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Correct the first paragraph on p 5 to read: 

Instead of referring the reader to earlier papers on this subject 
(e.g., ref. 4), a brief presentation of the procedure used to calculate 
the detonation parameters of carbon monoxide - air mixtures is given 
here. 

The correct list of references (p 14) is as follows: 
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THERMODYNAMIC CALCULATIONS OF CARBON MONOXIDE - AIR 
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FROM 1 TO 100 A'lMOSPHERE3 

By Loren E. Bollinger * and Rudolph Edse** 

SUMMARY 

/~;' ()~---
The composition, temperature, pressure and density behind a stable 

detonation wave and its propagation rate have been calculated for five 
mixtures of carbon monoxide and air at 1, 5, 25 and 100 atmospheres 
initial pressure, and at an initial temperature of 313.16°K. The results 
of these calculations show that the detonation velocities of stoichio­
metric carbon monoxide - air mixtures increase with increasing ini-
tial pressure whereas those of very rich and very lean mixtures are 
independent of the initial pressure. 

The pressure ratios across the wave and the temperatures behind the 
wave increase with increasing pressure for near-stoichiometric mixtures, 
but they are unaffected by pressure for rather rich and lean mixtures. 

INTRODUCTION 

Complete thermodynamic and chemical equilibrium is assumed to exist 
behind the detonation wave. Dissipating effects such as heat transfer, 
viscosity, diffusion, and chemical reaction rates have been disregarded 
since it was not intended to determine the structure of the wave. Details 
of the method used for calculating the detonation parameters were pub-

* Assistant Supervisor, Rocket Research Laboratory; Assistant Profes­
sor of Aeronautical and Astronautical Engineering, The Ohio State Univer­
sity. 

** Director, Rocket Research Laboratory; Professor of Aeronautical 
and Astronautical Engineering, The Ohio State University. 



lished previously (ref. 1), and calculations for various hydroGen-oxygen 
mixtures over the same ranGe of initial pressures can be found in 
reference 2. 

The detonation parameters have been derived from the Hugoniot 
equation for the reacted gas miXture in equilibrium, and from the Chap­
man-Jouguet condition that the detonation velocity is the minimum wave 
velocity. Therefore, the results are based on the Chapman-Jouguet 
point at which the velocity of the reacted Gas (relative to the detona­
tion wave) is equal to the equilibrium sonic speed (ref. 3). 

Besides being of fundamental interest, the theoretical detonation 
parameters, particularly the detonation velocity, is of importance in 
the study of the formation of detonation waves. These values are used 
to determine the detonation induction distance. Results from these 
experiments will be published separately. 
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SYMBOLS 

sonic velocity in Gas entering shock wave 

heat of reaction at absolute zero temperature 

absolute enthalpy of gas mixture per unit mass leaving 

shock wave 

absolute enthalpy of gas mixture per unit mass enterinG 

shock wave 

heat of formation of species i at temperature Ta formed 

from elements, making species i, in the standard state 

(p = 1 atm, T = 298.16 OK) 

heat of formation of species i at temperature Tb formed 

from elements, making species i, in the standard state 

(p = 1 atm, T = 298.16 OK) 



( flHf) T 
\~ T i 

p 
a,N.S. 

dimensionless heat of formation of species i at temperature 

T formed from elements, making species i, at standard 

state (p = 1 atm, T = 298.16 OK) 

dimensionless heat of formation of species i at Ta formed 

from the elements, making species i, at standard state 

(p = 1 atm, T = 298.16 OK) 

dimensionless heat of formation of species i at Tb fomed 

from elements, making species i, at standard state 

(p = 1 atm, T = 298.16 oK) 

equilibrium constant of reaction j based on partial pressures 

Mach number of gas mixture entering shock wave 

Mach number of stable detonation wave. MD 

mole number of gas nixture, per unit mass of nixture, entering 

shock wave 

mole number of species i, per unit mass of mixture, entering 

shock wave 

total mole number of element k in unit mass of mixture 

absolute pressure of gas behind shock wave 

absolute pressure of gas behind stable detonation wave 

absolute pressure of gas behind normal shock wave without 

chemical reactions 
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p. 
l,a 

T a 

T 
a,D 

T a,N.S. 

f1T 

v 

4 

absolute partial pressure of species i behind shock ,TUve 

absolute pressure of gas enterinG shock wave 

absolute inpact pressure of uetonation ,lave 

total quantity of elenent k, in atomic state, in reacted 

mixture in terns of pressure units. W" 
t. 

N a Ta 
k v 

a 
universal gas constant 

absolute temperature of Gas behind shock wave 

absolute temperature of gas behind detonation wave 

absolute temperature of Gas behind nornal shocl~ wave 

without chemical reactions 

absolute temperature of gas enterinG shock wave 

temperature difference between estimated temperatures 

linear velocity of gas leaving detonation or shock wave 

linear velocity of gas entering shock wave 

linear velocity of detonation wave relative to unreacted gas 

linear velocity of detonation wave relative to reacted gas 

specific volume. 1 
v = -

p 

isentropic coefficient (ratio of specific heats) of unreacted 

gas mixture 

denSity of gas mixture behind detonation wave 

denSity of gas mixture entering shock wave 



METHOD OF CALCULATION 

Instead of referring the reader to earlier papers on this subject, 
a brief presentation of the procedure used to calculate the detonation 
parameters of carbon monoxide - air mixtures is given here. 

It has been assumed that only CO2 , CO, 02' 0, N2 and NO occur to 
an appreciable extent in the detonation wave of carbon monoxide - air 
(0.79 mole N2 plus 0.21 mole 02) mixtures ranging in fuel concentration 

from 10 per cent CO to 50 per cent CO. The presence of atomic nitrogen, 
higher oxides of nitrogen, free carbon, and electrically charged species 
has been ignored because of the extremely low concentrations found for 
these species in the mixtures considered during the present study. Thus 
the composition of the detonated gas is governed by the following six 
equations: 

pCO~ 
2 ----..:..= 

j = NO) 

5 

(1) 

(2 ) 

(4) 



2 PN
2 

+ PNO 

Peo + Peo 2 

fPN 
= - fPc 

Peo2 + Peo + Po + Po + P + P = L P = P 
2 N2 NO i,a a 

For a temperature, T , in the vicinity of the expected detonation a 
temperature and for an arbitrarily assumed value of Po the partial 

2 
pressure of molecular nitrogen can be calculated by using equations (1) 
through (5). 
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N Keo 
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2 Keo 
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(7) 



The remaining partial pressures follow easily. From equation (2) 

p =~. 
° °2 

K 
°2 

From equation 

equations (5) and (1) 

2 PN + PNO 
2 

P
eo 

= 

(l~) NN 

Ne 

And from equation (1) 

=p~ 
eo K 

e02 

e02 

(3) PNO = 1/ P02 • P I • K . 
N2 NO 

From 

For these partial pressures and with the first estimate of the detona­
tion temperature we obtain from the Hugoniot equation 

Ne Ta Tb 
h -~= 

fPc" 
l: Pi ( t, Hf)i - l: n (~ Hf)i = a ,a i,b 

~ n,,~ TbC ~,a -1).( ::. Pb Ne 
+ 1) -- . 

~ ~ 

(8a) 
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NC (fa (~ t fPc 2: Pi,a ~ Hf i - 2: n. b Hf 2: P 1, 
i,a i 

= 1 + = 
Pb 1 ~ (Tn ~ NC 1) 2" nb Tb T

b
• - + 

~ ~ 

CHf 
(8b) 

f 
2: P --

C~f Ta NC ~ 
i,a OtT i n. b 

2 -. -. - 2: .2:..z..:::. 
Tb ~ ~ Pb 

n (R,T . b 1 

1 + 

T Ne ~ a 
+ 1 

Tb fPc ~ 

and from equation (6) we also obtain a value for this pressure ratio 

2: Pi ,a 
= 

P
eo2 

+ Peo + P
02 

+ Po + P
N2 

+ PNO 

P
b 

If the pressure ratios derived from equation (8b) and equation (6) 
differ, the calculations must be repeated with a new value of Po 

2 
for the same value of T until agreement is obtained. These 

a,l 

8 

(6 ) 



calculations are carried out for three values of T 
a (T 1 < T 2 < T ). a, a, a,3 

The three corresponding Bach numbers (multiplied by 
ratio 'Yb ) are calculated from the relationship 

E p. 
lza 

- 1 

the specific heat 

~2 
2 Pb 

(9) = Yb ~ = 

~ft~ T N Pb 
1 -

a C 

~ fPc ~ 

The Mach number of the stable detonation wave is obtained by locatinG 
the minimum of the parabola which can be drawn when the three Yb 1'\2 

values are plotted versus the three assumed Ta values. To obtain 

maximum accuracy with this interpolation method, the temperatures 
Ta,l' Ta ,2 and Ta ,3 must be selected in such a fashion that 

> < 
2 

(Y
b 

H ) 
b 3 

(10) 

If equal temperature intervals between the three assumed temperatures 
are chosen so that 

T - T a,3 a,2 = T - T a,2 a,l 
1 

= 2 (T 3 - T 1) = 6T a, a, 
(11) 
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the parabolic interpolation method leads to 

2 
"b r.~ ::: 

Then, according to equation (9), the detonation velocity becomes 

2 I 
M ·njf}T 

D b"" b 

For the temperature behind the detonation wave, the interpolation 
yields 

T ::: T + 

AT [(7b Mb
2

\ - (7b ~lb2)2J 
~T + __________________________________________ __ 

(13) 

(14) 
a,D a,l 

2 Qrb ~2)1 - C"b ~2)2J + r( " M 2) _ (" r,1 2) ] 
Lbb3 bb2 

Finally, values of p D and P D are obtained by linear interpolation a, a, 
between the respective values calculated for the three temperatures 
chosen. If the temperature intervals, ~T, are sufficiently small 
(e.g., lOOK), the error due to this linear interpolation is neGli­
gib1e. 

The impact pressures are calculated accordinG to the relation-
ship 

p ::: p - p + p Cu - U D)2 
imp a,D b a,D D a, 

10 

(15 ) 

(12 ) 



The pressure and temperature behind the normal shock which forms 
the front of the detonation wave have been calculated on the basis that 
no chemical reactions occur in the shock zone and that the vibrational 
degrees of freedom in the molecules of the initial gas are inactive. 
Thus the usual equations employing constant specific heats could be used 
for calculating the conditions behind the normal shock propagating at 
the same rate as the detonation velocity. 

DISCUSSION OF RESULTS 

The results of the calculations are compiled in tables 1 through 
5 and they are depicted graphically in figures 1 through 6. Values 
of the equilibrium constants used for the calculations are given in 
table 6 and the dimensionless heats of formation are listed in table 
7. Both thermodynamic fUnctions have been tabulated only for large 
temperature intervals to save space. These data represent carefully 
checked and, in some instances, recalculated values of the statistical 
calculations of several authors (refs. 5-14). A method to correct old 
values with respect to new data on atomic and molecular constants has 
been described in reference 15. Values for 10~ intervals were obtained 
by interpolation. 

From figure 1 it can be seen that the detonation velocity increases 
only slightly when the initial gas pressure of the combustible mixture 
is raised. For example, consider a carbon monoxide - air mixture 
containing 29.6 per cent carbon monoxide. For this mixture the deto­
nation velOCity increases only from 1668 m/sec to 1744 m/sec for a 
rise in the initial pressure from 1 to 100 atmospheres. The maximum 
of the curves depicting the velocity as a fUnction of the initial gas 
composition occurs in the region of rich mixtures at low initial 
pressures. As the initial pressure is increased the maxima of these 
curves approach the stoichiometric fuel concentration because at the 
higher pressures less dissociation occurs in the reacted gas of the 
wave. In the case of carbon monoxide - air mixtures the sonic speed 
in the initial gas is practically independent of its composition. 
However, in hydrogen-oxygen mixtures the sonic speed increases rather 
markedly when the concentration of hydrogen is increased. Therefore, 
the maximum detonation velocity of hydrogen-oxygen mixtures (ref. 2) 
occurs in rather rich mixtures even at very high pressures. The 
small reduction of the degree of dissociation in this range of fuel 
concentrations is not as effective as the increase in the speed of 
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sound in the initial gas mixture. As a result of this condition the 
maximum of the curves representing the detonation velocity as a 
function of the hydrogen concentration for hydroGen-oxygen mixtures 
shifts only very slightly towards the stoichiometric fuel concen­
tration as the initial gas pressure is increased (see fig. 3, ref. 2). 
That the detonation velocity of a combustible gas mixture is propor­
tional to the speed of sound in the unburned gas is indicated by 
equation (13). 

Figure 2 illustrates the effect of initial pressure on the 
pressure ratio across the detonation wave. For a mixture containing 
29.6 per cent carbon monOXide, this ratio increases by about 10 per 
cent when the pressure of the initial gas is increased from 1 to 100 
atmospheres. Following the behavior of the detonation velocity, the 
pressure ratio as a function of the fuel concentration also has a 
maximum in the region where the mixtures are rich in fuel and, with 
increasing initial pressure, this maximum also moves toward the 
stoichiometric fuel concentration. According to these calculations, 
the pressure behind the detonation wave of carbon monoxide - air 
mixtures is only 20 per cent lower than that of hydrogen-oxygen 
mixtures having the samc equivalence ratio. The pressure ratios 
across the normal shock preceding the detonation wave, figure 6, 
are approximately 80 per cent greater than the detonation pressure 
ratios. 

The curves representing the gas temperature behind the detonation, 
figure 3, are quite similar in shape to those depicting the detonation 
velOCity, figure 1. When the initial pressure is increased from 1 to 
100 atmospheres, the detonation wave temperature of a mixture containing 
29.6 per cent carbon monoxide increases from 2864°K to 3173°K. This 
temperature increment amounts to almost 11 per cent of the lower 
temperature. Again, at the lower initial pressures the maximum temper­
ature is produced by rather fuel-rich mixtures and this maximum 
approaches the stoichiometric fuel concentration as the initial 
pressure is raised. The temperature behind the normal shock preceding 
the detonation wave, figure 5, is approximately 45 per cent lower than 
the temperature in the fully detonated gas. 

The mole fractions of the various species occurring in the deto­
nation wave are graphically represented in figures 7 through 10 for 
each of the four initial pressures of 1, 5, 25 and 100 atmospheres. 

12 



These curves demonstrate clearly the well-known fact that the deGree 
of dissociation is less at the hieher pressures whereas the absolute 
concentration of free radicals increases with increasing pressure. 
As anticipated, the mole fraction of molecular oxygen decreases with 
increasing carbon monoxide content in the mixtures. However, the 
mole fraction of atomic oxygen attains a maximum in nearly stoichi­
ometric mixtures. 

The precision of the calculations is about equal to the accuracy 
of the thermodynamic data used. Because of the somewhat large temper­
ature intervals used in the present calculations, the estimated 
precision attained is about 0.1 per cent of the value of the calcu­
lated parameters. 

CONCLUSIONS 

Although the present method of calculating detonation parameters 
is intended primarilY for use with desk calculators, it is too slow 
when very many calculations are to be made. However, the method can 
be adapted for electronic computing machines quite easily. 

The detonation parameters of carbon monoxide - air mixtures are 
affected less by changes in the initial pressure than those of 
corresponding hydrogen-oxygen mixtures because of the lower degree 
of dissociation of the former. 

The Ohio State University 
Rocket Research Laboratory 
Columbus 10, Ohio May 15, 1962 

This investigA,tjon was conducted under Grr>nt. N~G-44-60 at 
The Ohio State Uni versi ty under the S1)o'1f'v)rshi:p mld with the 
finmlciAl assistance of the Nat.; onaJ. I\pY'onautics and Spacp 
Administration. 
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TABLE 1. COMPOSITION OF COMBUSTION GAS IN DETONATION WAVE* 

Molar Pb P
CO PCO Po Po PN per cent 2 2 2 

fuel in -- -- -- -- --
atm Pa,D Pa,D Pa,D Pa,D Pa,D mixture 

10 1 0.1051 0.0000 0.1456 0.0000 0.7475 
5 0.1051 0.0000 0.1456 0.0000 0.7475 

25 0.1051 0.0000 0.1456 0.0000 0.7475 
100 0.1051 0.0000 0.1456 0.0000 0.7475 

20 1 0.2121 0.0090 0.0724 0.0013 0.6918 
5 0.2165 0.0050 0.0706 0.0007 0.6930 

25 0.2194 0.0025 o .0691j.. 0.0003 0.6938 
100 0.2207 0.0013 0.0689 0.0002 0.6943 

29.6 1 0.2578 0.0757 0.0294 0.0033 0.6202 
5 0.2735 0.0625 0.0232 0.0020 0.6247 

25 0.2890 0.0495 0.0173 0.0011 0.6294 
100 0·3011 0.0392 0.0128 0.0006 0.6333 

40 1 0.2615 0.1904 0.0073 0.0020 0.5322 
5 0.2737 0.1809 0.0034 0.0008 0.5361 

25 0.2817 0.1746 0.0011 0.0003 0.5391 
100 0.2853 0.1718 0.00011- 0.0001 0.5407 

50 1 0.2324 0.3257 0.0004 0.0002 0.4403 
5 0.2339 0.3211-6 0.0001 0.0001 0. 11-409 

25 0.2344 0.3211-2 0.0000 0.0000 0.11-411 
100 0.2346 0.3240 0.0000 0.0000 0.4412 

-- ---

* Initial temperature = 313.16°1\ 

PNO 
--
Pa D , 

0.0018 
0.0018 
0.0018 
0.0018 
0.0134 
0.0141 
0.0111-5 
0.0146 
0.0135 
0.0111-0 
0.0138 
0.0130 
0.0067 
0.0051 
0.0032 
0.0019 
0.0011 
0.0005 
0.0002 
0.0001 



~ 
0\ 

Molar 
per cent 
fuel in 
mixture 

10 
20 
29.6 
40 
50 

Molar 
per cent 
fuel in 
mixture 

10 
20 
29.6 
40 
50 

TABLE 2. PROPERTIES OF A CARBON MONOXIDE - AIR DETONATION HAV]!" P 1 atm 
b 

Tb Ta,D T a,N.S. Pa,D Pa,N.S. Pimp Ua UD Pa,D 

oK oK oK atm atm atm m/sec m/sec Pb 

313.16 1632 1077 8.415 14.87 12.60 751 1277 1.700 
313.16 2524 1485 12.96 22.65 21.25 887 1575 1.777 
313.16 2864 1625 14.72 25.34 24.89 919 1668 1.814 
313.16 2919 1650 14.96 25.82 25.26 931 1686 1.811 
313.16 2717 1573 13.68 24.34 22.31 932 1640 1.760 

TABLE 3. PROPERTIES OF A CARBON MONOXIDE - AIR DETONATION WAVE, P
b 

= 5 atn 

Tb T a,D T a,N.S. Pa,D P P:lr:!p U UD Pa,D a,N.S. a 

OK OK OK atm atm ntn m/sec m/sec Pb 

313.16 1632 1077 42.07 74.33 63.00 751 1277 1.699 
313.16 2563 1501 65.89 114.8 108.6 889 1586 1. 78)+ 
313.16 2982 1673 76.01 131.3 128.5 936 1698 1.813 
313.16 3008 1688 75.82 132.7 127.1 953 1709 1.794 
313.16 2728 1579 68.30 122.3 110.9 939 1644 1.751 

- -

II, = UD 
D ~ 

3.59 
4.42 
4.68 
4.72 
4.58 I 

U 
1.~ = J2. 

~ 

3.59 
4.45 
4.76 
l~. 79 I 

4.59 I , .... 
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Molar 
per cent 
fuel in 
mixture 

10 
20 
29.6 
40 
50 

Molar 
per cent 
fuel in 
mixture 

10 
20 
29.6 
lID 
50 

TABLE 4. PROPERTIES OF A CARBON t.fONOXIDE - AIR DETONATION HAVE, P = 25 am 
b 

Tb T a,D T Pa,D p Pimp Ua UD Pa D a,N.S. a,N.S. ....::::.z.:::. 
OK OK OK am atm atm m/sec m/sec P

b 

313.16 1632 1077 210.4 371·7 315.0 751 1277 1.699 
313.16 2583 1510 329.9 578.6 541.1 897 1592 1.775 
313.16 309) 1717 389.5 677.3 658.4 955 1724 1.806 
313.16 3066 1714 381.4 675.9 633.6 971 1725 1.777 
313.16 2732 1581 341.4 612.5 553.4 91~1 1645 1.749 

- ---- ------ - L-... 

TABLE 5. PROPERTIES OF A CARBON HOnOXIDE - Am DEI.'ONATION HAVE, P = 100 atm 
b 

~ T T Pa,D p Pimp U UD Pa D a,D a,N.S. a,N.S. a -'-
OK OK OK atm atr.l atm n/sec r.l/sec Pb 

313.16 1632 1077 841.4 1487 1260 751 1277 1.699 
313.16 2589 1514 1312 2322 2136 9)5 1595 1.762 
313.16 3173 1750 1583 2773 2666 971 1744 1.797 
313.16 3093 1725 1534 2725 2545 976 1732 1.774 
313.16 2733 1582 1365 2451 2209 942 1646 1.747 

UD t-1D =-
~ 

3.59 
4.1~7 
4.83 
4.83 
1~.60 

U 
MD = aD 

b 

3.59 
4.48 
4.89 
4.85 
l~ .60 

- -- ---

I 
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TABLE 6 

EQUILIBRIUM CONSTANTS 

KCO 
2 

KO 
2 

Atm. Atm. 

L~.843 x 10 
-6 

L~ .628 x 10 
-6 

1.310 x 10 
-3 

7.374 x 10 
-4 

3.627 x 10 
-2 

1.564 x 10 
-2 

3.242 x 10 
-1 -1 

1.205 x 10 

5.198 x 10 
-1 

1.517 

4.759 1.559 

11.43 3.664 

22.77 7.271 

~EO = 66,767 cal/mole CO2 

~Eo = 58,532 cal/mole O2 

~E = 21,600 cal/mole NO 
o 

¥)~O 

Atm. 

3.007 x 10 
-3 

-2 
1.920 x 10 

5.744 x 10 
-2 

-1 
1.190 x 10 

-1 
1.997 x 10 

2.941 x 10 
-1 

-1 
3.957 x 10 

4.998 x 10 
-1 



I-' 
\0 

T 
oK 

298.16 
300 
400 
500 
600 
700 

1000 
1500 

2000 
2500 

3000 
3500 

4000 
4500 

5000 

CO2 

-158.7954 
-157·7929 
-117.1620 
- 92.69516 
- 76.32368 
- 64.58725 

- 43.32795 
- 26.61104 

- 18.16171 
- 13.05162 

- 9.62325 
- 7.16045 

- 5 ·30190 
- 3 .84861~ 

- 2.68039 

TABLE 7 

HEATS OF FORJ.iATION 

CO O2 

-44.6155 0 
-44.3197 0.02266 
-32.3613 0·91113 
-25.1785 1.46526 
-20.3781 1.85448 
-16.9379 2.14861 

-10.6938 2.73212 
- 5.75287 3.25747 

- 3.23862 3.56067 
- 1.71094 3.76959 

- 0.683082 3.93051 
- 0.056999 4.06172 

0.615d31 1~.17082 
1.05183 l~ .26418 

1.40334 4.34421 

(6. Hf)T 
\GtT i 

0 N2 NO 

99.8153 0 36.6859 
99.2197 0.02216 36.4839 
75.0662 0.89401 28.2603 
60.5665 1.42236 23.3355 I 

50.8971 1.78348 20.0650 i 

43.9881 2.05086 17 .72~26 

31.5483 2.58177 13.6129 
21.8691 3.08103 10.4794 

17.0279 3.37749 8.95096 
14.1237 3.57631 8.05059 

12.1885 3.71994 7 .l~581+1 
10.8084 3.82800 7.01+096 

9.77631 3.91357 6.73253 
8.97617 3.98225 6.49661 

8.33927 4.03972 6.31331 
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