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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1666

A GENERAL DIGITAL COMPUTER ANALYSIS OF
STATICALLY INDETERMINATE STRUCTURES*

By Paul H. Denke

SUMMARY

The application of high speed digital computers in the rational analysis of
statically indeterminate structures, and the significance of this application in
airframe design, are discussed.

The matrix. formulation of the force method of analysis is reviewed, and the
programs which have been produced to generate the matrices and solve the equilib-
rium and continuity equstions are described. These programs are general enocugh
to apply to any linear discrete structure.

Numerous comparisons between analysis and experimental results are presented.
In addition, applications of the programs in the production stress analysis of a
large commercial jet transport are described. Applications to thermal stress
problems and low aspect ratio wings are also included.

1This paper, which carried a Douglas Aircraft Company designation of
"Engineering Paper No. 834," was presented before a meeting of the Structures and
Materials Panel of the Advisory Group for Aeronautical Research and Development,
North Atlantic Treaty Organization, in Aachen, Germany, September 17, 1959. Since
the proceedings of the sbove Panel meeting are not being published, arrangements
have been made with AGARD and the Douglas Alrcraft Company for the release of this
paper in its original form by NASA to increase its availability.



NOTATION

In the following definitions, the term "analysis condition" means any com-
bination of external load, thermal deformation, support displacement, etc., tend-
ing to produce stress and deflection in the structure. The matrices are defined
in the order of theilr eppsarance in the analysis. Matrices which are not in the-

list are defined in the text.

Matrix Definition of the Matrix Element

Q = [?1J ] QiJ = the ith principal statically determinate force result-
ing from the redundants and the external loads in the jth

analysis condition.

Qs - FQB ] QB = the 1th subordinate statically determinate force re-
13 13 ’
~ -~ sulting from the redundants and the external loads in the Jth
analysig condition.
- -
X = xiJ xiJ a the ith principal redundant in the jth analysis condi-
L
tion.
X =X X = the 1th subordinate redundant in the jth analysis con-
8 siJ BiJ
- = dition.
- -
p = ¢1 3 8, j = the ith principal external load in the jth analysis
- N condition.
¢. - ¢B- ] ¢s = the 1th subordinate external load in the Jth analysis
i) 1J
- - condition.
m = [m_ ] m = the component in the 1th principal degree of freedom
PP ppiJ ppij _
- - of a unit value of the jth principal statically determinate

force.



Matrix Definition of the Matrix Element

= the component in the 1ith principal degree of freedom

llls = m mB
)2 pBiJ PByy
of a unit value of the Jth subordinate statlcally determin-

ate force.

Py 'F;x ' Py = the component in the ith principal degree of freedom
P Ppid PPiJ
- - of a unit value of the jth principal redundant.
Py _r;x ul /px = the component in the ith principal degree of freedom
ps pBiJ : psiJ
- - of a unit value of the Jth subordinate redundant.
o -'50 P, = the component in the ith principal degree of freedom
rp ppi J i Ppi 3
L of a unlt value of the-jth‘principal external load.
&'50 1 = the component in the ith principal degree of freedom
ps P8y, P8y 4 4, |
- of a unit value of the Jth subordinate external load.
m -im m = the component in the ith subordinate statically de-
8p BpiJ sPiJ
terminate degree of freedom of & unit velue of the jth prin-
cipal statically determinate force.

_— n m = the component in the ith subordinate statically de-
terminate degree of freedom of a unit value of the Jth sub-
ordinate statically déterminate force.

px =l P, Py = the component in the ith subordinate redundant de=-
8p Bpi 3 SPi 3
gree of freedom of a unit velue of the Jth principal redun-
dant.
px - px Py = the component in the 1th subordinate redundant de-
88 ssiJ 5813
- gree of freedom of a unit value of the Jth subordinate redun-
dant.
Py *[Po Py = the component in the ith subordinate extermal load
8p Bpia BpiJ

degree of freedom of a unit value of the Jth principal exter-

nal. load.



Matrix

Definition of the Matrix Element

Py

88
1)
degree of freedom of a unit value of the jth subordinate

= the component in the ith subordinate external load

external load.



INTRODUCTION

For many years, elementary methods of stress analysis wers used almost ex-
clusively in the design of alrcraft structures. These methode involved a number
of assumptions, including especislly the assumptions that plane sections of e~
longated members remained plane under the action of bending loads, and that, in
torque, sections were free to warp. In many parts of the airframe these assump-
tions were, and are, completely Justified by the nature of the structure and the
loading. In other places, the assumptions did not apply, as at the roots of
‘wings, or in the regions of fuselage cutouts. In such areas, other assumptions,
conservative and often overlapping to ensure safety, were made. Occasionally a

more precise analysis was performed, but such occaslons were rare.

Actually no other recourse was possible, because the ektensive use of pre-
cise methods required computing fuacilities which did not exist. Such facilities,
however, are now avallable. To appreciate the advance which has been made in
the art of computation, consider the fact that about twenty seconds are required
to multiply two seven digit numbers on a desk calculator, whereas a large auto-
matic computer can multiply 10,000 pairs of such numbers per second. Thess fi-
gures represent an increase in computing power on the order of 200,000 : 1. On
a cost basis, the expense of computing has decreased on the order of 5,000 : 1.

The introduction of matrix algebra into structural analysis has facilitated
calculations also, by converting what was formerly a complicated mathmatical pro-
blem into a systematic procedure.

The result of these improvements i1s that the use of advanced methods in
stress analysis 1s now a practical undertaking. The question is, to what extent
should these methods be applied.

Figure 1 shows the results of a test run at NASA on a cylindrical shell sup=-
ported at one end on a rigid foundation, reinforced by circular rings, and carry-
ing a radial load at ihe free ehd. The figure shows the longltudinal tensile and
compressive stresses in the shell, as determined from test, as computed by ele-
mentary theory (My/I), and as computed by rigorous methods. The fipure shows that



the maximum bending stress at station 45 frame as computed by elementary theory
is in error by a ratio of almost 3.6 to 1, whereas the error resulting from the
rigorous computatlion is only 10%. Notice also that & secondary maximum occurs
at the so called "neutral axis" where the stress is supposed to be zero. Even
at the rigid support, where the section is forced to remaln plane, the error in
My/I is still 2.2 to 1. This structure is not an isolated case; it is typical
of many parts of the airframe, and there are places in actual structure vhere
errors resulting from elementary analysis may be larger, because of the exis-

tence of cutouts or other conditions.

The results of Figure 1 are well confirmed, inasmuch as they were obtained
independently by Jensen of the Gruman Aircraft Company and published by him in
reference 5. These results cannot be ignored or dismissed; they are facts, and

must be considered in any assessment of structursl analysis methods.

What 18 the significance of the errors involved in the use of elementary
methods?

Structure analyzed by rough methods and not thoroughly checked by a care-
ful testlng program can contain large stress concentratlions. These concentra-
tions can produce metal fatlgue and cause the structure to havé 8 short life.
Much importance has been attached, Justifiably; to the effects Of\EEEli.EEELE
stress concentrations around bolt holes, tool marks, small radius fillets, etc.,
in reducing fatigue life. Perhaps not enough emphasis has been given to Ehe im-
portance of %Ezgg_gggégtstress concentrations that are not revealed by rough
analysis metbods. Obviously, an unconsservative error of 3 : 1 or more in the
computed stress, if undetected, must lead to a short lived structure. In such
a case no amount of attention to design detalls, important as they are, can pro-
duce a fatigue resistant component. The possibility exists that many of the fati-
gue troubles experienced in the operation of present day alrcraft have resulted
from the use of elementary stress analysis methods where they did not apply.

These large scale stress concentrations can also ceuse fallure under the
action of a single load, even though ylelding tends to alleviate the condition.

The consequences of such a faillure need not be emphasized.

If, as is normally the case, a thorough testing program 1s undertaken, then



all stress concentrations of importance can be discovered and elimlnated. How-
ever the cost of building, instrumenting, and testing full scale components 18
very high, even compared to the rental of a large computer. This testing ex-
pense continually increases as the demand for higher performance vehlcles re-
quires the working of metals to higher operating stresses, the use of unusual
configurations, and the ability to wlthstand severe environmental conditions.

The testing of large components and entire airframes at high temperature will bve
an especlally expensive procedure, because of the large power requirements to
heat, as well a8 to cool, the specimen; the complicated apparatus needed for tem-
perature control; the specialized instrumentation, such as high temperature straln
gouges required for measurements; and the additional engineering required to plan
the test. The new methods of stress analysis can play a very important part in
belping to keep these testing expenditures within reasonable limits.

Finally, the financiel risk involved in a large alrcraft prolect 1s suffi-
clent to warrant a double check through both test and accurate analysis to make

sure that nd defective conditions exist.

The conclusion is drawn, therefore, that the extensive use of advanced digl-
tal methods of stress analysls 1s Justified at the present time, and that these

methods will become even more important in the future.

SCOPE OF THE PAPER

The paper contains & general description of the method and sectlions on the
matrix formulation, computer programs, analysls procedures, comparisons with test
results, and applications. For s non-technical description of the work, the sec-
tions on the method, test results, and applications are recommended.
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THE METHOD

In the following discussion, the term "discrete structure"” denotes a struce
ture composed of & finite number of members connected at & finite number of
Joints. The term "linear structure" denotes a structure for which the relation-
ships between external load, support displacement, internal force, and deflec-

tion are linear.

Almost every procedure for the analysis of statically indeterminate struc-
tures can be classified as elther a "force" or a "displacement” method. In the
force method, the unknown internal forces are calculated first; the displace«
ments second. In the displacement method, the displacements are calculated be=
fore the forces. Argyris [1]* has discussed the two methods and shown the existe
ence of an analogy between them.

The capabilities of the digital computer allow either of the basic methods
to be programmed in ite simplest and most general form. In the past, a great
many varistions of the basic methods have been employed. One reason for such
diversity has been the need to avold extensive calculation by tailoring the
method to fit the structure. However, the development of the digital computer
has altered the situation. Extensive calculations now can be performed rapidly
and economically. Therefore, a return to basic principles is feasible and,
furthermore, the computer program designed to utilize thege principles can be

general ig its applications.

Some of the advantages to be gained from a basic, general approach are re-
duced programming time, reduced training of personnel, the added insight that
results from the application of basic principles, and the reduction of errors
that results from familiarization in the use of a single method.

The method of analysis described in this paper is a matrix formulation of
the edpilibrium equations and the Maxwell-Mohr equations for statically indeter-
minate structures. This formulation was presented at a& meeting of the Second
U.8. Congress of Applied Mechanics in June, 1954 [é]. The use of matrix algebra
is now recognized as essential in preparing the structural analysis problem for
the computer. Langefors [3] and Wehle and Lansing [u] had preViously published

* Numerals in brackets indicate references.



matrix formulations of Castigliano's Theorem., However, the Maxwell-Mohr eque-
tions are a little simpler in form because they do not involve partial deriva=-
tives. Also, the applications to thermsl stress and nonlinear problems are

more stralght~forward.

In the Maxwell-Mohr method, which is e force method, the structure is cut
to create a statically determinate structure or basic system. The members of
the staticelly determinate structure may be simple elements, or they may them-
selves be complicated statically indeterminate structures. (In fact, even so
called simple elements are actually infinitely redundant). After cutting, values
of the redundants sre chosen such that the deflections at the cuts resulting
from external loads, support displacements, element thermal and other deforma-
tions, and from the redundants, are zero. The redundants can be either forces
existing at the cuts, or linearly independent combinations of these forces, as
Argyris has pointed out [1]. The conditioning of the simultaneous equations in-
volved in solving for the redundants can be improved either by cutting on the
basis of physical reasoning so that the forces at the cuts are small compared‘
to other forces in the structure, or by linearly transforming the redundants
on the basis of the known orthogonal solution of & geometrically regular struc-

* ture which bears a resemblance to the structure under consideration. The use of
statically indeterminate substructures as elements, which have been previously

analyzed, also improves the conditioning.

The present method comprising the eqnilibrium-and Maxwell -Mohr equations
and the assoclated digital computer program is applicable to any linear discrete
structure, and through iterative techniques to certain nonlinear structures as
well. The method applies not only to various parts of the alrframe structure
such as the wing-fuselage intersection, the tail-fuselege intersection, thé cock?
'pit enclosure, the area surrounding a fuselage cut-out, a low aspect ratio wing,'
and s0 on, but also to many types of structures encountered in civil engineering

practice.

This generality was not designed into the method to show the versatility
of the computer, but because generallty is necessary if the analyst is to have
the tools that he needs to deal with the problems arlsing in ailrframe and missgile

design. Thus, many important airfraeme components have no recognlizable geometric



regularity such as would permit the use of simplifylng but restrictive assump=-
tions, or the application of results from elasticity theory. Figures 28 and 2b,
‘which show & pylon-wing intersection, illustrate a structure of this kind.

MATRIX FORMULATION

The matrix formulation is preceded by a set of equations in vector notation
vhich permit the calculation of the elements of the equilibrium matrices.

Equilibrium equations for a statically determinate structure are written by
setting the sum of components of forces in a given direction and the sum of mo-
ments about a given axis equal to zero. In general, such & set of equations can
be expressed in matrix notation in the form M3 + P $ = O, In this equation, Q
18 a matrix of unknown generalized forces where the term "generalized force" is
understood to mean either a force or a moment. The coefficients of the unknown
forces Q are contalned in M. These coefficients, called generalized components,
are force or moment components in certain directions or about certain axes of

unit values of the generalized forces.

The matrix P is a matrix of external loads acting on the structure, while P

contains generalized components of unit values of these external loads.

The structure to be analyzed is broken into free bodies, and equilibrium
equations are written for each body. The equations are numbered cdnsecutively
beginning with one, and to each equilibrium equation there is assigned a corres-~
pondingly numbered unit vector coinciding with the direction in which forces are

summed or about which moments are taken. These vectors are called degree of free- .

dom vectors, because only as many of them may be assigned to a free body as the

body has degrees of freedom if the corresponding equations are to be independent.
Flgure 3 shows a free body dlegram with forces and degree of freedom vectors re-
presenting equations of equilibrium. Degree of freedom vectors are shown dotted.

The existence of two kinds of equilibrim equations and two kinds of general-
ized forces means that thera can be four kinds of generalized components. Equa-
tions 1, 2, 3, and 4 of Teble 1  provide the method for calculating these quan-
titica. In these equations, Ti is & unit degree of freedom vector (elther trans-

1ntional or rotational), and FJ is a unit generalized force (elther a forco or o
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moment ). The symbol mi.1 denotes the corresponding generalixed component. In the
rotation-force equation, ry is a vector Joining the origin to any point on the

line of action of Ty and FJ i8 a similar vector Joining the origin to any point
on the line of action of FJ. In equations (1) to (4), the frame of reference is
aspumed to be & right-handed rectangular Cartesian coordinate system, and rota-
tions and moments are represented by vectors according to the right-band rule.

After the statically indeterminate structure is cut, three kinds of forces
are seen to be acting upon, or in, the determinate structure. These forces are
the external loads, the redundants, and the unknown internal forces, referred to

TABLE 1

BUMMARY OF EQUATIONS

GENERALIZED FORCE COMPONENTS

Trenslation-force my = T, ° FJ (1)
. Rotation-force miJ - T1 . [}rd-ri) X Fé] (2)
Translation-moment my o= 0 (3)
Rotation-moment my = T, FJ (4)

THE X TRANSFORMATION MATRICES

K, = 'ms;l msp (5)
-1 ‘
K =-p P (6)
x Xss  Xap
1
K, = -p, P, (7)
88 8p

COEFFICIENT MATRICES IN THE PRINCIPAL EQUILIBRIUM EQUATION

M = m_+m KX (8)
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P, = p, +P K, (9)
PP ps

P = p +p X (10)

o Opp opB (o]

STATICALLY DETERMINATE FORCES RESULTING FROM UNIT REDUNDANTS AND UNIT EXTERNAL
LOADS

qQ = -M P {11}
qo = -M.lP (12)

ELEMENT FORCE AND STATICALLY DETERMINATE REACTION MATRICES

£, = Ng +H (13) T " N. q (r6)
£, = Nq, + H (%) rno = N.oag (17)
£, = £ C, (15) Toa ™ Tpo Ca (18)
REDUNDANTS
T T
b = fDf, (29) Byp = Ty €p (21}
) I (pr_ + ) (20) ) - +rr (22)
X0 x o DFo ) xR Ax DxAD
-1
X = B (s, P48, -8_.) (23)

ELEMENT FORCES AND STATICALLY DETERMINATE FORCES

F-fxx+fop (24)
Q = ¢ X+q,p (25)
DEFLECTIONS
A = (fZD«rDAF)F-f (fg Do *+ Dpy) B + (fgeT+eAT) -rgAAD (26)

12



or

T T T T T
A = (EA D+ DAF)F + (FA Do * DAO)¢ + (FA ey + eam) - R\ &) =X, A (27)

hereafter as statically determinate forces. The redundants are also unknown, of
gourse, but the statically determinate forces resulting from unit values of the
redundants are calculated, and these results are used in the continuity analysis.
Calculating the statically determinate forces resulting from unit values of the

external loads 18 also expedient.

Each of the three sets of forces -~ external, redundant, and statically de-
terminate « is further divided into two subsets called principal and subordin-
ate forces. The subordinates are forces which can be expressed in terms of the
principals by a preliminary calculation performed on the machine,after which the
subordinate forces are eliminated from the problem. . The principal forces are the
forces that remain. The purpose of this elimipation is to conserve machine ca~

pacity.

The choice of subordinates should be such that they can be expressed easily
in terms of their principals, For example, consider the shear panel of Figure k.
The forces on this panel form a self-contained system, and any three can be writ-
ten in terms of the fourth. Thus Q, =@ a/b, Qgp = Qs 80d Qg = Q) a/b. The
force Ql is the principal, and Qsl’ QSQ, and Qs3 are subordinates. By this device
often half of the forces can be eliminated from the problem.

The next step in the analysis, then, is to designate and number consecutively,
beginning with one, each of the followlng six sets of forces: principal and sub-
ordinate statically determinate forces, redundants, and external loads. Matrices
of these forces are denoted respectively by the symbols Q, Qs’ X, Xs, P, end ¢s.
Figure 3 illustrates a typlcal free body diagram with the forces numbered. On
this diagram, only statically determinate forces are shown. Redundants and ex-
ternal loads are shown on separate sheets to avold confusion. Principal force

numbers are enclosed in parentheses; subordinate force numbers are not.
After the principal and subordinate forces are chosen, so-called subordinate

degree of freedom vectors corresponding to equations of equilibrium are assigned,
80 that the subordinate forces can be calculated in terms of their principals.

15



These vectors are shown in the figure by dotted arrows with index numbers not en-
closed in parentheses. Finally, principal degree of freedom vectors are assigned
to permit the calculation of the principal statically determinate forces. The
principal degree of freedom vectors are indicated by dotted arrows with index
numbers enclosed in parentheses. 1In general, four sets of degree of freedom vec-
tors are assigned as follows: principal degrees of freedom, and subordinate
statically determinate, redundant, and external load degrees of freedom.

The equilibrium equations can now be written, in matrix notation, in terms

of the six sets of forces acting on the free bodies, as followst

B pxpp pxps POPP popé" Q] = o0 (28)
Usp Mss W
pxsp pxss X
| ppsp poss_ s
#
—.ps—

The forces acting on the free bodies are conteined in the post multiplier;
the generalized components are contalned in the premultiplier. The significance
of the partitions m , mba, etc., is given in detail in the table of notation.

All of the generalized components are computed by equations 1, 2, 3, and 4. The
null partitions in the generalized component matrix result from chobsing subordin-
ate forces in such a way that they always form small self-contained systems with

their principals.

Equation 28 18 expanded as follows:

m_Q+m_Q +p X+p X +p p+p p = 0 (29)
PP j ok 8 XPP xp 8 8 OPP 0p a8 a8

1



. -1

¢ Qs = s Mep Q
-1 )
Xg = “Py P, X

: &8 sp

-]
¢a = P Py $
88 sp

The matrices xm’ xx, and Ko are now defined according to equations 5, 6, and
T of Table 1. :

Q = K, ¢
XB = K X
g, = X P
Substituting these expressions into equation (29) gives
M +P X+P $ = O, (30)

where the matrices M, Px, and Po are defined by equations 8, 9, and 10 of Table 1.
Equation (30) is the principal equilibrium equation. :

Notice that the matrices Mo Py andvpo , appearing in equations 5, 6,
‘ 88 88
and 7, must be nonsingular. This nonsingularity is obtained by proper choice of

subordinate degree of freedom vectors. As a matter of computing convenience, the

choice of these vectors should be such that the matrices Mmg? Py and p, are
88 58
lover triangular, because in this event a very rapid computing program can be used

to solve the equations. Such a cholce 18 always easy to make, and it has the ad-

ditional advantage that a lower triangular matrix with nonzero elements everywhere

15



on the dlagonal 1s nonsingular, and well-conditioned.

Taking X = I (the unit matrix) and § = O (the null matrix) in equation (30)
leads to equation (11) of Teble 1, where 9y is a matrix of statically determinate
forces resulting from unit values of the redundants.

Taking X = O and § = I leads to equation (12), where q, 18 & matrix of stati~
cally determinste forces resulting from unit values of the external loads.

Check degree of freedom vectors are assigned to various free bodies of the
gtructure so that additionasl check equations are generated. Such equations pro-
vide reliable verification of the calculations up to this stage.

After the equilibrium problem 1s solved end checked, two additional opera-
tions are performed, before the continuity of the structure 1s restored. First,
all of the statically determinate forces, the redundents, and perhaps some of the
external loads, are grouped into a single set of foress, called element forces, to
facilitate calculating deflections. BSecond, the stetically determinate reactions
are grouped into a separate matrix, to permlt calculating the effect of support

displacements.

Element forces are defined in the following way: Consider any element of the
structure which is capable of undergoing deformation, and therefore of contribut-
ing to the deflection of the structure as a whole. Both internasl forces and ex=-
ternal loads may act upon such an element, since the possibllity of external loads
acting between Joints 18 not excluded. Certain forces acting on the element are

designated as element reactions. These element reactions may be internal forces

or fictitious forces, but they must be chosen in such a way that they are capable
of balancing the other forces applied to the element. The remaining internal

forces are designated as element forces. After element forces for the entire

structure are selected, they are numbered consecutively beginning with one.

For each element force there 18 a corresponding element deformation. An ele=-

ment deformation is defined as the component of the displacement of an element
force, 1in the direction of the element force, when the element reactions are un-

displaced parallel to themselves,

16



Figure 5 shows a bending element, with element reactions (1ndicated thus
——t—w= ), element forces (Fl’ Fp» FB)’ and element deformations (el, €ns 33).

Other cholces of element reactions, forces, and deformations are possible for

such an element,

The element deformations are given the same index numbers as the correspond-
ing element forces; and a deformation is positive when it has the same direction
as a positive value of the corresponding force. ' The slgn convention for element
forces 1s arbitrary, except that the choice of a sign conventlon which results in

negative off-diagonal flexibility factors (defined later) is not advisable.

Some of the element forces correspond to statically determinate forces;
others correspond to redundants and a few may correspond to external loads.
Therefore, the element forces can be written in terms of the statically determin-

ate forces, the redundants, and the external loads, as follows;

F =M + BX + Hf, (31)
vhere F 18 a matrix of element forces.

If the element forces have been chosen in such a way that each one corres-
ponds exactly to a statically determinate force, & redundant, or an external load,
and such a cholce should be made, then the matrices N, H*, and Ho contain 1's and
0's, and there will be no more than one 1 in any row or column. Such matrices are
called extrsctors, because thelr only function 1s to extract information from

other matrices.

Setting X = I and f = O in equation (31) yilelds equation (13) of Table 1,
where fx 1s a matrix of element forces resulting from unit values of the redun-
dants. Setting X = 0 and § = I ylelds equation (14), where £, is & matrix of

element forces resulting from unit values of the external loads.

In the Maxwell-Mohr method, deflections are calculated by applying unit dum-
my loads coinciding in position and direction with the desired deflections. In
the present formulation the assumption is made that & unit external load is ap=-
Plied to coincide with every such deflection. Therefore, a matrix £, can be ex-

tracted from £, as in equation (15), where f, 18 a matrix of element forces

17



resulting from unit values of the dummy deflectlion loads, and CA is a sultable

extractor matrix.

Number the statically determinate reactions consecutively beginning with 1.
Then the statically determinate reaction matrix RD can be extracted from the
statically determinate force matrix as follows:

Ry = N.Q,

where Nr is a sultable extractor. Setting X and ¢ equal to I and O in turn leads
to equations (16) and (17), where Iy, 804 rp o are matrices of the statically de-
terminate reactions resulting from unlit values of the redundants and external loads
respectively. A matrix SN of statically determinate reactions resulting from unit

values of the dummy deflection loads is extracted from r_ as in equation (18).

Do
The essentials of the derivation of equations (19) to (26), inclusive, have
been glven in reference 2. A feature of this derivation is that although it is
based on the conservation of energy, it does not involve elastic strain energy,
80 that the deflection equations are immediately valld for arbitrary element de-
formations, including deformations resulting from thermal gradients, plasticity,
creep, etc, The derivation is also facilitated by the use of the notions of ele-
ment reactions, forces, and deformatiohs, as deflned sbove. However, the equations
have been generalized to include the effects of support displacements, the applica-
tion of external loads between Joints, and the calculation of deflections at points

between Joints.

The symbol D appearing in these equations denotes the flexibility matrix.
The elements of this matrix represent element deformations resulting from unit
values of element forces. For example, the flexibility coefficients for the beam

element of Figure 5 are as follows, 1f shear deformations are not considered;

, = L’/3EI, D, =D, =1°/281, D, = L/EL,

D), = L/AE, D, 23

2 32 33

where L, A, I, and E are the length, area, moment of inertia and modulus of elas-
ticity of the member.

The matrix DFo contains element deformations resulting from external loads

18



applied directly to the elements. If loads are applied only at jolnts, then DFo
18 null, Figure 6 shows the element of Figure 5, with an intermediate load.

The following elements of the D o matrix cen be derived by elementary methodss

F
D, =& cosa/AE, D. = a° (L-a/3) sin @/2EI, D, = a° sin a/2EI .
Fo Fo Fo .
1) 23 3J
The matrix D, contains displacements of dummy deflection loads acting direct-

OF
ly upon the element, resulting from unit values of the element forces, when the

element reactions are not displaced parallel to themszelves. Figure T shows the
element of Figure 5 with an intermediate dumsy deflection load. The elements of

pr are as follows:

D

2
AP =b sinF/QEI .

' 2
=b cosp /AE, D = b (L-b/3) einf /2EI, D
I F bRy, ¢ ’ A,

The matrix DAa contains displacements of dummy deflection loads acting direct-
ly upon the element, resulting from unit external loads actipg directly upon the
element, when the element reactions are not displaced. Figure 8 shows & bending
element subjected to intermediate external and deflection loads., The correspond-

ing element of DAo is a8 follovs:

2
. b b (3a-b
DAoid 7 o8 @ cosF> + __6_——lEI sin a sin@ if a>b

or

2
a a“(3b-a
DAOiJ =~ §x cos o cosé + —Eﬁf—)— sin a sinIB if bYa .

The matrix eT contains element deformations resulting from heating, plastic-

ity,creep, etc. For example, suppose that the tensile element of Figure 9 (a) ,
has been assigned the ith element force, as shown. In (b) the temperature of the
element 1s increased an amount AT in the Jth analysis condition. The thermal de-

= @ LAT, where o is the coefficient of expansion. The
1]
matrix elements ep cen also represent bending thermal deformations of bars heat-
13
ed unequally on the two sides, or any other kind of a thermal deformation. When

the e

formation 418 then e

represent plastic or creep deformations, they elther must be known, as

T
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they could be in a statically determinate structure, or they must have been com-

puted in a previous cycle of some kind of iteratlve process.

The matrix ep contains displacements of the dqummy deflection loads acting
directly upon the element, resulting from heating, etc., when the element reactions
are not displaced parallel to themselves. Figure 10 shows the element of Figure
9 with an intermediate dummy deflection load. The intermediate thermal deformation
is e = o aAT.- '

nmiJ

The matrices AD and AX contain displacements of the statlcally determinate
and redundant reactions, respectively. The elements of these matrices are posi-
tive when the corresponding support displacements have the same sense as positive

values of the reactions acting upon the structure.

Equation (27) provides an alterpate, more accurate, but somewhat more cumber-
some means of calculating deflections. In this equation, FA, XA, and RDA ere ma-
trices containing element forces, redundants, and statically determinate reactions,
raspectively, in the uncut structure resulting from unit values of the dummy de-
flection loads. The equation can be shown to be mathematically identical to equa-
tion (26).

COMPUTER PROGRAMS

The calculations are performed on an IBM T09 computer. The only "T709" pro-
gram written specifically for the Maxwell-Mohr method is called "Matrix Generation".
This program accepts, as input, coordinates and directions numbers which define the
degree of freedom and force vectors appearing on the free body diasgrems. The di-
rection nunbers have previously been computed from the coordinates by an auxiliary
program, Thus, the only numericel input prepared by the analyst for this phase is
a table of coordinates. The program then generates the elements of the matrices

» P » P » P » P ym_,m , P » P » P » and p by means
xpp xpa Opp OPS sp 88 xsp xss Oap OBB

of equations (1) to (4) of Table 1.

"pp’ "ps

All the rest of the calculations, as required by equations (5) to (26), are
performed with the aid of a general purpose 1nterprét1ve routine called the "Tape
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Matrix Compiler". This routine essentially permits the apalyst to write his own
programs for matrix operations. Matrlces of member flexibilities, loads, thermal
daformations, and support displacements, and certailn extractor matrices, are in-
put. The machine outputs the unknown forces and deflections of the structure.

The compller is also used to perform additional operations not covered by
equations (5) to (26). These auxiliary operations can include transforming the
redundants to lmprove conditioning, and the modification of member flexibilities,

including the complete removal of members.

The Joining of structures to form larger structures is accomplished by the
basic program, comprising equations (L) to (26).

A program under development, called the "Structure Cutter", permits the
machine to select its own redundants optimized to yleld well-conditioned equa-
tions. The capabilities of the Structure Cutter are briefly discussed in a later
paragraph.
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ANALYSIS PROCEDURES

IDEALIZING THE STRUCTURE

The actual structure is replaced by an idealized discrete structure
consisting usually of bars and panels. In general the bars can carry tension,
torque, two components of bending moment, and two components of shear. The
panels can carry shear and biaxial tension. In the most generally useful
ideslization, bars are considered straight between Joints, end panels carry
only shear. However panels are permitted to be warped. This allowance for
panel warping improves the accuracy of the analysis, because joints of the
jdealization can lie on the true contour of the actual structure. Furthermore,
werping simplifies the input, because there are few if any derived coordinates.

The meaning of the term "derived coordinates" is explained later.

Panels should be rectangular if possible, trapezoldal if not rectangular,
or at least nearly trapezoidal. Panels that almost come to a point should be
avoided, Triangular panels should probably be removed, leaving a triangular
fremewvork of bars.

A problem of structural idealization concerns the question of the attachment
of shear panels to bars. Two methods of attachment are considered. In the first
method, panels are attached to bars at the midpoints of panel edges, as shown at
YA" of Figure 12. In the second method, the attachment is continuous, as shown
at "B", and the assumption is made that load in the adjacent bers varies llnearly
between jJoints.

Figure 1l shows a set of skin-stringer panels, rigidly supported at infinity.
The panels have symmetry about the X-axis, the stringers are eqpally spaced and
have constant area, all the stringers are equally stiff, and the sheet thickness
is constant. Transversly the panels are assumed to be stiffened by & continuum
of infinitely rigid bars. Axial loads are applied to the #3 stringers at X = O,

The exact solution of the stringer loads and pancl shear flows in the struc-
ture was obtained, The structure vas also analyzed by the Maxwell-Mohr method,
for the i1dealization shown in Fipgure 12. At X = 80, conditions are essentially
the same as they are at infinity,
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Two digital solutions were obtained.

assumed to be attached to bars at panel mid-points only.

In the first solurion, panels were

Under this assumption,

the load in a bar is constant, but can jump abruptly at joints and panel mid-
points. The flexibllity matrix corresponding to this assumption is diagonal.

In the second solution the load in the bar is assumed to vary linearly
between jJoints., The flexlbility matrix in this case is not diagonal.

The comparison of the three solutions for stringer loads is given in Table
D, The results for methods 1 and 2 are followed by the percent errors in pa-
renthese¢s, The comparison for shear flows is given in Figure 12. '

Table 2 Stringer lLoads

Stringer \ X
Ffumber -

0 20 4o 60 80

Exact 0 2470 .1889 «2987 +1996

1 Method 1 o (0) .46 (-2%) 1869 (-1%) 1970 (-1%) .1988 (-0%)
Method 2 o (o) J1344 (-9%)  .1885 (-0%) 21986 (-0%) 1996 ( 0%)
Exact 0 2015 2030 2007 2002

2 Method 1 o (o) 21925 (-4%) 2020 (-0%) .2008 ( 0%) 2004 ( 0%)
Method 2 o (o) 286k (-8%)  .2060 ( 1%) .2005 (-0%) .2001 (-0%)
Exact 2..0000 +3031 2152 2029 2005

3 Method 1 1.0000 (0) .3258 (7%)  .2221 ( 3%) 204k (1%)  .2017 (1%)
Method 2  1.0000 (0) .3584 (18%) .2110 (-2%) 2018 (-1%) .2004 (-0%)

The comparisons show that the "panel mid-point method" gives greatest accuracy.
The fect should be noted however that this method gives somevhat less accuracy than
the second method for the deflection of a cantilever thin web beam, idealized as
. shown in Figure 1%. Here the accuracy of the deflection computed by the first

method depends on the number of bays and is satisfactory for four bays.

methods give correct cap loads and shear flows for any number of bays.

Both

Since the "panel mid-point method" 1s the simplest, and seems to be the
most accurate, at least for stresses, 1t appears to be preferable to the sccond

method.
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A distinction is made between "defining" and "derived" coordinates. This
distinction is demonstrated in Figure 15, which shows a pin-jointed truse lying
in the X-Y plane. Member AC is assumed straight. The geometry of the truss
therefore may be considered to be defined by the X and Y coordinates of polnts
A, B, and C, and the X coordinate of D. The coordinate YD can be derived from
XD on the assumption that AC is straight. The coordinate YD is therefore a
derived coordinate, and the others are defining coordinates. Defining coordl-
nates should be inpﬁt with an accuracy of sbout six decimal places to avoid
contradictions between them and the assumptions upon which they are derived,

within the machine. Because of this accuracy requirement, derlved coordinates
should be avolded.

A warped shear panel cannct be in equllibrium under the action of shear
forces alone, as Figure 16 demonstrates. The shear forces shown in the plan
view all have downward components in the edge view. The panel can be put into
equllibrium with the addition of two‘forces at opposite corners, as shown in
the perspective view of Figure 17. This figure also shows principal and sub-
ordinate force numbers, and subordinate degree of freedom vectors, which can
be assigned to permit the machine to calculate the subordinate forces in terms
of their principals, The warping forces are approximétely normal ta the panel.
The reactions to the warping forces are assumed to act oﬁ\Joints.

Many structures contain warped panels which cannot be flattened in the
jdealization without seriously compromising the accuracy of the solution.
Furthermore, the flattening process is usually more trouble than accounting for
the warping.

CUTTING THE STRUCTURE

Box structures, like wings, composed of bars in tension and panels in shear,
tend to be better conditioned, because they are stiffer, than fuselage~-type
structures which contaln flexible rings. For siructures which are inherently well
conditioned, and yet which may offer cutting difficulties because of unusual
features, the "“building method" is a useful procedure.

In the building method, a unit of the structure known to be statically
determinate is selected, and the structure is built from this unit by adding
other statically determinate units. The members which are omitted in the process

are the redundantec.
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Figure 18 (&) shows the uncut structure, (b) and (c) s!  stages in the
building method and (d) shows the final cut structure. Two panels and a re-
action are redundant. In the process, the use of "temporary reactions" may
be expedient. These reactions can be replaced by the actual reactions at the

coumpletion of the process.

The following expresslon is convenient for checking the degree of redundance
of a structure composed of shear panels and axially loaded barss

n=b+p+r - 232 - 3J3, vhere b = the number of uncut dsrs,
p = the number of uncut panels,
r = the number of reactions,
= ‘the number of ﬁwo constraint Joints,
= the number of three constraint joints,

Ja
I3
For a statically‘determinate structure, n = 0, The expression, with n = 0, is

a necessary but not a sufficient condition for static determinacy. For the
structure of Figure 18, n =28 + 14 + 6 - 2x 0 ~ 3 x 16 = 0,

DIACRAMS

The following dlagrams are utilized: (1) a general view of the idealized
structure with the Joints numbered consecutively beginning with one, (2) a set
of free body diasgrams, and (3) diagrams showing the element forces.

The free body diagrams have been described in the section on mafrix form-
lation, and Flgure 3 shows a typical diagram for statically determinate forces.
The only feature of these diagrams not already mentioned are the free body numbers,
shown enclosed in squares in Figure 3. The machine uses these numbers to assoclate

forces with thelr corresponding degrees of freedoum.

The element force diagrams show element reactions and element forces, the
latter being numbered consecutively beginning with one. The statically determi-
nate forces and redundants should be chosen so that each element force is identi-
cal with elther a statically determinate force or a redundant, so that the elements
of the N and Hx matrices consist only of 1l's and O's,

IOAD SHEETS
Data 1s input on three different formats, as follows: the coordinate table,
the vector description tables, and the matrix load sheect.
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The coordinate table is & list of Joint numbers with their associated X,
Y, and Z coordinates. With the aid of an auxiliary program, the machine com-
putes a table of direction cosines of vectors defined by point pairs of the
coordinate tables. The point pairs are specified by the analyst on a separate
load sheet. The auxiliary program can also compute the direction cosines of a
vector defined as the cross product of two other vectors each in turn defined
by point pairs designated by the analyst. The vectors for which direction
consines are calculated include most, or all, of the vectors which appear in
the analysis. Direction numbers of additional vectors can be hand input 1f
necessary. The machine sorts the computed directlon cosines according to. the
defining points, and assigns each set of X, Y, and Z direction cosines a serial

number,

The vector description tables are of two types. On the type 1 table the
following information is input for each vector: the vector serial number; the
type, whether angular or linear; the sign; the number of the free body upon
which the vector acts; the number of a point on the line of action of the vector;
and the serial number of the direction of the vector. BEach vector 1s listed
only once in the type 1 lbad sheets. However most of the force vectors appear
more than once on the free bodies, and an entry must be made each time a vector
appears. These additional entries are made on the type 2 tables which have
provision only for vector serial numbers, signs, and free body numbers. The
type 1 and type 2 tables are filled out for the four kinds of degree of freedom

vectors, and the six kinds of force vectors mentioned previously.

The matrix load sheets contain spaces for the matrix elements, and for
the row and column numbers corresponding to each element. The matrices N, HX’
Ho, CA’ D, DFO’ DAO’ eT’ eam, AD, AX and # are input on these sheets. Occasion-
ally some elements of the Ko matrix also are hand input.

Ordinarily only the matrices N, HX, Ho, CA’ D and ¢ are required, and of
these matrices N, Hx, Ho and CA should contain only 1's and O's. Thus the only
formats which contain numerical input are the coordinate table, the flexibility
motrix D, and the load matrix #. Therefore a problem which.has been set up for
a glven set of coordinates, flexibilities, and external load can be solved for

nev coordinates, flexibilitics, and loads by inputting only three tebles. These
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tables represent the minimum possible input for the problem. Therefore a given
set-up, say for a fuselage section, can be used many times for a variety of

fuselage analyses, and the set-up essentially becomes, in 1tself, a general

program for fuselage problems.

CHECKS ON THE OUTPUT
The equilibrium checks, made by writing extra equations of equilibrium,

heve been mentioned. Two other important types of checks are the simultaneous
equation checks and the symmetry checks. Simultaneous equation checks are made
on the solutions of both the equilibrium and the continuity equations by sub-
stituting the results into the original equations. A symmetry check is made on
5xx’ which must be symmetric by Maxwell's law. A similar check is made on the
deflection matrix A, for rows and columns which correspond to identical unit

deflection loads and external loads.

IMPROVING THE CONDITIONING

Naturally every effort shouldvbe made at the beginning to secure well-
conditioned equations. The familiar rule i1s that redundants should be chosen
which are small compared to other forces in the structure. The rule can alsc
be stated as follows: in the cutting process the structure should lose ss
1ittle stiffness as possible. For example, a good cholce of redundants for a
fuselage frame is the insertion of three hinges. A complete cut at one point

leaves the frame very flexible.

A second device 1s to break the structure into statically indeterminate
substructures.. The substructures are then cut and analyzed, after which ﬁhey
are Joined to form the original structure, as discussed in a later paragraph.
At each stage of this process the redundants ere relatively few in number, and

generally well conditioned.

A third device 1s the utilization of orthogonal solutions derived from the
theory of elasticity for geometrically regular bodies which resemble the struc-
ture at hand. This process has been thoroughly discussed by Argyris.

JOINING SUBSZTRUCTURES
In this process the structure ls broken, by cutting redundants, into sub=-

structures, which rcmain joined together by other forces which can be computed
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from statics. Thus the cut structure can be regarded as o statically determinate
structure consisting of statically indeterminate elements. Figure 19 shows a
DC-8 wing-pylon intersection which has been bquen into two substructures by this
method. The figure shows statically determinate forces only. The other Jjoining
forces, which are redundants, are shown on a separate sheet. Figures 2a and 2b

show details of the idealized substructures.

After the structure has been cut into substructures, each of the substructures
is also cut and analyzed in detail, for unit velues of the external loads, which
include the joining redundants. In particular the Zeflections of the subgtruc-
tures, at points where they have been cut apart, are calculated. The analysis of

each substructure utilizes the baslc program and the equations of Table 1.

After the substructures are analyzed, they are joined to form the original
structure by another epplication of the basic program and equations. In this
process free body diagrams, like figure 19, ere drawn. Element force diagrams
are also prepared. Element reactlons for the substructures, considered as
elements of the original strucﬁure, must be identical with the statically de-
terminate reactions that were utilized in the detaill analysls of the substructures.
This requirement is necessary because the elements of the flexibility matrices
D, DFO’ DAF’ and DAO are extracted from the deflection matrices A, calculated for
each of the substructures. The extraction is accomplished with the aid of ex-
tractor matrices consisting of 1's and O's and the tape matrix compiler.

DISCONNZCTING AND FLEXIBILITY MODIFICATION

The technique discussed by Argyris [l] , Michielsen and Dijk [13] , and
Best [;4] , for modifying flexibilities with the aid of arbitrary element defor-
mations after the redundants have been computed, has two important spplications.
First the effect of changing the sizes of a few members upon the stress distri-
bution can be determlned with & minimum emount of calculation. However the method
becomes inefficient when the number of elements to be modified becomes equal to
or gréater than the number of redundants. In this case a new flexibility matrix
should be input. Second, the notion of filling in cut-outs, like fuselage doors,
and later removing them, is important, because the process of cutting the struc-
ture is greatly simplified when cut-outs are not present, and the equations are

likely to be better conditioncd. However, more machine capacity is required.
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Members can also be removed by moking them more flexible, say on the order
of 1,000,000 times, than other members of the structure. This approach only
works when the forces being reduced to zero are redundants. Otherwise the

continuity equations tend to be linearly dependent.

THE STRUCTURE CUTTIR
A method has been devised for having the machine cut the structure. In

this approach no distinction is made between statlcally determinote and re-
dundant forces when the problem is set up. The number of unknowns in the equi~
librium equations generated by the machine then exceeds the number of equations,
By a process of selecting columns of the rectangular matrix of coefficients of
unknowns in these equations, the machine chooses a well-conditloned square matrix.
The unknowns which correspond to the columns of this matrix are the statically
determinate forces, and the remaining unknowns are the redundants. The cholce

of columns is influenced by weighting factors which reflect the stiffness of

the members of the structure,

Figure 20a shows & statically indeterminate structure. Figure 20b shows

the same structure as it was cut by the machine.

SIMPLIFIED INPUT

A new program_called the "Redundant Force Method" is being developed. This
program is basically the same as the method described previously, but the new
method incorporates e number of improvements which eliminate the need for pre-
paring free body dlagrams, and reduce the input to & minimum. In effect the
machine automatically cuts the structure (utilizing the "Structure Cutter"),
breaks the statically determinate structure into free bodies, writes and solves
the equations of equilibrium, and writes and solves the equations of continuity.
A certain penalty in additional machine time is involved, however the new program
is expected to be especially useful in the rapid solution of preliminary design
problems for which a rough idealization is satisfactory, and which cannot be

solved without a large error by elementary methods.

HONLINEAR PROBLIIS

Although tiais subject 1s beyond the scope of the present peper, some mention
should be made of the applications to the nonlinear problems involved in calculating
the effects of plasticity and creep upon the behavior of the structure. The approach
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to these problems has been through the use of various step-by-step, or iterative,
procedures. In all such procedures the qQuestion of convergence is of primary
importance, because the rate of convergence can be fast or slow, or the process
can be divergent. Rapid convergence is necessary, because a large amount of

calculation per cycle is required even for a structure of moderate size.

A method of calculating stresses and deflections in the presence of plasticity
is given in reference 6. The method utilizes the rapidly convergent Newton-Raphson
procedure for solving nonlinear simultaneous equations. Agreemsut with test results
is demonstrated. Reference 7 presents an approach based on the use of fictitious

loads which appears to require a minimum.amount of computation per cycle.

A step-by-step application of the Maxwell-Mohr apulysis to the creep problem
is under development. This work is expected to provide a means of computing the
history of stress and deflectlion of a statically indeterminate structure subjected
to time dependent load and thermal inputs.
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COMPARISON WITH TEST RESULTS

Comparisons between analysis and test results obtained at the NASA and
during the DC-8 static test have been made. The HASA comparisons were ac-
complished in the perlod from June 1956 to September 1957. 1In all the numerie
cal analysis, the midpoint idealization for shear panels was used.

The comperison for exial stresses measured in the cantilever clrcular
eylinder of Pigure 1 has been mentioned. Figure 21 shows the analytical and
test results for frame bending moments and skin shear flows in the same cylinder.
The results of the Maxwell-Mohr analysis are in very close agreement also with
results obtained by the method of Hoff [8] , &8 reported in reference 9. ’

Figures 22, 23, 24, and 25 show comparisons for a swept box tested at the
NASA, and reported in referemce 10 . The box was of rectangular section and
had a total of 32 stringers. In the figures the heavy solid lines indicate
idealized stringers and bulkheads, while the dotted lines indicate bars obtalned
by lumping skin in the chordwise direction. The analysis would not yleld sat-
ilsfactory approximations for shear flows in the covers until these bars were
inserted. Poisson's ratlo was accounted for in the triangular area at the root.
In the bending test, the characteristic peaking of axial stress at the reur spar
is coxrrectly predicted, as is the reversal of shear flow in the front spar web.

Figures 26 and 27 show comparisons for cylinders with cutouts subjected to
bending and torque respectively. The tests are described in references 1l and
12, As the figures show, more idealized stringers were inserted in the upper
slde than in the lower, because the cutout at the top perturbs the stress field,
and requires finer lumping. Frame flexibllity was taken into account. The
resulting agreement is excellent. However there is one shear panel at the
corner of the cutout which, in the bending case, does not have approximately &
uniform shear flow, as assumed. At one edge of this panel the shear flow, not
shown in the figure, 1s considerably higher than the value at the panel center.
The only way to cover this concentration without going to a finer lumpihg is
with an empirical factor.

Figure 28 shows a couparison of measured and colculated stresses for a
station in the root region of the DC-8 wing. The analysis which yielded the

calculated resulte is discussed in a later section.
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APPLICATIONS

The method has been extensively applied in the analysis of jet transport
components; missile parte, including fins and body components; and & supersonic
low aspect ratio wing. Many of these analyses included calculations of thermal

stress and deflection.

The wing-fuselage intersection was one of the primary problems in the stress
analysis of the DC-8. The stress distribution was complicated by the existence
of wing sweep, ean auxiliary spar, landing gear cutouts in the lower part of the
fuselage behind the wing, a keel beam running slong the fuselage centerline
below the floor, and other details.. The problem was approached by first making
an analysis of the entire region, including a fairly detailed representation of
the fuselage, and a simplified idealization of the wing., ZFrom the results of
this analysis, reactlon forces between wing and fuselage were determined. A
detalled wing root analysis was then made, im which 4huse resction forces were

applied.

Figure 29 1s a diagram of the idealized structure used in the detailed wing
analysis, showing the three spar constructism, with the auxiliary spar vwhich
supports the main landing gear. The i1dealization had the correct sweep; dihedral;
incidence and taper, both in plan-form and in thickness; and the airfoil sections
were accurate. However, twist was removed to flatten skin panels. There were
113 redundants and 300 element forcesc The first complete calculation based on
this idealization was finished in March 1956, Bad the Job been done & little
later, panel warping and twist would have been considered.

The idealized structure for the tall-fuselage intersection is shown in
figure 30. The ldealization included & portion of the vertical tail, and a
stub of the all-movable horizontal surface., Some of the sections were stiffened
by frames like the one shown in section A-A; others had partisl bulkheads. The
Joints of the idealized structure lay on the true contour, and panel warping was
accounted for. The foreward and aft parts of the structure were analyzed sepa-
rately and then joined at section A=A, The first complete calculation was
finished in September 1957.

Deflection influence coefficients calculated for both the wing and the

fuselonpe toll cection were used in flutter analysis.,
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An analysis of the fuselage nose section, including the cockpit enclosure,
was performed. The problem was complicated by the presence of cabin pressure,
and the fact that the pressure envelope was irregular because of the existence
of the unpressurized nose-wheel well below the floor. The members of the cock-
pit canopy also caused added difficulties, because some of them were designed
to carry tension, bending moments about two axes, and tofqpe, and they were so
enalyzed. The structure was analyzed in two separate sectlons, which were then
Joined. After Joining, the teéhnique of virtual disconnecting loads was employed

to calculate the effect of door cutouts.

Figure 2a end 2b show the idealized structure for the Conway outboard pylon.
The structure ihcorporates a bottoming strut, shown In figure 2a. The bottoming
of this strut, after a certain amount of load has been applied, changes the stress

distribution, and causes a nonlinearity, which was taken into account.

Figure 31 shows the structure of the JI-4 ejector-reverser. The structure is
irregular; has large cubtouts for the reversing buckets; incorporates members sube-
Jected to tension, bending about two axes, and torque; and is subjected to large
thermal gradients. The JT-3 and Conway ejectors are similar. Results from the
JI-3 enalysis became available within a period of two months. The same set-up
was then utilized in the analysis of the JT-4 and Conway ejectors, which have
different sizes, shapes, and stiffnesses. The Conway ejector snalysis was com-
pleted in final form ready for submission to the FAA in one month's time. Spring
constants for the ejectors were calculated and shown in proof test to be correct

within the experimental error.

Numerous applications to low aspect ratio wing and missile structures have
been made, but these projects are classified and cannot be discussed. However
the foregoing applications and experimentsl verifications have demonstrated that
the matrix equations and the computer program are sufficiently general to deal
with any linear discrete structure. Missile and supersonic airplane structures
are no exceptions. Thus the low aspect ratio multi-spar wing-fuselage structure
of figure 32 can be analyzed, with all the detail shown and more, with Joints on
the true contour, for load and thermal stress. Deflections, and a deflection

influence motrix useful in flutter analysis also can be outputb.
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COIICLUSTION

A procedure for structural analysis, comprising & matrix formulation of
the equilibrium and Maxwell-Mohr continuilty equations, and an assoclated digital
computer program, has been developed. This procedure is applicable, in its
basic form, to any linear discrete structure. The method has been fully veri-
fied by comparison with test results, both in the laboratory and in proof test,

and it has been shown to be a practical analysis tool in numerous applications.

Procedures of fhis kind, several of which have appeared in the last few
years, represent a break-through in the art of stress analysis. These methods
permlt the practical calculation of stresses in complicated shell structures
in rigorous accord with basic physical principals. This rigor is necessary,
because approximate methods widely used in the past can be in error by large
amounts. These errors are alleviated somewhat by stress redistribution above
the yield, but below the yleld they represent stress concentrations which cause
premature fatigue fallures. Above the yleld premature static failures can occur
in spite of the redistribution.

In the past, serious consequences of these errors have been avoided by
extensive testing. Some testing will always be necessary, but it is expensive,
even compared to the cost of operating a large digital computer., In the future,
'testing expense will increase as airframes become larger, and the additional
complication of thermal gradients is introduced. Therefore the need-for rigorous

methods isvincreasing.

Douglas Aircraft Company, Inc.,
Santa Monica, Calif., September 17, 1959.
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