NASA TN D-1475

> - T
/‘// s y4e /f & CODE 1

NASA TN D-1475

WASHINGTON

TECHNICAL NOTE

TIME-DEPENDENT AIR FORCES ON WINGS WITH
SUPERSONIC LEADING AND TRAILING EDGES AND SUBSONIC SIDE
— EDGES WITH APPLICATION TO A WING DEFORMING HARMONICALLY

ACCORDING TO A GENERAL POLYNOMIAL EQUATION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

D-1475

By Joseph A. Drischler

Langley Research Center
Langley Station, Hampton, Va.

December 1962







NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1475

TIME-DEPENDENT AIR FORCES ON WINGS WITH
SUPERSONIC LEADING AND TRAILING EDGES AND SUBSONIC SIDE
EDGES WITH APPLICATION TO A WING DEFORMING HARMONICALLY

ACCORDING TO A GENERAL POLYNOMIAL EQUATION

By Joseph A. Drischler
SUMMARY

The integral form of the velocity potential and pressure distribu-
tion for a wing with supersonic leading edges and subsonic side edges
in supersonic flow is derived herein for a wing undergoing any arbi-
trary time-dependent deformations. The expressions are simplified by
assuming harmonic deformations and then expanding the integrand of the
velocity potential to the third power of frequency. The special case
is treated for which the side edge is parallel to the free stream and
the oscillations are such that the amplitude of wing distortion can be
represented by a polynomial of any desired degree in the span coordinate
and third degree in the chordwise coordinate.

The equations are further reduced to the special cases of a rigid
wing oscillating in pitch and translation and of a rigid wing in a sinus-
oidal gust, the results of which are presented in an appendix. Sample
calculations are made for the total 1lift on a delta and rectangular wing
and the results are presented in a table where a comparison is made with
the exact values from linearized potential-flow theory.

INTRODUCTION

Time-dependent aerodynamic forces have been a subject of continuing
theoretical development for many years. Most effort has been directed
toward methods of predicting air forces due to simple harmonic motion
since these methods can be applied directly to aircraft flutter problems.
With suitable operations these harmonically varying forces, which were
developed for application to flutter, can be used in the harmonic anal-
ysis of airplane response to continuous atmospheric turbulence. Thus,
the accumilated knowledge of unsteady alr forces due to harmonic motion
of wings at various speeds may be applied to both flutter and response
to turbulence.



The 1ift and moment for rigid wings of various planforms under-
going harmonic oscillations have been derived. (For example, see refs. 1
to 10.) The 1ift and moment on certain rigid restrained wings subjected
to continuous sinusoidal gusts (or turbulence) have been presented in
references 11 to 13. The results of references 1 to 13 have been com-
plled in reference 14 together with the unsteady alr forces for addi-
tional planforms. A more complete list of references is given in the
bibliography of reference 15.

The aerodynamic forces for application to nonrigid or deforming
wings are available for special cases. For example, if the distorted
shape of the wing can be represented by a quadratic equation in the chord-
wise and spanwise coordinates, references 16 to 19 may be used in the
supersonic speed range. In reference 16, the velocity potential for a
triangular wing with subsonic leading edges undergoing general second-
degree forms of harmonic distortion in both the spanwise and chordwise
coordinates 1s presented. The velocity potential therein is expanded
to the third power of the oscillation frequency in order to obtain the
forces and moments. Reference 17 is an extension of reference 16 wherein
a higher degree of wing distortion is considered and the velocity poten-
tial is expanded to the fifth power of the frequency. In reference 18,
the generalized forces for a harmonically oscillating rectangular wing
are given. The downwash distribution is assumed to be a general poly-
nomial in the spanwise and chordwise coordinates. In reference 19 a
strip theory technique is used to obtain the generalized forces on a
delta wing with supersonic leading edges. This procedure gives the
exact pressure distribution for arbitrary chordwise variation of dis-
placements and, at most, linear variation of displacements in the span
direction.

In the present paper an integral expression is given for the pres-
sure distribution on a wing with swept supersonic leading edges and
arbitrarily swept subsonic side edges with an arbitrary time-dependent
downwash distribution. The trailing edge 1s also arbitrary but must be
supersonic at all points. The expression is simplified by considering
the special case for a wing undergoing harmonic motion with side edge
parallel to free stream. The deformed shape of the wing is represented
by a polynomial of any desired degree in the span direction and third
degree in the chord direction. The aerodynamic forces are obtained by
expanding the equations to the third power of frequency. Reduction of
the equations for application to a rigid wing osclllating in pitch and
translation and to a rigid wing in a sinusoidal gust is presented in an
appendix.



SYMBOLS

a speed of sound
Ag normalizing factors used in equation (L6) to define displace-

ment of wing
b wing span
h sinking velocity of wing
Ig quantity defined by equation (D3)
JIn(x) Bessel function of first kind
k reduced frequency
Kn normalizing factor (see eq. (42))
1(x,y) lift distribution due to downwash,

. n T
w = elwt Kn(x - %) z AgyS
n=0 s=0
"3
Lk quantity defined by equation (47)
Ny
3
T = Le(-N)
Ny

M Mach number
n,s,r integers
Pg quantity defined by equation (D10)
Ap local pressure difference
ZE q amplitude of pressure coefficient due to downwash,

W = Kneiwtxn 5(y-1)



q dynamic pressure, pV2/2

Qs quantity defined by equation (Dk)

rp,T1,To quantities defined by equations (29)

T3, 1), quantities defined by equations (L41)

Rg quantities defined by equation (D9)

R(y) quantity defined by equation (37)

t't,tn time

t transformed time (see egs. (5))

u=Bly-n|

a = B(y +n)

A free-stream velocity

w vertical velocity on surface of wing, positive up

Wos W1 amplitude of vertical velocity associated with the Dirac
delta function

x',y',z' rectangular coordinates fixed to wing

X1,¥1,21 transformed coordinates (see egs. (5))

X,¥,% rectangular coordinate system fixed to apex of wing

a angle of attack

B = Mo _ 1

&(x) Dirac delta function

n',q,nl rosition on y', ¥y, and ¥y, axes where downwash is applied,
respectively

A slope of leading edge of wing



A B times slope of side edge of wing
p density
B, X, ¥ velocity potentials
w circular frequency
T = M%D
vp2
§1,§2 coordinates
7;§,u,c dummy variaeble

ANATYSIS

Introductory Remarks

As a first step in the analysis, an integral expression is developed
for the velocity potential associated with a downwash strip of Dirac
delta form on a wing in supersonic flow with swept supersonic leading and
trailing edges and subsonic side edges. By superimposing these strips
over the wing planform, a general expression for the generalized forces
is derived for any arbitrary time-dependent downwash distribution. These
equations, although complicated, can be programed on the modern-day high-
speed digital computers. -

As a next step in the analysis, a simplification 1s made of the
above-mentioned expressions by assuming simple harmonic motion. The
velocity potential and pressure coefficients associated with the harmoni-
cally oscillating strip are then presented. These expressions are fur-
ther simplified so as to pertain to the special case where the side edge
is parallel to the free stream. The pressure coefficients are then
expanded in powers of frequency and by superimposing the downwash strips
over the wing planform the pressure distribution for various wing dis-
tortions is obtained.

The method used is that of Gardner (ref. 20) which reduces the non-
steady finite-wing problem to two "steady" finite-wing problems. Without
deriving the method, its essential polnts are given herein.




Velocity Potential and Pressure Coefficients Associated
With a Downwash Strip of Dirac Delta Form
The linearized boundary-value problem.- The differential equation

of the propagation of disturbances that must be satisfied by the velocity
potential is (when referred to a moving coordinate system x',y',z")

2 2 2 2
3;< 9 4 v _§_> g = o ¢ + o ¢ + o ¢ (1)
ac S3x 12 By'2 8z'2

ot Ax!
where
g=g@(x,y",2',t")

The boundary conditions that must be satisfied by the velocity poten-
tial are

¢(x‘,y',0,t‘) =0 (2)
ahead of the wing

Zl

on the wing.

The wing planform for which the velocity potentials and pressure
distributions are to be obtained is shown in figure 1. The numbered
regions on this figure will be discussed later in the paper. A conven-
ient planform to analyze is shown in sketch 1 where by means of various
transformations and superposition techniques the results can be applied
to the planform shown in figure 1. The downwash associated with the
planform in sketch 1 is assumed to be

w(x',y',t‘) = WO(X',t') S(Y"nq (4)
where ®(y') is the Dirac delta and is defined as

fw 8(y') dy' = 1

-00



and

Jf F(y') 8(y'-y) ay' = F(y)

-00

and the slope of the side edge is expressed as A/ for convenience.

/ ////// a

wix',y',t!
// I,

Sketch 1

Wing side edge

Axl
t e ee——
Y B

Although this downwash distribution may appear to be physically unreason-
able, 1t will be shown in appendix A that the results utilizing it reduce
to known functions.

Transformation of the boundary-value problem.- With a transforma-
tion similar to that employed in reference 20,

1] t ™
i = xR
Vl - A°
AX'/B + vy
y /B +y
Vl - A2 >
Mxt - pPat (5)
ty = 3
zl = z'
M = n' y




equations (1) to (4) become

ey Fyy - Pora ~ Frasy = ()
g=0 (x1 <ayp)  (7)
shead of the wing
(¢Zl)21_)o w(xl,yl,tl) (v, > o) (8)
on the wing
B(x1 - Ayp) 4 [M(xg - Ayy) Y1 - Axy

where

B(xy - Ay M(x; - Ay
wl(xl’yl’tl) = Vo (hl)’ ﬁ—la (}\E_-/Tél) -4 (9¢)

The wing in the transformed coordinate system is shown in sketch 2,
where the shaded area of sketch 1 transforms into the shaded area of
sketch 2, and the side edge and leading edge become ¥y = 0 and

Xy = Ayl, respectively.
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(" i
,/// Wing leaging edge
Wing si%eoedge]»— W(Xl, //C;;/’/’//i}/; ¥y

N % y1=A>l<;inl\ﬁ-—A2;
i I,

Sketch 2

Gardner's method consists of introducing the variable gl and constructing
a potential function w(gl,xl,yl,zl,tl) defined for all £, 2 0 such
that ¢ satisfies the following two differential equations:

- - =0 10
] -V -V =0 (11)
X%y 181 5151
and the conditions
v =0 (12)
ahead of the wing and
(¥2,) = X(81,%),¥15%) (vp>0) (13)
Zl=O
and where
X(O,xl,yl,tl) = w(xl,yl,tl) (1)

and w(xl,yl,tl) is defined by equation (9b). It can be seen that, by

adding equations (10) and (11), the resulting equation has the same form
as equation (6). Similarly, equations (12) and (7) have the same form
and equations (13) and (14) reduce to equation (8) as &, approaches O.
Consequently, the velocity potential is found by setting £&; =0 such
that
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¢(xl}yljzl)tl> = W(O’Xl’yl’zl’tl) (15)

Differentiating equation (11) with respect to 2z7 and defining a

new potential function X such that
o ;
(S;I = X(él’xl’yl’tl) (lD)
z,—0

equation (11) becomes

- X =0 (17)

with the boundary conditions
X =0 (18)
ahead of the wing and

X = w(xl,yl,tl> (19)

for gl = 0. This will be considered the first boundary-value problem.
The second boundary-value problem consists of equations (10), (12),
and (13) and is restated here for convenience

Vet " Vyyyg T ¥z, <O (20)
V=0 (21)
ahead of wing and
(Wzl)z -0 = X(gl)xl)yl)tl) (22)
1=

for y > 0. It can be seen that the solution of equations (17) to (19)
becomes a boundary condition for equations (20) to (22).

Solution for X-function.- The boundary-value problem defined by
equations (17), (18), and (19) is similar to the steady two-dimensional
supersonic "wing" problem in Xy,t4,€; space, where x; is in the down-

stream direction, t; 1in the span direction, and gl is normal to the

wing as implied in sketch 3. The downwash, as can be seen from
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equations (9a) and (19), is concentrated along the line

\f 2 .
Xy = %(yl - nl 1-A ) in the gl = 0 plane.

2 2
o e o) e .
R}
7 X = A
AN A 1 I
\ /4 (wing leading edge)
\ /
\ / (
\ f X = w(xl,yl,tl)
\ /
=0
N <&
A 1 " 2
X2)t2J§2 LX_‘L =j—\(yl - M 1 - A >
¥ x
1
Sketch 3

The curve X1 2

+ §22 represents the intersection of

Xp - d(tg - tl)

the plane 0 with the characteristic forecone emanating from the

3
point xg,tg,gg.

The solution for X can now be written in terms of simple sources

V(XA ¥4t dx, dt
X=‘%'§“ﬂ (X2r¥yr ) &Xp Aty (23)
> 5 >
%0 \Rxl"‘E) - (- te)" - 8

where Sy 1is the hatched region indicated in sketch 3. It might be

noted that the expression for X (eq. (23)) differs from the classic
potential given for the two-dimensionsal steady-flow problem by the partial
derivative ?/Bgl. This is due to the fact that in the two-dimensional

3%

specified on the wing, whereas, in this problem, the potential

problem the vertical velocity, which is analogous to <§Z—) , 1s
§1=0
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(X)gl = 0 1s specified on the wing. Substituting for w(xl,yl,tl)

from equation (9b) into equation (23) and introducing the appropriate
limits yields

t1+V(xl-Ayl)2-§12 xl-v(t?-tl) S 12

- Ax
w1 (%p¥y0t,) 5<yl z. nl)

X x_;Tl..a.?_ atp h - 2% ax, (24
* V()q - x2)2 GRS
t1- (- )%t 2 Ay

By integrating equation (2k) with respect to X, and then making the
2
" 2
Y1 - M1 1-A 2 . .
- £,%cos 0, keeping in
A 1
mind that the value of the integrand is concentrated along the line

2
2
- \}l - A
21 \T - a2 _ i~ 2
xl"K(yl'nll'A) between to =1t % (xl- —gl

A

substitution t2 = tl + <xl -

there is obtained

n

2
2 yl-qul - A8 ¥ -1 vl - A2
1 - A° O 1 1 2
X = - —_— WYt + ¥ - ————— - €, cos 8lae
n agl 1 A A

0

1
<A(x1 - gl) +qldl A2 s y1 > - T[\) (25a)

and X = O for all other regions. When w; is rewritten in terms of
LS (eq. (9c)), equation (25a) becomes
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2
2
2 t y -n\}l-A 2
= 1 - A 3 8 _A2 .L - 2_ _._l_i __l_._l__>_ 6tde
x=- B2 ag—f wofsbalf - )y bl ) -5 e > by eor
0

) 1
(A(xl N +ql\h B 1 > (25b)

1 - A2

and X = O for all other regions.

Solution for the velocity potential X-,¥,0,,%,).- The boundary-
1’1’71 "1

value problem defined by egquations (20}, (21), and (22) is also similar
to steady two-dimensional supersonic wing problem in the gl,yl,zl space,

where £ is in the upstream direction, ¥y in the span direction, 25
is normal to the gl,yl plane as implied in sketch L,

Sketch 4
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The solution for V¥ can now be written in terms of simple sources
as

X ¥4t dg, dy
¥(&1,%0,57,0, ff o) e ¥ - (26)
\[\51 - 8p)% - (v - %)

and by means of equations (15) and (26)

1 XYt d¢, dy
¢(xl,yl,0 = llm j\j\ 2 l 2 ) S 2 (27)
V(g - (y - YQ)E

where Sy 1s the crosshatched region indicated in sketch 4. The cross-

hatched and hatched regions in sketch L4 are the regions where the poten-
tial X(xl,yl,gl, ) # 0 as dictated by the conditions imposed by equa-

tion (25). Integration over region S; will yield results for pure
supersonic flow, whereas integration over region S, (sketch 4(b)) will

yield results which contain the effects of the subsonic side and must be

1+ A
V1 - A

taken into account when 0O < ¥y <xy -7

By substituting the appropriate limits into equation (27),

To T )
X(g Xq,¥ost ) dg
1 2:X10¥ps %1 ) 6
¢ = ¢1(xlxylyoxtl) = - ';[' 532 > >
87 - (Y1 - Y2)
!
Yom¥y
1-A%

To Ty ra Yoty
X(B %Yoty ) O

e e

b - (¥p - v2) t

2 Yor¥y — You¥1
V1A

1 X(Epr %)Yty ) G
L eyt e

n
W
&
o

¢ = ¢2(xl,yl,0,tl) = - >
2
e~ ()

{1+A
- >y>0
(Xl T111_1\ y >J

(28)
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where
)
A(xl + yl) + qlql - A
i 1+A
n\Jl-A‘g—y
r) = ——£ 4 x ; (29)
—A(Xl-yl)+nl\‘l-./\
2 = 1+A )

If the potentials in equations (28) are transformed back to the true
x',y',t"' coordinates, the regions where these potentials exist are
given below and are also shown in sketch 5

For n'> 0:

t 13 1 ! ] | ! 1 B !
¢ = ¢1(X Y :t') (n - %; <y'<nqn'+ %;, 0 <x' < N )

1 1 ' '
p=pg(x"ytht) [’—E—- - n'( +A)< y < e & > A & (30a)

-
g = go(x,y',t") [—A—X—<y'<x—'—n‘(——l+A), xt > Bl

and @ = 0 for all other regions.

For n'< 0:

¢=¢2(X':Y':t') ('A—;"<Y'<x_‘3'+l;\:[\n': x'>-E_'_> (30p)

and @ = O for all other regions.



y'-n'=-g ' - N~
RedZs :
x! =1BT-]'A 2;9’ =¢1 ///_/z_' X: j_'[j\_n v =(X_'

‘~///\/,y'"“"s', C | SR
9 A
7 2,
e 2
B 7 yISEIDI
[P |
B
(a) 1" >0 (v) ' <0
Sketch 5

The pressure difference in terms of the physical x',y',t' coordinates
is given by

Np = 2p(—a-2- +V éﬂ) (31)

ot dx!

Subsequently, a coordinate system is employed where the origin is
situated on the apex of a sweptback wing. The x-coordinate is parallel
to the free-stream direction and the y-coordinate, in the span direc-
tion. The coordinate system will also have the additional character-
istic that the Dirac delta strip will have its origin on the leading
edge of the wing rather than on the y'-axis as indicated in sketch 5(a).
If it is assumed that the potential functions given by equations (28)
and the pressure coefficient as given by equation (31) have been trans-
formed to this new x,y,t coordinate system, the 1ift distribution due
to arbitrary downwash distribution can be written as

R OpA ( t;n) Tk Dp o t;n)
DI\X,¥,T50 Po\X,¥,T3M
1(x,y) = £(n) 3 dn + £(n) —2 q’ — ay

N4 n

(32)



17

where A@l/q and Apg/q are the pressure coefficients associated with

the velocity potential ¢l and ¢2, respectively, and f(n) is a non-

dimensional spanwise downwash weighting function defined as

W(X:Y:t) = Wo(x:t) f()’)

A method for obtalning the limits of n, will be discussed in a subse-

quent section; however, an indication of their significance is shown in
sketch 6 where Ni» nj, and n, are particular values of ng

=~ ¥,n

Sketch 6

It might be noted that, in order to obtain Ap/q for use in equation (32),
a triple integration is involved: one as indicated in equation (25b) and
two more as indicated in equations (28). Therefore, in order to obtain
the loading due to an arbitrary downwash distribution, four integrations
are required. To obtain the generalized forces another integration is
required, and if a transient phenomenon is present, a time-superposition
integral is required. However, with the modern high-speed computers it
does not seem unreasonable to undertake the integration of a quintuple

or even a sextuple integral.

The remainder of this paper will deal with the evaluation of equa-
tions (25b) and (28) in order to obtain the 1lift distribution for a wing
oscillating in simple harmonic motion with a polynomial downwash distri-
bution in the chordwise and spanwise direction. The potential will first
be derived for the oscillating strip, whose downwash can be represented

by
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wolx',t") 8(y' - 1)

Wﬂx')emm'a(y._n,)

w(x',y',t") (33)

The potential is then derived for this strip and a frequency expansion
rerformed to obtain the corresponding pressure distribution. These
expressions are further simplified for the special case where the side
edge is parallel to the free stream and the downwash is assumed to vary

as x'® 1in the free-stream direction. Superposition techniques are
then used to obtain the loading distribution for various wing distortions.
Velocity Potential and Pressure Coefficients
for Simple Harmonic Motion

Solution for the potentials X and @.- By assuming simple har-
monic motion, the downwash distribution as given by equations (55) becomes

M({x. -
iw (a4 - 1)
yl - Ax

B(x) - Ayy)| Pe 2
( 1 1) 1-A 5 1. ny| (W)

W(Xl’yl)tl) =% o e =

when transformed to the xl,yl,tl coordinate system by means of equa-

tions (5). Comparing equations (34) and (9) gives

WO(Xl’tl) = wo(xl) eiwtl (55)

Substituting equation (35) into equation (25b) gives

2
1at yl-qlquAg R
- -§l coso

oM V__E 1 i
e T A~ A
‘- A WOI:‘,E\(yll‘Ag'ql)]eABa 1 1/ Fa agif . B8 A
0
1

P de

<A(xl - §l) + nl\Jl S A% > y1 > M ) (36a)

1- 482
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and X =0 for all other regions or
2
nl\}l - A2
(3’1 o |gzl/\x1 - = -
,f 2 1
A(X-§)+q 1-A >y >——m—m— (36b)
1 1 1 1
2
1 -A
and X = 0 for all other regions where
. it
1M 2 1wty
P T A
R _V1-4A B 1 A2 Apa Ba
(1) =3 YolaV1¥r - A -y © (57)

If the indicated differentiation is performed and it is kept in mind that

‘f 2
_AXl+T]ll-A —yl

gl— A 2
equation (36b) becomes

there is a discontinuity in X along the line

-——J

A ag; © Ba Xl ! (%)

Axl - yl +1hvl - AE Vl -
X = R(yl) o) gl - -

The evaluation of potentials @, and ¢2 (egs. (28)) together with equa-

tion (38) is presented in appendix A and the final results for the veloc-
ity potential (egs. (A29) and (A30)) in the true

x',y',t' coordinate
system are as follows:

i a
st wo(x'-BE) e cos T
g (xtyt,0) = -2 e 0 a&  (39)
T 2 ' 12
\/;-(y-n)
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r
3
clwt! wo(x'-pt) e-imMg/Bacos T
Bolx,yt,t) = - o a
Je2 - (v - 12
Iy1_n|
xl
r
B 4 5
, : 5l 7)
+ ;%E clwt WO(X'-BE) e 1M /Ba 1\"T 7 dy
r 0 1 - 72
3
(40)

where the regions where these potentials exist are given by equations (30a)
and (30b) and are shown in sketch 5 and

- _2 [Ax' WY _ (vt o
r5—A+l(B +y) (y' - n")

P (41)
e
C ]

Frequency expansion of velocity potential and pressure coefficients.-
An analytic evaluation of equations (39) and (¥0) does not seem possible
at the present; therefore, a downwash distribution

w(x',y',t") = Kpo'™ &3O gy (42)

is chosen, and a frequency expansion of the integrands of equations (39)
and (40) is performed before integration. It might be noted that com-
parison of equations (42) and (33) indicates that

wolx') = Kpx'? (43)
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where K, 1s a normalizing factor having the dimensions of velocity
divided by the nth power of a length.

The results of the gbove-mentioned expansion are presented in
appendix B. Equations (BS) to (B22) represent the pressure distribu-
tion for a wing with a supersonic leading edge and subsonic side edge

t
(y' = - —E_) in supersonic flow. The downwash distribution on this wing
is given by equation (42). By superposition techniques, the pressure

distribution over the entire wing for any harmonic deformations can be
obtalned; however, the amount of work and time involved becomes very
lengthy. Therefore, the pressure coefficients are derived only for the
special case where the side edge was parallel to the free stream. These
coefficients are presented in appendix C as equations (Cll) to (C21)

for values of n =0, 1, 2, and 3. The values of n=0, 1, 2, and 3
represent a chordwise strip dy' of the wing at y' =1n' undergoing
translation, pitching, parsbolic bending, and cubic bending, respectively.

In most analyses it is desirable to have the origin on the center
line of the wing. Therefore, in the section to follow a coordinate sys-
tem is chosen so that the origin is at the apex of a sweptback wing. By
assigning a given spanwise variation of deflection and integrating over
the appropriate region of the wing, the pressure distribution can be
obtained for any spanwise variation of deformations and up to a cubic in
chordwise variation of deformations.

Ioading Coefficients for Polynomial Downwash Dlstribution

Transformation to a coordinate system fixed on apex of wing.- A
sketch of the wing together with the new coordinate system, fixed on the
apex of the wing, is shown in sketch 7 where A is the slope of the
leading edge and b 1is the wing span. Two sketches are needed depending
on whether n' 1is greater than or less than b/2.

Yy y
7' X x[<::::\\\\\ﬁr

Sketch 7
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Inspection of sketch T shows the appropriate transformation to be

~
S LT |
X X X
. b
y'=yt3 > (Lek )
‘e + 2
nEntz

The resulting figure showing the wing, new coordinate system, and the
regions where the appropriate pressure coefficients apply is shown in
sketch 8:

b/2
0 T|1 / .y
Ap -9
q
N\
|
X
Sketch 8
and the downwash equation becomes
twt(, _ 1y])
w(x,y,t) = Kpe ( ——7\1> 8(y-1) (45)

General loading coefficients.- If the wing 1s now divided into
regions according to characteristic Mach wave reflections (see sketch 8)
and the downwash is given by

. n
w(x,y,t) = Knelwt<x B %) Z Asy® (46)
S
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then the pressure at any point will consist of terms of the form
{5

P b b
Z Asns 3 <X—I7]\-) y+§, T]"'E) dT] ()4'7)

]

N3
Ly

i Ny
where n; and nj are to be chosen according to the region in which

the pressure coefficient is to be calculated and Apk/h values are given

in appendix C. As an example, consider the pressure at point x,y indicated
in sketch 9

UE N3 b/2
= IJ / Y12M1
~
h S
~
~ ~
~ ~
~ ~
~ ~
- = - +
RN \\/ R CA R R))
h S
~ N
A .
Xy =X + B(y -y ~N /&\
1 1 ~ 7
s X, =X - By - Y
\\/ 1 (l )
Y X,y
1
Sketch 9

from which it can be seen for this particular case
_ 5 By - x

1 = M5+ 1

=7\E3(b—y)->;]

M5 2+ 1

The pressure at point x,y can now be written as
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ﬂj 0
Ap Ap2 b b)
1 0 b b s +_ + = +—= ] 4
1(x,y) = g Asf s g (X+7\, y+3, n+2>dn +f n (X o Y*t5 ntg)dn

S T]i T]J
/2 __
Ap b b
+ ns-ﬁg(-i;y+§;ﬂ+§)dﬂ (48)
0
b/2
The last term has the form of equation (47) and can be replaced by L2 .
0

The first term

A B(b‘ )'X
BA+1 —_—
Ap
Z: ns—ai@+%,y+%,n+%)dn
A(By-x)
BA+1
becomes
B(b-y)-x
B?\—l —
Ap
s —Lfx_1 b b
Z f " g (X W YTz ntg)dn
By-x
BA-1
when A 1is replaced by (-A). This expression is now in the form of
nj(-K)
equation (47) and can be represented by ii where the bar (-)
ﬂi('x)

is used to indicate that A must be changed to (-A\) Dbvefore inserting
the limits. This definition was adopted so as to utilize the definition
of Ly given by equation (h?) and thus eliminate the derivation of a

new set of equations. Performing the same operation on the second term
of equation (48) results in the following expression for the loading
coefficients at x,y.
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nj(-%) 0 b/2
x,y) =1 + L, + L, (49)
G I EWE R

The I and L, functions are derived in appendix D for

n=0,1, 2, and 3. The limits are left arbitrary so that the pressure
coefficients at various positions on the wing (other than the position
considered above) could be determined.

Toading coefficients for separate regions on the wing.- If the wing
is now divided into the regions indicated in figure 1, the loading coef-
ficients for each region (1p, l1y, etc.) can be shown to be

i
1r = In (50)
Mo
Ny b/2
lrr =Ly + L (51)
P o b/2 o T
brgr =4 - Lt Ly =l v L - I (52)
0 0 N, 0 0
Mo 0 b/2
iy =L +Ip| +Ip (53)
Mo Mo 0
0 nl
ly =1 + 1 =1lp - lrp * g (54)
0
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0 1o N3 b/2
yr =L +Iyf +1, + L (55)
13 0 -b/2 o
o -n} 0 b/2
yrr = Iy + fz + i'2 + L, = lyp *+ Iy - lppp (56)
where
o MBy - x) h
M0 = gy -1
0. = MBy * x)
1 BA + 1
> (57)
_ K@(b -y) - JE'
N2 BN - 1
_ 7\E{ - B(y + b}]
Nz = BA + 1

and the values of I, and L2 are given in appendix D as equations (D11)

to (D18) and, as pointed out previously, the bar (-) indicates that A
must be changed to -A before substituting in the limits.

RESULTS AND DISCUSSION

The integral expressions for the velocity potential and pressure
coefficients associated with a wing with swept supersonic leading edges
and arbitrarily swept subsonic side edges, deforming in any general time-
dependent manner, are derived herein. The expressions are simplified by
first assuming harmonic motion and then expanding to the third power of
frequency. The special case is then treated for which (1) the side edge
is parallel to free stream and (2) the oscillations are such that the
distortion of the wing can be represented by a polynomial of any desired
degree in the span coordinate and third degree in the chordwise coordinate.
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Calculstions are made to obtain the total 1ift coefficients for two
wings ~ a 50° delta wing and a rectangular wing of aspect ratio 0.8 - both
flying at a Mach number of 3.0. The wings are assumed to be subjected
to continuous sinusoidal gusts and to harmonic sinking oscillations. No
spanwise variation in downwash is considered. This analysis is presented
in appendix E and the final results are tabulated in table I. As can be
seen in table I, the results are in good agreement with those obtained
by using reference 1k for reduced frequencies at least as high as those
indicated in the table. It might be noted that the results for the wing
in a sinusoidal gust are not as good as those for a wing undergoing har-
monic sinking oscillations. It is believed that this difference is due
to the fact that the sinusoidal gust wave is approximated by a cublc in
the chord direction, whereas the downwash for harmonic sinking oscilla-
tions is exact.

CONCLUDING REMARKS

The integral expressions for the velocity potential and pressure
coefficients associated with a wing with swept supersonic leading edges
and arbitrarily swept subsonlc side edges, deforming in any general time-
dependent manner, are derived herein. The expressions are very compli-
cated; however, with the modern high-speed computers it does not seem
unreasonable to undertake such a task. As a possible check the equations
are simplified by assuming simple harmonic motion and expanding to the
third power of frequency. The special case is treated for which the
side edge is parallel to the free stream and the oscillations are such
that the distortions of the wing can be represented by a polynomial of
any desired degree in the span coordinate and third degree in the chord-
wise coordinate.

Langley Research Center,
National Aeronauties and Space Administration,
Langley Station, Hampton, Va., August 1, 1962.
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APPENDIX A

REDUCTION OF THE VELOCITY POTENTIAL EQUATION

WITH APPLICATION TO A RECTANGULAR WING

Reduction of Veloelty Potential Equations

The velocity potential as defined in the text by equations (28),
(37), and (38) will be treated in six parts as indicated below. From
equation (38), let

X(EprXpr¥yoty) = X (810%)0¥0%0) - X2(§l’xl’yl’tl) (A1)
where
Ax \fl A° )
- y + Tl -
xl(gl,xl,yl,tl) = R(yl) 8\, - 1 1 . 1
? (A2)
1-A° c
d Y1 = MmN+ - 2
X2(81s%15¥10t) = R(yl)g' Jo B% X] - n -6
1 Y,

By substituting equations (Al) and (A2) into equations (28) and defining
the quantities

Xy (Bor¥X1s Yosty) A

Jee? - (0 - w2

91(52)xl;yl;t13 YQ) =

? (A3)
Xp(82sX1,¥25%1)
V22 - (- yz)ej

the velocity potential of equations (28) can be written as

¢l(xl:ylro:tl) = ¢ll - ¢12 (Ak4)

82(§2’xl’yl’tl; yg) =

O \WN\J A



¢2(X1:Y1:O:t1) = ¢21 + ¢22
¢21 = ¢211 - ¢212

¢22 = ¢221 - ¢222

where

Al

/dl‘A2 Yor¥y

¢11 =

A

ry ry
g.,=- dy 8o dbp
12 2
J 2
T]l/ 1-A y2_yl
I‘O rl
o 61 d;
o Yo-¥1
ro I'l
dy 62 Ay
I‘2 y2-yl

T2 Yoty
- .1 :
ooy = - % P o, dt,
e
T‘1/ 1-A Yor¥1

¢211 =

1
A |-

A [

¢212 =

29

(A5a)
(ASb)

(A5c)

(A6)

(A8)

(A9)

(a20)
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T2 Yot¥y

1
Bopp = - = dy, 6, dép (A11)

n
V1-a2
M / 1-A YooYy

and r,, 7ry, and r, are defined by equations (29).

Since the area of integration does not include the line

Ax) + an1 - A% -y,

£y = = (which is the argument of the Dirac delta),

Pooy = © (a12)

After the integration with respect to &,, equations (A6) and (A8) may
be represented by

R(vp) &,
5

Axl - Yo t nldl - A2 - (yl - y2)2

A
Ty

B = - % (A13)

By transforming equation (Al3) to the true x',y' coordinates by means
of equations (5) and making the substitution

y =_1__Ag+n'+Ai' (A]L,.)
2 5 B )
1 -A

equation (Al3) becomes

b
_ ta,
g = = 't 0 a (A15)
—_ Vge - (y' - 1n")?
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With the appropriate substitutions for ;; and 3 it can be shown that
equations (A6) and (AB) become, respectively,

x'/B :
wo(x "=t ) S
gy = - 5t > a (16)
2 _ (v - n1)2
_(yv_n|)vg (y 1 )
2 (Ax' 1 1
1TA<_E—+Y>—(y -n') M
1 it wo(x '-BE ) e Po
Po11 = - T ae  (A17)

-(y'-n")

In order to reduce equations (AT), (A9), and (All) the expression

Ty Ty T Ty 2
¥p - m\L s
d W 2 1! —§2
e N S
2 at

g, = - % ay, 0y dE, = - % R(¥p) @, > p  (m8)
) 8,2 - (V17 ¥2)

Ty YooYy JTY You¥
will be used to represent these three equations. By means of the
substitution

2
d 2
§2_ % _y2—nll-A - (Y - 272+ -y 2 (A.l9)
s = {\x ~ (v1 - ¥2) (v1 - ¥2)

equation (A18) takes the form
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. \
g, - - R(yz) dvp ar "O\ga 1 A

2
J( ol Vl-Aﬁ) ] .
ry 1 A (yl - y2) o

Y[

(A20)

which, after transforming to the true x',y',t' coordinates by means

of equations (5) and making the substitution given by equation (a14),
reduces to

— A

I'j T

- duity kg —
_ 1wt wolx'-t) e P® & JO(%\“EE - - (a - 72))
¢m";e at &
-II ce - (yl - nr)e o Y
Ty £
| - N e o)
) & et wolx'-BL) e ij;—;)}ﬂc dat - Baﬁ Y - n ]( 7 ay (A21)

An expression that will be needed later is that for 9}{ = 1 the
second integral in equation (A21) becomes

1

I, (T 1- A2) dy

(A22)
0 1- 72

where

T = Q—VQE -y - F (A23)

By letting 7 = sin 6, the integral (A22) becomes

n/2
f J1(t sin 0) a6 (A2La)
0
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which is evaluated by Watson (ref. 21, p. 374) and is given as
%(l - cos T) (A24b)

By substituting the appropriate values for T,

i ;E, and ¥, into

equation (A21), it can be shown that

x'/B i
' B
on = - i Lot wolx'-Bt) e & (1 - cos 1) dt (425)
2 1 1 2
~(y'-n") \E -(y'-1")
r3 LDMC
' pa )
¢212 _ % ot ! WO(X BL) e (1 - cos T) at (426)
\EQ -y - n")°
-(y'-n")
. ()
i - daM 3t - 52
Poop = - ;;Us—a et wo(x'-Bt) e P? “at = dy
r; 0 1 - 72
(A27)
where
1 Ax|
L=/ + v+ T Ac
. (B y)(a " ) (428)
(1-49f2 - (y' - 1")Z]

Consequently, if equations (A12), (A16), (AL7), (A25), (A26), and (A27)
are substituted into equations (A4) and (A5a), the resulting form for
the potential is



3h

x'/8 s,
Lwt! wa{x'-Bt) e Ba cos
frlxtyyt,et) = - % et Tar (a29)
va_n| J - (Y' - T]')2
3 iy,
T 1 _iwt’ Vo(x Bc) € Ra cos T
¢2(XJY)t)= -;e = =
[y'-n'] W2 - (v - n')
x'/B
1M
-t J 1 -
+ Ao etot! wolx'-t) e P “at I(T 4 )d7 (430)

nﬂa . . V_—__—_

Application to a Rectangular Wing

It might be noted that, as A approaches 0, equations (A29) and
(A30) become

(#1), = - 5 ™' at (a31)
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v _ ln
' Ba
C L otwt wo(x -gt) e coB T at
(¢2)A=o X | t2 - (y' - n")
y'-n'
- 1/2
x'/B > = 2]
LM £°-(y*-n") (V;—__§>
- ==t Jolt§ -y
o wolx'-Bt) e P* at ! a  (A32)
a
i y-l+.rll 0 1- 72

It is now desired to find the potential for a rectangular wing for which
w(x',y',t") = wolx") et since equations (A31) and (A32) apply only

for a downwash strip in the free-stream direction at y' = n', these
potentials must be integrated with respect to 7' over the proper limits.
From an examination of sketch 10

t 1

= -y ey
B B o
N P // n Y
£ =-x' +8(y +0) e’ d
N 7N 2N : C
k S L7 E=x"+B(y" -1")
~ 7
>
N 7
§=X'-B(y'-n')4/ ~ S e
X ,Y
)
x',t
Sketch 10

the potential for the rectangular wing can be written as

¢x‘<ﬁy‘ = (¢1)A=O dn' (A33)
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7;"-Y' y'-+%§
¢x‘>By' = . (¢2)A=O dn' + (¢1)A=O dn' (A34)

x! '
'13—-3’

An evaluation of the integrals in equations (A33) and (A34) will yleld
the results given by equation (15) of reference 10.
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APPENDIX B

FREQUENCY EXPANSION OF THE VELOCITY POTENTTAL

AND PRESSURE COEFFICIENTS

Substitution of the downwash wg(x') = Knx'n (eq. (43)) into the
expression for the velocity potential @, (eq. (39)) and expanding the

integrand in powers of frequency, and integrating yields the following
results (where the primes have now been omitted from x, y, t, and n)

#(6,y,t) = - 2 2%, Z(-ia)phpr (31)
p=0
where
N
[o/2] s . oip T
n = 1 (-1) n!(Bly - n]) Z (-1)"rI
P = M2T(2r)1(p - 2r)l = sl(n - s)! O (r - m)iml
} (B2)
cosh™ B'x |
=1
Np = xB-8 coshs+p—2m¢ ag
0
/
2
& = ffT‘“ (B3)

and [ﬁ/é] is the integer part of p/2. The pressure coefficient asso-
ciated with @, is

A Ap, S S
Pl _ elwt ___il = l*_(_a.fil. +V ﬁ) (BY4)
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or

_f}.= :_V Ky ) (-3)°n, (-m)ﬁ_g Ny - Np] (85)
p=0
and ~
s+p-2m
Np'=%=n;sN+ (B'Y-T]I) (nfo
vxg - B2y - 1)
> (B6)
p-2m
(Bly - nl)
Np' (n =0)
V<2 - p2(y - )2 )

Similarly, equation (40) can be expanded to give

Ap2l

3 ‘ﬁKn Z( 1wphp[iw) -W’J (B7)

m
Ap l;. oy 2 I . 2 -
22 _ (-iw) Kn Z(—iﬂ)) Z g - qu + gm-qu' _ %( ‘iw)gm-chJ

q Vv
m=0 q=0
(B8)
where the prime indicates differentiation with respect to x, and

APQ = Apgl + Ap22 (B9)

20 +5)

cosh™| X P/ _
(1+A)(y-n)
— n-s S+p-2m

= cosh g ag (B10)



m-q
Gl e o I G
g _ = -

m-q 2 n+l 2
WMT(-A)" T(m - g)!] 1 -A

2 n
Fq = bq—2k di Z Cqu-Ek,s,k

k=0 s=0

M q+s+l
- 2
Gq,s,k = U/\ ! f (k) an

5

r5=i;ﬁE(l+A)—A(y-%>i]
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(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)
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iy + Ax
7 = (ﬁ_ﬁ_) (B21)
2
1-A
2
Ax
nH -k
22 = i -~y - (B22)

With the limited number of fk(u) functions given (egs. (B18) to (B20))
equation (B8) can only be expanded to the fourth power of frequency.
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APPENDIX C

FREQUENCY EXPANSION OF PRESSURE COEFFICIENTS

FOR SIDE EDGE PARALLEL TO FREE STREAM

Since equations (B5) and (B7) of appendix B are independent of the
slope A attention need only be given to equation (B8). However, since

A
Poo

qa

the second term in equation (A32) of appendix A. The resulting equations
are (where the primes have been omitted from x, y, t, and 1)

55__’ 4p - = 8% ‘
(fz T K, ;ﬁg%i('iw)z ;i;(—iw)q (-iw)gg Bs,q,k ~ Hs,q,k| (C1)

where the prime indicates differentiation with respect to x and

singularities exist in equation (B8), was evaluated by using

2 n
Hs,q,k = }: 8q-2k ;z Cs dkKs,q_gk,k (c2)
k=0 s=0
n-s x q+s
Ks,q,k = X h/ﬁ ot "9, (0) do (c3)
B(y+n)
=1
ap - p! (ch)
(-l)snl
= m— C
5 (n - s)lsl (c5)
2K
dg = (éﬁ) (c6)

35(0) =1 (c7)



8,(0) = - i(zf ; 53’_”) (c8)

2 3
5.(0) = L_[o 4 _8m , 2, 16y%9° (c9)
SRETET R ”
212=L2E,2_ By - n)ﬂ (c10)

Evaluating the above expressions for values of n =0, 1, 2, 3 and
retaining only terms to the third power of frequency, the following
results are obtained. In the following equations u = B|y - n| and

u = Bly + n).

For n =0
Ap K 2 -
%z_%-v—o———l——-uﬂ<-5—2c05h15+ X
u
(2 _ .2 M 2 _ 2
&° o 2 o2 im0 ) B 5 1 x
+ Xg(M-5)-u(2M-5)——u — ucosh™— =
u
2M2 xg u;2
+___X_E<9(Ml*- e - 3) - 320t~ o - 1ﬂ (c11)
)
xS - e
) ‘ _ . 22
Aoy u Ko )imp® 10, 3B o\
q n Vv Me u D

(c12)

1
e
£
w0
o
=
o
w
N
Q
o
0n
o
}_J
clict
+
~
o
+
’_l
N
ci
%)
w
El
')
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Ap K =2 =3
22 = - & _O_ -8 w7 + 2= c1
e 0L B o - I ol ) (23)
For n = 1:
-Z—Ei = - liK—l cosh™t X - -@-EBZX cosh~1 ¥ + (2M2 - l)dx2 - u2:|
q vV u M2 u
+ “ﬁE}Bzuzcosh-l ﬁ + (M2 - B)X\Jxe - u%
4M
- @E{ﬂmﬁcosh-li + 0 - “2[}2(14” - 6M° - 3) - 2u2(8Ml‘ - 1oM° + 3ﬂ}> (cik)
M u
VA - = -
Doy = - E-K—l cosh_l u _ b —[32x cosh~l ¥ + (2M2 - l)gﬁ\fﬁ]
q nv u g2 u
b o2 -
2 - 5 -1
+ i? {352112cosh 1 % + QBVSI_T}-ELBQX (5M2 - l) u]} - ﬁ—{ﬁ. ):u cosh %
+ Bl ”[9(14“ _1)xi - z(uML* v a2 - 3)E2 - (16 - 22 + 6)112]} (c15)
&p LK —2 _ =3 _ o =z
22 _ 21 & _5) + B opfrmx - W)[x + (a2 - 1)E])  (c16)
e .z Byym(x - ) ot Bifyn E )



Ly

(8T0) msm? + N9 - :zmvm + maAn + JHET - :zwvm -

15l =

mAm - 9+ aznv Am WS + :2: ll&%a +

H|QmoU ﬁmdAH - mva +

T ¢ ¢ g n e
p—— - v——— ——————— — a -~} ——
u@msmm_ i N Am - mz:v + 0 oG + x AH mZm w.l?u: + g [-USOO,MEHC = "
n n AX b
ﬁwﬁ mva - xAﬂ - mzmv@gum +q HaﬁOUT A mzm + m@v - LAhgy - 7 U500 X2 MM': - = q@(ﬂ
AT g T
({10) TAR " T T ER) - (€ - 0 - ) o CAE S ﬁouﬁm (T M) + gXed| g ) (o -
ﬁAm - SRRV + SX(€ - LKW ¢ + m _ysoo_nx_g¢ - IN.WQ-NI + n X UAAM - Nznv +
2 )2 + X (5 - M) B N A A ot gtz
n che n A B
¥ p-Uso? ﬁmd? - mva + mumxmu~.. S Am: - X\ - -usod xvm Tan =4
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nv

—Ap(f? Y Z’—i Bfm(x - @)2 + -3—‘*“;&3 prn(x - ﬁ)EEc + (3 - 1)‘3]} (c19)

For n = 3:

LK Y -
4py __ 3 3 (xe N ﬁ)cosh'l x _ 3 a2 u{l I T YN (3M2 - l)5xu2 cosh™! X
q 7V 2 u 2 2M2 u

[ E]

+ %‘ng -l EJ_TM2 - ll)x2 + h(th - l)ue_/] + ?:[2 2|}6B x© + 5(5M2 - 5)\12] cosh™t
1
‘ xdx—u_[ M2 - 3)x2 + (noM2 - 39) B 2+ 3(M2 - 1)@ cosn™ X

+ V2 - ualg(n‘* - eM2 - 3)xd - (1soM - oM + 83)x2u2 - 16lemt - a2 + 1)&{\} (c20)

sl

oo LK 2 -
__Apcfl = 2 (}x + 2 )cosh'l % + 213‘{}7_< 6x + = u - ——{ I: XS+ 3 3M2 - 1)%]305}‘ tay 2p Yﬂ%(mz - 1)x2

oo
cie

3 M

(5M2 - 1)xﬁ + (hME = l) @ + E(I‘Mi' l) u2j| + “"—i 6E6ﬁ X< + 3(5M2 - B)uﬂ cosh_l

+ Eﬁr[2x3 3” ) x20 + 2MPxac + (th - 3)xu2 - 5M28+ g3 5(5Mj6- 5) Cme:‘

- 2
{16 [ X2 + 3 5M2 - l)u2j| cosh™t % + 2B\fy_q[Mh): 125 - wt 2M 3 252

+5Nf‘+6M2-3x53_2xi*+5M2-1-h 8M“-12MZ+5 <22 4+ 3 3(smt - w2 + 1) <ol

8 10 16

_BM“-irgz'Jflaeue BM“-8M2+1 1]} (c21)

LR Y- BNFI(x - @)° + g a)3(} + (we - 1)‘1] (ca2)
4 M2 o



Equations (Cl1l) to (C22) now represent the pressure distribution
on a wing (in supersonic flow) with a supersonic leading edge and a
side edge parallel to free stream for which the downwash distribution,
as mentioned previously (with primes omitted) is

W(X;y)t) = Kp elwtyn B(Y‘ﬂ) (n =0, 1, 2, and 3)

The values of n =0, 1, 2, and 3 represent a chordwise strip of the
wing at y = n undergoing translation, pitching, parabolic bending,
and cubic bending, respectively. The wing and the regions where Zf)/q
apply are presented in sketch 11.

Wing leading edge

-y

Wing side edge —=

APp  Apy)  Apop

Sketch 11
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APPENDIX D

EVALUATION OF EQUATION (47)

Equation (47) as given in the text is restated here for convenience.
The two forms are

N3 7 3
J J —_—
Ap
1 b
N} = Ll = z Ag T]S——q ( "%) y+%) T]"'E) dn (Dl)
S
Ni T4
M T s
J J —
Lpo b b
S
le_ T]i

Examination of Apl/q in equations (C11), (ci%), (c17), and (C20)
indicate the presence of two particular integrals Ig and Qg which
are associated with 15 and will be defined as

53
Ie = 1 (D3)

dn (Dk)



L8

where
3
I - A sin-1 (%% - nx) - (832 - 1) (D5)
o =
8232 _ 1 ,B?\O\X - Y), .
4
nj 2.2
- A 2 5.5 2 B A%y - Mx
I (A = )7 - B2 (y - n) t —5— I, (p6)
1 8252 1\1 N 0232
=Ny
For s 22
i
1 s-1 2 2,2 2
Ig = SISO - 1)F - g3y - )
® sZBe?\E - 15 n=nq
+ (s - 1)(p2%y - M)Is_l - 22(s - 1)(p22 - X2>IS_2 (D7)
and for s 2 2
n M 5
Q = - (L-_HE: cosh_l _}:i_ -+ M - g z Slys-r(-l)r I
S s +1 B'y'”l As + 1) £ ri(s - 7)1 °T
N=n4¢
(D8)

Examination of the expressions for Ap2l/h and Apge/a given in appen-

dix C indicate the presence of two particular integrals Rg and Pg
associated with Lo and will be defined as

2|
b )s+3

Rg = (-g— - n)s@-_n dn = -(5; 3 (D9)

2
N4 =3




k9

P
dJ
Py = (y_n) coghlb_—x.:_ﬂdn
u ,,‘y‘-n,
N = s—r
—-(y—q)s+lcosh'lb'y‘ﬂ +V2 YE Y—— .
s + 1 |y - nl s + 1 rl(s - r)l r-1
n=n;

(p10)

By substituting equations (Cll) to (C21) into the appropriate
expression for ILp or L2 and using the quantities defined by equa-

tions (D3), (D4), (D9), and (D1O), the following equations for I, and
L, are obtained.

For w =KOeiLDt Z p_syS:
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2
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APPENDIX E
EXPANSION OF DOWNWASH FUNCTION

Rigid Wing in Continuous Sinusoidal Gust

In order to utilize equations (D11) to (D18) for a wing in a sinus-
1 (t-=
oidal gust, it 1s assumed that the downwash w = Wae V, when expanded
to the third power of x, will adequately define the gust. Although,
in general, this is not true, a very good approximation to the gust func-
tion can be made if the reduced frequency k 1is restricted to permit
only a third of a wavelength of the gust to be on any chordwise strip
at any instant of time. This restriction on k 1is not unduly severe
since for most analyses the useful frequency range is well within the

limits stipulated.

On the basis of these assumptions, the downwash can be rewritten

as
iw(t - X . . 222 3.3 3
vo=wse ( V)= woehbte'1AXP ~ woeu”t(l - idpx - A ggx +1 A iSX (E1)
S
where Ap = = By means of the following identities,
M
= .....}: +Z
* ( X)X
2 2
2: _Z iy. _z-f-z
F= -5 216
3 2 2
x5 = (x - =) + él<x - Z) + >y - Z) + xf

equation (El) can be rewritten as

242 3v3 2
W o= woehbt (l - ipy - P g. + 1 Péy‘) + (x - %)(-ip) - pzky + 32;?1_)

. (x i z)g(_ P22 | 1p57\2y> . ip?\} (X ] Zf (E2)

A 2 2 A
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Examination of equation (E2) and equations (D11) to (D18) shows
that for a wing in a sinusoidal gust the values of Ag can be defined

as follows:

for equations (D1l) and (D12),

Al=_ip
e
o -
102
Ax = 1P
57 7%

for equations (D13) and (D1k4),

Al = -p~A
A = 122

3772

for equations (D15) and (D16),

2.2

_P)\

Ap = =
A = ipjkg

17772

and for equations (D17) and (D18),

ip57\5

ho = =%
Here the unit of length associated with K, was chosen as one so that
%? = %% =a = 1. On the basis of these values of A5, the problem was

set up on the IBM 650 data processing machine to retain only the third
power of frequency. For example, in equations (D11) and (D12) all the
terms in the bracket were retained for s = 0, whereas only the first
three terms for s = 1, the first two terms for s = 2, and the first
term for s = 3 were retained.
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Oscillating Rigid Wing

This abbreviated program is not restricted to repeated sinusoidal
gusts. For example, for g wing undergoing sinking and pitching oscilla-
tions, the downwash can be written as

eiwt[§a + ﬁ + ﬂb(x - xo)%J
iwt E _ laxga prived igxx
Ve EMV 7 +Wy+T(-X)] (E3)

where, for equations (D11) and (D12),

E
"

I

A0=(1+.11_ Y
v

A, = lux

TSN

and for equations (D13) and (D1k),

- lua
o =5

All other values of Ay are zero. Again the unit of length associated
with Kp was chosen as 1; thus, Kn/V = 1.

Application to a Delta and Rectangular Wing

Limited forms of eguations (50), (51), and (54) have been programed
on the IBM 650 data processing machine. The amount of information pro-
gramed was dictated by the form of the downwash function for a wing in
a continuous sinusoidal gust field as indicated by equation (E2). In
order to check out the program, calculations were made for two wings,

a 50° delta wing and an almost rectangular wing of aspect ratio 0.8,
both flying at a Mach number of 3.0. The tangent of the leading-edge
sweep of the almost rectangular wing was 10-6 instead of zero, since
for AN = 0 singularities arise for which no provisions were made in
the program. The position of the points for which the pressure coeffi-
cients were calculated was determined by means of a Gaussian distribu-
tion formula.

Four semispan stations were used and each region along a chordwise
strip was divided into three stations. This procedure allowed for
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calculating the pressure coefficients at 18 points on the half-span
delta wing and 21 points on the rectangular wing as indicated in
sketches 12 and 13.

-y - : 7 -y
* rd
N . P
. ~ « /
N . s
. 7 °
L] .\\ / L)
~ . 7 .
. . /
. N e P
» ‘:\‘ // : M *
1 \
X X
Sketch 12 Sketch 13

This procedure for positioning the various points permitted the use of

a fifth-degree (three point) Gaussian integrating formula for each chord-
wise region and a seventh-degree (four point) formula spanwise to obtain
the total 1ift on each wing. In table I the results are presented for

a 50° delta wing flying at a Mach number of 3.0 in a sinusoidal gust
field. As can be seen, the total 1ift coefficients are in good agree-
ment with those obtained by using equation (67) of reference 14 for
values of reduced frequencies at least as high as those indicated in

the table.

As a further check, the total 1lift coefficients for a 50° delta
and an almost rectangular wing of aspect ratio 0.8, both at a Mach num-
ber of 3 and undergoing harmonic sinking motion (o = 0 in eq. (E3)),
are also presented in table I. The results obtained for these cases
were in very good agreement with those obtained by using equations (66)
and (71) of reference 14 in the same frequency range.
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Figure 1.- Sketch illustrating the various regions for which pressure
distributions have been derived.

NASA-Langley, 1962 ‘L-55O















