to (31) are essentially nonlinear when expressed in terms of
these variations. This result is due to the fact that the final reference
orbit is circular.

Initial-condition variations. - Solution of the adjoint equations
for the capture-spiral trajectory yields the following .A(to) matrix:

Buo dwo 3ro BP0 dmo
Bup | -24.2 9.67x10M | 5.37x10"° | © 7.16
sy |-2.02x10°4 | 2.01x105 | -1.10x10-10| 0 | 4.87x10%5
Alty) = rp | 5.73x10° | -5.77x10M4 | 0.311 0 | -1.39x10°
By |=mmmmmmmmm | mmmmmmmmmn | mmmmme oo 1 | mmmmemeeae
B 0 0 0 0 1

(32)

The magnitudes of the sensitivity coefficients in equation'(SZ) indicate
the extreme sensitivity of the capture trajectory to errors in initial
conditions. A sample calculation illustrates this point. Consider a
situation where the vehicle is at the influence sphere (6ro = G), but

the velocity components are in error by dup = 1 meter per second and
Bwy = -10-9 radian per second. This corresponds to the initial velocity
vector having an error of about 1 meter per second in magnitude and 1
milliradian in direction. Assume also that ©®mg = O. From equation (32),

the final varigbles will be in error by
Bup = -24.2 - 997 = -991 m/sec

Bwp = ~2.02X10~4 - 2.01X10%4 = -4.03X10-% redian/sec

Br. = 5.73X109 + 5.77X10° = 1.15X106 m = 1150 km

These errors represent a signifilcant perturbation of the trajectory.
Evaluation of equations (27) to (30) shows the eccentricity to be about
0.5 and the perigee to be well within the Martian surface. Actually,

the errors are large enough to invalidate the linear perturbation approach.

An interesting result masy be found from the matrix A(to) if in
any given column the element of the second row 1s divided by the element
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of the third row. These ratios are very nearly the same, about

-3.5x10"10. Within the validity of the first-order approximation, this
result means that ©®we 1is not independent of Orp; that is, no matter

what set.of initial errors leads to a given Brp, DWp ~ -3.5x10"10 Ore.

This common ratio is not unique to the time +t, = O, since an examination

of the matrix A(t) shows approximately the same result over a large
portion of the trajectory.

A further result is that the quantity wa/rf is equal to
3.54¢10-10; thus, dwe ~ -(20¢/re)dre. This result is not explained in a
rigorous manner; however, a relation of this form and order of magnitude
may be deduced from the following argument. If the errors Bup, DU,

and Bre are quite small, the final perturbed orbit is very nearly
circular. Since for a circular orbit

oty 1/2
3
.I'f

&f =

the relation between dwe and Bry required to maintain a circular
orbit of slightly different size is

o,
SOJf = —(’% 'I—"§>5I‘f

The 2Z5-percent discrepancy in the coefficient dry may be ascribed to
the fact that the final perturbed orbit is not exactly circular.

Thrust-vector variations. - The sensitivities of final-velocity
and -radial-position components to variations in thrust magnitude and
direction are given by the weighting functions, which are plotted in
figure 11. As in the case of the escape-spiral phase, the functions
exhibit an oscillatory characteristic, the envelope of which is shown.
The major qualitative result to be gained from figure 11 is one that
may have been anticipated: the maximum sensitivity to thrust errors
occurs in the vieinity of t, when the vehicle is far from the planet

and moving asymptotically, and the sensitivity decreases to a negligible
amount as the final satellite orbit is approached. The guidance impli-
cations are clearly understood. Trajectory perturbations due to initial-
condition errors are most efficiently corrected early in the capture
phase, provided, of course, that accurate guidance information is
available to the vehicle at such large distances from the target planet.
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A quantitative measure of the sensitivity to thrust variations is
provided by the time integrals of the weighting functions:

BF 5B
. Bup |-9.03X10° | -3.44X10°
£
/ wiy At} = 8w | -6.15x107 -7.83x1072 (33)
t
© sre | 1.75x108 | 2.23x108

A simple calculation shows that a significant perturbation of the final
satellite orbit results from thrust errors as small as 0.1 percent in
magnitude and 1 milliradian in direction. For BF = 2.52&;0'5, the
final-velocity and -position errors are -20.9 meters per second,

-1.43%x10"% radian per second, and 4.05X10° meters, respectively. For
BB = 10'3, the final errors are -344 meters per second, ~0.783x10-% ra-
dian per second, and 2.25X105 meters, respectively.  In the last case

the eccentricity of the perturbed orbit is about 0.1, and the perigee
altitude has been decreased from the nominal 927 to 390 kilometers.

For reasons previously discussed, the second-order effects of

thrust-angle variations may be approximated by the product of SBZ and

the integrals of wyj given in the first column of equation (33).

Since the integrals of wyq] are of smaller magnitude than the integrals
of wjp, the second order effects are negligible for 8B < 0.1 radian.

Note. from eguation (33) that the ratios of the elements taken from

the second and third rows are both equal to —B.SIXlO‘lO. Thus, from the
arguments of the previous section Bdwe = -(me/rf)Srf for any small

values of constant OF and Bf.

Examples of Simple Guidance

Escape eguidance in one variable. - The basic result of the sensitiv~-
ity analysis of the escape-spiral trajectory is that a very small pertur-
bation in thrust magnitude is sufficient to rotate the asymptotic escape
direction through a large angle. Specifically, if a 0.l-percent system-
atic error exists and no corrective maneuver is made, the escape
asymptote will lie on the sun's side of the Earth's orbit and will be
directed. opposite to Barth's orbital velocity. This condition is
equivalent to a 25-percent loss in heliocentric energy, which would most
likely result in a mission failure. The objective of escape guidance
is to prevent such a condition from occurring.
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As an example, consider a simple guidance scheme that employs
constant thrust AF as the control variable and a single-variable guid-
ance criterion, namely, to null App. A constant-thrust-magnitude error
(unknown to the vehicle) of 0.1 percent is arbitrarily assumed as the
uncontrolled perturbing function, and repetitive corrective action is to
be taken at Z0-day intervals based on perfect trajectory determination.
The calculation is simplified by restricting the control interval At
to within 1 day, where the thrust weighting functions are essentially
constant over this interval. The details of the thrust-control system
are left unspecified, and results are given in the form of thrust
impulse AF At measured in newton-seconds. Depending on the control
required, then, consideration may be given to the possibilities of throt-
tling the low-thrust engine, shutting it off completely, or using a
medium~thrust chemical rocket.

The guidance equation involving angular position only may be ex-
tracted from equation (6). At the beginning of any control interval
tn the final-angular-position error predicted from measurements is

denoted as ©9p(t,). The result of equation (21) is substituted for

the integrand term in equation (6); hence, the guidance equation may be
written as

B ALy
AcPf(tn + Atn) = A‘:Pf(tn) + / wp AFy dt
tn

= 20p(ty) + Wél(tn)AFn Oty

Since A¢f(tn + Amn) = 0 is desired, the control thrust impulse is

AP AL A¢f(tn)
n=m "o Wéletnj

If corrective action were taken at the previous control instant tn,.3 to
null Amf, Amf(tn) is dvue to the perturbing function BF acting over
the interval (tn_l, tn). For the purpose of the calculation herein,

tn
t

n-1
wy1(tp)

AFn Atn = =-

Figure 12(a) illustrates the results of this simple-final-value
guidance scheme. A constant-thrust perturbation dF = 2.32X10-3 newton
(0.1 percent) and five control intervals at 20, 40, 60, 80, and 100 days
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are assumed. The uncorrected Apy characteristic is shown for compar-

ison. Although the last corrective action was taken at 100 days, the
angular-position error increases to an accepteble final value of less

than 1° during the interval 100 to 139 days. Since a positive pertur-
bation was assumed, the control impulse must be negative to make up for
the lag in angular position. This impuise increases 1n magnitude

slightly with each successive correction from 5. 08X10% to 8.34X10° newton-
seconds. Consider the correction at t = 20 days. If the low-thrust
engine 1s shut off completely (AF = -2.32), the shutoff time At is
2.18x10% seconds, or sbout 0.6 hour. If the engine is throttled down

by S percent, the control interval is about 12 hours.

The effect of the guldance maneuvers on the uncontrolled final
varisbles ®up, d®p, and - 6re is shown in figures 12(b) to (d). Control

stability results in each case, and a comparison with the uncorrected
characteristics shows a significant reduction in the final errors.

Midcourse guidance in two variables. - As a second example of how
the fundamental guidance equation may be used to prescribe corrective
maneuvers, guidance action taken during the nominal coast period of the
heliocentric-transfer phase is considered. The coast period begins
27.7 days after heliocentric injection, and this time instant is denoted
ta. If the powered period is extended over the interval (te, te + AL),
where At 1is arbitrary but less than several days, and 1f the thrust-
angle correction AR is constant during this interval, any two of the
final-velocity and -position error components may be nulled. The
position errors were chosen to be nulled.

The guidance equations involving position errors only are taken
from equation (6) and are written as

t AL
8rp(t,) +/ fz dt
t

c

t oAb
8e(ty) + / £, at
t

(o]

li

Srf(tc + At)

5¢e(t, + At)

1

where ®rp(t,) and &¢p(t,) are the final-position errors predicted at

time tc from navigational measurements, and the integrands f5 and

f, are given by equation (20). For the purpose of calculation, the
integrands may be approximated by dropping the terms Ki5/c, since
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results have shown them to be quite small in comparison with the other
terms. Therefore, since ®rp(t, + At) = dpe(t, + At) = 0 is desired,

and At is small,

. , vsp(te)
8re(ty) + Faeg At |z (to)eos AB + % sin AB| = O
and
S (t)+F Atr (t) Al +_V_V4_2(t_0>_ in A =0
Pl te des W41\ e/ COS p F sin AR} =

The solutions for AB and At are

wap (60)8rp(t0) - Wz (£,)80£(t,)

tan AB = :
a0 4P WSZth) WéZ(tc)
—~— d0p(ty) - — drp(t,)
Sre(t,.)
At = fi~e

wzo(t,.)
Fies EJBl(tc)cos AR+ _3_?_F__C__ sin AB:I

where the guadrant of A is chosen such that At is positive. The
effect of the corrective maneuver on the final-velocity errors may be
determined from

B 7
vip(t,)
dur(te + At) = dur(te) + Fgeg At [wy1(t,)cos A8 + T sin A8
L. -
wap(te)
dawg(ty + At) = dup(ty) + Fgeg At fipy (t)cos AR + ——5—— sin 48
L. -

As a numerical example, assume the final errors determined at time
te to be due to the residual escape-guidance errors and to a constant

O.l-percent-thrust-magnitude perturbation BF acting over the interval
to =0 to t,=27.7 days. The final-escape errors from the previous

section are transformed to initial heliocentric errors with the use of
equations (B6), (B7), (B12), and (Bl4). Then, from the results of the
heliocentric-trajectory-sensitivity analysis

dup(te) = 0.240 m/sec

dwe(t,) = -1.58x10710 radian/sec
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sre(te) = 2.08x108 m
8pp(ta) = =3.93X1079 radian
The midcourse corrective maneuver requires that
AB = 3.91 radiens = 224°
At = 5.66x10% sec = 0.656 day

The actual thrust direction is found by adding AB to the reference
thrust direction at 1, (see fig. 7(a)); hence,

B = 0.850 + 3.91 = 4.76 radians = 273°
The mass loss due to the corrective maneuver is
Am = m At

(-5.68 kg/day)(0.656 day)

I

Il

-3.73 kg
The final-velocity errors after the correction become
dur(te + At) = 9.83 m/sec

dwe(te + At) = 2.25x101L radian/sec

CONCLUDING REMARKS

A typical low-thrust Mars orbiter mission using the Snap-8 power-
generating system is studied from a guldance viewpoint. The mission
trajectory is divided into the three characteristic phases, namely, the
outward escape spiral, the heliocentric transfer, and the inward capture
gpiral. For each trajectory phase, the sensitivity of the final trajec-
tory state (velocity, position, and mass) due to errors in the initial
trajectory state and to thrust-vector errors is determined. This infor-
mation is expressed by the fundamental guidance equation, the derivation
and solution of which is based on linear perturbation theory and the
method of adjoint functions. In addition to providing a means of inves-
tigating the perturbative effect due to a number of error sources, which
is the major objective of this report, the guidance equation may also
be used to determine requirements for corrective guidance.

The escape-spiral trajectory is designed so that the hyperbolic
escape asymptote is pointed in a prescribed direction relative to the
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Earth-sun line. In other words, the last spiral turn must be oriented
properly. Since the vehicle makes several hundred revolutions about the
Barth in the process of escaping, it might be expected that the escape
direction would be highly sensitive to errors. This expectation is amply
verified by the results of the sensitivity analysis. For example, a 0.l-
percent error in either the initial-orbital altitude or the initial mass,
if left uncorrected, is sufficient to reverse the direction of escape.

A minimum error of 0.1 percent in the thrust magnitude acting over the
entire trajectory will also result in a 180° misorientation. The effects
of thrust-angle errors during the escape phase are found to be nonlinear
for errors larger than a fraction of 1°, so that second-order terms are
required. Results show, for example, that thrust-angle errors of 1/2°
and 2.8° acting over the entire trajectory cause the escape direction

to be in error by about 10° and 180°, respectively. Because of the

small control errors involved, specifically the thrust-magnitude error,

- the vehicle must have the capsbility of corrective-guidance programming.

The sensitivity analysis of the heliocentric transfer phase shows
that the nature and magnitude of trajectory perturbations are not unlike
thoge for free-fall trajectories. The exception, of course, is that an
error in the vehicle's mass will perturb the low-thrust trajectory. An
error of 10 kilograms at the initial~trajectory state results in a final-
position error of several hundred thousand kilometers. Either a 1/2O
error in the escape direction, a l-percent error in thrust magnitude, or
a 1/20 error in thrust angle, will result in final position and velocity
errors of the order of several hundred thousand kilometers and 10 meters
per second, respectively. These errors are of sufficient magnitude to
require midcourse corrective maneuvers.

The capture spiral, like the escape spiral, is highly sensitive to
errors both in the initial trajectory state and in thrust-vector control.
Theseé two phases of the mission are essentially duals of each other. In
the escape phase, the final velocity and radial position are not too sen-
sitive to guidance errors. The important parameter is the final angular
position, which is strongly related to the escape direction. In the cap-
ture phase, however, the final angular position is of little consequence
compared with the size of the final satellite orbit. Hence, the final
velocity and radial position are the important parameters, and results
have shown these to be very sensitive. For example, if the initial-
velocity magnitude and direction were in error by only 1 meter per second
and 1 milliradian, respectively, and if the reference thrust program
were followed exactly, the vehicle would spiral down into the Martian
surface instead of establishing the nominal 927-kilometer circular orblt.
A constant-thrust-angle error of only 1 milliradian acts to decrease
the final perigee altitude by about 400 kilometers.

In summary, the results of this analysis indicate that the low-
thrust trajectory is extremely sensitive to relatively small error
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magnitudes. It should not be concluded, however, that accurate guidance
is unachievable. As the trajectory is affected by error perturbations,
it is likewise affected by controlled perturbations, that is, by correc-
tive thrust programming. The proper conclusion to be drawn from this
study is that the electrically propelled space vehicle incurs the Job

of repetitive trajectory determination and corrective guidance maneuvers.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, July 16, 1962
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APPENDTX A

PERTURBATION ANATLYSIS

The motion of the vehicle during each phase of the mission is de-
scribed by a set of nonlineay differential equations. Consider that a
solution of such a set corresponding to a specified thrust program and
satisfying prescribed boundary conditions has been obtained and is
termed the reference solution. If the major assumption is made that
extraneous perturbations (e.g., guidance errors) are sufficiently small
so that the actual vehicle trajectory does not vary significantly from
the reference trajectory, it is possible to study these variations and
the required corrective maneuvers by linear perturbation techniques.
The perturbed differential equations of motion represent a linear system
with time-varying coefficients, which are expressed as known functions
of position, velocity, thrust and gravity forces, and mass along the
reference trajectory.

The following analysis shows the derivation of the linearized
system equations and the use of adjoint methods in obtaining the varia-
tional solution and expressing the fundamental guidance equation. In
the following discussion, the symbol & is used to represent small
variations from reference quantities, and matrix notation is used for
the purpose of compactness and ease in algebraic manipulation.

System Equations

During each phase of the mission, the vehicle is assumed to travel
in a vacuum under the influence of an inverse-square central gravita-
tional field in addition to its own thrust acceleration. A two-
dimensional geometry is used, and the vehicle motion is described in a
rotating polar coordinate system centered at the appropriate central
body. With reference to figure 1, the differential equations of motion
to be satisfied along the flight path are given as

c 2 M F
i = rw = + = sin B (1)
. ~2um F '
D = - +ECOSB (2)
T =u (3)
¢ =w (4)
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Differentiation with respect to the independent varisble time is denoted
by a superscribed dot. The state variables of interest are radial
velocity wu, angular velocity , radial position =r, angular position

¢, and mass m. The propulsion or control variables are the thrust
magnitude F, and the thrust angle B, which is measured with respect

to the local horizontal (circumferential) direction. The effective jet
velocity ¢ is equal to the product of specific impulse and a conversion
factor, and is considered constant herein.

At this point, it is convenient to define the following column
matrices or vectors:

X2 @ 1 F
Xy ® Y2 B
5] L
and to write equations (1) to (5) as
% = g3(Xqs « « «s X5, Y1 Vo) i=1, « . ., 5 (A2)

The perturbed system of equations is obtained by taking the first-order
variations of (A2)

5 2
Bgi Bgi (A3)
bR = ) S0t L%y =L ®
L Y J
j=1 j=1
which is, in matrix notation,

L 8% - MBF = BF (As)
at Y

where A and B are (5 by 5) and (5 by 2) coefficient matrices, respec-
tively, whose 13j%% elements are given by agi/axj and. Sgi/ayj,

respectivelys thus,
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FO 210 <§(§—M-+w2) 0 :—Ez-:sinB
iy m
=2 -2 2 » -
og, r mr rm
A = 5_1 =|1 0 0 0 0 (A5)
».
J 0 1 0 o} 0
0] 0 0 0 0]
Fsin B F cos B
m m
cos BB ~F' sin B
a rm rm
€i
B=|5—| = 0 0 (A6)
0 0
-1
| o

Note that A and B are time-varying matrices evalusted along the
known reference trajectory.

Solution by Adjoint Methods

The solution of equation (A4) can best be facilitated by the method
of adjoint functions, as suggested in reference 3, by introduction of g

5 by 1 vector of Lagrangian multipliers Ay, which satisfies a system
of equations defined to be adjoint to equation (A4):

d = ==
337\1+A7\i=0 (A7)
where
M1
M=
A5

In equation (A7,).AT is the transpose of the matrix A. The desired
relation between equations (A4) and (A7) is obtained by taking the _
scalar product of (A4) with A, the scalar product of (A7) with Bx,

and adding the results:
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- d = = - = - - _ = —
M'(ag&x) - Ay - (&B%) + (:1177‘9 - 3x + @T%i>-8x=7\i - (B3Y)
It is easily shown, however, that

@TX1> - 5%

A - (B0F) = BTh) - oF

Therefore

4 (N * 8%) = @TXD - By | (A8)

W= = BTN (a9)
W32

and integrate both sides of equation (A8) between the general time t
and the nominal final time tf:

t .
£
A (te) - 8R(tp) = M (%) « BF(t) + / (W; - 8y)dt (A10)
t

Equation (A10) expresses a linear function of variations in final
conditions in terms of variations in state variables at any point along
the path and the integrated effect of future thrust variations over the
path. For the purpose of analysis it is desirable to separate the effect
of variations on each quantity individually. This is possible by a
proper interpretation of the boundary conditions on the Lagrangian multi-
pliers. For example, let the variation ©x; be of interest at the final

time tge. If the following boundary conditlons at ty are specified,
Mi(te) = 153 Mjltr) = O for J# i (A11)
the adjoint equations (A7) can be integrated backward from tf to yield

numerical values for the multipliers at each time instant +t. The varia-
tion of interest is then given explicitly from (A10):
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T
dx1(tr) = A (t) « 8X(t) + / (Wi - 8y)dt (a12)
t

If this procedure is followed for 1 =1, . . ., 5, the complete solution
for the variations in final-state variables may be expressed in the
matrix form

tr
8% (tp) = A(£)3X(t) + / (WsF)at (A13)
t

where the rows of A and W are made up of the elements of N and
Wy, respectively:

=7 T 1 1T "
A1 M1 M2 - - N5 W Wi W12
7\21 . . . 7\25
A =] . = 3 W=, = (7)
Ms ] s Ass | V5| L vs1 vs2

Because of the form of equation (7), the elements of A can be inter-
preted as partial derivatives or sensitivity coefficients; thus,

axi(tf) i=1, . . ., 5
Mag(e) = %38 j=1, ..., 5 (a14)

Now that the general results have been established with the help of
matrix notation, it would be well to write out equations (A7) and (A9)
in terms of the variables of interest in this study. The set of adjoint
equations is determined from (A7) and (A5):

2
A1l = <?w> Mz - M3 (8)
s 2GM 2 /200 F cos B
Nz = - <r5 * °°>7\i1 - <r2 ahane-w >7\.12 (10)
ﬂi4 =0 (ll)

N _ (F sin B F cos B\«
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The weighting functions are found from (A9) and (A6):

s A Az
il . iz iS5
Wil = T Sln.B + p— cos B - A (15)
A
_F iz .
Wig = nléﬁl cos B - —= sin B) (18)

. Nonlinear Thrust-Vector Perturbations

The previous results were derived with consideration glven only to
first-order variations in the state variables and the thrust vector.
It is possible that relatively large variations in thrust magnitude and
direction will occur in such a way that the deviation between actual
and reference trajectories still remains smallj that is, the lineariza-
tion of state varisbles is still valid. The integrand in equation (A13)
must be modified from its linear form to account for this situation.

When exact variations in thrust magnitude and direction (AF and
AB) are considered, the right side of equation (A4) becomes

F—-;—gsin(B+AB)-£sinB
ﬁi;%;éil cos (B +AB) - ;% cos B
BSY ~ 0
0
(F+AF)  F
| " T T o J

Correspondingly, from the definition of equation (A9), the integrand
term of equation (Al2) becomes

As
vy ~8Y) > £ = _;_1 [(F + AF) sin (B + AB) - F sin Bl

As As
+ 22 [(F + AF) cos (8 +2) - F cos gl - =2 [(F +4F) - F]
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Equation (Al3) then becomes

e
8%(te) = A()8X(t) + / (fg)at
t

(18)
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APPENDIX B

ERROR TRANSFORMATION BETWEEN ESCAPE AND
HELIOCENTRIC MISSION PHASES

The relations between final escape errors and initial heliocentric
errors are presented. The Earth-referenced velocity and position com-
ponents at the termination of the escape phase are denoted as upp,

Wpp, Tep, and Qpp and the sun-referenced components at the initiation
of the heliocentric phase as ugs, ®gzs To2» and @gz- Only first-
order variations in uUpy, Wg) and rp are considered; however, large
variations in Qg are to be allowed.

Position Errors

The geometric conflguratlon of the Earth-centered reference position
rfl and the actual position rgp * Srfl is shown in the following

sketch. The coordinate frame has i, as a unit vector away from the

sun, and i@ as a unit vector in the direction of Earth's orbital
velocity.

—\—ffl + 5\7f1

I

51‘02

L

\_Earth
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The gquantities bl and sq are components of the reference-position

vector. Since it has been arbitrarily assumed that the hyperbolic
escape direction is parallel to ;$, the asymptotic displacement of the

escape hyperbola is represented by by
The heliocentric position of the vehicle at time tep 1S
Toz = Tg * Tr1

so0 that

BTop = 8Te) = (8102)Ty + (rp2d0pz )T

The components of 8?62, which may easily be found from the sketch, are
given by
by )
drop = oy Efl(cos Mppy = 1) + cos Amf16rfi] - 51 sin Appy (B1)
1
r028<p02 = ?f—l I:I‘fl(COS A(pfl - l) + cos A{pflf)rfl] -+ bl sin ﬂpfl

(B2)
where
T o
£1°f1
by =ral5— (B3)
1
1 £l Vfl
Top = Tp TP (B5)
If Appy is very small (Appp ~ 8¢py), equations (BL) and (B2) are
approximated by
by

s

1
X 5o8Pgs = <;;I> Brey + (bl)awfl (B7)
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Positive Apg; 1s measured counterclockwise, so Apgp) 1s a negative

angle, as indicated by the sketch.

Velocity Errors
The heliocentric velocity of the vehicle at time tgy 1is

Vog = Vg + Vg

so that
Vog = BV = (Bugp )T, + 8lro00)Tg
where
8(Tga2) = Tozd%z T ©0z®Toz

The magnitude of SVfl mey be found as follows:

2 2 2
Vg = ufp + (reopr)

2 2
ufy, rfl‘”fl) (rfl‘bfl)
&V = [==] du., +|—=—=] dwe, + \——=/ dr
1 <vﬂ> 1 <vﬂ 1. Ve, £l
or from (B3) and (B4) r (B8)
8 . 4.
1 1%r1 :
5V = (=) due + (bq)8 + )’61‘
fl <r. ﬂ> £l 1/0%¢e] <r 1 A

The angle between the velocity vector and the Earth-centered local
horizontal is denoted by y in the sketch. The variation in this angle
may be expressed in terms of dugpy, dWpy, and. drg  as follows:

N\

tan v = el
re10e1
U.fl e
&Y = coséy <rﬂwﬂ) Bup, - s)Ben - (2o drey
171 171
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since
T ®p1
cCos ¥ = v
1
Te1®r1 upre U Of],
BY = < 2 ) dupy - ( V2 ) o%1 - ( ve. ) %' (89)
f1 1 f1

Now, the directional variation between Vfl and vfl +'6Vfl is in part
due to By and in part due to Appy. Specifically, the angle between
the latter vector and E¢ is ¥r - Appp measured counterclockwise

positive from Vfl + BVfl. Now the hellocentrlc components of B £l

may be expressed as

B(rpmpp) = (Vg + 8V )eos(dy - &ppy) - Vg

Since B®Vg) <K Vg and By is very small, the following approximations
are valid:

5\102 = VflST coSs A(Pfl - Vfl sin ﬂpfl
5(1‘02(1)02) = Vﬂ(COS Acpfl - l) + SVfl cos A(pfl + Vﬂa‘r sin A(pﬂ

With the use of equations (B3), (B4), (B8), and (B9), the previous
expressions becone

b 8
1 1%£1 .
Bugz = <§"> Bugy - (s1)00g - ( ey > Brep | cos &bp1 - Ve Sln‘Amfl

(B10)

1 .
5(1’02@02) = ;‘E (Sl cOSs ﬂpfl + bl sin A&pfl)ﬁufl

+ (bl coSs Acpfl - Sl sin Aapfl)acofl

Cp

+ ;E% (b1 cos Appy - s1 sin Apep)drey + Vep(cos Appp - 1) (B11)
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If App is very small Agpp — 8Qpp, equations (B10) and (B1l)
become

) = 1—01— ) (s1)8 P1771 5 (Ve )8 (B12)
Y2 = Tl Upp = \8p/o®pp - Tr1 ey = W1 /00g1

8(rgotpa) = 8Vep (B13)
The variation &uwpz is found from (B6) and (B8)

sy by
dup2 = hrflroz dupy - _r—o; Bwpy

by

Wp281
== (o = Wpq )BT + |—] 89 (B14)
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Thrust angle, B, radians
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(a) Thrust-angle program.

Figure 5. - Characteristics of escape-spiral reference trajectory.




Radial velocity, u, m/sec
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Angular veloeity, w, radians/sec
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Weighting function, w1, (m/sec)/(newtons)(sec)

Weighting function, wy,, (m/sec)/(radians)(sec)
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Weighting function, w,q, (radians/sec)/(newtons) (sec)
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for escape-spiral phase.
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Weighting function, w,., radians/(newtons) (sec)
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Angular velocity, w, radians/sec

Radial position, r, m
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Sensitivity coefficient megnitude, A
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phase.
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Sensitivity coefficient magnitude, A
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Weighting-function magnitude
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Thrust angle, B, radians
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Radial velocity, u, m/sec
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Angular velocity, w, radians/sec
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Weighting function, woo, (radians/sec)/(radians)(sec)
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Figure 11l. - Concluded., Thrust-vector welghting
functions for capture-spiral phase.
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Figure 12. - Simulated escape guidance maneuver; thrust-magnitude
perturbation, 8F, 2.32x10~3 newton.
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