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SUMMARY
[N25

The basic theory of space-charge flow is described, and three gen-
eral methods of solution are discussed. ©Specific space-charge-flow ge-
ometries are described in detail; these include flow between coaxial
cylinders, concentric spheres, coaxial cones, hyperbolic flow, flow be-
tween inclined planes, and circular flow. Since all the solutions dis-
cussed are for space-charge-limited flow, a discussion of partial space-
charge flow is presented. The Pierce method of electrode design is de-
scribed, and some practical limitations of this method are discussed.
Electrode shapes for various space-charge flows are shown.

INTRODUCTION

The performance and design requirements of electrostatic rocket
engines have brought a new emphasis to the theory of space-charge flow.
Considerable reductions in engine size and substantial improvement in
engine efficiency may be gained by the use of ion and charged-particle
accelerators operating with current densities at or near the space-
charge limit. Such high current densities bring about definite space-
charge effects, so that Poisson's equation must be used to describe the
potential distribution in the engine accelerator. In addition to the
requirement of high current density, the electrostatic rocket engine
must be capable of operating for very long times, of the order of years
for interplanetary space missions. Such long-duration operation re-
quires near-perfect "ion optics" to keep electrode sputtering erosion
to reasonable limits. Since the ions, -or charged particles, are accel-
erated to kinetic energies in the range from a few thousand to hundreds
of thousands of electron volts, each ion striking an electrode may
sputter away several electrode atoms. For these reasons, some estimates
of the degree of perfection of ion optics place an upper limit of ion
impingement of less than 0.0l to 0.1 percent of the total ion beam to
keep erosion to a reasonable level.



The space-charge-flow problem in electrostatic rocket engines is
characterized by the necessity for the ions, or charged particles, to
leave the engine permanently through an open exhaust aperture, as shown

in sketch (a):
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Since the ion source is at a potential considerably higher (or lower,
for negative ions) than the potential of free space, the equipotential
lines in the accelerator will tend to bow, or bulge, out of the exhaust
aperture. This aperture effect not only reduces the current carrying
capacity of the accelerator, but also introduces another complicating
boundary condition on the space-charge-flow equations.

The complexities of the space-charge flow in electrostatic rocket
engines indicate that complete analytical design of space-charge-flow
accelerators will be very difficult. For this reason, recourse has been
made to analog or empirical methods (i.e., experimental "cut-and-try").
Not only are these methods inadequate for extrapolation or scaling of
engine designs, but in addition they do not offer sufficient basic under-
standing of space-charge flow to allow positive prediction and evaluation
of the effects of configuration changes in design optimization studies.

It is evident that a convenient, universal method for the analytic
solution of the space-charge-flow problem would be of great value in the
design of electrostatic rocket engines. The survey of existing literature
on space-charge flow reported herein has yielded no completely universal
analytic method, but some progress has been made in that direction.




The first section of this report is devoted to a discussion of the
three methods of solution that have been used to date for space-charge-
flow problems. The remainder of the section on space-charge-flow theory
is a compilation of analytic solutions for specific space-charge-flow
geometries found in the literature and also includes a calculation of
the flow between coaxial cones that was not previously available.

Since the analytic solutions to space-charge flow usually assume
that the flow fills all space, it is necessary to take a segment of this
flow and to provide electrodes external to the ion beam to force the flow
to conform to the theoretical pattern. The second section of this report
is devoted to the problem of electrode design. The method of Pierce is
described and is applied to a number of space-charge-flow geometries to
obtain electrode shapes. Some of these shapes are accurately recomputed
using techniques found in the literature, and others appear not to have
been computed previously. Some practical limitations to the application
of space-charge flow theory and the Pierce method of electrode design
are discussed.

The parameters of the various space-charge flows examined in this
report may be used to determine the theoretical performance of electro-
static rocket engines. An analysis is made in reference 1 in which the
various space-charge flows are compared in terms of relative engine per-
formance.

The work described in this report was carried out as part of the
electrostatic propulsion research program of the NASA Lewis Research
Center.

SPACE-CHARGE-FLOW THEORY

In the study of the performance of ion engines the analysis of
space-charge flow is very important. Since the early studies of Child
(1911, ref. 2) and Langmuir (1913, ref. 3), who solved the problem of
space-charge-limited flow between parallel plates more than half a cen-
tury ago, there have appeared extensive publications on space-charge ef-
fects in certain new geometries. Most of the early analyses (refs. 2
to 5) have been concerned with one-dimensional cases, and it has been
only in recent years that two- and three-dimensional cases were solved
or solutions were suggested (refs. 6 to 13).

In most ion engines, ions move as a very nearly continuous fluid in
an electrostatic field in which the magnetic force is negligible. The
flow of ions is assumed to form a system of curves (streamlines) filling
a portion of space such that the velocity is a single-valued function of
position.




The fundamental differential equations governing steady-state space-

charge flow are:

Poisson's equation:

Fo = £ (1)
€
o]
Equation of motion:
m = qw (2)
Conservation of charge:
v:-3=0 (3)

(Note that © = ¢, - @.)

It is mathematically convenient to assume that the flow is space-
charge limited. In this case the velocity and electric field will both
be zero on the emitting surface. Under these conditions it can readily
be shown (ref. 9) that the flow will be irrotational; that is,

IXT =0 (4)

In this case, the velocity can be expressed as the gradient of a
scalar action function:

V=W (5)

Combining equation (5) with the vector identity P (v - V)V yields

T = (W - )W (6)

Application of equation (4) to the identity

(W - VW =2 AW - W x (v x W)

gives




Substitution for ¥ from equation (2) yields

) = (%g-)w (8)
Hence,
(w? = (Lo (9)

where the constant of integration is included by letting & = Py = @

The five equations used to formulate space-charge-flow problems are:

Hamilton-Jacobi equation:

a 2
(W)" = (—ﬂ)cp (9)
m
Poisson's equation:
2
vo = £ (1)
o
Total ion energy:
Zmf - g0 =0 (10)
Conservation of charge:
e =0 (3)
Vector current density:
J=ov (11)

Analytical Methods

Historically the first analytical solutions of the space-charge-flow
problem were for particular cases of rectilinear flow between specified
equipotential surfaces. These are flow between infinite planes (refs. 2
and 3), flow between coaxial cylinders (refs. 3 and 4), and flow between
concentric spheres (ref. 5). One of the first attempts at a general so-
lution of the space-charge-flow equations was made by Spangenberg (ref. 6)
following his formulation of the general equations in terms of the action



function. His multidimensional analysis yields a partial differential
equation in terms of the action function, which is much too unwieldy
for exact solution.

In 1949 Meltzer (ref. 7) introduced a unique approach to the solu-
tion of space-charge-flow problems. By his method the space-charge-
flow parameters are expressed in terms of the acceleration and velocity.
Meltzer shows that there are two conditions necessary for a space-charge
solution to exist; namely,

UX7V =0 Gl
ve (3. =0 (13)

Using the relation v = (¥ - V)V to obtain the acceleration from a pre-
viously assumed velocity, v and Vv are tested in equations (12)

and (13). If they satisfy (12) and (13), they define a type of space-
charge flow whose parameters are as follows:

o = (3
“-@
@:(%)f'?r’- ds (16)

3 = ()ecito - =) (17)

(v - '3) (14)

(15)

This method leaves one big equation unanswered. How may a velocity
function be found that will satisfy equations (12) and (13)? The search
for an answer to this question led Meltzer (ref. 11) and later Rosenblatt
(ref. 12) to develop the trajectory action function method, which is more
readily applicable to space-charge-flow problems than any previous
method.

In the action function method of Meltzer and Rosenblatt it is as-
sumed that the flow of charged particles is laminar, and that an orthog-
onal curvilinear coordinate system

E(X:Y:Z) (183)




n(%,¥,2) (18b)
t(x,7,2) (18¢c)

can be found such that the ion trajectories are completely described by
variation of the parameters n and ¢ (i.e., n = const. and { = const.
specify a particular trajectory). Then the orthogonal surfaces

t = constant will be surfaces of constant action, and the Hamilton-

Jacobi equation (9) becomes
36 - @)
LN

where hl is the scale factor corresponding to the coordinate €. Rosen-
blatt shows that if a function T is defined such that

-
= hio (20)

the general differential equation for space-charge flow can be written

I‘l/z[;%(c ) . BI‘] = K(n,L) (21)
where

. =32h?3 (22)

hy

hoh

B = <T%%;§Sﬁ(£§) (23)

hoh
K(n,t) = — iy (24)

2q

The differential equations for several known space-charge-flow cases are
derivable from equations (21), (22), (23), and (24). The variables ¢,
n, and ¢, the scale factors, and equations (21) to (24) are tabulated
for certain of these cases in table I. It is still necessary, however,
to apply the classical techniques to obtain final solutioms.



Particular Solutions of Space-Charge Flow

It is of interest here to discuss particular solutions of the differ-
ential equations listed in table I and to express these solutions in
nomographic form. In addition to these previously listed space-charge-
flow solutions, there are two other known analytic space-charge flows in-
cluded in the following sections.

Rectilinear flow between infinite plane electrodes. - Sketch (b)
illustrates rectilinear flow between plane electrodes.
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In 1911, Child (ref. 2) published the solution to this case. From his
analysis he obtained what is now known as the Child-Langmuir space-
charge law:

- 0)3/2

where Pg is the potential at x = O. When the constants are written:

c ‘/%1 - 5.467x10"8 a~1/2

(e}

(IS




where A is the molecular weight per ionic charge, equation (25) be-
comes

3 = 5.467x10°8 A'1/2(¢o 4 @)5/2;62 (26)

A nomogram relating Jj, (9, - ®), A, and x 1is shown in figure 1. The

velocity v as shown in equation (10) is obtained for this and each
subsequent case from the nomogram in figure 2.

Rectilinear flow between coaxial cylinders is shown in sketch (c).

ﬁég%
s R

Diverging flow Converging flow
(c)

In 1913 a paper by Langmuir (ref. 3) was published that contained an
approximate solution for this type of flow. The current density and
current per unit length may be written

S

-Equipotentials

j = 5.467x1078 A'l/z(mo - )3/2r7272 (27}

ey

= 2nrj = 3.43x10°7 A'l/z(@o - @)B/Z(rﬁz)_l (28)

where is the potential at r and B 1is a nondimensional function
Po o

of r expressed as a power series in ln(r/ro).

In 1923 an improved solution by Langmuir and Blodgett (ref. 4) was
published. Two series representations for B were given. One of these
most useful for electrode design is:
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2 e
+ 0.0lB?(ln ——) e ] (29)

)

T -1/2 r
B = (-) léjlji)-FO.l(ln ——)
To T, e
The Langmuir function Bz is plotted as a function of r/ro in fig-

ure 3 and is tabulated in table II. Note that Bz for r/ro = AL s

for divergent flow (from the inner to the outer cylinder), and B2 for
r/ro <1 is for convergent flow. The numbers in table II were computed

from equation (29) using all 14 coefficients given by Langmuir in refer-
ence 4. These numbers agree well with those shown by Langmuir. Nomo-
grams relating J/Z, (@O -t AT, r/ro, and Vv are shown in figures
2, 4, and 5.

Rectilinear flow between concentric spheres. - Sketch C also depicts
rectilinear flow between concentric spheres. The solution for this case,
due to Langmuir and Blodgett (ref. 5), was published in 1924. The cur-
rent density and total current may be written

j = 5.467x10~8 A'l/2(¢o - @)S/Zr’za'z (30)
J = 4nr?j = 6.87x10°7 A'l/z(cpo - 9)3/22 (52)

where o 1s a nondimensional function of r expressed as the power
series

2 3 4
o = (ln 3—) ¥ 0.5(1n —r—> + 0.075 (ln L) . o.014_.<1n —r—) Ly
ro TO Ty ro

(32)

The Langmuir function a? is plotted as a function of r/ro in fig-

ure 6 and is tabulated in table ITI. As in the cylindrical flow case,
mz for r/ro > 1 corresponds to diverging flow and az for r/ro <

to converging flow. The numbers in table IIT were computed from equa-
tion (32) and agree well with Langmuir's data.

Nomograms relating J, (@o - @), A, r/ro, and v are shown in

figures 2, 7, and 8.
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Circular flow. - Circular flow is depicted in sketch (d).

a—

The solution to this case is given by Meltzer in reference 11l. The cur-
rent density may be written

e
I valowld A“l/z(cpo E cp)3/2(r sin —ZQ) (33)

where ¢ is the potential at (r,6) and J 1is the current density in
the current sheet r. Figure 9 is a nomogram relating Jj, (¢, - ®), A,

r, and 0. The velocity can be obtained from figure 2. This flow has
several peculiarities that are not evident from equation (33). Since

these are discussed in reference 11, they will only be mentioned here.
First of all, the ions accelerate through an angle of 60° and then de-
celerate, reaching zero velocity at 120°, Since the equipotentials do
not lie along a radial plane except at 6 = 0° and ¢ = 120°, the ve-
locity varies along any radial plane in the flow. Finally, along any

radial plane the current density J is proportional to l/r5. This
poses a very difficult problem in ionizer design.

If a beam is considered that is bounded by an inner trajectory of
radius a and an outer trajectory of radius b, the current per unit
length may be written

4 -2
% = 3.08x1078 A'1/2<%> (1 = %)(cpo - g)3/2 <Sin 3—29) (34)

This equation is used in the electrode design section.
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Hyperbolic flow. - Hyperbolic flow is shown in the following sketch:

Vi

_rEquipotentials
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The solution to this case was obtained by Meltzer (ref. 7) and later by
Rosenblatt (ref. 12). The space-charge-limited current density may be

written:
3/2_. -2
- ) /2, (35)

j = 4.92x1077 A_l/z(cpo

where ¢ 1is the potential at radius r. This equation is expressed in
terms of a nomogram in figure 10. It is interesting to note that J
along any given trajectory is a function only of the radial component of
the trajectory. If the bounding trajectory is defined by the equation
e (%/X), the current per unit length for one quadrant may be written

(36)

ey

7\_2>-3/2

= 4.92x107/ A'l/zx(@o - cp)s/z(xz +
X

where Z is measured normal to the (x,y) plane.
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Flow between two inclined planar electrodes. - The configuration of
two inclined planar electrodes presents a very interesting problem of
space-charge flow applicable to ion engine design.

Walker (ref. 9) solved this problem by first assuming negligible
space charge. In this case the potential distribution between two in-
clined planar electrodes is known and can be written:

®s

@:-;9 {(B7)

By substituting (37) into Hamilton-Jacobi equation (9) in polar coordi-
nates, equation (9) then becomes

I e R %

Because the right side of equation (38) is independent of r, so must be
also the left side of (38). Therefore, Walker (ref. 9) sought a solution
of the action function in the form

W = rz(6) (39)
By substituting (39) into (38) the Hamilton-Jacobi equation becomes

i i (@. 29)9 (40)

m o

where 2z = %¥ and z' = % %g. Equation (40) was solved by Walker in

the form of a power series.

The components of velocity are then given by

_M_
Vr—g—
Vol = = g 7
6 " T 6
Heneer,
g
i 7
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and after integration the trajectory equation is obtained:

6
T z
pl e 2 3g
. exp / — (41)

0

where (rO,O) is the initial point of a particular trajectory, and (r,6)

are the coordinates of the remainder of that particular trajectory
(sketch (F)).

//T~Equipotentials

Equipotentials—r\\
/

The angle between the trajectory and the normal to equipotential is
given by

dr
r dg

tan @ = = é% (42)

In the case of space-charge flow between two inclined planar electrodes,
Walker assumed an action function in the form

W = rg(0) (43)

By substituting (43) into Hamilton-Jacobi equation (9), equation (9) be-
comes

Bl oB L (%1)@ (24)
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Now the left side of equation (44) is a function of € only; and,
hence, & must be a function of 6 only.

By expressing Poisson's equation (1) in polar coordinates, it
follows that

"
eo®

o

(45)

p:

The components of vector current density are

I

s eo® g

it rZ
and

4i5, JEORES

D= e

C] r2

By substituting these components into the equation of conservation of
charge (eq. (3))

P 1 9Jp
Frd S P R
Walker obtained
=1} (o"g') - o"g = O (46)

ae

By eliminating ® from equations (44) and (46) an ordinary fourth-
order differential equation in g 1is obtained in the form

11 ng . sa
g’”'+—§§'[%(57— + 1) +_§i__7545_] -g=0 (47)
g el

Any solution of this equation defines a possible motion. In a fashion
similar to that in the space-charge-free case the trajectory equation

is given by
6
i g
ey S 36
v exp J/. = a (48)

(©)
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and the angle between the trajectory and the normal to the equipotential
is given by

dr
r do

tan w = = é% (49)

Ivey (ref. 10) made a detailed calculation of this problem and his re-
sults of equations (41), (42), (48), and (49) are presemted in figures
15 andii. 2,

The space-charge-limited current density of the emitter as calculated
insreference 1OFiS

1/2 43/2
=5 (2 ‘I’ré 7(a) (50)

where F(a) could be defined as a perveance function depending on the
magnitude of the angle o shown in sketch (f). At any place in the
flow the current density may be written

dol8)

J = r7ro

Substitution into equation (50) yields

-4 @7 L Do) (=)

ae ©)

where ¢ 1is the potential difference between 6 = O and 6, and the
range of 6 is 0 <6 < a. A nomogram of equation (51) is shown in

figure 13 where -g eov-%q = 5.467x10~8 A'l/2 for singly charged ions.

The normalized potential distribution for space-charge-limited flow as
a function of normalized angle 9/@ is shown in figure 14 for several
values of o. It is interesting to note that for o = O the potential
distribution is that for two parallel planes and, further, that the po-
tential distribution for a < H/E is not greatly different from that
HoraSai="02

Flow between two coaxial right circular conical electrodes whose
vertexes coincide. - In this configuration it is also assumed, as in the
case of the flow between two inclined planar electrodes, that the end
effects can be taken care of in all directions. Walker has outlined the
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procedure for the solution of this problem for the space-charge flow
(see sketch (g)). The authors of this paper assumed an action function
in the form

W=z - s6) (52)

1 ® 7(%) =
o= 0 ¢ = P, o

Kino and Harker (ref. 13) in their analysis used a similar form of action

function W = r? . s(6) and investigated cases for n < 1. Some of the
cases investigated in their paper show beam trajectories that pass through
potential minimums (accelerate-decelerate system). In the case of

W=r . s(6), investigated herein, the beam trajectories are continuously
accelerated (accelerate system).

By substituting (52) into Hamilton-Jacobi equation (9) this equa-
tion becomes

ey iend (&1)(? (53)

m

As in the case of the flow between two inclined planes, it was deduced
that ¢ has to be a function of € only.
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By expressing Poisson's equation (1) in spherical polar coordinates,
it follows that

1 o . "
o = 32 v v) (54

The components of the vector current density are

and

: )
; =ﬁ(_@_ i cp")
r r2 tan 6

Gt

(55)

sl e Q' "
Jo = 2(tane+‘P)
r =,

The conservation of current equation (3) in spherical polar coordinates
s

- <2<jr 3y Jo ) 539)

e e T ten B ame ] = © (56)

Substituting equation (55) into (56) gives then the condition for which
div j dis zero, namely, when

cotiB(Zpes! + @ls") +@Me! + g% - gts' =0 (5%)

By eliminating ¢ from equations (53) and (57) a fourth-order nonlinear
ordinary differential equation in s is obtained in the form

1 " n n
g™t — _ oot 9[2(5'" +s') + 5-:—, (s" + S)] - -—2? [ZSYn o B ;S,”" S)]

g m
= S( - ?—) - 3" (58)

Equation (58) was solved numerically for s(6) and s'(6), which were
then used for determination of ion trajectories.

The components of velocity are




S

and
SR
Ve—r'é—e-—s
and
LR T
r
and by integration
6
ﬁl = exp Ei a6 (59)
T 0

The angle between the trajectories and the normals to the equipotentials
is given by

dr S
Tan yr = = e = (60)
The current density is given by
; .2 N
3] = Ydpet Jg (61)

To obtain more accurate values of Jj,, the current density at the emitter,
the current density Jj, at the collector was first calculated from

equation (61). The current density at the emitter was then calculated
from

32

: L 4 2q @

Jol Ja(—> i '§ €0 -I_T% rz S(G'Z b Gf]_) (62)
o

The solutions of ion trajectories and the angle between the trajectories
and the normals to the equipotentials are presented in figures 15 and 16,
respectively. A nomogram of equation (62) is given in figure 17. The
normalized potential distribution as a function of normalized angle

(6 - ay)/(ap - a;) for several angles (ap = a7) is shown in figure 18.
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Partial Space-Charge Flow

As early as 1920, Jaffe considered the plane diode under partial
space-charge conditions where the current is less than space-charge
limited, sometimes called temperature or flow-rate-limited condition,
(ref. 14). Since that time there have been several papers on this sub-
ject, two of which will be noted here. Brubaker (ref. 15) and Ivey
(ref. 16) derived the equations governing the flow of electrons or ions
under partial space-charge conditions independently at about the same
time. Brubaker made use of normalized variables representing current
density, voltage, distance, and emitter field, so that these variables
range between zero and unity as the current density varies from zero to
the space-charge-limited value. He defined the normalized variables as

o Current density
~ Space-charge-limited current density

J
Is

<

T = Voltage at distance X from emitter -
~ Voltage at collector, at distance X, from emitter = V,

= _ . Distenee from emitber -~ _ X
~ Emitter-collector spacing X,

— _ Gradient at emitter under influence of space charge _ Eg av
LAk Gradient at emitter in absence of space charge  \Vg/\dX /x-0
The previously mentioned assumption still holds, namely, zero velocity
of the particles at the emitter.

The potential distribution and electric field are fully defined by
equations (63) and (64):

16(357/2 - 32%2) = 27(F2 - T (63)

av _ G 1SR (64)
X o7g? - 24302
The relation between the current density 3 and the electric field at

the emitter is given by equation (63). By setting V =X =1 +the con-
dition at the collector is given by

T2+ (3-27)EF e/ (65)
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Equation (65) is plotted in figure 19. It is interesting to see that
the emitter field rises rapidly as the current is decreased from space-
charge-limited values. Decreasing the current 10 percent from the space-
charge-limited value causes the field to increase from zero to more than
25 percent of its value in the absence of space charge.

If equation (63) is solved for specifiec values of the electric
field 1 @and the current density J or, in other words, if 71 = 7g

and J = J, are held constant, equation (63) gives a relation between
T and X. By substituting ?o and Eo into (63) and rearranging terms,
equation (63) becomes

277 (83071/2 > (msovl/z )l/ :
e =R e LR

5230 or o i

(66)

Equation (66) is plotted in figure 20. It is seen that the maximum de-
pression of the space potential for space-charge-limited conditions
(JO = 1) oecure at x = 27/64 where the normalized slope is unity. By

using the data obtained in figures 19 and 20 in equation (64) the elec-
tric field is obtained as a function of position. This is presented in
figure 21. The normalized gradient is equal to_unity in the plane

il — 27/64 independent of the current density Jj. As Brubaker points
out, this is only an approximation. However, the maximum deviation from
unity is only 0.6 percent as the current density is varied from zero to
space-charge-limited values.

Ivey investigated the case of a cylindrical diode under partial
space-charge conditions (ref. 16). In this case Poisson's equation can-
not be integrated directly so a differential analyzer was used to obtain
a numerical solution. Without a rigorous proof, Ivey then states that
it appears that the emitter field characteristic as shown in figure 19
is "universal" and applies also to other geometries, including those
with external emitters. He points out also that this seems to be a di-
rect consequence of Poisson's equation, and the only restrictions on the
applicability of figure 19 are those of negligible initial velocities
and an equipotential emitter (the same conditions imposed on the gener-
alized space-charge law).

THEORY OF PIERCE ELECTRODE DESIGN

The problem of design of electrode systems that will constrain an
accelerating ion beam to travel in a desired region has confronted sci-
entists and engineers for many years. Before 1940 most electrode systems
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were designed using assumptions of either zero space charge or paraxial
flow. Since then much progress has been made toward the development of
general methods for the design of electrodes for high-charge-density ion
beams. These methods can be divided into two categories:

(1) Analog methods such as the resistance network and electrolytic
tank

(2) Analytic solution of the space-charge equations and of Laplace's
equation in the region surrounding the ion beam

The most widely used analytic approach to accelerator design was
proposed by Pierce (ref. 17) in 1940. Although the Pierce method was
originally intended for rectilinear flow, it has since been generalized
to include any type of curvilinear flow provided the boundary conditions
are regular (ref. 18). When the solution to a particular type of space-
charge flow (such as those described in the first section of this report)
is found, it generally will fill all space. To form a beam it is neces-
sary to take a segment of this flow and replace the missing portion with
an electric field that will exactly match the conditions along the stream-
lines bounding the ion beam. This is done by arranging suitably shaped
electrodes around the ion beam. The electrode shapes are found by solv-
ing Laplace's equation in the charge-free space surrounding the ion beam
subject to the conditions of continuity of potential and normal gradient
across the beam edge.

When the space-charge flow can be expressed in terms of some type
of cylindrical coordinate system, as is frequently the case, application
of complex variable theory becomes quite useful. This is demonstrated
in sketch (h). Curve C represents the boundary of a general curvilinear
ion beam that extends to infinity normal to the paper. If an analytic
function can be found which transforms C into the u-axis, then the po-
tential distribution along C and the gradient normal to C will be trans-
formed as shown.

Z=x+1iy W= £(2) W=yt oy

b
e
n
o'l
>
7

o = oa(x,¥) o = ag(u)

Boundary Boundary
O W n ditions tion
i}; = Nolax,y) JiSore-= L) = Ng(u) Sencitons

o ov | v=0
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Since harmonic functions remain harmonic under conformal transformation,
a solution of Laplace's equation for the upper half of the W-plane can
be converted to the desired solution in the Z-plane by application of the
inverse transformation. A general solution of Laplace's equation in the
upper-half plane subject to Cauchy boundary conditions is given in refer-
ence 19:

o(u,v) = Re@C(W) + Bn/ NC(C)dC (67)
0

where
Re real part
Im imaginary part

0

O(%%)v=o

In the event that Np cannot be integrated explicitly as an ana-

lytic function of W, another technique described by Lomax (ref. 18)
may be used to obtain ®(u,v).

I

potential distribution along Vv

N potential gradient normal to v

Tt can be seen from equation (67) that &(u,v) can be written as
the real part of a complex function:

W
A=0+ i¥ = o¢(W) - i/ Np(6)ag (68)
0
Hence,
ao
Do L () (69)

By application of the Cauchy-Riemann conditions

dA _ o  od .
A = =
dw  Su  ov SRl

whieze "B, and E, are the electric field components in the wu and V

directions transformed from the Z-plane by the mapping function W=f(Z).
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Specifically, E corresponds to the electric field tangent to the beam

u
edge and E, corresponds to the field normal to the beam edge.

Since E,; and E; are derivable from an analytic function, they

are differentiable; and the differential equation of a line of electric
flux ean be written:

MIE
<

£l
I
o

Eu #0 (70)

The equipotentials are orthogonal to the lines of force and are there-
fore determined by the equation

Il

I:ljltl:l
o

&l
<

E, £ 0 (71)
The condition E, #£ 0 1is always satisfied in cases of interest since

E, = -Ng(u). By taking the real and imaginary parts of equation (69),

equation (71) can be written:

[Re 2 o Iml\IC(W)]

dv aw dA
= = [ o ] = cctéug EW) (72)
Im -dT = ReNC (W )

This is the differential equation specifying the equipotential surfaces.

While this technique is applicable to a large number of geometries,
there are some configurations of interest that cannot be handled in this
way. An example of one of these is rectilinear flow with circular cross
section. The solution of this particular problem will be discussed
later.

Electrodes for Rectilinear Flow (Ny = O)
Rectilinear slab beam. - This is an application of the solution of

flow between infinite parallel planes to the formation of a finite slab
ion beam as shown in sketch (i).




25

&
/ ‘7—Electrodes —~Equipotentials
/
Beam edge 4/3
- C]_X /
—= Ton beam Boundary
[ Do conditions
Beam edge i~ 0
b
Beam edge
Electrode configuration Mathematical model

(1)

From equation (25) the potential distribution along the beam edge is
4/3
oo = Cqx / ()

o) = 6.942x10% 41/352/3

There is no need for conformal mapping since the beam edge already co-
incides with the real axis. The boundary conditions to be satisfied are
shown in sketch (i). The potential gradient normal to the beam edge Ng

is zero. Therefore, equation (67) has the particularly simple form:

(S
Il

4/3
Redq(Z) = CqReZ /

Cl(x2 + y2)2/3 cos(% tan™t %) (74)

Equation (74) is developed in dimensional form for clarity. It is much
more convenient, however, to nondimensionalize from the start. This may

be done by letting X = x/1, Y = y/1, and X = @C/(Clz4/3) where 1 is
the unit of length. Then equation (73) becomes

x = x4/3 (75)
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Sketch (i) remains the same except that now the boundary conditions are:

Xg = X4/3 (75)
ax|
Np = <= =0
and equation (74) becomes
2/3
X = Re(X + iY)4/3 = (X2 - YZ) / cos(% tan~1 %) (76)

Equipotentials defined by equation (76) are plotted in figure 22 and
tabulated in table IV. DNote that the X = O electrode makes an angle
of 67.5° with the beam edge. This is called the Pierce angle, and it
occurs in every geometry because, as the ion emitter is approached
closer and closer, the potential distribution approaches that of a plane
diode. The function x%/3 s multiple-valued and hence can give rise
to solutions that do not satisfy the boundary conditions. While it is a
simple matter to choose the proper solution in this case, it is not so
simple in some of the cases that follow where the complex potential func-
tion is a power series. The coordinates listed in table IV agree with
the curves shown by Pierce in reference 17.

Beams of circular cross section. - The potential distribution has
the same form as equation (73), but in this case polar coordinates are
used and x 1is replaced by z:

_ c.z4/3
q)c = ClZ /
0 = 6.942x10% al/352/3 (77)

In 1955 a paper by Daykin (ref. 20) appeared in which a solution to this
problem was described. A sketch of the problem is shown as follows:

Ir!{lectmdes

Beam edge
Boundary

- conditiors
Beam edge

Electrode configura-

tion
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Equation (77) can be nondimensionalized by writing

0]

- @ i

i

where a is the radius of the ion beam. Daykin showed that the poten-
tial distribution near the beam edge can be expressed by an infinite
series of the form

z 4/3 1+ (2 2F sk S ) 4F i
el s G EE Gl (79)
The functions F, and F, are plotted in figure 23. Because of its

rapid convergence near the beam edge, this series may be truncated at

three terms without introducing serious error. In order to extend the
solution away from the beam edge the asymptotic forms of the equipoten-
tials are computed. For this purpose it is convenient to define a new
coordinate system in terms of r and z. This is shown in sketch (k).

P
R
R = (r2 + 22)1/2
-1(r
6 6 = tan (E)
¥ -

(k)

The equipotentials are then written in terms of Legendre functions P4/5

of order 4/3 as

L (B>4/3 P4/3(cos ) (80)

a

Equation (80) is used to obtain electrode shapes far from the beam edge.
Equipotentials from equations (79) and (80) are plotted in figure 24(a)
and tabulated in tables V and VI. The transition region is shown by
dotted lines.

For a hollow ion beam another set of electrodes is required inside
the beam. Daykin derived an expression for these equipotentials fomr
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small r/b where b is the inner radius of the beam. This equation may

be written
oo - (i 74

As in the previous case it is necessary to fair in part of the equipo-
tentials. Some of these are shown in figure 24(b) and tabulated in

table VII. The dotted portion joins the equipotentials from equa-

tion (81l) to the proper intercept on the inner beam edge defined by
equation (78). Until recently this was the only analytic solution of

the Pierce electrode problem for axisymmetric ion beams. Harker (ref. 21)
has recently developed a very general method whereby any axisymmetric
electrode design problem can be solved with the aid of a digital computer.

ol

Cylindrical flow. - The application of converging and diverging flow
between coaxial cylinders is considered in this section. The two con-
figurations are shown in sketches (1) and (m).

Converging flow

N

N
rElectrodes \Y-Equipotentials

/
/

Beam edge

C
\ Beam edge
2.2/3
=@
ol 2(TB ) Boundary
conditions
folo]

Electrode shapes
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Diverging flow

i Electrodes 7 Equipotentials

Beam edge

a5
on = Cg(rﬁz) /
Boundary
conditions

N =29 -
Cgéo

Beam edge

Electrode shapes
(m)

Since the included angle of the wedge is «, the current per unit length
from equation (28) will be multiplied by the factor a/Zﬂ. The potential
distribution becomes

2/5
o = Co(xp?)?/

2
4 Bl J 2/3 i
Cp = 6.942x10% A /5(—)
al
This . ! . , : B N ks
is is nondimensionalized by letting R = r/ro and X = ®C/(Czro i
The nondimensional potential distribution becomes

2/5

X = (RB2) (83)
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From equation (29) it follows that

" 2
(RB?) = ZBn(ln R)"
=
and
" 4/3
X = ZBn(ln B2 (84)
n=1

Since the potential gradient Ny normal to the ion beam is zero, the
expression for the potential outside of the beam is, from equation (67),

00 4/5

X(R,0) = Re By <1n ;—)n (85)

where

._Z_ =-£— eie = Re:Le = R(COS g & i 'sin 6)
I‘O ro

Equation (85) can be rewritten

%ok orpRiy Q2)2/5 cos(—% tan~1 %) (86)

where
P = [m R + 0.1(1n?R - 62) + 0.0167(1n RS - 362 1n R)
+ 0.00242(1n%R - 662 1n R + 6%) + . . ]

and

qQ = [e + 0.2 0 1n R + 0.0167(30 1n°R - 69)

+ 0.00242(46 1n°R - 46° 1n R) + . . ]




S

Equation (86) was solved for several values of X on a digital computer.
Equipotentials for both converging and diverging flow are shown in fig-
ures 26 and 27 and are tabulated in tables VIII and IX, respectively.
This case was also solved by Radley (ref. 22) for convergent flow, and
the results shown in table VII agree with those shown in reference 22.

Flectrodes for Curvilinear Flow (Ng # O)

Circular flow. - The space-charge-limited-flow equations for which
the ion trajectories are concentric circular arcs are used here in the
design of a curved ion beam. This solution was obtained by Lomax in
reference 18. The potential distribution obtained from equation (34) is:

4/3
op = CSI‘_Z (sin -:%9) (87)

where

2
4,4 2/
C5 = 1.0mx10° a1/ 2B _ <—%—>

b a €p

The potential gradient normal to the beam is

[0) 26 4/%
) / (88)

o)
op _ ST <] A
g(zg"gr_‘rs(smz

A sketch of the electrode structure is shown as follows:

I/-Exhsust aper-
\I\ture surface

N

N Beam edge

A

,/-Electrodes
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From the sketch it is seen that the problem can be divided in two parts:

r>b and r < a. Sketches for these two problems together with the
correspondlng boundary conditions are shown as follows: (The shaded
region is the region of interest in each case. )

5 ¢ 4/3
o, = Z;(Sln %?) 1/ T gg(sin %g)
4/3 2¢ 4/3
N, = - -:—2—5-<sin %9) Ny = - ;Eé(sin %€>
r<a r>b
/£
a b

(o)

In this case it is necessary to map the beam edge onto the real axis.
Lomax shows that a mapping function that will do this is (for r =b)

z = pell (89)

The boundary conditions become, on v = O,

4/3
dn(u) Eé sin EE) /
C b2 2

2C 4/3
No(u) = gzé(sin %)

The formal solution of Laplace's equation in the upper half of the W-
plane is given by equation (67), which becomes
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W
C 4/3 2C 4/3
pe S8 LY
®(u,v) = Re b2<51n 2) + Im 2 (51n 2) at (90)
0

Explicit integration of the second term is not readily carried out;
therefore, the differential equation representing the equipotentials
mist be solved. By combining equations (69), (72), and (90), the dif-
ferential equation becomes

)
S0 COb o tan” Lk 2 4
au - 2

- % u (91)

5
tan > u

From the transformation equation (89) it follows that

and

Equation (91) becomes in the Z-plane

3
Sanbals o ae i R 30
R R = tan[2 0 = tan (I—:—§g>cot —§] (92)

Equation (92) was integrated using the Runge-Kutta method, and some
typical equipotentials are shown for a/b = 0.7 in figure'2y andiare
tabulated in tables X and XI. The inside equipotentials were found by
simply replacing b by a in equations (89) and (92). In figure 27
%p = ®(b2/05) and X, = @(aZ/CS). These results agree with those ob-
tained by Lomax in reference 18.

Electrodes for hyperbolic flow. Sketch (p) shows a segment of

hyperbolic flow bounded by the curves Yy = l/x and lO/x. This solu-
tion was obtained by Rosenblatt in reference 12Z.
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z-plane

U Beam edge
Vi = D ant i

N =N

N =L

Beam edge}d,’

(p)

The potential distribution along the beam edge as given in the space-

charge-flow section is

et )]

where

2/5
- d e
Cy = 1.60x107 A (—7\1)

and

A= 1,10
The solution of Laplace's equation outside the ion beam in the upper
part of the first quadrant (i.e., outside the boundary A = 10) will be

obtained first. It is shown in reference 12 that a transformation that
will map the beam boundary onto the real axis is:

W:%(ZB-Zi?\)=u+iv }
) ,
u=_2_ (XZ I y2) (95)
vV =Xy - A
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A sketch of the transformed boundary is shown as follows:

Boundary conditions

i

2 2.1/2
da(u -2C +
W] c(u) 4(u AZ)

W=ty -
N (w) = -2C,\(uf + A2) 1/2

A

-2N\1

(q)

The transformed boundary conditions are also shown. Equation (67) may
now be used:

W
®(u,v) = Re [—27\(W2 i xz)l/z] + Im [-20@(;2 - 7\2)-1/2]dg

; (94)

fter integration and separation of the real and imaginary parts the
equipotentials in the W-plane are expressed by:

1/2

|-

o(u,v) = -2C,

V5 {[(u2 fra A V2)2 + 4u2v2]l/2 + (uf + NP~ VB)}

1/2

2 2

LT I:(u2 + 22 - v2)7 + 4u2v2]1/ R VZ)}
W

3 W
u + -L{[(uz + AE %) =+ 4u2v2]l/2 + (uf + A% - VZ)}

S tan~t

e

(95
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This equation may be nondimensionalized by dividing equation (95) by
—C4K. Substitution of the values of u and v from equation (93) yields

the expression for the electrode shapes in the (x,y) plane. Some of
these are plotted in figure 28. Equipotentials outside the beam edge

A = 1 may be obtained by the mspping W =% (2iA - Z2). The potential

function is identical to equation (95) except for minus signs in front
of the nonsquared u and v in the arc tangent term. Some electrode
shapes for this boundary are also shown in figure 28.

Since there is no zero velocity surface in this configuration, it

may not have any practical application. It may possibly be used to de-
flect an ion beam, however.

Limitations of the Pierce Technique

The departure of analytically derived ion accelerators from physical

fact lies mainly in two areas. The first of these is that practical re-
quirements dictate modifications in the calculated electrode shapes.
These modifications manifest themselves in the curtailment of electrode
size and the insertion of apertures in the electrodes to pass the ion
beam. The inherent instability in the solution of elliptic differential
equations with Cauchy boundary conditions on open boundaries works in
reverse to minimize the error caused by curtailment or modification of
electrode shapes away from the boundary. This means that, while small
variations of potential along the boundary will cause increasingly larger
variations the farther away from the boundary, conversely, large varia-
tions far away from the boundary cause only small variations along the
boundary. This is readily observed in an electrolytic tank where a
tremendously wide variety of electrode shapes will give the proper po-
tential distribution along the beam edge to within the accuracy of the
measuring equipment. It is difficult to give exact numbers for the
magnitude of this effect other than to say that the error propagates

away from the boundary approximately as eKy, where 7y is the distance
measured from the boundary and K is a constant.

Aperture effect. - Insertion of apertures in the electrodes has two
deleterious effects on ion accelerator performance. The first is that
the aperture acts as an electrostatic lens which will tend to diverge an
accelerating ion beam. If multiple electrodes are being used, this re-
sults in impingement of ions on the electrodes. Even if only one accel-
erating electrode is used, the formation of a diverging ion beam will
result and may cause some impingement on this electrode. It is shown in
reference 23 that the focal length of an aperture is

£ =% (96)
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where g =1 for slits, g = 2 for circular apertures, and E, is the

negative potential gradient on the upstream (or source) side of the
aperture. The meaning of this is demonstrated in sketch (r).

) =0 i = @

(r)

The second effect is to reduce the ion current by increasing the
effective accelerating distance. Depending on the ratio of aperture
width to accelerating distance, experimentally observed current densities
can be a small fraction of the theoretically expected values.

Emitting surface irregularities. - The second area of departure of
the Pierce theory from physical fact lies in the assumptions regarding
initial conditions at the ion emitter. The usually assumed condition of
zero initial velocity along a perfectly smooth equipotential surface is
not met in practice, and it will be shown that considerable error can
arise as a result of this. Rather than treat these effects separately,
the nature of the ion trajectories in the neighborhood of a rough emitter
will be investigated, and dispersion due to transverse electric fields
will be compared directly with thermal spreading. In order to do this
it is first necessary to examine the potential distribution near a sur-
face irregularity. A sketch of the mathematical model is shown as
follows:
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The surface irregularity is a cylindrical hump of radius 1, and it
is assumed that at 100 units above the hump the equipotentials are es-
sentially plane. An approximate expression for a flux line as computed
in appendix B is (u/1) = (x/l){l + 1/[(X/Z)2 + (y/l)z]}. The bounding
flux line, which originates at the point x =1, y = 0, is (u/1) = 2.
This line intersects the line y = 1007 at x =~ 21. Hence, the flux
line spreading due to the electrostatic field of the hump is Ax = 1.

It is shown in appendix B that thermal spreading Axp at y = 1001,

which is the product of the most probable thermal velocity and the ion
transit time, can be written Axq = 20011/0.17$o where the effective

thermal potential is assumed to be 0.1 volt. The ratio of electrostatic
to thermal spreading is

X ! )
Lxap 45105

(97)

The macroscopic electric field strength E 1in an ion rocket is defined
as the applied accelerating voltage divided by the accelerator spacing.

For emission-limited flow E wusually has a value of between 10° and 107
volts per meter. From sketch (s) it can be seen that the voltage across
the model @, can be written ¢, = E(1001), and the spreading ratio be-

come s

JAV'e E1
Equation (98) is shown plotted in figure 29. It is seen from figure 29
that spreading due to the electrostatic field of a surface irregularity
can be of the same order of magnitude as thermal spreading. It should
be noted that this analysis is based on zero space charge and therefore
is only approximate.

Analysis of accidental misalinement of parallel planar electrodes. -
As pointed out by Ivey (ref. 10), an accidental misalinement of parallel
planar electrodes can be analyzed as an application of the motion be-
tween two inclined planar electrodes. Consider the electrode arrangement
as shown in sketch (t):
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(t)

One electrode is tilted about its center by an angle o from the paral-

lel condition and

S
sin o

The current per unit length when o = O may be written

= 5 (99)

Ta=0 _ 4 (2q\}/2 03/2y
.—Z___.§€O S—

and thus the ratio J/Jazo, which gives the effect of the tilk, is

Values from equation
o and are presented
aspect ratio of w/s
to the angle of tilt

J H(a)

do0 ( 1 2 (w 2
S 25

(1L00) were calculated by Ivey for small angles of
in figure 30. TFor a rectangular emitter with an

= 1.24, the current per unit length is insensitive
about a line passing through its center and parallel

(100)
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to its side. Ivey also showed the independence of angular misalinement
in an arbitrary direction by the use of a disk-shaped emitter. The total
euprrent fors o =0 1n Ethis ecase is

1/2 $3/2,p2

& . (2
Y0 = B €0<m_) 462

where D 1is now the diameter of the disk, and the effect of electrode
tilt becomes

(101)

J s\ 2 i
—_— = 8G(a)(ﬁ e gl (102)
i D sin «
2s
Values from equation (102) were also calculated by Ivey and are presented
in figure 31. It is seen that the variation of current for the aspect

ratio D/s = 1.42 is zero. TFor this optimum geometry (aspect ratio
D/s = 1.42) equation (10l) becomes

J

5 e
=0 = e.zssxlo'lz(ﬁﬁ) 03/2 (103)

and the behavior of J/Ja:o for the above optimum geometry is shown in

figure 31. It is seen that even a large angle of tilt does not change
the total current appreciably. This, of course, does not mean that the
ion optics will not be affected, and in an ion rocket the ion impinge-
ment on the electrodes must be reduced to nearly zero for long-duration
operation. Therefore, electrode alinement is still quite critical.

CONCLUDING REMARKS

Three methods for the analytic solution of the space-charge-flow
problem appear in the literature, in which certain properties of the
flow are prescribed. These are (1) initial and final equipotentials,
(2) velocity and acceleration, and (3) trajectories and action function.
None of these methods is generally applicable at present. Of the three
methods, the trajectory-action function method appears the most versatile
for the design of electrostatic rocket engine accelerators.

The existing solutions of space-charge flow have been described,
and the parameters pertinent to the design of electrostatic rocket engine
accelerators have been given for the following geometries: (1) paraxial
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flow, (2) flow between coaxial cylinders, (3) flow between concentric
spheres, (4) circular flow, (5) hyperbolic flow, (6) flow between in-
clined planes, and (7) flow between coaxial cones.

Electrode shapes determined by the method of Pierce have been given
for the following geometries: (1) rectilinear flow with rectangular
cross section, (2) paraxial flow with circular cross section, (3) con-
vergent flow between coaxial cylinders, (4) divergent flow between co-
axial cylinders, (5) circular flow, and (6) hyperbolic flow.

Limitations of the space-charge-flow and electrode design theories
have been discussed. One is the aperture effect and another is the ef-
fect of irregularities on the ion emitting surface. Surface irregular-
ities have been demonstrated to cause lateral ion velocity components of
the same order of magnitude as thermal ion velocities.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, August 20, 1962
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APPENDIX A

SYMBOLS

(mks units used throughout. )

molecular weight/ionic charge (ionic charge may be greater

than one in multiply charged ions)

inner radius of circular ion beam; outer radius of ion
beam with circular cross section

(h2h3/h1)vz(1/h§)

outer radius of circular ion beam; inner radius of ion
beam with circular cross section

h2h3/h§; also ion beam edge

constants identified in text

diameter of disk emitter

S/sin a, for electrode tilt analysis

electric field strength, volts/meter

unit electronic charge, 1.602x10"19 coulomb
dimensionless functions of r/a defined in ref. 16
function defined in eq. (50)

function defined in eq. (43)

gravitational conversion factor, 9.806 m.eters/sec2
function defined in eq. (100)

scale factors in curvilinear coordinates,

2 2 % 2 2 2 2
ds” = hy d€” + hy dn +h5d§
imaginary part

total current, amp




Vs Vs Vy

Vrs Vo

<

<

iy

43

current per unit length, amp/meter

current density, amp/meter2

(nghz/eo)d~/m/2a

accelerator height, meters; also unit of length

particle mass, kg

potential gradient normal to boundary C

charge, coulombs

e, o vl

real part

radius as in spherical and cylindrical polar coordinates

emitter radius; also initial radius of trajectory in flow
between inclined planes; also inner radius in circular
flow engine

accelerating distance for electrode tilt analysis

function defined in eq. (52)

differential displacement along a trajectory

coordinates in W-plane (W = u + iv)

ion velocity

velocity components in Cartesian coordinates

velocity components in polar coordinates

acceleration vector

most probable thermal velocity

action function, meterB/sec; also complex number u + iv
tilt analysis

nondimensional Cartesian coordinates
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Xy Y52

y(e)

N

s

Cartesian coordinates
function defined in eq. (39)
Sl Ly

x - iy

Langmuir function for spheres; angle between inclined
planes; arbitrary fixed angle

conical half-angles

Langmuir function for cylinders
2

h7o

angle between ion trajectory and flux line in flow between
coaxial cones

permittivity of free space, 8.855x107 1%
Coulomb/(newton)(meterz)

curvilinear coordinate defining traJjectories
angular displacement, deg

complex potential function, @ + i¥

hyperbolic trajectory parameter

curvilinear coordinate defining action function
charge density, coulomb/meter®

Ps T F

potential distribution along beam boundary

angular displacement in spherical coordinates; also poten-
tial, volts

emitter potential, volts

nondimensional potential distribution




Superscripts:

RS K R
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i ikime

angle between ion trajectory and flux line for flow between
coaxial cones

differentiation with respect to variable 6
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APPENDIX B

APPROXIMATE ION BEAM DISPERSION DUE TO SURFACE ROUGHNESS

In this appendix the electric field in the neighborhood of a cylin-
drical hump will be obtained. Following that the transit time of an ion
through the diode will be calculated, and an expression for thermal
spreading, which is the product of the most probable thermal velocity
and the ion transit time, will be shown.

iy iv
A

Q= Qg [//":%k\\ = "

(u)

The surface is an infinite plane containing a cylindrical hump of radius
1. It is assumed that at a distance y = 1007 the equipotential sur-
faces are plane. By the conformal transformation w = z + 1/z the sys-
tem is converted into two plane electrodes separated by a distance of
99.99 1. This is shown on the right side of sketch (u). The space-
charge-free potential distribution in the W-plane is

e e

The electric field is obtained by differentiation of equation (Bl) with
respect to v:

o Yo
E= av 99.99 1 (BZ)
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Returning to the right side of sketch (u) the flux lines are given
b§ u/l = constant. From the transformation equation the expression for
e e

u 5
s = A gL T
el 2 2 (B8
= N
=) +
G
This equation is used in the computation of spreading due to the electric
field of a surface irregularity.

Tn the computation of transit time through the diode in sketch (u)
(left side), it is assumed that the electric field is constant; that 1is,

Po
L= To07 (B
The equation of motion of an ion is
aly APo
M5 = dil = == (B5)
ate 1001
Integration of equation (B5) subject to the initial conditions of
iy ~ 4
ol 0 at t 0
and
= 10 at 15 = (0
yields
qq)o 2
= t B
Y = 200mL (Be)

At y = 1001 the transit time is

2m
= 1007 V-—- B7
aP )
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From reference 24 it is seen that the most probable thermal velocity is

Tf=\[2—§9 (38)

where 5 is the mean thermal potential (usually taken to be about 0.1

volt). Thermal spreading is then the product of equations (B7) and (B8):

) 0.1,
Ny = zooz‘/i = 2001‘/— (B9)
Po P
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APPENDIX C

RESCALING OF NOMOGRAMS

The nomograms shown in this report may be easily rescaled to allow
computations beyond the range of one or more of the variables. Consider,
for example, the nomogram in figure 1, which represents the space-charge-
flow equation for a plane diode. The equation is

3 = 5,467x10~8 A'l/z(cpo _ o)3/22 (26)

The ranges of the various scales are
10/ < A< 1g®

2 x 10x 3 <507

gt < S Tee
g = (o, - @) < 104

Suppose that it is desired to calculate the current density for heavier

particles, say up to 10° amu. This means that the new range of the A
scale will be from 103 to 10° amu. It is seen from equation (26) that,

quft (wo - @) and x are held constant and if A is multiplied by 102,

then J will be divided by 10. That is, there exists a scale factor
associated with A which, when multiplied by the range of J, will give

the new range. In this case, Kp = 10" and the new range of J will
be

2'= g <108
Usually it is necessary to rescale several variables simultaneously.
This may be done in a similar manner. Suppose, for instance, that the

desired ranges are to be changed in accordance with the following list:

10 < A <10° » 105 < A <10°

2 o=y s 107 ~n 9 S By



50
LOERE o = 167275 107% < » < 10°

Hoe (0y - ¢) <10% -10* < (9, - 9) < 10°

Referring again to equation (26) it is seen that scaling factors may be
assigned to each variable. TFor instance, it was shown that the scaling

figctonr KA due to a hundredfold increase in A is lO'l. The net scal-

ing factor applied to J will be the products of the individual factors.

These are

o
Ky =010

= 10-4
KX — 1o

_ 3
K@ = J©)

and finally
= _ 10-2
KJ = KAKTK@ = 1O

Therefore, the new range of the J scale will be

2107t < 7 < 10




I
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TABLE I. - SPACE-CHARGE-FLOW EQUATIONS FOR SEVERAL GEOMETRIES

Type of flow n 4 hy hy hz B c X(n,¢) General egquation (24)
Rectilinear * / 2
between o m 172 asr
¥y = const. z = 1 i il 0 ik - V— by —= = K(n,¢)

gizgirodes e 2 i ax ’
Rectilinear
between z =
concentric 6 = cos™> X | oonst. 1 r A 0 r Il B ri/2[2 (» 4LV - x(n,¢)
cylindrical £ €or V=g o &

a
electrodes
Rectilinear
between = p2( in 0) d
concentric 9 = cos™t % const. 1 r r sin 6| O r2 sin 6 SEZ ‘jVé% r1/2 g% (re sin 6 a%) = K(Nn,¢)
spherical
electrodes

r = zZ = *x 2
-5 -5 J |/m 1/2|d°r
Circul nst. T 1k i 4r T - I + 4r| =K
cular (2 + y2)1/2 co 5 V= 02 (n,¢)
z = XN
Hyperbolic Xy const. 1/2 75 /e 75 1 4 4(£° + 1R) J Vm/2q 4r1/2[§% (€2 +n2)<%£) +r] = K(n,¢)
(€2 + 12)77° | (€2 + 1?) 2e,(£2 + 1°)

*

nga = 0.7199x10~4 /A,

*¥
Identical to Meltzer's equation in ref. 10.

XN

This equation is treated in ref. 11 and in a different fashion in ref. 6.

cs



TABLE II. - LANGMUIR FUNCTION FOR CONCENTRIC CYLINDRICAL FLOW

r/ro e r/rO Bz r/ro g2 r/rO pé
0.01000 [1174.9000 | 0.2500 | 6.06010 | 1.00 | 0.00000 4.0 0.6671
.01111 |1018.5000 26544 5.87950 | 1.0L .00010 4.2 .6902
.01250 | 867.1100 .2778 | 4.72980 | 1.02 .00039 4.4 <7115
.01429 | 721.4300 .2941 | 4.11260 | 1.04 .00149 4.6 . 1313
.01667 | 582.1400 .3125'| 5.52950 | 1.08 .00324 4.8 .7496
.02000 | 450.2300 .3333 | 2.98140 | 1.08 .00557 5.0 .7666
.02500 | 327.0100 .3448 | 2.72140 | 1.10 .0084z 5.2 .7825
.03333 | 214.4200 .3571 | 2.47080 | 1.15 01747 5.4 <1973
.05000 | 115.6400 LA 250100 20 .02875 5.6 <8101
<055561 |8 979970 <3846 | 1.99950 | 1.30 .05589 5.8 .8241
.06250 | 81.2030 .4000 | 1.77920 | 1.40 .08672 6.0 .8362
.07143 | 65.3520 «4167 | 1.56970 | 1.50 .11934 6.5 .8635
.08333 | 50.5590 .4348 | 1.37120 | 1.60 .15250 7.0 .8870
.10000 | 36.9760 .4545 ] 1.18400 | 1.70 .18540 7.5 .9074
.10530| 33.7910 .4762 | 1.00860 | 1.80 SEILTATIC 8.0 .9253
.11110| 30.6980 .5000 .84540 | 1.90 .24910 8.5 .9410
L11780.1 &7 .7010 .5263 .69470 | 2.00 .27930 9.0 .9548
.12500 | 24.8050 .5556 .55720 | 2.10 .30830 9.5 .9672
.13330| 22.0150 .5882 .43320 | 2.20 .33610 { 10.0 .9782
SIAZESION | AEElc S0 .6250 2525301 (12.50 .36260 | 12.0 | 1.0l2z
alsfetelol || e YL .6667 .22820 | 2.40 .38790 | 14.0 | 1.0352
.16670| 14.3430 .7143 .14856 | 2.50 .41210 | 16.0 | 1.0513
.17240| 13.4070 .7692 .08504 | 2.60 43510 | 18.0 } 1.0650
.17860| 12.4930 .8333 .03849 | 2.70 .45710 | 20.0 | 1.0715
118520 [FRINE 6010 .8696 .02186 | 2.80 .47800 | 30.0 | 1.0908
.19230| 10.7330 -9091 .00980 | 2.90 .49800 | 40.0 | 1.0946
.20000 9.8887 .9259 .00630 | 3.00 51700 | 50.0 | 1.0936
.20830 9.0696 .9434 .00356 | 3.20 .55260 | 80.0 | 1.0910
.21740 8.2763 .9615 .00159 | 3.40 .58510 | 70.0 | 1.0878
.227130 7.5096 .9804 .00040 | 3.60 .61480 | 80.0 | 1.0845
- 235810 6.7705 <9901 .00010 | 3.80 .64200 | 90.0 | 1.0813
1.0000 .00000 100.0 | 1.0782
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TABLE III. - LANGMUIR FUNCTION FOR CONCENTRIC SPHERICAL FLOW
r/ro o2 r/ro o2 r/x‘o o2 r/ro sl

0.01000 | 1144.000 | 0.2500 | 4.9680 | 1.00 |0.0000 A2 N0
o111 974 .100 .2632 | 4.4290 | 1.05 .0023 4.4 | 1.022
JOL2508|8 8115700 V2 SIS SIS QR RINEHG) .0086 4.6 | 1.063
.01429 | 663.300 .2941 | 3.4210 | 1.15 .0180 4.8 | 1.103
.01667 523.600 <3125 || 29540 [E1SE0 <0299 5.0 1.141
.02000 5951. 500 < 55350 2B 200 | F1Ei2S .0437 Sz | L L)
.02500 219600 S BALSH SRR SOR 0N B18 S0 .0591 S MSRlE
-053555 178.200 125N 2I. 0980 NIEISS .0756 5.6 f1L247
.05000 93.240 .3704 | 1.9010 | 1.40 2@gSi 5.8 |'1L.280
.05556 78.560 .3846 | 1.7120 | 1.45 1114 B ORINIES Sille
.06250 64.740 | .4000 | 1.5310 | 1.50 .1302 645 11585
.07143 51.860 ~AliBH NN 55805 HIRNE0 .1688 7.0 1.453
-08555 33.980 43485 1930 HIEH6 .2080 Ties |k Eile
.10000 29ri1ig0 24545 | 10360 1580 .2480 8L ONHLIS5TS
.10530 26.680 L4762 .8880 | 1.90 .2870 8BNS INN650
EALIHHG, 24.250 .5000 <1500 |"2.00 .3260 9.0 | 1.682
LT 60 214,890 <5263 .6210 | 2.10 .3640 95 IssT Sik
.12500 19.620 .5556 <5020 | 2.20 .40z20 TGN (@) I AT
SL5550 17.440 .5882 «3940 [ 2.30 .4380 WO |F I el
.14290 15.350 .6250 .2968 | 2.40 L4740 14.0 | 2.073
.15830 13.350 .6667 <2118 | 2.50 .5090 60N EZL189
.16670 11.460 <6897 17401 2.60 .5430 1510 || 2oZiEe
.17240 OFTE0 L7143 LiE3965 N2 -5760 200610 || Ho s e
.17860 11(0){(G111{0) . 7407 .1084 | 2.80 .6080 50600 | 2o ke
.18520 Sloils 1692 <0809 112390 <6590 40.0 | 2.944
.19230 8.636 .8000 -0571L |F5-00 .6690 50.08E3 20
.20000 .96 SE8535 ~O3[ZRIE 520 <1270 60.0 | 3.261
.20830 7.334 .8696 <0213 [F5 .40 (850 70.0"|'3.380
.21740 (S 1AL +9091: .0096 | 3.60 .8360 80.0 | 3.482
S50 6.109 .9524 | .0024 | 3.80 .8860 | 90.0 | 3.572
25810 5.528 | 1.0000 .0000 | 4.00 .9340 | 100.0 | 3.652




TABLE IV. - ELECTRODE COORDINATES

FOR RECTILINEAR SLAB ION BEAM

X X X
DPA=H0) =0 T =R ()
0 0 1.0000
.04141 .50626 | 1.0017
.08283 .51578 | 1.0066
.12425 .53072 1.0147
.16567 .55009 1.0258
.20708 D728 =l . 0595
.24850 .59864 | 1.0558
-28992 .62648 | 1.0743
« 55155 .65607 1.0947
LTS .68708 | 1.1169
1.0 .41416 .71924 | 1.1406
2.0 -82858 1| 07580 [ 1. 4538
S.ONINIL. 242508 | 1L 4ABOLO S I T/93
4.0 | 1.65670 | 1.85490 2.1477
5.0 2.01080" |' 2.25520 2.5285
6.0 2.48500 2.65870 21 6T
7.0 | 2.89920 | 3.06440 [ 3.3100
B.OMIN5 51550 3.47150 | 3.7067
9.0 | 3.72750" | 3.87970 4.1061
10.0 4.14160 4.28870 | 4.5075




TABLE V.

- ELECTRODE COORDINATES FOR

RECTILINEAR ION BEAM WITH CIRCULAR

CROSS SECTION NEAR BEAM EDGE

R z/a

= ORI =S 005 K E=NIS O =2 ¢
1.00 0 0.593 1.000 1.683
1.25 .611 1.009 1.687
1.50 .649 1.033 1.702
1.75 .699 1.072 1siad
2.00 . 751 1.115 1.756
2.25 .804 l.161 179N
2.50 .852 2Lkl 1.830
2.75 .898 1.259 1.872
3.00 .932 1310 1.815
3.25 .951 1.855 1558959
3.50 1.400 2.007
3.75 1.441 2.052
4.00 1.482 2:..099
4.25 1.512 2.146
4.50 1.540 2.189
4.75 1.551 2.257
5.00 1.540 2.278

ST
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TABLE VI.

WITH CIRCULAR CROSS SECTION AWAY FROM BEAM EDGE

- ELECTRODE COORDINATES FOR RECTILINEAR ION BEAM

z/a r/a z/a r/a z/a r/a z/a r/a
=0 Xi=20:5 2o = Aol D=2 0

QL2 2880362 0:659 OJE T4 1.000 0

.5456 | 1.924 <870 15801 13 L6l L7350 0.994

.8184 | 2.886 1.108 Zis 188 1.384 2B B 1.904 2.314
1.0910| 3.848 1L.596 8. 161 I BILALE 3.660 2.104 3.400
1.3640| 4.810 1.609 4,735 1.849 4.644 L 4.429
NET68684E5 STz ESEN&) 5705 2.102 52625 2,541 5429
4990866554 2 1Sl 6.666 2.347 6.590 S TS 6.425
2.1824 | 7.697 2..533 6353 Zren 99 7.564 3.010 7.409
2.4550| 8.659 2.660 8.599 2.857 8.536 Snasil 8581
2 2800861 260929 9 .561 35120 .505 3.504 9 .31




TABLE VII. - INNER ELECTRODE COORDINATES

FOR HOLLOW CYLINDRICAL ION BEAM

z/b r/b
Ka=n0) X — O SSHEXE—S Il ORI 2O
0 21 .00000 bl.OOOOO €1.00000 d1 .00000
ol .57984 +94153 | 1.52880 4.03090
i .50662| 1.09360| 2.36070 | 11.00100
D .40454| 1.10880| 3.03930 | 22.83400
L <29523(1 1.. 00150 BL397 508 3903300
55 GALSl et .81.254 [ 1353529081 5708100
26 12003 .59487 | 2.94820 | 72.41500
Sl .06687 39410 |~ 2.322608"8056/000
.8 203405 . 28669 11 1. 645408 I BT 06
59 .01584 .12904 [ 1. 051008682500
%2 .00093 s QIS .14981 | 24.12400
Lt .00009 .00150 +02501 6.98090
L5 1) 00013 .00284 15535890
L8l (@) .00001 .00022 SAL7E
0 .60653 .60653 .60653 .60653
1EA©) .00674 063593 .60653 54598
2 000 0 .00001 .01480
SiON0) 0 0 0
4.0 0
@At beam edge z/b = O (see fig. 24(b)).
bAt beam edge z/b = 0.5946 (see
e, 24(b)).
CAt beam edge z/b = 1.000 (see
Big. 24(b) )
dat beam edge z/b = 1.6818 (see

i, 2400) )i
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TABLE VIII. - ELECTRODE COORDINATES FOR CONVERGING CYLINDRICAL FLOW (r/ro <1)

Y

K= 0

X = 0.05

X =

0.1

O«

1.7327307€E-02
3.4403409€E-02
5¢1229439E-02
6.7806510E-02
8.4135733E-02
1.0021819E=-01
1.1605496E-01
1.3164710€E-01
1.4699567E-01
1.6210168E-01
2.3402917€-01
3.0004260E-01
3.6026066E-01
4.1479772E-01
4.6376501E-01
5.0727155E-01
5.4542555E-01
57 833529E-01
6.0611091€E-01
6.2886524E-01
6.46T1565E-01
6.5978537E-01
6.6820469€E-01
6l 211226 E=01
6.7165611E-01
6.6699437E-01
6.5829513E-01
6.4573593E-01
6.2950262E-01
6.0978640E-01
5.8678002E-01
5.6067187E-01
531630 29E-01
4.9982693E-01
4.6535114E-01

1.4901161E-08
7.3193461E-03
1.4815383E-02
2.2484176E-02
3.0321851E-02
3.8324289E-02
4.6487704E-02
5.4808304E-02
6.3282333E-02
71.1905963E-02
8.0675788E~-02
1.2659134E-01
1.7563984€E-01
2.2741862E-01
2.8154937&-01
3.3767502E-01
3.9545741E-01
4.5457456E-01
51471918E-01
5.7559668E-01
6.3692459E-01
6.9843165E-01
7.5985788E-01
8.2095520€E-01
8.8148860E-01
9.4123783E-01
1.0000001E 00
1.0575935E 00
1.1138608E 00
1.1686749E 00
1.2219443E 00
1.2736202t 00
1.3237042E 00
1.3722567TE U0
1.4194048E 00
1.4653514E 00

Q.

1.5676782E-02
3.1308669E-02
4.6855480E-02
6.2284440E-02
T+ 15T0459E-02
9.2694856E-02
1.0764398E-01
1.2240783E-01
1s 3697 898E=01
1.5135194E-01
2.2012883E-01
2.8361T744E-01
3.4176071E-01
3.9457661E-01
4.421158TE-01
4.8444563E-01
5.2164348E-01
5 53 1IBDTE=O)
5.8098834E-01
6.0332389E-01
6.2090467E-01
6.3384263E-01
6.4225804E-01
6.4628109E-01
6.4605217E-01
6.4172279E-01
6.3345532E-01
6.2142304E-01
6.0580840E-01
5.8680097E-01
5.6459342E-01
5.3937621E-01
5l 15132942 E=0]
4.8061167E-01
4.4734451E-01

1.0134754E-01
1.0187791€-01
1.0343715E-01
1.0594428E-01
109291 12E~01
1.1336571E-01
1.180674TE-01
1s2331023E-01
1.2902313E-01
1.3514885E-01
1.4164060E-01
1.7846812E-01
2.2076759E-01
2.6709189E-01
3 L65T3ITE-01
3.6859320E-01
4,2266027E-01
4.7835662E-01
53531 178E=01
5.9318770E-01
6.5167089E-01
7.1046750E-01
7.6930026E-01
8+.2790759E=-01
8.8604332E-01
9.4347788E-01
1.0000001E 00
1.0554203€ 00
1.1095738E 00
1.1623260E 00
1.2135783g 00
1.2632744E 00
1.3114092E 00
1.3580369E 00
1.4032813E 00
1.4473448E 00

0.

1.4559204E-02
2.9092681E-02
4.3575742E-02
5.7985585E-02
7.2301837E-02
8.6506767E-02
1.0058527€E-01
1.1452462E-01
1.2831423E-01
1.4194529E-01
2.0750718E-01
2.6841175E-01
3.2443286E-01
3.7548927€E-01
4.2156789E-01
4.6269212€E-01
4.9890723€E-01
5+3027326E-01
5.5686167E-01
54185361 E-01
5.9603973E-01
6.0881998E-01
6.1720467E-01
6.2131492E-01
6.2128334E-01
6.1725439E-01
6.0938472E-01
5.9784291€E-01
5.8280764E-01
5.6446637E-01
5.4301158E-01
5.1863534E-01
4.9152240€E-01
4.6183891E-01
4.,2971812E-01

1.6557144E-01
1.6590387E-01
1.6689474E-01
1.6852541E-01
1.7076761E-01
1.7358633E-01
1.7694319E-01
1.8079878E-01
1.8511509€-01
1.8985595E-01
1.9498834E-01
2.2557276E-01
2.6254488E-01
3.0425158E-01
3.4963360E-01
3.9793874E-01
4.4858510E-01
5.0109286E-01
5.5504799E-01
6.1008136E-01
6.6585655E-01
7.2206221E-01
7.7840775E-01
8.3462061E-01
8.9044553E-C1
9.456448TE-01
1.0000001E 00
1.0533144E 00
1.1054160E 00
1.1561630E 00
1.2054491E 00
1.2532106E 00
1.2994344E 00
1.3441679E 00
1381529 1E 00
1.4297184E 00

09



TABLE VIII. - CONTINUED.

ELECTRODE COORDINATES FOR CONVERGING CYLINDRICAL FLOW (r/rg < 1)

0.2

X = 0.4

0.6

0.

1.2823711L6E=02
2+5632195E=02
3.8413405E-02
5+1153300E-02
6.3838983E-02
7.6458250E-02
8.8999655E-02
1.0145261E-01
1.1380736£-01
1.2605502E-01
1.8543078E-01
2.4121209€e-01
2.9296916E-01
3.4046437E-01
3.8357151€e-01
4.,2223080E-01
4.5642468E-01
4.8616425E-01
5. 114812{F=01
5«3242416E-01
5.4905587€E-01
5.6145254e-01
5.6970347E-01
57391 128F=01
5.7419226E-01
5.7067636E-01
5.6350801E-01
5.5284489E-01
5.3885795E-01
5.2172913E-01
5.0164882E-01
4.7881162E-01
4.5340990€E-01
4.2562461E-01
3.9561192E-01

2.6515514E-01
2.653642T7E-01
2.6599005€E-01
2.6702865E-01
2.6847383E-01
2.7031718E=01
2.7254844E-01
2.7515606E-01
2.7812724E-01
2.8144868E-01
2.8510652E-01
3.0796298E-01
3312153 E=01
3.7172569E-01
4.1029850E-01
4.5220320€E-01
4.9680501E-01
5.4357539E-01
5.9205984E-01
6.4185706E-01
6.9260486E-01
7.4397113€-01
7.9564809E-01
8.4734851E-01
8.9880406E-01
9.4976479E-01
1.0000001E 00
1.0493007€ 00
1.0974816E 00
1.1443867E 00
1.1898940E 00
1.2339228€ 00
1.2764422E 00
1.3174812E 00
1.3571417€ 00
1.3956122E 00

0.

1.0285877E-02
2.0564585E-02
3.0828995E-02
4,1072036E-02
5.1286758E-02
6.1466322E-02
7.1604072E-02
8.1693500E-02
9.1728344E-02
1.0170255E-01
1.5046891€-01
1.9695296E-01
2.4067456E-01
2.8128519E-01
3.1853940E-01
3.5226841E-01
3.8236013E-01
4.0874477€E-01
4.3138507g-01
4.5026961E-01
4.6540889E-01
4.7683284E-01
4.8458929E-01
4.88T74348E-01
4.8937808E-01
4.8659261E-01
4.8050415E-01
4.7124676E-01
4.5897142E-01
4.4384486E-01
4.2604782E-01
4.0577304E-01
3.8322098E-01
3.5859436E-01
3.3208930E-01

4.1059425E-01
4.1072260E-01
4.1110741E-01
4.1174780E-01
4.1264259E-01
4.1378975E-01
4.1518709E-01
4.1683171E-01
4.1872061E-01
4.2085011E-01
4.2321626€E-01
4.3844246E-01
4.5887626E-01
4.8387180E-01
5+1279983E—01
5.4507865E-01
5.8018293E-01
6.1763994E-01
6.5702249E-01
6.9794099E-01
7.4003679E-01
7.8297635E-01
8.2644T12E-01
8.7015477E-01
9.1382142E-01
9.5718505E-01
1.0000001€E 00
1.0420388E 00
1.0830936E 00
1.1229811E 00
1.1615464E 00
1.1986695E 00
1.2342733E 00
1.2683344E 00
1.3008966E 00
1.3320895E 00

0.

8.4177403E-03
1.6830868E-02
2.5234791E-02
3.3624927E-02
4.1996744E-02
5.0345736E-02
5.8667475E-02
6.6957579E-02
75211752E-02
8<3425789E-02
1.2375295E=01
1.6250279E-01
1.9927134g-01
2.3372154E=-01
2.6560768E-01
2.9470601E-01
3.2086524E-01
3.4396825E-01
3.6393096E-01
3.8069745E-01
3.9423615E-01
4.0453754E-01
4.1161261E-01
4.1549208E-01
4.1622600E-01
4.1388389E-01
4.0855455E-01
4.0034621E-01
3.8938621E-01
3.7582074E-01
399813 TTE=01
3.4154598E-01
3.21212713E-01
2.9902162E-01
2.7518806E-01

5.1765506E-01
5.17748B04E-01
5.1802705E-01
5.1849155E-01
5.1914120E-01
5.1997507E-01
5.2099238E-01
5.2219181E-01
5.2357213E-01
525131 T4E-01
5.2686889E-01
5.3814775€E-01
5.+95352130E-01
5.7266129E-01
5.9517208E-01
6.2067297E-01
6.4878311E-01
6.7913482E-01
T« T137643E-01
7.4517286E-01
7.8020428€E-01
8.1616473E-01
8.5276045E-01
8.8970881E-01
9.2673761E-01
9.6358502E-01
1.0000001E 00
1.0357440E 00
1.0705919E 00
1.1043358E 00
1.1367877E 00
1.1677840E 00
Ta i 191BE 00
1.2249157E 00
1.2509091E 00
1.2751882E 00

19



62

TABILE VIIT.

- CONCLUDED.

CONVERGING CYLINDRICAL FLOW (r/ro < 1)

ELECTRODE COORDINATES FOR

0.8

1.0

O'

6+96092T1E-03
1.3918603E-02
2.0869779E-02
2.1 8YXY222E-02
3.4739711E-02
4.1652042E-02
4.8545030E-02
5.5415553E-02
6.2260466E-02
6.9076721E-02
1.0262334E-01
1.3501944E-01
1.6594096E-01
1.9510403E-01
2.2226539E-01
2.4722046E-01
2.6979982E-01
2.8986560E-01
3.073081YE-01
3.2204290€E-01
3.3400864E-01
3.4316571E-01
3.4949506E-01
3.5299808E-01
3.5369632E-01
3.5163151E-01
3.4686594E-01
3.3948213E-01
3.2958314E-01
3.1729210E-01
3.0215180E-01
2 < 86112359 E=011
2.675864TE-01
2.4733526E-01
2.2557906E-01

6017 37 25E=01
6.0120879E-01
6.0142340E-01
6.0178094E-01
6.0228104E-01
6.0292333E-01
6.0370734E-01
6.0463250E-01
6.0569791E-01
6.0690294E-01
6.0824649E-01
6.1700452E-01
6.2903718E-01
6.4413850E-01
6.6206996E-01
6.8257217E-01
7.0537417€E-01
7.3020023E-01
T 56T 1392E-01
7.8482060E-01
8.1406850E-01
8.4424926E-01
8.7509794E-01
9.0635314E-01
9.3775697E-01
9.6905564E-01
1.0000001E 00
1.0303469E 00
1.0598599E 00
1.0883116E 00
1.1154850E 00
1.1411756E 00
1.1651936E 00
1.1873662E 00
1.2075390E 00
1162255792E 00

0.

5192663 LE-03
1+:1:-58 2931 E=02
1.7368407E-02
2.3146702E-02
2.8915439E-02
3.4672235E-02
4.0414739E-02
4.6140609E-02
5.1847492E-02
5.7533106E-02
8.5562512E-02
1.1272692E-01
1.3876833E-01
1.6345069E-01
1.8656168E-01
2.0791291E-01
2.2733941E-01
2.4469884E-01
2.5987023E-01
2.721531T0E-01
2.8326694E-01
2.9135070€-01
2.9696273E-01
3.0008121E-01
3.0070402E-01
2.9884966E-01
2.9455707TE-01
2.878863T7E-01
2.7891851E-01
2.6775547E-01
2.5451967E-01
2.3935304E-01
2.2241644e-01
2.0388784E-01
1:8396113E=01

6.6808197E-01
6.6813859E-01
6.6830828E-01
6.6859109E-01
6.689867TE-01
6.6949506E-01
6.7011576E-01
6.7084841E-01
6.7169255E-01
6.7264785E-01
6.7371358€-01
6.8067639E-01
6.9028537E-01
7.0241039€e-01
1+1689513E-01
7.3356234E-01
7.5221908E-01
7.7266063E-01
71.9467334E-01
8.1803695E-01
8.4252597E-01
8.6791050E-01
8.9395707E-01
9.2042912E-01
9.4708763E-01
9.7369186E-01
1.0000001E 00
1.0257705E 00
1.0507622€E 00
1.0747361E 00
1.0974551E 00
1.1186845E 00
1.1381906E 00
11557378 00
1.1710823E 00
1.1839612E 00




=0

0.2

0.4

0.

1.7579666E-02
3.5412857€E-02
55 3500735FE—02
7.1844539E-02
9.0445459E-02
1.0930475€E-01
1.2842366E-01
1.4780346E-01
l.6744551E-01
1.8735106E-01
2.9088010E-01
4.0121142E-01
5.1854261E-01
6.4309365E-01
e 7511073E=01
9.1486998E-01
1.0626813E 00
1.2188907E 00
1.3838814E 00
1.5580718E 00
1.7419094E 00
1.9358589€ 00
2.1403832FE 00
2.3559130E 00
2.5828076E 00
2.8213036E 00
3.0714571E 00
3.3330855E 00
3.605734TE 00
3.8887087E 00
4.1812666E 00
4.4832159E 00
4.7965171E 00
5.1298906E 00
5.5149460E 00

-7.4505806E-09
7.1382374E-03
1.4091402E-02
2.085469TE-02
2.T7T424648E-02
3.3796206E-02
3.9965063E-02
4.5926630E-02
5.1676139E-02
5.7209179E-02
6.2520504E-02
B8« 55791 T1E-02
1550239 5E=0]
1.1201806E-01
1.1387070E-01
1.0697266E-01
9.0299398E-02
6.2681124E-02
2.2770494E-02

-3.0996077€-02

-1.0044712E-01

-1.8773461E-01

—2.9540533E-01

-4.2648645E-01

-5.8458941E-01

-7.7403412€-01

-1.0000006E 00

-1.2687183E 00

=158 {7 1 3TEL00

-1.9661546E 00

=2.4153753E 00

=2.9497579E 00

-3.5883874E 00

-4.3585593E 00

-5.3044917€E 00

-6.5149492E 00

0.

2.3334026E-02
4.6690750E-02
7.0092498E-02
9.3560911E-02
1.1711662E-01
1.4077909E-01
1.6456644E-01
1.8849541E-01
241258137601
2.3683830E-01
3.6109524E-01
4 9112276 E=-01
6.2773326E-01
T7152793E-01
9.2301402E-01
1.0826651E 00
1.2509553E 00
1.4283786E 00
1.6154616E 00
1.8127676E 00
2.0209011E 00
2.2405012E 00
2.4T22355E 00
2.7167856E 00
2.9748363E 00
3.2470645E 0C
3.5341515E 00
3.8368448E 00
4.1561400E 0O
4.4937255E 00
4.8530455E 00
5.2419587E 00
5.6802182E 00
6.2265034E 00

3.3672364E-01
3.3680530E-01
3.3704796E-01
3.3744437E-01
33798319601
3.3864893E-01
3.3942334E-01
3.4028590E-01
3.4121434E-01
3.4218574E-01
3.4317659E-01
3.4762563E-01
3.4934852E-01
3.4617814E-01
3.3632539E-01
3.1820042€E-01
2.9026981E-01
2.5095502€E-01
1.9855171E-01
1.3115807E-01
4.6601564E-02
-5.7638660E-02
-1.8452465E-01
—3.3756696E-01
=56 2095791 E=Q
=13 3613E=0]
-1.0000007E 00
—-1+3091990E 00
-1.6765402E 00
-2.1136354E 00
-2.6355836E 00
-3.2630137E 00
-4.0264481E 00
~4.9773338E 00
-6.2246597E 00

0.

2.8156436E-02
563291017 E=02
8.4534138E-02
1.1278749E-01
1.4110482E-01
1.6950149E-01
Vs 9119924 2E—0i
2.2659205E-01
2.5531434E-01
2.8417275E-01
4.3093650E-01
5.8280022E-01
7.4087051E-01
9.0604094E-01
1.0790749E 00
1.2606677E 00
1.4514924E 00
1.6522315E 00
1.8635987E 00
2.0863557E 00
2.3213259E 00
2.5694041E 00
2.8315707E 00
3.1089087E 00
3.4026390E 00
3.7141906E 00
4.0453506E 00
4.3985717E 00
4.7776297E 00
5.1890756E 00
5.6457168E 00
6.1762113E 00
6.8593919E 00

6.1308981E-01
6.1308096E-01
6.1305435E-01
6.1300728E-01
6.1293600E-01
6.+1283527 =01}
6.1269876E-01
6.1251867E-01
6.1228603E-01
6.1199106E-01
6.1162354E-01
6.0827674E-01
6.0123022E-01
5.8880171E-01
5.6930873E-01
5.4107837E-01
5.0240499E-01
4.5149205E-01
3.8638656C-01
3.0490550E-01
2.0455766E-01
8.2451626E-02
-6.4813845E-02
=2.4128343E-01
-4.5181609E-01
=T 0230833E=011
-1.0000008E 00
=1.3539232F 00
=1.7755879E 00
-2.2801633E 00
-2.8886706E 00
-3.6326426E 00
—4.5658393E 00
-5.8030006E 00

)



TABLE

IX. - CONTINUED.

ELECTRODE COORDINATES FOR DIVERGING CYLINDRICAL FLOW (r/rq > 1)

X =

0.6

X = 0.67825

0.8

0.

3.2985843E-02
6.5985871E-02
9.9014231E-02
1.3208498E-01
1.6521205E-01
1.9840921E-01
2.3169004E-01
2.6506783E-01
23989557 TE=01
3.3216655E-01
5.0249035E-01
6.7762592E-01
8.5882140E-01
1.0471626E 00
1.2436208E 00
1.4491020E 00
1.6644896E 00
1.8906810E 00
2.1286179E 00
2+3793153E .00
2.6438909E 00
2+9235959E 00
3.2198635E 00
3.5343781E 00
3.8691927E 00
4.2269456E 00
4.6112645E 00
5.0275726E 00
5.4847822E 00
5 29921 T ESOD
6.6050682E 00
7.3900613E 00
8.7077599E 00

8.8981370E-01
8.8975743E-01
8.8958788E-01
8.8930384E-01
8.8890299E-01
8.8838217E-01
8.8773733E-01
8.8696369E-01
8.8605536E-01
8.8500668E-01
8.8380989E-01
8.7531930E-01
8.617616TE-01
8.4174818E-01
8.1373854E-01
7.7607423E-01
7.2697217E-01
6.6448924E-01
5.8646935E-01
4.9047390E-01
3.7369794E-01
2.3286609E-01
6.4101368E-02
-1.3724078E-01
-3.7679445E-01
-6.6149026E-01
-1.0000009E 00
-1.4034344E 00
-1.8864979E 00
-2.4696444E 00
-3.1835391E 00
-4.,0799958E 00
-5.2666563E 00
-7.0972426E 00

o.

3.4908992E-02
6.9831797E-02
1.0478216E-01
1.3977382E-01
1.7482034E-01
2.0993522E-01
2.4513177E-01
2.8042310E-01
31582220E=01
3.5134164E-01
531 51205E=01
7.1576786E-01
9.0642015E-01
1.1042771E 00
1.3103836E 00
1.5257256E 00
LTSI 2L TE 00
1.9880102E 00
2.2369844E 00
2.4993252E 00
2.7762878E 00
3.0692970E 00
3.3800088E 00
3.7104117E 00
4.,0629897E 00
4.4410203E 00
4.8491306E 00
5.2944126E 00
5.7888023E 00
6.3547701E 00
7.0414249€ 00
7.9866989E 00

1.0000058E 00
9.9993455E-01
9.9972075E-01
9.9936248E-01
9.9885848E-01
9.9820534E-01
9.9739990E-01
9.9643780E-01
9953131 E=01
9.9402261E-01
9.9255724E-01
9.8236085E-01
9.6655575E-01
9.4382402E-01
9.1266372E-01
8.7142142€E-01
8.1828870E-01
T« 512 H129E=01
6.6813828E-01
5.6635293E-01
4.4298564E-01
2.9460378E-01
'Sl T13217E-01
-9.4329997E-02
-3.4575500E-01
-6.4453526E-01
-1.0000009E 00
-1.4242450E 00
—1.9335490E 00
-2.5511064E 00
-3.3129490€ 00
-4.2834724E 00
-5.6111254E 00

0.

3.7951939E-02
7.5917358E-02
1.1390967E-01
1.5194231E-01
1.9002859E-01
2.2818174E-01
2.6641490E-01
3.0474097E-01
3.4317285E-01
3.8172317E-01
5.7668148E-01
T.7638677E-01
9.8219366E-01
1.1953417E 00
1.4169867E 00
1.6482389E 00
1.8902038E 00
2.1440212E 00
2.4109060E 00
2.6921904E 00
2.9893748E 00
3.3041949E 00
3.6387179E 00
3.9954974E 00
4.3778323E 00
4.7902319E 00
5.2392960E 00
5.7355018€ 00
6.2971761E 00
6.9606043E 00
7.8122556E 00

1.1743571E 00
1.1742649E 00
1.1739884E 00
1.1735258E 00
1.1728760E 00
1.1720365E 00
1.1710039E 00
1.1697749E 00
1.1683443E 00
1.1667078E 00
1.1648594E 00
1.1522043E 00
1.1331048E 00
1.1063208E 00
1.0703923E 00
1.0236664E 00
9.6429423E-01
8.9020342E-01
7.9904696E-01
6.8813410E-01
5.5433637E-01
3.9396785E-01
2.0262799E-01
-2.5009155€E-02
—2.9548675E-01
=6+16990TTE-01
-1.0000010E 00
-1.4583801E 00
-2.0113251 00
-2.6873249E 00
-3.5334548E 00
-4.6429169E 00

¥9



TABLE IX. - CONCLUDED. ELECTRODE COORDINATES FOR DIVERGING CYLINDRICAL FLOW (r/ro =)

X

Y

X =

1.0

X = 1.5

X =

2.0

0.

4.3103422E-02
8.6220226E-02
1.2936380E-01
1.7254747E-01
2.1578455E-01
2.5908829E-01
3.0247179E-01
3.4594821E-01
3.8953051€E-01
4233231556=-01
6+5396060E-01
8.7951779E-01
1.1113659E 00
1.3508922E 00
1.5994346E 00
1.8583150E 00
2.1288799E 00
2.4125475E 00
2.7108584E 00
3.0255391E 00
3.3585833E 00
3.7123697E 00

4.0898345E
4.4947588E
4.9322571E
5.4096707E
5.9383136E
6.5371969E
1.2420303E
8.1316562E
9.4393312E

00
00
00
00
00
00
00
00
00

1.4695159E 00
1.4693931E 00
1.4690239E 00
1.4684080E 00
1.4675435E 00
1.4664284E 00
1.4650601E 00
1.4634347E 00
1.4615491E 00
1.4593985E 00
1.4569779E 00
1.4406139E 00
1.4164550E 00
1e 38333 15E=00
1.3398136E 00
1.2842290E 00
1.2146531E 00
Ue1288795E 00
1.0243673E 00
8.9816294E-01
7.4679531E-01
5.6613253E-01
3leD 191 39E=01
9.5867082E-02
-2.0745360E-01
-5.6848438E-01
-1.0000011E 00
-1.5195364E 00
-2.1526857E 00
-2.9404981E 00
-3.9596832E 00
-5.4016352E 00

0.

5.6917496E-02
1.1384969E-01
1.7081126E-01
2.2781690E-01
2.8488127€E-01
3.4201905E-01
3.9924485E-01
4.5657336E-01
5.1401907E-01
5.7159666E-01
8.6197140E-01
1.1578182E 00
1.4609435E 00
1.7731655E 00
2.0963447E 00
2.4324308E 00
2.17835219E 00
3.1519463E 00
3.5403725€E 00
3.9519627E 00
4.3906007E 00
4.8612435E 00

5.3704993E
5.9276203E
6.5463442E
7.2485798E
8.0726312E
9.0947183E
1.0501963E

00
00
00
00
00
00
01

2.2609916E 00
2.2608008E 00
2.2602280E 00
2+2592726E 00
2.2579330E 00
2.2562073E 00
2.2540934E 00
2.2515879E 00
2.2486878E 00
2.2453883E 00
2.2416853E 00
2.2169207€E 00
2.1810791E 00
2.1330031E 00
2.0712122€ 00
1.9938900E 00
1.8988577E 00
1.7835213E 00
1.6447964E 00
1.4789948E 00
1.2816660E 00
1.0473700E 00
7.6934704E-01
4.3901993E-01
4.5198262E-02
=42121039E=01
-1.0000015E 00
-1.7062655E 00
—-2.6036464E 00
-3.8139954E 00

O«

T.2144340E-02
1.4430612E-01
2.1650280E-01
2.8875186E-01
3.6107073E-01
4.3347694E-01
5.0598798E-01
5.7862142E-01
6.5139486E-01
7.2432590E-01
1.0919652E 00
1.4662235E 00
1.8493993E 00
2.2438950€E 00
2.6522758E 00
3.0773492E 00
35222101 6E 00
3.9907363E 00
4.4871411E 00
5.0169928E 00
5.5874133E 00
6.2080304E 00

3.1333990E
3.1331460E
3.1323860E
3« U3 1 KO0
3.1293434E
3.1270568E
3.1242570E
3.1209409E
3.1171048E
3.1127447E
3.1078557E
3.0752689E
3.0284154E
2.9660491E
2.8865396E
2.7878418E
2.66T74413E
2.5222769E
2.3486246E
2.1419291E
1.8965613E
1.6054527E
1.2595371E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

6.8925108E
T.6614143E
8.5479789E
9.6113002E
1.0971956E

00
00
00
00
01

8.4684141E-01
3.5091260E-01
-2.5215045E-01
-1.0000020E 00
-1.9599242E 00
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TABLE X. - OUTER ELECTRODE COORDINATES FOR CIRCULAR FLOW ION BEAM
0 R ] 0 R 8 R ) R 0 R 9 R 6 R
X =0 X = 0.16494 X = 0.39685 X = 0.62996 X = 0.82549 ¥ = 0.95483
0 1.4286 | 29.794 | 2.7774 | 10.000| 1.4286 | 35.783 | 2.3843 | 20.000 | 1.4286 | 30.000 | 1.4286 | 40.000 | 1.4286 | 50.000 | 1.4286
57096 | 1.4629 | 30.940 | 2.8126 | 10.573 | 1.4758 | 36.929 | 2.4089 | 20.573 | 1.4527 | 30.573 | 1.4426 | 41.146 | 1.4445 | 51.146 | 1.4358
1.14590 | 1.4967 | 32.086 | 2.8464 | 11.719 | 1.5508 | 38.075 | 2.4323 | 21.719 | 1.4978 | 31.146 | 1.4563 | 42.292 | 1.4594 | 52.292 | 1.4421
1.71890 | 1.5302 | 33.232 | 2.8790 | 12.865 | 1.6141 | 39.221 | 2.4546 | 22.865 | 1.5395 | 32.292 | 1.4825 | 44.011 | 1.4799 | 53.438 | 1.4475
5.09180 | 1.5633 | 34.377 | 2.9103 | 14.011 | 1.6712 | 40.367 | 2.4756 | 24.011 | 1.5785 | 33.438 | 1.5072 | 45.730 | 1.4981 | 55.157 | 1.4540
3.43770 | 1.6284 | 35.523 | 2.9403 | 15.157 | 1.7243 | 41.513 | 2.4955 | 25.157 | 1.6153 | 34.584 | 1.5306 | 47.448 | 1.5142 | 56.875 | 1.4585
4.58370 | 1.6921 | 36.669 | 2.9689 | 16.303 | 1.7744 | 42.659 | 2.5142 | 26.303 | 1.6500 | 35.730 | 1.5527 | 49.167 | 1.5281 | 58.594 | 1.4611
5.70960 | 1.7544 | 37.815 | 2.9963 | 17.448 | 1.8221 | 43.805 | 2.5318 | 27.448 | 1.6830 | 36.875 | 1.5735 | 50.886 | 1.5400 | 59.740 | 1,4618
6.87550 | 1.8154 | 38.961 | 3.0223 | 18.594 | 1.8678 | 44.950 | 2.5481 | 28.594 | 1.7144 | 38.021 | 1.5932 | 52.605 | 1.5497
8.02140 | 1.8751 | 40.107 | 3.0470 | 19.740| 1.9118 | 46.096 | 2.5632 | 29.740 | 1.7443 | 39.167 | 1.6118 | 54.324 | 1.5574
9.16730 | 1.9335 | 41.253 | 3.0703 | 20.886 | 1.9541 | 47.242 | 2.5772 | 30.886 | 1.7728 | 40.313 | 1.6293 | 56.043 | 1.5631
10.31300 | 1.9907 | 42.399 | 3.0923 | 22.032 | 1.9949 | 48.388 | 2.5900 | 32.032 | 1.7999 | 41.459 | 1.6456 | 57.762 | 1.5667
11.45900 | 2.0467 | 43.545 | 3.1129 | 23.178 | 2.0343 | 49.534 | 2.6015 | 33.178 | 1.8258 | 42.605 | 1.6610 | 59.481 | 1.5684
12.60500 | 2.1014 | 44.691 | 3.1322 | 24.324 | 2.0723 | 50.680 | 2.6119 | 34.324 | 1.8505 | 43.751 | 1.6752
13.75100 | 2.1550 | 45.837 | 3.1501 | 25.470| 2.1091 | 51.826 | 2.6211 | 35.470 | 1.8740 | 44.897 | 1.6885
14.89700 | 2.2073 | 46.983 | 3.1666 | 26.616 | 2.1445 | 52.972 | 2.6290 | 36.616 | 1.8963 | 46.043 | 1.7008
16.04300 | 2.2585 | 48.128 | 3.1818 | 27.762 | 2.1787 | 54.118 | 2.6358 | 37.762 | 1.9175 | 47.189 | 1.7120
17.18900 | 2.3084 | 49.274 | 3.1956 | 28.908 | 2.2117 | 55.264 | 2.6414 | 38.908 | 1.9376 | 48.335 | 1.7223
18.33500 | 2.3572 | 50.420 | 3.2080 | 30.054 | 2.2434 | 56.410 | 2.6458 | 40.054 | 1.9565 | 49.481 [ 1.7316
19.48100 | 2.4047 | 51.566 | 3.2190 | 31.199 | 2.2740 | 57.555 | 2.6489 | 41.199 | 1.9744 | 50.626 | 1.7399
20.62600 | 2.4510 | 52.712 | 3.2286 | 32.345 | 2.3033 | 58.701 | 2.6509 | 42.345 | 1.9912 | 51.772 | 1.7473
21.77200 | 2.4962 | 53.858 | 3.2368 | 33.491 | 2.3315 | 59.847 | 2.6517 | 43.491 | 2.0068 | 52.918 [ 1.7537
£2.91800 | 2.5400 | 55.004 | 3.2436 | 34.637 | 2.3585 44.637 | 2.0215 | 54.064 | 1.7591
24.06400 | 2.5827 | 56,150 | 3.2490 45.783 | 2.0350 | 55.210 | 1.7636
£5.21000 | 2.6242 | 57.296 | 3.2530 46,929 | 2.0475 | 56.356 | 1.7671
26.35600 | 2.6643 | 58.442 | 3.2556 48.075 | 2.0590 | 57.502 | 1.7696
27.50200 | 2.7033 | 59.588 | 3.2569 49.221 | 2.0693 | 58.648 | 1.7712
28.64800 | 2.7410 50.367 | 2.0787 | 59.794 | 1.7719
51.513 | 2.0869
52.659 | 2.0942
53.805 | 2.1003
54.950 | 2.1055
56.096 | 2.1096
57.242 | 2.1126
58.388 | 2.1146
59.534 | 2.1155
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TABLE XI. - INNER ELECTRODE COORDINATES FOR CIRCULAR FLOW ION BEAM

R )
X =0 X = 0.16494 | y = 0.39685 | x = 0.62996 | x = 0.82549 X = 0.95483| x = 1.0 |x = 1.2856 | x = 2.0408

0 15.00000 15.0000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
.02 | 14.99000 14.9910 14.993 14,994 14.996 14,997 14.997 14.999 15.004
.05 | 14.93800 14.9460 14.956 14.966 14.975 14.981 14.983 14.995 15.028
.10 | 14.76000 14.7300 14.831 14.872 14.906 14.929 14.937 14.988 15.120
.15 [ 14.47600 14.5410 14.634 14.727 14.805 14.856 14.874 14.988 15.285
.20 | 14.09400 14.2110 14.375 14.541 14.679 14.771 14.803 15.005 15.534
25 | 13.62400 13.8070 14.065 14,324 14.541 14.684 14.734 15.051 15.878
30 | 13.07400 135.35390 ALS5 S P/l 14.085 14.398 14.606 14.678 15336 16.330
35 | 12.45200 12.8150 13.324 150838 14.263 14.546 14.645 155270 16.903
.40 [ 11.76500 12.2420 AL Cenit 15,582 14.145 14,517 14.646 15.467 17.612
.45 | 11.01800 1906280 12.482 15,339 14.056 14.529 14.695 15.740 18.475
.50 { 10.21700 10.9800 12.047 15,305 14.008 14.597 14.803 16.104 1951t
.52 9.88320 10.7130 11.874 13.034 14.003 14.643 14.867 16,279 195983
.55 9. 36760 10.3060 137616 123923 14.015 14,736 14.987 16.577 20.752
O 9.01480 10.0310 11.447 12.859 14.037 14.815 15.086 16.801 21.311
.60 8.47260 9L 655 13,200 K22 W) 14.094 14.962 15.265 AL7AS AL/ ] 22.224
.62 8.10270 TES55! 11.041 125738 14,157 15.082 15.407 17.462 22.886
<65 {53590 819108 1LOs815 12.698 14.266 15.298 15.658 173955 23.967
BT 115020 8.6292 10.670 12.689 14.365 15.469 15.853 18,287 24.750
OAO) 6.56040 8.2087 10.473 12.704 14.552 15.768 16.192 18,872 26.027
.12 615950 i 951 @R358 1257356 14.705 16.000 16.451 19.304 26.954
«15 5.54860 75213 10.203 12,822 14.982 16.400 16.894 20.021 28.466
T4 5.13420 7.2548 1osi21 12.908 15.201 16.706 17.230 20.547 29.564
80 4.50240 6.8692 10.034 13.087 15.588 17.226 ANTS T O 21.413 31.364
82 4.07470 6.6251 10.004 13.242 15.887 17.618 alfei ~r=reil 22.044 32.678
<89 3.42350 6.2858 10.009 13.536 16.402 L8277 18.930 23.078 34.851
87 2.98300 6.0837 LEQI052 13.7786 16,795 18.766 19.453 23.826 36.459
«90 2.31290 58511 10.185 14.208 17.454 19.576 20.316 25.043 39.176
e 92 1.86010 5. 7081 OS525 14.546 17.945 20.169 20.945 25. 920 41.254
+95 1.17160 5.6178 10.621 15131 EEeH(E8 21,158 2arsioie 27.338 44,981
ST « LOBST. 56381 10.878 150572 19.582 210837 225709 28.356 48.159
100 0 5.8124 LS552 16.310 20.318 22.968 23.900 30.000 58.000
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Atomic weight Current Accelerating Potential
per ionic density, distance, difference,
charge, Js X, P ~ 9
A amp/meter2 meters volts
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Figure 1. - Space-charge-limited flow between infinite plane electrodes. J = 5.467x10‘8A’1/2(<po - ¢)5/2x‘2.
See appendix C for rescaling.
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Figure 2. - Nomographic solution of % mve = a(p, - 9). (See appendix C for
rescaling.)



Langmuir function, 62
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Figure 3. - Langmuir function for flow between coaxial cylinders.




Atomic weight Potential

per ionic difference,
charge, 90 ~ 9>
A volts
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Figure 4. - Converging flow between coaxial cylinders. J/1 = 3.45X10'7A'1/2(®0 - ¢)3/2(r32)-1 PopSSpEc T

note that J =

(3/1)/2rr.
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(See appendix C for rescaling.)
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Radius of Langmuir Radius Potential Current per Atomic weight
outer function, ratio, difference, unit length, per ionic
cylinder, g2 /g g - Dy j/l, charge,
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Figure 5. - Diverging flow between coaxial cylinders. J/1 = 3.43X10‘7A'1/2(¢0 - @)3/2(r82)~1 for r > rg; note that
j = (3/1)/2mr. (See appendix C for rescaling.)
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(See appendix C for rescaling.)
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r > ry; note that Jj = J/4rr2. (See appendix C for rescaling.)
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Trajectory radius ratio, r/ro
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Figure 11. - General trajectory plot for flow between in-
clined planes (egs. (41) and (48)).
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Figure 12. - Angle between trajectories and normals to equipotentials for in-
clined planes (egs. (42) and (49)).
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(See appendix C for rescaling.)
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Figure 14. - Potential distribution between inclined plane
electrodes (space-charge limited).
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Trajectory radius ratio, r/ro
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Figure 15. - General trajectory plot for flow between co-

axial right circular cones (eq. (59)).
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Figure 24. - Typical electrode
shapes for a rectilinear ion beam
with circular cross section.




Beam edge

l-o \ '
\ l
\ \ I
\ \ |
= — [ |
\\ \ :
\ \ ‘ |
\ \ \ |
16 \ \ { |
L\ X \ \ ‘

r/b \ O \ -5 \1 12
\ \ \ |

4 \\ \ &

B 2§ |
< \ \

\\\
0 .2 .4 .6 .8 1L5(0) 1.2 1.4 1.6 iLste
z/Db

(b) Inner electrode shapes.

Figure 24. - Concluded. Typical electrode shapes for a rectilinear ion beam with circu-
lar cross section.

26







94

T
v —
\\ \\\\\Lm\m
EdrEar - —
b \\\ \\\\\\\ Vi :
BPADZ////1
i o\ \\\ \ i
a0
% e
WTUR
| | /







96

llO
9 o
——

|
40 50 60| 70 80

AN

SR \

RANANRANAY

20 30
——

N\
\\\§N\

N\
N
N\

4
e re M o R D &

ANAVA

2

5

X
2

60 6

=1 S
AN \X \\ 10
o\

/ ! o

I Evi/,

AL A
N/

\Q\\\\\m\\\

iy 4

\\\N\

v 4

-10

- Electrode shapes for hyperbolic flow.

28.

Figure




L, meters

Hump radius,

1074

E

)
volts/meter /
10° //r

/ 7 ;
-5
10 7 i
/ 7 v i
/ J: Vi
/ ! -/
/ / 4
1074 ///
SOl ]l 10
IS
Figure 29. - Approximate ratio of ion beam spreading due to a surface irregularity to ther-

mal spreading.

L6



98

=0

O o J/Jd

Fraction of current for
0

s < :

against

against

wl=s  nlg
Sy
NS

1L5(GHL 7
!
/
a, deg
B ) === |
————-—_—_.— Jusseim]
.——-—-'_——/—-—————_/ /f/ |
I // |
11.46 /‘//// | |
L9911 48— 7 I
// I |
14/ 1/ | |
7~
L~ ///, | [
|
17.19. 7| A | I
y o
.97 l l

1.24 1.40 a

Aspect ratio, (g or %)

55 .6 .8 i

Figure 30. - Effect of electrode tilt on current den-

sity in a plane diode (ref. 10). (Rectangular emit-

ter tilted about axis parallel to side and disk
emitter.)




2961 ‘Ao18ueT-ySYN

1Lk

99vil=H

0

Fraction of total current for
J/d,,

0 20 40 60 80 100
Angle, a, deg
Figure 31. - Effect of electrode tilt on current density in a

plane diode with disk emitter of optimum aspect ratio
D/S = 1.42 (ref. 10).

66






