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ABSTRACT

In this survey and analysis of the meteoroid hazard to space

vehicles in near-earth orbits, operations research methods have been

used to establish and to propagate confidence levels with respect to all

of the pertinent functional relations involving design and operations

parameters. The graphically illustrated results show that the wall

thickness, necessary for specified operational results, must be

increased by a factor 2.00 to increase confidence from 50o/o to 75°_0,

and that this factor would still be 1.81 if there were no uncertainty

with respect to hypervelocity impact phenomena.

Both the median values and the upper and lower fiducial limits for

the 50% confidence interval for the mean flux, closing velocity relative

to the earth, closing velocity relative to a vehicle in a near-earth

orbit, density (specific gravity), just-puncturable thickness of hard

aluminum, and just-puncturable thickness of hard stainless steel are

shown for values of meteoroid mass between 10 grams and

100 micro-micro grams.

*For this report, near-earth orbits are considered to be of less

than 500 km altitude.



Similar limits, the first, second, and third quartiles, are shown

for puncture fluxes for walls of hard aluminum and hard stainless steel

for thicknesses between 4 centimeters and 4 microns.

Wall-thickness quartiles for 0.85, 0.90, and 0.95 probabilities of

no puncture are shown for the hard aluminum and hard stainless steel

walls with exposures between 1 square meter second and 1 mega-mega

square meter second.

The reader should be aware that there still exists some

controversy over the available meteoroid flux, density, velocity,

and angular distribution statistics. Therefore, for any design

studies the latest accepted values should be employed.
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SUMMARY

When G is a continuous function of the statistically independent

chance variables x I ..... xn, then G is a random variable with the

following sufficiently approximate standard deviation:

(v)

The confidence C in the antilogarithm of an approximately normally

distributed chance variable y is the same as the confidence in the

variable; i. e.,

y _- 0.6745_y), 7{c, lO ) : (o.zs, lo {o.5o, lO ),

_+ 0. 6745_y)(0.75, 10 . (Z9)

":"For this report, near-earth orbits are considered to be of less

than 500 km altitude.



For either sporadic or shower meteoroids, impact probability is
sufficiently accurately approximated by either a Poisson or a piece-
wise-Poisson description with respect to time, depending on whether
the available information is specific or general, and on whether one
is concerned with specific or average circumstances. But the
combined effect for two such hazards also has a Poisson description:

-A BqbI1 + (_1l)tl + (qbzl + qbzz )tz +" • + (qbnI + d?nz )tn]
P_. _ e " . (34)

The number of meteoroids with masses equal to or greater than

m grams which should impact per second per square meter of hemi-

spherical exposed area of a vehicle in a near-earth orbit is

F> = i0 ylm -_'19 (37)

where Yl is an approximately normally distributed chance variable

representing the uncertainty in the information and with mean 71 and

standard deviation _Yl as follows:

_1 = -12.86 (44)

O-y 1 = 1. I0 (49)

This mass dependence of flux is illustrated graphically in Fig. I.

The velocity in kilometers per second for a meteoroid of mass m

grams, just before entering the earth' atmosphere, is

0.046
v a = IOYZm (56)

where Yz is an approximately normally distributed chance variable,

which represents both a velocity spectrum and uncertainty in the

information about it, with

7z = t. 51 (61)

O-yz = 0. 12 (57)

This mass dependence of velocity is illustrated graphically in Fig. 2.
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Similarly, the closing velocity with respect to a vehicle in a
near-earth orbit is

Vc = lOY3m °'°41 (62)

73 = 1. 52 (84)

O-y3 = O. 17 (86)

This mass dependence of closing velocity is illustrated graphically

in Fig. 3.

The information and the uncertainty about the density or specific

gravity p to be expected for a meteoroid of mass m grams can be

represented by

-1.37
p = 10°'I°a+Y4 + 1'37y5 m (95)

: -1.08 (93)

_5 : -0. 079 (97)

_Y4 = 0. 073

= O. 075

Ys

This mass dependence of density is illustrated graphically in

Fig. 4.

(94)

(99)

A spherical metallic shell (or empty tank) of density Pt and of

Brinell Hardness Number H t which, when in a near-earth orbit, must

just resist being punctured when hit by a meteoroid of mass m grams,

has a necessary wall thickness p centimeters, which is sufficiently

accurately represented as having an approximately normally distributed

common logarithm with the following mean and standard deviation.

E [lOgl0P] = i. 06 - 0.29 log10 Pt - 0.25 log10H t + 0. 338 log10m
(134)



_loglo P 0.053 + [0.204 + 0.0561og10 (Pt/I-It)+ 0.00461ogi0 m] z +

+ [0.093 + 0.0861ogi0 Pt + 0.00681ogi0 m] 2 +

1

+ [0.OZl+o.015log,om]2} (1351

Two examples of metals which might be used in such manner are:

(Pt'Ht) = (2.80, 135): hard aluminum alloy (136)

= (7.4Z, 310): hard stainless steel, (137)

and these are the basis for the results which are illustrated grapi_ically

in Figs. 5 and 6.

The number of punctures per second per square meter of exposed

hemispherical area of a vehicle in a near-earth orbit can be considered

to have an approximately normally distributed common logarithm with

mean and standard deviation:

E _oglo_]

_log10_ --

= -9. 13 - 3.521ogi0 p - 1.011ogl0Pt - 0.8811og10H t

1.86 + (0.1611ogi0 p - 0.0956+0.04601og, 0 Pt +

+ 0.04011og10Ht )z + (0.04741ogi0 p + 0.666 +

(139)

+ 0. llllogl0 Pt - 0.08591og10Ht )z + (-0.07091ogi0 p -

1

- 0.252 - 0.3231ogio Pt - 0.01771ogloHt)Z ] g. (140}

These results for the two metals described above are illustrated

graphically in Figs. 7 and 8.

The number of centimeters p of equivalent free wall thickness, for

a vehicle of hemispherical area A square meters exposed in a near-

earth orbit for t seconds, necessary to give a no-puncture probability

R, can be considered to have an approximately normally distributed

common logarithm with mean and standard deviation given by:

E [log10 p] = 0.284 [log10At- log10(-log eR)]- 0.Z881og10 Pt-

0.251ogi0 H t - 2.37 (155)



_log10 p 0. 150 + [0.00382 (logl0 At - log10 (-log eR)) +

+ 0.05561ogi0 (Pt/Ht) + 0. 198]z +

+ [0. 0057 (log10 At - log10 (-logeR)) + 0.0861ogi0 Pt +

+0.019 + 0.01Z9(log10At - log10 (-logeR)) -

These results are illustrated graphically,

hard aluminum alloy described in Eq. 136, and in Figs.

for the hard stainless steel described in Eq. 137.

in Figs. 9 through ii for the

1Z through 14

The variance has been resolved into nine independent components,

the numerical relative magnitudes of which are presented in Table i.

Some further sources of uncertainty must be considered in

practice, e.g., effects of contents and composite-wall structures.

SECTION I. INTRODUCTION

A. SCOPE

Since about two years ago several excellent reports [e.g., 3,

6, iZ, 13, 17, 19, ZS, Z9, 33, 34, 35, and 41] have been directed

specifically toward meteoroid hazards. None of these has dealt with

the problem using operations research and systems analysis techniques.

These techniques have been effective against similar difficulties in

military and other situations [e.g. , 7 and ll].

In the five stages described by Way, et. al. [40], in which

reports may be most appropriately designated, this report is best

described by "In the third stage, review articles appear. These put

together data and theories and often come up with a working model,

a handy description .... "

The report is intended to be more than an illustration, and

more than a mathematical model. Single-shell-of-metal is the basis

of the analysis. Of course, there is considerable interest in composite



bumpers and, e.g., in multiple-sheet structures [e.g., 33] ; but it is
hoped that the effectiveness of other materials and structures can be
considered in terms of the effectiveness of some thickness of single-
shell-of-metal. Similarly special considerations must be given for
vehicles which: (1} have attitude control or (2) do not remain in a near-
earth orbit or (3) do not remain near the ecliptic plane.

B. METHOD

The value that a physical parameter (e.g., length, velocity,

etc.) will have under specified circumstances will be uncertain when:

(l} the parameter {or the physical process of which the parameter is

indicative} may be capricious (e.g., the parameter may be a random

statistical variable}, (Z) the available information may not be either

sufficiently firm or direct, or (3} the latter is compounded with the

former - as in the present problem - the resulting uncertainty being

treated as if it were due to randomness.
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SECTION II. MATHEMATICAL PRINCIPLES

A. FORMAL BASIS

Let xI ..... xn be any continuous and statistically independent
variables with probability density functions f(x I) ..... f(Xn). Then,
because of statistical independence, the joint probability density function
can be expressed [e. g. , Z4] by

f(xl ..... Xn) = f{xl).., f(Xn) (1)

One of the most pertinent of the mathematical statistical

concepts is the mean or expected value of a function g(x I ..... Xn) of

the chance variables x I ..... Xn; i.e.,

_0 cO

-o0 -00

..... Xn)f(xl ..... xn)dxl...dx n.

(z)

By Eqs. 1 and 2, as the x 1 ..... x n are statistically independent,

E[alxl +... +anXn] = alE[xl I +... + anE[Xn] =

: al_1 +... + anX-n (3)

and

E[xl ... Xn] = E[xl] ... E[xn]

where a I , . . . , a n are constants.

=_1 "''_n (4)

A convenient measure of the dispersion of a continuous chance

variable x is its standard deviation _x, the square root of the second

moment with respect to the mean [e.g., 24];i.e.,

O=x --

oO 1

If (x_ f x>dx]2 (5)

By Eqs. Z and 5, one can define the standard deviation of a random

variable x as the square root of the expected value of the square of the



deviation of the variable x from its expected value _. Therefore, by
similarly defining 0"G, the standard deviation of a function G (xI ..... Xn)

of the statistically independent chance variables x I ..... x n, and using

Eqs. 1 and 2

o0 o0 I

If / ,o- tol,'= ... . (6)

-_0 -o0

But Eq. 6 is usually not sufficiently convenient for finding

numerical results. The formula, previously argued pragmatically by

the author [8], is the same as that which has, for the special case of

normal variables, been rigorously derived by Scarborough [36]; i.e.,

i _

2 O" Z

A more general proof of Eq. 7, for variables not necessarily

normal, can be given. When the information about the variables is

given by discrete data (e.g., with the values xll ..... XlN for x I), then

for Eqs. l and 5,

._, =l(x n +... + X1N)

1

-..

(8)

{9)

But by taking the total differential of G(x i ..... Xn),

dG --8Gdx I + . .. + 8Gdx n .
8 x i 8x n

(10)

Equation i0 is approximately true when all of the differentials are

replaced by sufficiently small increments. Assume that the

deviations from the mean in Eqs. 8 and 9 are sufficiently small incre-

ments.* Then corresponding to the N sets of data for the n variables

one has, by substituting into Eq. 10, the N equations

-- aG

G i - G _ 8xlaG (Xli _ _1) + --. +_xn (xni -':_n) * (11}

where i = i ..... N. Therefore, by squaring both sides of Eq. iI,

adding the N resulting corresponding equations and dividing by N,

A more accurate general formula than Eq. 7 would be obtained by

including non-linear terms in Eq. ll.

8



N (aG ' 1 (xli- +1 _ (Gi __)z = N
_i=l kSx,l N i 1

hl n-I n _ )/ Xk\+ (8_xGn)Z ' ZN i=l (Xni- _n)Z + 2 j =,Z k=j+l_ ('_xx_)0G

N

1 _ (xji - %)(Xki - _k)
_i=l

(IZ)

where

N

1 Z (xji - _j)(Xki - TCk) =

N N
1 v' -- 1 i-"

=-- L xjixki - xj g_,
Ni=l i= 1

N N

-- _I _ xji +_ _ XjXk •Xki
Xk'" 1 1 i 1

(13)

The last term on the right side of Eq. 13 is identically xj Xk; and by

Eq. 8, the two middle terms are each equal to -Kj Kk; while the first

term is the discrete case expression for the expected value of the

product of two independent variables xj and xk and, therefore by Eq. 4,

is also equal to_j_Ck. Therefore, Eq. 13 vanishes and, by Eq. 9, that

which is left of Eq. 12, after taking the square root of both sides, is

identically Eq. 7.

After the probability density function for a chance variable has

been decided, then other interesting results can be derived; e.g.,

consider a normal variable y with mean _ and standard deviation Uy:

(I) the probability density function is [e. g., 24]

, (2uyZ)-, (y _ _)z (14)
f(y) = (Z_uyz)-2 e

(2) there is an even chance that a randomly selected sample of the

variable y will have a value within the (probable error) interval

y - 0. 6745Uy _y __y + 0. 6745Uy (15)

and (3)the expected value of e ay, where a is a constant, by Eqs. 2 and

14 is



0o

f eaYf(y5 dy =

-00

O0

/ (Z_<ry 2 A= )-2 e

1 2 2
a_ + -/a o-

=e Y"

- (20-yz ) "' y- (-_+ a_y z )]
2 +a'y 1 2 2

+_-a O-y dy=

{165

More generally than by Eq. 15, when x is any continuous

random variable, not necessarily normally distributed, with distribu-

tion function f(x), then the probability C (confidence} that

x _;x 5 ( 1 7)

is related to x 5 and x L,

x 5

C = J f(x) dx

x L

the lowest possible value of x, by

(185

where 5 is an index by which a particular value of x is established.

When x is a differentiable function of a normally distributed random

variable y; i. e. ,

x -- x(y5 (19)

then, symbolically or otherwise, by solving Eq. 19 explicitly for y as

a function of x:

y = y(xS. (2o)

By applying the technique of Eqs. 2 and 14 to Eq. 19, one can find

E [x], the expected value of x, to which there corresponds a value of y

by substituting E Ix] for x in Eq. 20. Then it should be anticipated that

the most appropriate general functional relation between 6 and Y5 is

where :

Y8 = y(E[x]5 + 5_y (Z15

(I) Eq. 15 is a special case, and (2)the x 5 upper limit in

10



Eqs. 17 and 18 is found by substituting the right side of Eq. Z1 for y in

Eq. 19. By introductory mathematical statistics [e.g., 24], the f(x)

probability density function for x in Eq. 18 is found by: (1) substituting

the right side of Eq. Z0 for y in the Eq. 14 expression for the f(y)

probability density function for y, and (2) multiplying by the absolute

value of the derivative of the right side of Eq. Z0 with respect to x.

Therefore Eq. 18 becomes

x(y(E [x]) + 5_y)

_= f z ,-' [y(x,-7]Z[_y (x,] dx.

(22)
x L

This Eq. 22 establishes the general functional relation between

confidence C and index 6, the Eq. 15 results being only for a special

case; i.e., the special case being x = y in Eq. 19.

Another special case with which one necessarily must be

concerned here is where, except for a constant coefficient, x in Eq.

takes the following functional form:

19

x = e _y (23)

where _ is a constant. Then,

1 2

E[x] = e

by Eqs. Z, 14, and 23,

(24)

and, by Eqs. 20 and 23,

y = (O "i) log e x (25)

Also, by Eqs. 24 and 25, Eq. Zl becomes:

- 1 _o- z (26)
y8 =y +_w Y + 6O-y.

Therefore, by Eqs. 21, 23, 25, and 26, Eq. 22 becomes:

pfF+{_¢yz + 5_y)

ie _ (go-yZ)-I[(O)-Iloge x - _] z

C = (2_ z_yZ)-_f (x)-*e

o (27)

dx.

11



So, by Eq. 27, a definite value of C follows from a definite value of 6,

the indicated integral having become a definite integral, and x having

become a dummy variable - which is related to a more appropriate

dummy variable t by:

_@ + _yt)
X ----e

with which transformation one can write Eq. Z7 in the following
convenient form:

I

6 + _y

± e-½t_dtc = f (2_) -2 (28)
-CX)

where the values of the indicated integrals are available from tabulations

[e. g. , 24] of normal areas. But with the tables of normal areas one can

show that Eqs. 23, 26, and 28 lead to the following convenient result:

y _- 0. 6745_y) _ _+0. 67450-(c, lO ) = (0.25, lO , (0.50, lO ), (0.75, lO Y).

(29)

B. OPERATIONAL METHODS

What has been done in an uncertain situation? Considerable

information (more or less accurate and more or less pertinent) has

been painstakingly obtained over many years and at great expense; but

it is not amenable to easy and certain application to the meteoroid

hazard problem. Some say there is probably a considerable hazard

ahead; while others say possible but not very likely. A design decision

is upcoming. If the hazard is real, then plans for counteracting it must

be made promptly. But if the hazard is illusory, then counteractions

will have been an unnecessary bother and expense.

Efforts to gain the much needed new information are being

appropriately encouraged; e.g., Whipple [42] is said to indicate that

80% of the needed meteor information may be obtained by terrestrial

observation. The results of such efforts will facilitate and improve

design decisions which eventually must be made for later spacecraft;

but the results will not be available for the present purpose. Reviewing,

calculating, and discussing are the only efforts for which there is yet

sufficient time; and as a by-product of these efforts one desires also to

12



learn how most efficiently to expend the forthcoming information-collecting
efforts.

In other words, the meteoroid hazard to space vehicles is a
typical example of the problems for which operations research methods
have been developed. Of course, Ehricke [19] "The [meteoroid flux]
numbers, therefore, vary by several orders of magnitude. On this basis,
a reliable estimate regarding collision probabilities and erosion effects is
obviously impossible" and Rodriguez [35] "The most certain aspect of
the hazard to space vehicles from meteoroids is the great uncertainty
underlying any attempt at a quantitative assessment of the problem" are

right, but more pertinent is Singer's [38] comment "It is generally

conceded that measurements of meteoric particles are among the most

difficult and uncertain of satellite experiments. But this makes it all

the more incumbent on the investigators to report their findings in the

greatest detail possible".

C. PROCEDURAL CONVENIENCE

One is justified in going ahead and trying to use to some

advantage whatever information can be found regardless of how meager.

For example, the following formula derived in [i0] relates confidence C

that reliability is not less than R when n t tests have given nf failures

when nf is a very small but not necessarily vanishing part of nt:

1 -l

R = e (1 - C (30)

1

where O_ C -_ 1 when nf = O, and where _ -_ C -_ 1 when nf _ O. Surely

with no failures from two tests it is helpful to think that, based only on

demonstrated performance, there is an even chance that the reliability

is in the interval 0.50 --_R _ 0.87; or in some other interval determined

by hypothetically increasing n t in Eq. 30 [e. g., ill to make allowance

for information other than test performance. More specifically, what

this has to do with procedural convenience is that Poisson statistics

were assumed in the derivation of Ec I. 30; whereas it is not necessarily

strictly true that the failure process in the above example is Poisson.

But it was tacitly assumed as a reasonable approximation.

So a procedural convenience is an approximation which is made

as an appropriate expedient, without which the analysis would be unaccep-

tably difficult or even impossible. Other examples which could have been

13



given for illustration are, e.g. : (1} assuming variables to be normal

when in fact they may be only very nearly normal, (Z) assuming chance

variables to be statistically independent when in fact they may have

some small correlation, and (3) assuming a curve to be piece-wise

constant by representing it by a histogram. But as Davisonand Winslow

[13] have stated "The common as sumption[in space vehicle hazard

considerations] is that Pois son statistics describe the [meteoroid]

population", and with appropriate reservations, " ... the assumption of

Poisson statistics as descriptive of the population is not completely

unr eas onable. "

There appears to be some further need for interpreting the

use of Poisson statistics as mentioned in several of the reference

reports [I-42]. Consider an event which must happen some time and

which can happen any time. Then, as Toralballa [39] has shown, the

probability density distribution for the occurrence of the event is

t

-/ m(t) dt
0

f(t) = m(t) e (31)

where re(t) is a function of time which in life statistics is called

"specific mortality" and in engineering statistics is sometimes called

"failure-rate-of-survivors". Then the product re(t) dt is the conditional

probability that if the event has not already occurred by time t then it

will occur in the interval between t and t + dt. Then, by the author's

derivation shown in a previous report [9], the probability that the event

will not have occurred by time t is

t t

t -_0 m(t) dt -f_Adt/ oR = 1 - f(t)dt = e = e (32)

0

where (in meteoroid technology) _A is flux _ times exposed area A. Any

procedural convenience to be gained in the determination of R in Eq. 32

will depend essentially on the convenience of evaluating the integral of

re(t); but, as Toralballa [39] has shown, the specific mortality function

corresponding to the Poisson distribution function is the constant

reciprocal of the mean-time-to-occurrence for the repeated event; i.e.,

m is the average rate of occurrence of the event, or in meteoroid

technology, flux _ times exposed area A, and Eq. 32 becomes

-_At
R = e . (33)

14



SECTION III. INTERPRETATION OF THE AVAILABLE

INFORMATION

A. METEOROID FLUX

I. Temporal Dependence of Flux. As McCoy [29] states

"historically, celestial debris has been classified as either 'shower'

(swarms and streams) or 'sporadic' Any meteor that could not be

identified with a stream or swarm was classified as sporadic. For

meteors in the visual range, several investigators have shown a

preponderance (60-95%) to be sporadic; Lovell has estimated 80-90%

sporadic for all meteor sizes."

Davison and Winslow [12] state that shower meteors make

up about 20-30% of the meteors sighted; and they cite several references

to the effect that "The peak activity during these showers may be 4 to

5 times the sporadic meteor rate, but on extremely rare occasions

much greater. "

Ellyett and Keay [18] have shown some data which may

indicate a significant variation in hourly meteor rate throughout the

day and in daily rate throughout the year "... expected as a result

of the tilt of the earth's axis, causing a hemispherical autumnal

maximum and vernal minimum. " Also Dubin [15] in an analysis of

meteoritic impact data on artificial satellite Explorer I (1958_) says

that, after discarding 16 of the first 88 hits, "Adiurnal dependence,

resulting by the earth's heliocentric velocity, is evidenced, in that

nearly 90% of the 72 hits shown ... occurred on the dawn side of the

earth between the hours of midnight and twelve noon. " Hibbs [22 and

23] has subsequently given a different interpretation of the data

(Section Ill.A. 3), but failed to convince Dubin [i6].

Bel'kovich [4] in reporting analytical and experimental

investigation of the Poisson distribution hypothesis for "... the chance

recording of a meteor, at a radar station or during visual observations

• .." concluded: "The distlibution of the number of meteors in time

follows the Poisson law and is independent of the size of the observa-

tional time interval and of the presence of showers." In his same

report Bel'kovich [4] also said: "The distribution of the number of

recorded meteors in time will not be stationary since observational
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conditions are continuously changing owing to the earth's daily rotation
and motion along its orbit. " Perhaps what Bel'kovich means by the
above two statements is that the rate will change but that one can predict
neither when the change will occur nor what the rate will be after it has
changed.

But in Eq. 33 different values of _bmay be forecast for
different time intervals, as by histogram representation. One can
then see that a non-Poisson situation can be approximated as piece-
wise Poisson, for _ is piece-wise constant. Then, instead of Eq. 33,

-A[*)(tl-to)+'--+_ (t_-ta_ I)]R = e - (34)

for t = t n - t 0.

It should be emphasized, however, that Eqs. 33 and 34

give the same result for the same exposure At whenever _ in Eq. 33

is the time average of the qbI..... _n in Eq. 34. It does not make any

difference whether or not the q5 in Eq. 33 and the _1 ..... _n in Eq. 34

are further resolved into: (i) components due to sporadic meteoroids,

and (_) components due to shower meteoroids - unless it should be

found that the two populations should be separately described with

respect to mass, density, velocity, etc.

2. Directional Dependence of Flux. Dubin [15] writes that

"Because the earth is shielding the satellite, the impact rate for the

same mass component of micrometeorites at one astronomical unit is

nearly twice this [detected] value...". Whipple [41] writes with

appropriate caution: "A correction for distance above the earth's

surface is rather difficult to apply unless the precise orbital character-

istics of the incoming meteoric bodies are known. Perhaps the inclusion
i

of the factor $ is adequate for the ordinary problem near the earth's

surface. At extreme distances, greater than 104km, a complete

recalculation is needed with very careful attention to the orbital char-

acteristics of meteoroids in space and of the space vehicle in question.

Even after correction for the factor ½, the number striking the vehicle

will probably fall off with increasing distance from the earth. "

According to Siedentopf [37]: "The particles entering the

earth's atmosphere [meteor observations] have very eccentric orbits,

whereas most particles that are optically effective move in nearly

circular orbits under the action of the Poynting-Robertson effect. The
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observable meteors generally have radii greater than 100 M , whereas

the brightness of the zodiacal light and the Fraunhofer corona comes

mainly from the particles with radii between 1 and I00_. " Also

Ehricke [19] says: "According to Takaknbo the radius of the dust

particles most effective in the zodiacal light and the F corona is about

20_. "

McCoy [29] reports: "These sporadic particles enter the

earth's atmosphere from all directions, within approximately +25 ° of

the ecliptic, and at irregular intervals. It has been observed through

analysis of radiant points that the ratio of meteors approaching the

earth from behind to those approaching from ahead is close to 30:1.

This is because most meteors have direct orbits like the earth rather

than retrograde motion. However, the true ratio of direct to retrograde

orbit meteors is approximately 50:1. The difference in ratios is

explained by the fact that the earth overtakes some of the slower meteors.

Also, because of the earth's orbital velocity more meteoric encounters

(_2:1) occur on the leading or forward face, as can be readily substan-

tiated by observing the increased number of visual displays after

midnight than before. "

Davison and Winslow [13] show a graph (which they credit

to Lovell) for the distribution of visual sporadic meteor radiants in

ecliptic latitude which supports the estimate that approximately 50%

are inclined within ±15 ° of the ecliptic. And in two Other graphs (which

they credit to Hawkins [51]) they [12 and 13] show: (1) "Polar diagram

drawn in the plane of the earth's orbit which shows the apparent number

of meteor radiants detected per unit angle, per unit time" and (2) "Polar

diagram drawn in the plane of the earth's orbit which shows the number

of meteors per unit angle which cross earth's orbit per unit time. "

Those two graphs, reproduced from Hawkins' [51] paper, are included

in this report as Figs. 15 and 16. They show clearly the predominant

proper motion of the meteoroids and the tendency for the earth to over-

take the meteoroids. Davison and Winslow [12] rightly remark, "It

could be concluded, therefore, that the preferred orientation of a

[spacecraft's exposed] surface is parallel to the plane of the ecliptic

with the major axis parallel to the apex of the earth's way. "

If the spacecraft is to have attitude control, then part of

its area, A 1 , will be so located and oriented that the meteoroid flux

with respect to it is _I , and similarly for A z with _z , etc. ; so that,

instead of Eq. 33, it would follow from Eq. 32 that
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R = e -t(qblA1 + "'" +_nAn)" (35}

3. Spatial Dependence of Flux. Nazarova [31] concluded: "If

one compares the results obtained from experiments with Sputnik III

and the three Soviet space rockets, it will be seen that the density of

meteoric matter in the vicinity of the earth is not constant. It varies

in time and space. "

After some analysis of the micrometeoroid-impact sonic

data from Sputnik HI (1958 5z}, Nazarova [32] concluded "... that the

number of impacts varies with changes in the position of the satellite

in its orbit but not with changes in altitude. " And subsequently, in

interpreting the micrometeoroid-impact sonic data from Explorer VIII

(1960_), McCracken, et. al. [30], similarly concluded "... that avail-

able direct measurements show no discernible evidence of an appreciable

geocentric concentration of interplanetary dust particles."

But that meteoroid flux should be accentuated in the vicinity

of a planet, aside from the shadowing effect discussed in Section III.A. Z. ,

should be expected because it can be shown analytically that, for hyper-

bolic trajectories of meteoroids passing planets, the partial derivative

of radial distance of closest approach with respect to the projected (i.e.,

gravity-free) miss distance is both positive and less than unity. In

regard to this phenomenon, the author has gone no further than to this

qualitative verification, but Beard [3] writes: "The overall effect of the

dust blanket at the surface of the earth will be to increase the concentra-

tion of dust, calculated in the absence of the earth's gravitational field,

by a factor possibly as large as 6000, depending on the eccentricity of

the dust's orbits. (The factor [Beard says] is more likely about a few

hundred. ) . . .A third of this blanket is concentrated within one earth

radius of the earth's surface... A simple approximate calculation of

the dust orbit in the gravitational field of the sun and a planet reveals

that the concentration of the dust varies inversely with the three-halves

power of its distance from the center of the planet. " But one suspects

that the radial dependence of meteoroid flux must also be functionally

related to the mass of the particular planet.

That meteoroid flux in the vicinity of a planet may be

radial-distance dependent is further suggested by capture processes

other than direct collision. In 1958 Baker [2] reported: "Preliminary

calculations show that only about 0.2% of the total number of the porous

stony meteorites which strike the earth will result in natural satellites
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... [which]... would originate from 'near-miss' meteoritic trajectories

that only graze the atmosphere of the earth, the meteorites being slowed

sufficiently to enter onto a geocentric elliptical orbit... It is noted that

there are other [further] mechanisms for capture of natural satellites

involving the attraction of the moon, the Poynting-Robertson effect, and

so on..." By including data which had been earlier discarded by

Dubin [15], as discussed in Section III.A.I., Hibbs [ZZ] gave this inter-

pretation to the micrometeoroid-impact data from artificial satellite

Explorer I: "The distribution in longitude relative to the satellite-

earth-sun angle corresponds to an altitude distribution and apparently

contains no information that is not better shown in this latter distribu-

tion. With suitable analysis, the altitude distribution yields information

on the velocity of the particles relative to the center of the earth. The

conclusion is that the average particle measured by Explorer I was in

a closed orbit around the earth rather than on an impact trajectory from

a great distance to the surface of the earth. " As each captured particle

would repeat many orbits, supposedly the 0.2% captures, quoted above

from Baker [2] , would be sufficient to support a considerable steady-

state population of captured particles. These findings by Hibbs are

further supported by those later reported by Laevastu and Mellis [27]:

"The estimates of the rate of fall of cosmic spherules to the earth,

based upon the counts from sediments, depend, among other things, on

the exact determination of the rate of sedimentation. As the value

calculated from satellite data is considerably higher, it gives added

support to the conclusions of Hibbs..."

Aside from the above hypothesized increase in meteoroid

flux in the vicinities of the planets, there are further observational

evidences that meteoroid flux increases with decreasing distance from

the ecliptic and from the sun. Beard [3] says: "The dust diffracts

sunlight at small angles which may be observed in the solar corona

during solar eclipses. Sunlight is also reflected by the dust at large

angles which may be observed as . .. zodiacal light. " This interpre-

tation of solar corona and zodiacal light data is further supported by

the in-fall theory of cosmology; e.g., (1) Beard [3] says: "The

relativistic interaction of these particles with sunlight, as shown by

Robertson and Wyatt and Whipple, causes them to spiral slowly into

the sun with a radial velocity inversely proportional to the solar distance

•.. One further factor that determines the radial distribution of inter-

planetary dust is the gravitational attraction of the planets.., which

causes the dust to approach the plane of the ecliptic with a drift velocity

that is inversely proportional to the square root of the solar distance.
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Inclusion of this effect results in a dust concentration in the ecliptic
plane that is inversely proportional to the three-halves power of the
solar distance," and (2) Best [5] says: "Supposing the solar system
encountered such a cloud [of interstellar dust at a relative velocity
corresponding to the 20 km/sec solar proper velocity], the particles
would all have hyperbolic orbits with respect to the sun. However, the
orbits do not remain hyperbolic of fixed eccentricity due to the braking
force of solar radiation, which for initially elliptical orbits leads to the
Poynting-Robertson effect, and the eccentricity will decrease near the
sun . . . Note that [the criterion for capture by retardation by solar
radiation] is identical with [the criterion for the Lyttleton cometary
accretion process] and thus if either capture process is involved the
capture radius will be about 5A. U., which is just inside the orbit of
Jupiter. "

4. Mass Dependence of Flux. So as not to have to be

concerned further in this report with the directional aspects of

meteoroid flux, one can assume that the term is used in the same

sense as Whipple [41] used it: the meteoroid flux encountered by a

sphere in a near-earth orbit is the number per unit time hitting the

sphere divided by the area of the effectively exposed hemisphere. And,

as Rodriguez [35] suggests: "An equation of the form

F> = _I m_1 (36)

is used by many investigators. F=, is the [flux] of particles having

mass m or greater, and al and _1 are empirical constants."

The selection of a solution pair of values (al , _I } is not

decided in the (F=,, m} domain by most authors, excepting Laevastu

and Mellis [27]. It is decided in the (log10F=,, logi0m) domain; i.e. ,

from a family of equi-probable contours of possible solution points

which, through Eqs. 16 through Z9, are the consequences of the

following underlying functional repr es entation

logloF> = _1 lOglom + Yl (37)

where Pl is a constant and y, is an approximately normally distributed

random variable with mean 71 and standard deviation _y This Eq. 37
and such othe r functional representations as will be use_'in this report

to represent uncertain quantities and/or relations are intended as exped-

ients for the propagation of confidence through other functions of this

and other uncertain parameters.

2O



Functional relations between the flux F=, of meteoroids,
with masses equal to or greater than m, to be encountered by a space-
craft in orbit near the earth, or relations between log10 F=, and log10 m,
have been inferred primarily from data obtained by careful quantitative
measurements of physical parameters involved in the following four
phenomena: (1) the interaction of meteoroids with the atmosphere of
the earth as studied by visual, photographic, and radar methods and

discussed (e.g.) by Whipple [41], (2) the accumulation of meteoroid

debris on the earth as studied by chemical, physical, and statistical

analyses of the sediments and discussed (e. g.) by Laevastu and

Mellis [27], (3) the disturbance by micrometeoroids hitting instru-

mented artificial satellites as studied by microphones and discussed

(e. g.) by Dubin [14 and 15], and (4) interaction between micrometeoroid

and electromagnetic radiation as inferred by physical optical peculiar-

ities of solar corona and zodiacal light and discussed (e. g.) by Beard [3].

The combined interpretation of these four separate categories of infor-

mation is further facilitated (or confused, depending on one's point of

view} by theoretical considerations of the paths of meteoroids, of

given mass and cross-sectional area, moving under the combined

influences of solar radiation and solar and planetary combined gravita-

tional fields - as discussed (e.g.) by Siedentopf [37], Best [5], and

Beard [3].

The various published interpretations of the information

described above differ considerably, and in other ways also suggest

that the results must yet be uncertain to a considerable extent. When

various interpretations are considered as points in a graph, log10 F=,

versus lOgl0 m, then results are missing for 10 -7 gm <m < 10-4gin.

Except for the degradation of optical surfaces, thin films, paints, etc.,

this is the entire region of interest - mass m possibly large enough

for penetration of a space vehicle (or vital component} and flux F_

possibly too high to be ignored. Also not a single one of the various

phenomena or underlying principles of interpretation gives points on

both sides of the interval of interest.

Concerning visual, photographic and radar tracking of

meteors, Nazarova [32] says: "At present [1960]... these methods

are only useful for registering particles with masses of i0 -4gm and

more." For this side of the region of interest, Whipple [41] suggests:

"... an increase in the number of meteoroids inversely as the mass of

the particle. " This is equivalent to assuming a unit value of -_I in

Eq. 37.
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By taking the antilogarithm of Eq. 37 one finds

_i (log e I0) Yl
F> =m e (38)

which (except for the constant factor) is the same functional form as

Eq. 23 with

= log e l0 = 2. 303 . (39)

Therefore Eqs. 23 through 29 are applicable here; and Whipple's [41]

tabulated data imply that

_I = -12" 20 - _i (40)

where Ay I is a component which would correct any bias in m0 in Eq. 42.

About the micrometeoroid side of the region of interest,

Bjork [6] says: "... At the present time [May 1960], rocket and

satellite experiments are inherently limited to measuring the impacts

of meteoroids having masses of about 10 -8 gm or less." By McCracken,

Alexander, and Dubin's [30] more recent interpretation of Explorer VIII

results, Eq. 37 is approximately true for i0 -I° < m <I0 "6 gm when

_I = -1.70

and

_I = -17.0

Bjork [6] recommends a relation, to fit both the satellite

and radar data regions, which similarly implies that

p_ = -10/9

and

_I =-12

Nysmith and Summers [33] gave a summary of results from

ten different satellite determinations of _I and Yl in Eq. 37 with mass

sensitivities in the interval i0 "I° < m _ 2x 10 .8 gm and with an average
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value of -8.70 for the common logarithm of the mass sensitivity limit.

They preferred a unit value for -_I, for comparison with meteor data,

with which, by equally weighting their tabulated results,

_, = -II. 28

¢Yl = 0. 60 .

Beard [3] finds, from studies of solar corona and zodiacal

light, that flux depends on radius to roughly the 3.5 power for small

particles; implying that:

_I = -3.5/3 = -1.17 .

The establishment of a mathematical model which bridges

the intermediate interval of extrapolation is not to be accomplished

without considerable reservation. Laevastu and Mellis [Z7] say: "In

making this extrapolation [from satellite data on small particles to

larger particles], account is taken of the fact that essentially all cosmic

particles > X50_ in diameter are intercepted by the planet Jupiter and

therefore do not reach the earth." But since the volume of a sphere

with Z50_ diameter is 8.2x10 .6 cubic centimeters, the mass must be

within the interval 4x I0 "7_ m _ 3x 10 .5 gm for density (Section III. C.)

within the interval 0.05 _ p _ 3.6. Also, about the small particles

affecting solar corona and zodiacal light, Siedentopf [37] says: "A

comparison of these results with the data obtained from meteor obser-

vations is difficult. The particles entering the earth's atmosphere

have very eccentric orbits, whereas most particles that are optically

effective move in nearly circular orbits under the action of the

Poynting-Robertson effect. The observable meteors generally have

radii greater than I00_ whereas the brightness of the zodiacal light

and the Fraunhofer corona comes mainly from the particles with radii

between i and I00_. So the information gained by optical methods and

by meteor observations covers different aspects of the interplanetary

matter that practically do not overlap." Interestingly enough, these

apprehensions support the notion that for the high-flux region, say

F> > 10 -7 particles per square meter per second, the results of

McCracken, Alexander, and Dubin [30] may be appropriate; whereas

Whipple's [41] results may be appropriate for lower flux values. This

would be equivalent to assuming that there are no meteoroids with

masses in the interval
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lO-(17.0-V.O)/l.V__ I. 3 x 10 -6 < m <I0 "(II'ss-7'°°)=

-- I. 3 x i0 "s gm (41)

because they have been captured by the major planets. It appears to be

more likely that the available information on either side of the region

of extrapolation is not sufficiently firm to warrant interpretations such

as Eq. 41.

Now consider the accuracy of the data for the larger

meteoroids. As the basis for his analysis, Whipple [41] says, "... a

meteor of visual magnitude zero is determined to have a mass of the

order of 25gm." Bjork [6] says that Whipple ".,. has calculated m0

lies between 1 and 30 gm with 25 gm the preferred value. "

In the physical theory of meteors, as presented by Opik

[44], Kallmann [453, Levin [46], and Jacchia [47], the expressions for

meteoroid mass m, as related to visual magnitude, are always found

by taking the antilogarithm of a linear expression for log10m, for which

the slope and intercept are both somewhat random and problematical

and, the present state of the information being such as it is, might

just as well be assumed to be normally distributed. This is part of the

basis for the contention that Yl can be considered to be approximately

normally distributed; but also it shows that values of m0 bear the Eq. Z9

relation to confidence. Then the 25 gm value for m 0 is a result of

choice rather than of skewness; the value otherwise implicated being

i(lOgl0 30 + loglo i)
mo = 10 z = 5.48 . (4Z)

In discussing McCrosky's interpretation of his experiments

using simulated meteors to estimate luminous efficiency, Davison and

Winslow [iZ] stated McCrosky indicated that luminous efficiency from

3 to I00 times as large as that used by Whipple was not precluded by

the experiment. The common logarithm of such a correction factor

would be the further bias which would have to be algebraically

subtracted fromy tin Eq. 37; because Whipple [41] says: "It is

assumed that the mass decreases by a factor of 100.4 per magnitude

step..." while a unit increase in visual magnitude corresponds also to

a luminous intensity decrease by a factor of 100.4 . Therefore, the bias

in Yl corresponding to a luminous efficiency correction factor of 25/m0

is
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Ay I --log10 (25/m0) (43)

The question of what value to use for m0 is related to the

km/sec meteoroid velocity v a by Opik [44_ as follows:

lOgl0 m0 : I0.97 - I. 71ogl0(10 s v a) •

This Eq. 43 implies that m0 is 1.0Z or 0.70gin depending on whether

one uses Z8 km/sec for v a, as Whipple [41] does for all visual magni-

tudes up to 7, or 35 km/sec, as will be shown in Section III. B. to be

more nearly deducible from mass versus velocity relations.

When all of the above reasons are considered, the author

prefers to use the Eq. 4Z value for m0; then by Eqs. 40, 4Z, and 43,

71 = -12.86 (44)

Also by the reasons already discussed in this section, it

follows that when -8. 70 is the mean of the common logarithm of the

mass sensitivity limits for the satellite data, as discussed above, then

the median mass for the detected micrometeoroids will be approximately

i0-8.70+(-_i) -I lOgl0Z gm = m s (45)

at which value for m one has also implied that

logl0F> I = 8. 70 + (_1)-llog102 - ii.28 --

m S

= -Z.58 + 0. 301 (_l)-l- (46)

But by Eqs.

m,

37 and 44 one has also implied that, at the same value of

l

I : <[-8. :o - o. 3Ol (pO"] - ,z. 86 :
"l

loglo F>
I

m s

: -8.70_i - 13. 16 . (47)

The simultaneous solution of Eqs. 46 and 47 is

p_ : -1.19 (48)
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which agrees very well with the -l. 17 value, mentioned above, based

on Beard's [3] estimate.

Nothing has been said about the confidence value which

should be associated with the above mentioned delimitations: 1 <m0 <30gin,

but presumably it is intended that they are each separated from the 50%

confidence value for m0 by not less than one probable error of m0; i.e.,

_Yl = 0.50(iogi0 30}(0.6745) "l = I. I0 . (49}

In deciding whether this Eq. 49 estimate for _Yl is too much in excess
of the value0.60 mentioned above, one must consider further the various

uncertainties besetting the determination of the masses of micro-

meteoroids based on data from instrumented satellites and from other

sOUl'ce S.

The mass dependence of micrometeoroid flux for m _ l0 -_gin,

as inferred from microphone i_IIulses from instrumented satellites,

also has considerable possibility for error. In reporting Explorer I

results, Dubin [15] says: "It was also assumed that since the micro-

meteorite detector on 1958_ was sensitive to the momenta of the impacts

to velocities as high as 4 km/sec, the momentum transfer remained

proportional to the first power of the velocity of impact at meteor velo-

cities. If this is not basically correct, the error may become large at

the high end of the velocity distribution... It was further assumed that

all impulses measured were meteoritic impacts." Elsewhere, Dubin [14]

says: "The velocities of meteoroid impacts upon a satellite may vary

between i0 km/sec and 70 km/sec..." and says further that, according

to computations by Bjork, at 70 km/sec the vehicle experiences a change

in momentum which is "... two and one-half times the initial particle

momentum." More recently McCracken, Alexander, and Dubin [30]

report that the calibration has been extended through speeds up to

approximately i0 km/sec and that: "An average velocity of 30 km/sec,

±clative toa satellite has been assigned to the dust particles in order that

the data may be used to determine the average mass distribution... "

And, in inferring the mass of micrometeoroids from the impulses from

microphones in Sputnik III, Nazarova [31 and 32] used a similar

relationship "... while assuming that the mean velocity of the particle

is equal to 40 km/sec..." But Whipple [41] says: "Undoubtedly the

velocity falls off for smaller meteoroids as we deal more and more

with particles whose orbital eccentricities and dimensions have been

reduced by physical effects..." and for m _ 10 "7 gm he assumed an
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average velocity of 15 km/sec. Also C)pik [43] infers that a velocity
distribution with mean velocity and standard deviation equal to 14.5
and 2.4 km/sec respectively implies a frequency distribution of particle

diameters which is in good agreement with the distribution of diameters

found by Laevastu and Mellis [43] for "extraterrestrial material in

deep-sea deposits." Opik [43] concluded that: "A low value of and a

low dispersion in the velocities is definitely indicated, corresponding

to cosmic dust circling the sun in direct orbits of low eccentricity."

It does seem possible, therefore, that any bias due to a proportionately

larger transfer of momentum above the calibration velocities may

compensate for any bias due to assu_ning higher average velocity. But

with so much room for doubt, it seems appropriate to accept the Eq. 49

criterion for

The author prefers to consider that, throughout the

interval 10-1°_ m _ 101 gin, meteoroid flux F and mass m are related

by Eqs. zg, 37, 44, 48, and 49 as illustrated graphically in Fig. l

based on the Eq. Z9 criteria.

B. METEOROID VELOCITY: MASS DEPENDENCE

I. Relative to the Earth's Atmosphere. Whipple [41] says:

"A velocity of Z8 km/sec is average for photographic meteors.

Undoubtedly the velocity falls off for smaller meteoroids... The

velocity at the edge of the earth's atmosphere cannot be less than

iI km/sec because of the earth's attraction... A mean value of 15km/sec

has been arbitrarily chosen for the smaller meteoroids and an arbitrary

gradation of velocity with magnitude adopted." Thus, in his table,

Whipple [4]] indicated a velocity of Z8 km/sec for all visual magnitudes

less than or equal to 7, 15 km/sec for all visual magnitudes greater

than or equal to 20, and otherwise a l km/sec decrease in velocity for

each unit increase in visual magnitude. Also, in Section III.A.4. it

was shown that Whipple [41] assumed that the mass decreases by a

factor of 10 o.4 per magnitude step, and therefore he implies a linear

relation between velocity and log10 m, which is apparently the basis for

the illustration given by Nysmith and Summers [33] . In his tabulation,

Whipple [41] further shows 3.96x10-x°_ _ m_ZS.0gmfor Z7__ magnitudes0.

But in the discussion leading up to Eq. 44, the decision was that the

masses which Whipple assumed should be reduced by the factor i0-°'66;

the above mass interval being thereby changed to I0-i°'°6__ m-_10 °'v4gm.

But if Whipple [41] had used, between magnitude 27 and 0, the same

linear relation between magnitude and velocity which he assumed
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between magnitudes 20 and 7, then the velocity would have been reduced

nearly to the circular orbital velocity at magnitude 27, in agreement

with Hibb's [22 and 23] analysis of micrometeorite data from instru-

mented satellites, and at magnitude 0 the 35 km/sec velocity would

agree very nearly with the 35.5 km/sec average for the data for larger

meteors attributed by Davison and Winslow [12 and 13] to Hawkins and

Southworth. This would imply the following relation between the

velocity, v a (km/sec) and mass, m (gin):

v a = (35 - 8)(iogi0 10 TM - log10 I0-I°'°6)-tlog10 m +

+[8 - (35 - 8)(log10 I0 °_4 - log10 10-1°'°6)-! (lOgl0 10"1°'°6)]=

= 2.501ogi0 m + 33.2 (50)

for 10-1°__ m__ i01 gm.

Dubin [15] refers to the cosmic dust detection limit of

optical and radio measurements as "... approximately visual magni-

tude 10 . . ." One wonders what the corresponding ]imit would be for

the determination of meteoroid velocity at the edge of the earth's

atmosphere -- evidently the magnitude limit would not be quite as high

as it is just for detection. Whipple [41] says only: "Radio meteor

studies may provide measures of the [velocity] gradation in the near

future, perhaps to the twelfth magnitude."

By adjusting Whipple's [41] tabulated data for meteoroid

masses, as discussed above, the relation between visual magnitude M

and mass m is

m = i00. 74-0.40M (5i)

One can consider the average velocity of all meteoroids between the

clatJvely infrequently occurring magnitude 0 and some higher magnitude

M u _ 10 as a function of M u. By Eqs. 37 and 50,

Pl (0. 74 - 0.40M) + Yl
F_. = i0 (52)

Then by Eqs. 48 and 51, the number of meteors with M-_ M u is greater

than the number with M -_ M u - 1 by the following factor:

-0.40_%_
10 = 3.00 .
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Therefore the average velocity for meteors of magnitude __Mu will be
very nearly the same as the average velocity for those of a magnitude
in the vicinity of Mu. On that basis one would expect that for Whipple's
[4]] data Mu is not appreciably higher than 7. No corresponding
estimate is available for the above-mentioned data which gives velocity
mean and standard deviation 35.5 and 13.3 km/sec respectively, but,
assuming the Eq. 50 corresponding value of m, one has:

(m, v a, _Va) = (i0 °'gzgm, 35.5 km/sec, 13. 3 km/sec).
(s3)

Opik's [43] theoretical distribution of cosmic dust

velocities and diameters below 300_ gives velocity mean and standard

deviation 14.5 and Z.40 km/sec respectively, and an average value

of -6.99 for log10 (m/p). By taking the value of lOgl0m which, by Eq. 50,

gives the 14.5 km/sec average velocity, one finds

(log10m, log10 p) = (-7.48, -0.49 = log10 0.32) (54)

i.e., p = 0.32 for small meteoroids. This agrees well with other

results; e.g., Davison and Winslow [IZ] say: "Based on Beard's

estimates [based on solar F-corona and zodiacal light] it would appear

that the material density of these particles [I_ <diameter -:300_] must

be equal to or less than 0.3 gram per cubic centimeter." So one can

agree that there is sufficient basis for another set of values:

(m, v a, _Va ) = (10-;'4Sgm, 14.5km/sec, g.40km/sec) .

(ss)

But the following Eq. 56 functional relation

l°g10 Va = _z l°g10 m + Yz (56)

where _z is a constant and Yz is an approximately normally distributed

random variable with mean _z and standard deviation _y , will more
appropriately represent the Eqs. 53 and 55 information z than will one

like Eq. 50, because: {i) _y_ decreases as v a decreases, and (2} values

of v a must not be too severely depressed as m decreases.

By applying Eq. 7 to Eq. 56 and using the Eqs. 53 and

55 information,
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a

= °-loglova a/O-y z = (o- v v a) logl0 e

= (13. 3/35.5}1og10 e = 0.163

= (2 .40 /14 .5) log10e = 0.072
independent estimateswith mean:

1

= _ (0. 163 + 0.072) = 0. 12 (57)

By Eqs. Z9 and 56, it follows also from the information of Eqs. 53

and 55 that

log1035. 5 = 132 lOglolO °'gz + 72

l°glQ14"5 = [32 l°glo lO-7"m +Tz

(58)

(59)

Then by simultaneous solution of Eqs. 58 and 59,

i%2 : O. 046 (60)

_2 : 1.51 (61)

The results from Eqs. 57, 60, and 61 for _Yz' _2' and _7z respectively

when used in Eq. 56 with the criteria from Eq. Z9 for contours of

equi-probable values of v a versus m, seem to represent very well the

available information throughout the interval 10-1°< m < I01 gin, as

illustrated graphically in Fig. Z.

2. Relative to a Vehicle in a Near-Earth Orbit. As the

earth orbits around the sun, the gravitational field of the earth

deflects toward the earth the meteoroids which otherwise, in their

elliptical orbits a-round the sun, would merely pass close by the earth.

The distribution of closing velocities between the

meteoroids and a space vehicle in orbit near the earth will depend on

the distribution of angular deviations of the local vertical from the

tangents to the meteoroid trajectories at the point of impact. It is

assumed: (1) that the result will be approximately the same if a two-

body meteoroid-earth model is substituted for the more nearly correct

three-body meteoroid-sun-earth model, and (2) that, just as meteoroid

velocity with respect to the earth's atmosphere can be related to mass

by Eq. 56, closing velocity v c with respect to a space vehicle in orbit

near the earth can be similarly related by

lOglOV c = j331oglom + y_ (62)
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where {_3 is a constant and Y3 is an approximately normally distributed

random variable with mean_3 and standard deviation _Y3 representing

uncertainty of the relation physically and according to available

information.

The necessary functional relations for hyperbolic

trajectories are given in introductory treatments of celestial mechanics

[e.g., 19]. The hyperbolic velocity excess v_ois

1

= (Va z 2_me/ra) _ (63)

/

Vcx9

where m e is the mass of the earth, _ is the universal constant of

gravitation, and r a is the radial distance from the center of the earth

to the zone implicit in meteoroid velocity data discussed above. The

velocityv r at radial distance r is, by E]q. 63
1

Because a spacecraft is orbiting at geocentric radial distance r, it is

convenient to consider that a geocentric sphere of radius r is making

a tunnel of radius DI through a swarm of meteoroids; where: (1) the

trajectory of any meteoroid originally approaching along the surface

of the tunnel with the closing velocity _%o will be tangent to the sphere r,

and (Z) the trajectory of any meteoroid originally approaching with the

same velocity but within the tunnel and displaced only Dxl <D½T r from
I

the tunnel axis will cut the sphere r at angle x I -_ with respect to

the local position vector (i.e., x I is the zenith angle). Because of the

conservation of angular momentum, the dot product of the meteoroid

velocity vector and geocentric radius vector is invariant with respect

to the position of any particular meteoroid along its trajectory; i.e. ,

Therefore, by Eqs.

V_o Dx1 = Vr r sinx 1 (65)

63 through 65,
1

F ravaZ- g_me -[z
sinx, --(i/r)Dx, LravaZ - 2"fme(l _ ra/r)] = Dxl /D½Tr.

(66)

Then by Eq. 66, the tunnel radius is
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2 I

1 - aXme(1 - ra/r)/raVa (67)

Although the above tunnel concept was convenient in the derivation of

Eqs. 66 and 67, it should be emphasized that the results are valid also

when meteoroids approach the earth from all directions as they do in

practice; e.g., by Eq. 66 one sees that half of the meteors should

approach the atmosphere with angles deviating less than 45 degrees

from the zenith.

When a spacecraft is orbiting in a nearly circular orbit

with geocentric coordinate r, then its velocity v s is essentially

horizontal with

I

v s = (_me/r) a (68)

Then, when one assumes that both the meteoroid and space vehicle are

moving in the same plane, it follows from Eqs. 64, 66, and 68 that

the closing velocity v c is

i

Vc = [(Vs +VrSinXl)Z + (VrCOSXl)al _ =

i

= [Vsa + Vra + 2VrVs sinxl] _ (6c))

Because the relative area of a narrow concentric ring in the cross-

section of the tunnel is equal to the product of its relative circumference

and its differential relative width, and because one must admit equal

probability for positive and negative values of x I, it follows from Eq. 66

that the probability distribution function for xI is

d [sin z×iI (vo)
f(xl) = [(2w sinx I)G (sinxl)/2w [ =

By Eqs. Z and 70

_ = o. (71)

By Eqs.

By Eqs.

5 and 70

I

2 through 4, 69, and 70, the expected value of Vc z is

(7Z)
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+  ,[Vr (73) [Vc =vs
But because the closing velocity v c is increased from v r by only a

relatively small increment due to v s, Eq. 73 can be appropriately

approximated and, with Eqs. 64 and 68, simplified by

1 1

Vc = (Vs z +VrZ)2 = Ira z + (#me/r)(3 - 2r/ra)]Z . (74)

By Eq. 7, by taking the standard deviation of v c in Eq. 69, and then by

applying the relations from Eqs. 64, 68, 71, 72, and 74,

1

°-v c k\Sv r Ov a °-v a 8x I

1

= __ Va )z + (VrV s ¢xl
V C

1 1

= v ao-va)z + (VrV s _x 1 Vs z + Vr z -2 =
1

[VaZ(O-Va2 z /r) 2(_/me/r)2 (r/ra l)o- 23g= + CXl "_m e - _ xi

1

[Va z + (?me/r)(3- 2r/ra)]? g (75)

Levin [46] says that 6740 km is the radius of the atmospheric layer in

which meteors are observed. Then for a space vehicle in orbit near

the earth, say at (6378 + 500) kin,

i i 1

(,_me/r) z =(_/me/ra) z = 7.91(6378/6878) 2 = 7. 62km/sec

(76)

With Eqs. 72 and 76, Eqs. 74 and 75 become

i

Vc = [VaZ + (7.62)z] _ (77)
1

3 andThese Eqs. 77 and 78 results, together with Eq. 62 and the Eqs.

7 operations, lead to the following Eqs. 79 and 80 relations:

i

+ 73 = l°glolVa z + (7. 67)_I =
i- l

_3 loglom
L J

(79)
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°-y 3 --O-loglo Vc - (O-vclvc) logloe =

1

= + -
(80)

The following Eqs.

from Eqs. 53 and 55 into Eq. 79:

_, l°gIo lO°'gz - [ ]!+Y3 = l°gl° (35.5) z + (7.62) z z

1

03 i°g10 I0=7"40 +-y3 : l°gl°[ (14'5)z + (7'6Z)z] _-

By solving Eqs. 81 and 82 simultaneously, one finds the following

numerical values for _33and _3:

81 and 82 are found by substituting the information

(81)

(82)

_3 = o. 041 (83)

_3 = 1.5z. (84)

The following Eqs. 85 and 86 are found by substituting the information

from Eqs. 53 and 55 into Eq. 80:

(V a, O-va, O'y3)= (35.5, 13.3, 0.173), (14.5, 2.40, 0.168)

(85)

1

O-y 3 = g(O. 173 + O. 168) = O. 17 (86)

The results from Eqs. 83, 84, and 86 for _3, _3' and _Y3 respectively,

when used in Eq. 6Z together with the Eq. Z9 criteria for contours of

equi-probable values of v c versus m, seem to represent very well the

available information throughout the interval 10-1°< m < 101 gm, as

illustrated graphically in Fig. 3.

C. METEOROID DENSITY: MASS DEPENDENCE

Meteoroids differ not only in mass, but also those which have

approximately the same mass may differ widely in composition and

structure. They are, in the order of increasing abundance and

decreasing puncturability, classified broadly as: (1) metallic, with

density somewhat more or less than that of iron, say p = 7.8, (2) stony,

say with density somewhat more or less than p = 3.5, and (3) fluffy,
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with density sometimes said to be somewhat more or less than p -- 0.05.
Whipple [41] says: "... the meteoric bodies, or meteoroids, mani-

fested as ordinary meteors are extremely fragile and breakable. '' So

presumably none of the fluffy meteoroids of appreciable size would have

sufficient integrity to survive through the atmosphere and be recovered

from the earth's surface. Then one may further presume that it is

only with respect to metallic and stony meteoroids that one may apply

Holl's [26J comment: "From the analysis of nearly 1000 meteorites

recovered from the earth's surface, it has been determined that

dielectric particles are nearly ten times as numerous as metallic ones. _

Whipple [41] says: "The evidence is extremely strong,

although not quite conclusive, that the density of ordinary meteoroids

is the order of 0.05gm/cm 3 . This value depends, to a limited extent,

upon physical arguments from photographic meteor data..." But one

is somewhat at a loss for an interpretation of "...is the order of... '

This can more appropriately be decided after reviewing the discussion

in Section III.A. 4. about the possibility that, as Davison and Winslow

[12] attribute to McCrosky, the luminous efficiency for meteors may

be from 3 to I00 times as large as that used by Whipple. Davison and

Winslow [12] say further that: "An increase of 100 in the efficiency

would have two ramifications. It would decrease the mass associated

with a particular meteor sighting by a factor of 100 and increase the

particle density for spherical particles by a factor of 10." Apparently

the functional relation between density p and mass m, which has to

represent both physical fact and the extent of i_formation about it,

might be represented by:

l°gl0P = 154l°glom + Y4 (87)

where 64 is a constant and Y4 is an approximately normally distributed

random variable with mean _4 and standard deviations _Y4" Because

of the (25/5.48 = 4.56) meteor luminous efficiency correction factor

(in the interval 3<4.56<i00), the choice for which has already been

supported in Section III.A. 4. , Whipple's above estimate of the density

of "ordinary meteoroids" must be transformed to

1

(Va, p) = [28 km/sec, 0.05(4.56) _ = O. 107]. (88)
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But, by Eqs. 56, 60, and 61, the Z8 km/sec velocity of "ordinary

meteoroids" corresponds to the mass of the same '_ordinary meteoroids _'

by:

(Va, m) = (Z8km/sec, I0 (l°g1° 28- 1.51)(0.046) -1 I0 -1"37 gin)

(89}

Therefore, by Eqs. 88 and 89, the mass and density correspondence

for ordinary meteors is:

(m, p) = (I0 -1"37gin, 0. 107 = 10-°'_z) . (90)

Because meteoroid density varies with the square root of the meteor

luminous efficiency factor, and mass varies directly with it, and if

one will assume in the absence of more definitive information that,

at any specified value of mass, the standard deviation of log10 p bears

approximately the same relation to the standard deviation of log10 F>

as it would if all of the variances in them were due only to an uncertainty

in the meteor luminous efficiency factor, then, by Eqs. 7, 37, 44, 48,

49, and 87,

°-Y 4 = °-loglo p =l IB4 [ °-loglo m F> = =

=1 y/ ,llP l : 1 .lO/-1.19llP l = 0.914I_B4 I, (91)

Estimates for values of density p to correspond with mass m for the

micrometeoroids are not so firmly established as for ordinary meteoroids.

Bjork [6] says: "It is reasonable to expect that the smaller meteoroids

will not have the lacy, porous structure needed to give a specific gravity

of 0.05, but that their density will increase as one goes down the mass

scale, eventually approaching the [2.8] specific gravity of stone, the

basic component, as very small sizes are reached." For the density of

particles of 7_ radius, Alexander, McCracken, and LaGow If] assumed

1.4xl0 -9 gin, saying: "The value l gmcm "3 for mass density is some-

what higher than the value 0.05gmcm "3 used by Whipple. The value used

by Whipple is probably much more appropriate to the photographic

meteors, for which it was determined, than for the dust particles in the

direct measurements range of sizes." But Whipple [41] cautions: "We

have no sound basis upon which to assume densities for smaller than

ordinary meteor particles, except for the effect of light pressure or

other physical effects..." However (Dpik's [43] analysis, as discussed
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in Section III. B. 1., leads to Eq. 54, which the author prefers to accept

also for the purpose of the present report. Then as Eq. 87 is that of a

line with two points given by Eqs. 54 and 90,

_4 : -0. 079 (92)

74 = -1.08. (93)

Then also, by Eqs. 91 and 92,

*Y4 = 0. 073. (94)

These Eqs. 92 through 94 results for P4' 74' and _Y4 respectively

when used in Eq. 87 together with the Eq. 29 criteria for contours of

equi-probable values of p versus m, seem very well to represent the

avialable information when the mass m is in the vicinity of that

(10-1'37 gm) for "ordinary meteoroids"; and the 50% confidence contour

seems appropriate over the entire interval I0-I°< m < l01 gin. But the

Z5 and 75°_0 confidence contours must diverge more for small values of

m because of the greater uncertainty. Therefore, Eq. 87 will be

replaced by the following more flexible model:

l°gl° P= Ys(l°g1°m - Ps) + Y4 + _4_5
(95)

where: (I) _4, _4' and _Y4 are as before, with the values given in

Eqs. 92 through 94 respectively, (Z) _5 is the constant common

logarithm of the Eq. 90 mass of the "ordinary meteoroids"

_5 = -I. 37 (96)

and (3) Ys is an approximately normally distributed random variable,

statistically independent of Y4' with standard deviation _Ys and mean

75. The latter is, by Eqs. 87, 92, and 95,

_5 = P4 = -0.079 (97)

Then by Eqs. 29 and 95 through 97, the 50% confidence contour of p

versus m is invariant with respect to replacing Eq. 87 with Eq. 95.
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The standard deviation will be so chosen that the above
O-y5

estimate by Alexander, McCracken, and LaGow [i], which can be

represented by

(p, m) = (I, 1.4x10 -9 - 10 -8'as gm) , (98)

is on the 75% confidence contour; i.e.,

have a 25% chance of being less than p.

and 95 through 98,

on the contour of values which

Therefore, with Eqs. 7, 29,

= 0. 075 {99)
Ys

By applying the Eqs. 7 and Z9 criteria and the Eqs. 9Z through

94, 96, 97, and 99 numerical values to Eq. 95 one gets the contours of

equi-probable values of p versus m which are illustrated graphically in

Fi Z. 4. The results seem to be satisfactory throughout the interval

I0-l°< m< 101 gin.

D. METEOROID DAMAGE

i. Nature and Function of Material Versus Effects. The

meteoroid hazard to space vehicles, or the damage to be expected from

meteors, is put in appropriate perspective by the following statement

by Rinehart [34] about the concept of quality of failure: "In any partic-

ular target, the failure will usually be a complex of many qualities of

failure, although frequently a single quality predominates. The basic

prohlems to consider are what qualities of failure prevail in the situa-

at hand, which ones are of interest, and whether each quality of failure

is an energy-absorbing process, a momentum-absorbing process, or a

combination of both. And lastly, what is the quantitative relationship

between the extent of failure of a particular quality and the energy and

momentum available to cause the failure?.., a few overall qualities of

failure are the following: perforation or puncture, volume of crater,

volume of failed region, scabbing, spallation, and amount of abrasion..."

The quality of failure which will be emphasized in this

report is failure by puncture of an empty metallic single shell. This

has been necessary to keep the problem from getting too far afield.

Should it be expected that the same shell would be more easily punc-

tured when filled with a liquid? Or is it just the other way around?

And then, of course, one would want to know what temperature, pressure,
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shock wave, etc., the liquid is subjected to in the temporal vicinity,
what chemical reaction follows, and is there an explosive vaporization
which further rends the structure? But such comprehensive considera-
tions are beyond the scope of this report.

2. Crater Volume in Thick Targets Versus Energy and

Momentum for Meteoroids at Normal Incidence. Rinehart [34] illustrates

his contention that the volume of the crater produced in a target material

by an impacting meteoroid is a linear combination of the kinetic energy

(½ mVc z ) and momentum (mvc) of the meteoroid with respect to the

target. He says that: "...if a failure results from application of an

impulse under which the material dislodges easily and offers the inertia

of its own mass as a resistance to motion, then the process is a

momentum transfer Ca flicking away of material, so to speak}. On the

other hand, if the body steadily continues to resist application of the

force, the process is energy-absorbing (pushing of material against a

force}. Perforation of a thin plate by a projectile, or penetration into

a laminated structure such as wood, are momentum-absorbing

processes. An energy-absorbing process is the formation of a deep

crater in steel by the impact of a heavy projectile. In most real

materials, the failure will be a combination of the two. "

Both Eichelberger [17] and Beard [3] imply that, for any

given target and meteoroid material and structure, crater volume is

essentially proportional to kinetic energy (½ my z ) independently of

momentum (my}. Eichelberger [17], says: "The [empirical] results

support very strongly the conclusion from fundamental considerations

that cavitation plays the dominant role in crater formation in ductile

materials and explains the linear relationship between volume and

energy." Beard [3], says: "It is most probable that energy considera-

tions of evaporation, rather than momentum effects, dominate the

surface interaction of the micrometeorites with a satellite. "

3. Crater Depth in Thick Targets Versus Energy,

Momentum, and Density of Meteoroids. Typically the various empirical

and theoretical formulas for meteoroid crater depth [e.g., 48] are the

product of the cube root of crater volume and the following three factors:

(1) the crater-shape factor, (2) the plate-thickness factor, and (3) the

angle-of-incidence factor. Thus, crater depth P0 is proportional

to the I/3 power of the mass m if crater volume is a linear combination
I 2

of energy (_mv c ) and momentum (mvc). Since Bjork [6] indicates that

P0 is proportional to (mvc) I/3 he is therefore presumably implying that
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crater volume is proportional to momentum (my) independently of
energy (½mvz).

An example of a penetration law that does not infer that

crater volume is a linear combination of energy and momentum, is

the law that can be deduced from data which is graphically presented

by Hoenig and Ritter [25]; i.e., that the logarithm of penetration

depth is linearly related to the logarithm of crater diameter in the

same interval of kinetic energy over which they indicate with another

graph that crater diameter is proportional to the square root of 1

kinetic energy. In other words, craterdepthp0 is proportional to mav c

for the experiments performed by Partridge at the University of Utah

with wax pellets where impact velocity exceeds the velocity of sound

in the target material.

But to what must one say that the crater depth is

proportional, when so many factors are available from which to choose?

Interestingly enough the geometric mean of Hoeing and Ritter's [ZS]

factor rnllaVc, and Bjork's [6] factor, (mVc) I13 is (m 514Vc z)ll3, which is

very close to Eichelberger's factor, (mvcZ) I/3. However, the author

feels that neither momentum nor kinetic energy should be inconsequen-

tial. He prefers, in the absence of more convincing contrary

information, to consider that crater depth, at normal incidence and

for given target and meteoroid material and shape, is represented by

po_ m_6Vc y6 (I00)

where: (1) _6 is a constant which will be assumed to have the same

va lue,

P6 = 1/3 (101)

as when crater volume is a linear combination of momentum and

energy, and (2) Y6 is an approximately normally distributed random
variable, which represents both randomness and uncertainty due to

insufficient information. The algebraic mean for Y6 is considered to

be the exponent of the geometric mean of the factors, Vc 1/3 and Vc z/3 ,

which would represent proportionality of crater volume to momentum

and energy, respectively, i.e.,

76 = 1/2. (lO2)
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The standard deviation for Y6 is considered to be one third of the
difference between the above mentioned exponents 2/3 and I/3, i.e.,

I/3<y6< 2/3 at approximately 87% confidence:

0-y6 = i/9 (103)

Herrmann and Jones [48] say: "Data on cratering has been

reported by Summers for copper projectiles impacting copper targets at

7,000 and II,000 ft/sec [2. 13 and 3.35 km/sec], and by Kineke for steel

discs impacting lead targets at 16,400 ft/sec [5.00 km/sec]. Both

experiments noted that the data for oblique impact compared very well

with that for normal impact, if penetration versus the normal component

of velocity is plotted." This result can be represented by

v x = v c cos x z (104)
Z

where xz is the angle of incidence relative to the normal to the target

surface and is therefore a random variable. Presumably this relation,

Eq. 104, will also be sufficiently appropriate for meteoroids hitting

other metal targets. By Eq. 104 the angle-of-incidence factor by which

the right side of Eq. 100 must be multiplied is (cos xz) y6, and therefore

Eq. i00 is replaced by

m_3p0 _ (vc cos x z)y6 (105)

To establish the statistical definition of xz in Eq. 105,

consider a meteoroid incident on a sphere and an axis parallel to the

path of the meteoroid but containing the center of the sphere. The

plane normal to the axis and containing the center of the sphere divides

the sphere into two hemispheres, and the one which is hit is orthogo-

nally projected onto its base plane. If x z is the angle of incidence of

the meteoroid relative to the normal to the surface of the hemisphere,

then all meteoroids which are parallel to the axis and which will have

angles in the interval between xz and x z + dx z will be projected onto a

ring with radii in the interval between Rsinx z and Rsinx z +d(Rsinxz).

The relative area of the differential ring is the probability density

function for angular incidence xz , i. e. ,

f(xz) = I sinzxzl • (106)

1

Since f(x z) by Eq. 106 is symmetric with respect to 7_,

it follows that both the mean and median of x z are given by
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-- 1

xz = radians . (107)

Then, by substituting the Eqs. 106 and 107 expressions into Eq. 5, one

finds that the standard deviation of x 2 is

1

• xl = (wz/16 - ½}z = 0.34 radians. (108)

Herrmann and Jones' [48] survey and analysis of published

theoretical and empirical results for the crater depth in thick metal

plates by hypervelocity projectiles are believed to provide a sufficient

basis for establishing the crater shape factor. They conclude that,

above a velocity transition region which depends on the target and

projectile densities, the projectile strength does not affect penetration,

particularly for ductile projectiles, and: "If this is true, then the only

factor to account for differences in penetration in a given target

material by different projectile materials is the projectile density. "

By an analysis of the empirical results published for many different
target and projectile materials, Herrmann and Jones [483 developed

the following empirical non-dimensional penetration law:

P0/d = (0.36 ± 0.07)(pp/Pt)z/S(ppveZlHt )wj. (109)

where: (1) H t is the Brinell Hardness of the target, (Z) pp and Pt are

the projectile and target densities respectively, and (3)d is the

diameter of the projectile. The velocity exponent in Eq. 109 will agree

with that in Eq. 100 when the last term in Eq. 109 is raised to the

3y 6/2 power, then Eq. 109 can be replaced by
1

P0/d = 10YT(pp/Pt)Z/3(PtVc z /Ht) gy6 (110)

where Y7 is an approximately normally distributed random variable,
indicating the uncertainty in the relation and in the information about it,

determined by:

i0 y7 O. 36 ± 0.07 E3 ±
_: _- 0"_3

(iii)

where one assumes from various comments that the numerically indi-

cated uncertainty is standard deviation rather than probable error or

mean deviation (mean absolute error). Also, Herrmann and Jones [48]

have explained that they got the results, Eqs. 109 and 111, by plotting
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and fitting on log-log paper. So it is evident that x 3in Eqs. 109 and

111 is actually the antilogarithm of the more basic random variable YT"

Because it is subject to the normal law of error more directly in the

fitting process than is x3, Y7 can more appropriately be considered

as approximately normally distributed. Presumably Y7 can be considered

to have mean 77 and standard deviation _Y7 given by:

_7 = l°g10 0.36 = -0.44 (I12}

O-y,z = lOglo (0.36 + 0.07) - loglo 0.36 = 0.08 (113)

But, when the units for Pt are gm/cm 3 and those for v c are km/sec,

then a further proportionality constant is necessary in the last term in

Eqs. 109 and ll0because, by the definition in the Metals Handbook [50]

the units for Brinell Hardness H t are kilograms of force per square

millimeter, i.e., Eq. ll0 must be replaced by

1

P0/d = 10 yT(pp/pt)z/3(kptvc z /Ht )_y6 (114)

where

k - ($ m/cm3)(10scm/sec)z = 102 .
(980,665gmcm/sec z)/(10 -lcm) z

(llS)

Let both p and d in Eq. 114 be measured in centimeters.

Then, assuming that meteoroid hazard is not essentially misrepre-

sented by a spherical meteoroid of mass m grams.

d = 2(3m/4_rpp) *13 (116)

Herrmann and Jones [48] make the following further

comment about Eq. 109: "It might be noted that a slightly higher

exponent in Pt might be expected to fit slightly better. However, it was

decided to retain th_ advantages of a non-dimensional fit. Small

changes {_: 10%) in exponents of the non-dimensional parameters did

not significantly alter the mean deviation. " But because, by Eq. 107.,

_6 is ½, the mean effect on Pt of having adjusted the exponent of v c to

Y6 is that the exponent of Pt has been lowered. Also, the value to be

used for the exponent of (Pp/Pt) is uncertain, to a considerable extent,

as is well illustrated by Bjork [6]. Therefore, an approximately

normally distributed random variable exponent Ys will be introduced

with mean _8' which is related to 76 in that it restores the mean value
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of the exponent, and with standard deviation _Y8 indicative of a probable
error which is 10% of the mean; i.e.,

-_s ¢ 2Y61--=-2/3 + i/3

_8 = EY6 +I/3 = 7/12 = 0.583 (I17)

_Ys = 0.10(7/12)/0.6745 = 0.086 (118)

Therefore, by replacing the exponent of the density ratio

in Eq. I14 by Ys' by substituting the Eq. 115 value for k in Eq. 114, by
multiplying the resulting equation by Eq. 116, and by multiplying the

right side of the resulting equation by the angle-of-incidence factor

(cosx z)y6as in Eq. 105, one still gets the somewhat biased formula

for the thick-target crater depth P0 due to a spherical meteoroid:
i 1 1

- _Y6 - YSHt-_Y6 Y8 - i/3Po = loYT(lO2)ZY6(2)(3/4_)II3 Pt 9p

m I/3 (v c cos xz) y6 (I 19)

when the following units are used: P0' cm; Ptand pp, gmcm "_ ; H t,

Brinell Hardness Number; m, gm; v c, km sec'l; and x z, radians.

Equation 119 is still biased because the slope of _og10 P0

versus log10 v c has been changed; but the intercept still ha_ to be

adjusted so that the combined effect of a change in slope and in inter-

cept will be that some favored point is invariant. Eq. ll9.is based on

Eq. 109, which is based on the upper segments of broken linear fits to

data points in the log10 (p/d) versus lOgl0 v c domain, for various

projectile and target materials including hard aluminum alloys, and

for logi0 v c typically in an interval of roughly log10 3km/sec < logl0v c

_:lOgl0 5km/sec. Then take the favored point as

(9p, Pt' Ht' Vc) = (2.80, 2.80, 135, 4) . (120)

Then the factor 10 y9 by which one must multiply the right side of

Eq. 119 to remove the bias is that which, at the Eq. 120 point, gives

the following equality:

Y8 1/3 - c z(9p/Pt) pp (102 PtVc2/Ht)2Y610 y9 = (9p/Pt)l/3(lO2v /Ht)l/3 .

(121)
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Then by Eqs. 120 and 121, the factor I0y9 is related to Y6
I

10 y9 = r102 (4) z/135] 1/3 - _y6 (2.80) 1/3

as follows:

(122)

Therefore, the above-mentioned bias is removed by multiplying the

right side of Eq. 119 by the right side of Eq. 122, getting:

/Ht)½Y6pt- Y8 Y8- I/' 3mi/3 (v cPo = 4.01 (I0)Y7(8.44 Pt PP cos Xz) y6 .

(123)

It is of some interest to see how Eq. 123 compares with

the following Eq. 124 for aluminum projectiles and thick aluminum

targets reported by Bjork [6]:

Po = i. 09 (mVc)i13 (124)

where the units are as in Eqs. 119 through 123. Assuming relatively

pure aluminum metal with the following density and Brinell Hardness

Number :

(pt, Ht) = (2.70, 23 <H t <44), say (2.70, 34) (125)

then at normal incidence, with vanishing xz , one can equate the right

sides of Eqs. 123 and 124, substitute the mean values 0.50, -0.44,

and 0.583 for _6' _T' and78 from Eqs. 102, I12, and 117 respectively

and solve for the value of v c, i.e.,

v c = 2.3 km/sec (126)

Then the Eq. 123 formula gives values of thick-target crater depth

larger than by the Eq. 124 formula by a factor (Vc/2.3) u6 , which is

(6. 312.3) */6= I. 18 (izv)

at the 6.3 km/sec value for v c used in the experiments on which the

Eq. 124 formula is based. This Eq. 127 result is well within the

Eq. iii indicated experimental accuracy; and one does not know for

sure if the Brinell Hardness Number of the aluminum was as low as

is assumed in Eq. 125. The Eq. 127 factor vanishes when H t is

increased to 66, or to some value less than 66 if the density is also

increased. One will therefore decide that Eq. 123 is satisfactory

for thick targets.
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4. Thickness of a Just-Penetrable Shell Versus Mass,

Density, Velocity, and Angle of Incidence of Meteoroids. The

thickness p of a just-penetrable shei1 is related to the thick-target

crater depth P0 by the target thickness factor i0 yl°, i.e.,

P/P0 = 10yl° (128)

where YI0 is an approximately normally distributed random variable

which represents both the randomness of the process and the uncertainty

in the information about it. Bjork's comment is: "The calculations

were made for thick targets, but enough information was obtained to

deduce that if a projectile penetrates a depth p in a thick target, it

will just penetrate a sheet of the same target material which is l. Sp

thick." Black [49] says: "To allow a 'bulge' although 'just not

perforated', a skin gage of 1.5 times crater depth is generally assumed.

(Note that this should be 2 - 3 if the results of Jaffe and iRittenhouse are

used.)" Eichelberger's [17] "rule of thumb" is that: "...a meteoroid...

will produce a hemispherical crater of volume -r... If the thickness of

the skin is less than (3T/2_r) I13 (or even if it is slightly greater), the

skin will be perforated." In other words, the factor is 2If3 = l. Z6 or

slightly greater. Herrmann and Jones [48] illustrate experimental

results (which they attribute to Kinard et.al, at NASA Langley) and an

empirical formula indicating that, as shell thickness is decreased

toward the value p, the value of P/P0 approaches:

p/po-'(I/1.3)2+ 1 = 1.59 (129)

These Eq. 129 results are said to have been obtained with "...steel

and aluminum projectiles into aluminum targets at impact velocities

between 5,000 and 13,000 ft/sec" .. . i.e., between 1.5 and 4 km/sec.

When C is the confidence that this Eq. 128 factor is equal to or less

than the stated value, then it seems appropriate that the above-

mentioned four estimates should be accepted as follows:

(C, 10 y1°) = (0.16, 1.26), (0.41, 1.50), (0.50, 1.59),

(0.976, 2.5) (130)

710 = 0.20 (131)
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O'yl_ = 0. 10. (132)

SECTION IV. DESIGN AND OPERATIONAL PARAMETERS

Ao JUST-PENETRABLE METEOROID MASS VERSUS THICKNESS,

DENSITY, AND HARDNESS OF THE FREE-WALL OF A

SPACE VEHICLE IN A NEAR EARTH-ORBIT

By taking the logarithm of the product of Eqs. 123 and 128

and substituting the Eqs. 62 and 95 expressions for log10v c and log10 pp

one finds

1 1

loglo p = loglo 4.01 + Ylo +y7 + _Y6 l°gl° 8.44 + _Y61oglo (Pt/Ht) -

-Ysl°g lo Pt + Y6 l°g lo (cos x z ) + Y3Y6 +

+ y5y 8 + _3Y6] loglo m (133)

1
With the values 0.041, -0.079, -1.37, _, 1.52, -1.08,

-0.079, ½, -0.44, 0.538, and 0.Z0 for [33, [54, [55, x-z, 73, _4, _5, _6,

Y7' Ys' and yIQfrom Eqs. 83, 92, 96, 107, 84, 93, 97, 102, 112, 117,
and 131 respectively, it follows by Eqs. 3 and 4 that the expected

value of logl0p inEq. 133 is:

E flog,0 p] = 1.06- o. 29 log10 otL -j
- 0.25 loglo H t + 0. 338 loglo m .

(134)

And withthe furthervalues 0.34, 0. 17, 0. 073, 0,075, 1/9, 0.08, 0. 086,

and 0.10 for , and from Eqs. 108,
°rxz' _Y3' _Y4' _Ys' _Y6' _Y7 _Ys' _Y10

86, 94, 99, 103, 113, 118, and 132 respectively, it follows by Eq. 7

that the standard deviation of log10 p in Eq. 133 is:

gloglop = (0.053+ [0.204+0.0561ogio (gt/Ht)+0.00461ogzom]Z+

+ [0. 093 + 0. 086 logl0 p_. + 0. 0068 log10 m] z +

+ [0.021+0.0151oglom]Z} ½ . (135)
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These Eqs. 133 through 135 results are illustrated graphically

in Figs. 5 and 6 for the following two respective metals:

(9t' Ht) = (Z.80, 135): hard aluminum alloy (136)

= (7.42, 310): Harder stainless steel (137)

and for the assumption that log10 p in Eq. 133 is sufficiently nearly

normally distributed that the Eqs. 134 and 135 values for the mean and

standard deviation can be used in the Eq. 29 formula relating confidence

and values of the antilogarithm of an approximately normally distributed

random variable.

B* METEOROID PUNCTURE-FLUX VERSUS THICKNESS,

DENSITY, AND HARDNESS OF THE FREE (EMPTY) WALL

OF A SPACE VEHICLE IN A NEAR-EARTH ORBIT

The penetration and/or puncture flux _b is that value of F> in

Eq. 37 corresponding to a just-puncturable value of m. The following

Eq. 138 formula for q% is found by solving Eq. 133 explicitly for logl0 m

and substituting the resulting expression into Eq. 37; i.e.,

l°g1°q% = Yl + _I l°g1° p - l°g1° 4.01 - Ylo- Y7 - -fY6l°g1° 8.44 -

- ½y61°g1° (Pt/Ht) + Ysl°gl°Pt - Y61°g1° (cosx z) -

(138)

The random statistical variable _, the puncture-flux is found,

by taking the antilogarithm of Eq. 138, to be a function of nine statis-

tically independent random variables (YI' xa' Y3 through Ys, and Yl0)'

all of which are approximately normally distributed except x z. If the

right side of Eq. 138 were just a linear combination of these random

variables and if x z were nearly normally distributed, then log10 qb would

also be a normal random variable, with mean given by using the means

of the other random variables in Eq. 138, and Eq. 29 would be rigorously

applicable for finding the contours of equi-probable values of qb as a

function of p. The difference here is that the right side of Eq. 138

involves some products and ratios rather than just a linear combina-

tion of the random variables. But it will be assumed to be a sufficiently
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accurate approximation here that lOgl0qb is normally distributed with a

mean value given by using the means of the other random var!ables in

Eq. 138. Then, with the values -i. 19 and -12.86 for _I and F1 from

Eqs. 48 and 44 respectively, and with the other numerical values that

were used in Eq. 133 to get Eq. 134, it follows from Eq. 138 that the

mean or expected value of logi0 _ is:

E [log,o+]= -9.13 - 3.5Zloglo p - 1.01 lOgl0P t - 0.881 iog10 H t.
L J

(139)

And with the value I. i0 for _Yl from Eq. 49, and with the other

numerical values that were used to get Eq. 135 from Eq. 133, it

follows by Eq. 7 that the standard deviation of logi0 _ in Eq. 138 is:

_lOgl00 = 8y i / Yl \ 8x z / Xz

8( ( ]+ _ 81ogi0qblz z+ 81ogl0d_Iz z ½ (140)

i=3 8Yi J Yi 8ylo / Yi0

8 loglo@ Iz z8x / xz
Z

= 1. zi (i41)

= O. 36 (14Z)

= O. 090 (143)

= O.OOZ8 (i44)

8 lo$10#lz z8Yi0 / _Yi0

= 0.08 (145)

= 0.12 (146)

= (0. 161 logi0 p - 0. 0956 + 0. 0460 logi0 Pt +

+ 0. 0401 logi0 Hi) 2 (147)
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= (0. 0474 loglo p + 0. 666 + 0. 111 loglo Pt -

- 0. 0859 lOgl0 Ht) z (148)

( )2a lo_lo_b _Ys = (-0. 0709 log10 p - 0. 252 - 0. 323 logzo Pt -
aYs

- 0. 0177 lOgl0 Ht). 2 (149)

These results, Eqs. 138 through 149, applied to each of the

two metals described by Eqs. 136 and 137, lead to the following

formulas, Eqs. 150 through 153, for the means and standard deviations

of the common logarithms of the puncture-fluxes _ as a function of

shell thickness p: (1) for the hard aluminum alloy,

[logloqb ] = -3.521og10 p - 11.46 (150)E

_lOgl0_b =[2.34 + 0. 1461oglo p + 0. 033 (logio p)Z]½ (151)

and (2) for the hard stainless steel,

E [log10qb] = - 3.521ogi0 p - 12.20

1

_lOgloq_ = [2.50 + 0.1481ogl0 p + 0.033(lOglo p)Z]_.

(152)

(153)

When these results, Eqs. 150 through 153, are substituted into the

Eq. 29 formula, one gets the contours of equi-probable values of

puncture-flux qbversus shell thickness p which are illustrated graphi-

cally in Figs. 7 and 8 for the hard aluminum alloy and hard stainless

steel respectively.

Co THICKNESS OF A FREE WALL VERSUS THE PRODUCT OF

EXPOSED HEMISPHERICAL AREA AND DURATION FOR

GIVEN PROBABILITIES OF NO PUNCTURE OF A VEHICLE

IN A NEAR-EARTH ORBIT

By substituting the Eq. 138 expression for log,o¢ in the

common logarithm of the natural logarithm of Eq. 33 and solving the

resulting equation explicitly for log10 p, one gets
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1

+ log_o 4.01 + Y_o + Y_ + _Y60°g_ 0 8.44 +lOg_o (r>t/Ht) ] -

- 78 l°glo Pt + 76 l°gloc°s x z +y376 + (78 - 1/3) [74 +

+ ps(_ 4 - 75)]. (154)

Because log10 p involves no ratios of random variables, it

follows by Eqs. 3 and 4 that logl0 p in Eq. 154 should stand an even

better chance of being approximately normally distributed than does

logl0_b in Eq. 138, discussed already in Section IV.B.; especially there

is more reason for assuming that the mean of the function is the func-

tion of the means. It will therefore be assumed that Eq. 29 is a

sufficiently approximate formula for obtaining the antilogarithm of

Eq. 154 expression for loglD p. • Then, with the same numerical values

as were used to get Eqs. 139 through 149 from Eq. 138, the mean and

standard deviation of the common logarithm of the free wall thickness

p centimers necessary to increase to R the probability of no meteoroid

puncture of an exposed hemispherical area A square meters during an

interval of t seconds in orbit near the earth are respectively:

E [lOgl0 p] = 0.284 [lOgl0 At - logl0 (-logeR)J - 0. 2881og10 pt -

°'lOglo p

- 0.25 lOglo H t - 2.37

= _ Yl a x 2

8 [a z z

0Y i OYlo
i=3

(155)

(156)

8 p z

_)Yl

0 loglo p _rxz
Ox z

a lo_glo p °'Y3
aY 3

= O. 0974

= 0. 0289

= 0. 0072

(157)

(158)

(159)
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= 0. 0002

= O. 0064

(160)

(161)

l°gl°P_yl0 = 0. 0100
0Ylo

(162)

O log108y 5 P _Ys ) z

(8 log10p )z
8 Y6 °-Y6

= [0. 0129 logl0At - 0. 0129 log10 (-log e R) - 0. 145] z

(163)

= [0. 00382 logloAt - 0. 00382 loglo (-log e R) +

+ 0. 0556 loglo (Pt/Ht) + 0. 198] z (164)

= [0. 0057 logloAt - 0. 0057 loglo(-log e R) +

+ 0.0861Og_oP t + 0.0196] z. (165)

These results, Eqs. 154 through 165, applied to each of the

two metals described by Eqs. 136 and 137, lead to the following
Eqs. 166 through 169 for formulas for the means and standard devia-

tions of the common logarithms of the necessary free wall thickness

p centimeters: (1) for the hard aluminum alloy,

E[logI0P] : 0. 284 [logloAt - log10(-logeR) ] - 3.03

_1ogl0P = {0.185 - 0.0022911og10At - lOgl0(-log eR)]

+ 0. 00021311og10At - lOgl0 (-log e R)]Z} ½

and (2) for the hard stainless steel,

+

(166)

(167)

E [logloP] = 0. 284 [log,0At - log,0(-logeR)] - 3.24 (168)

_lOgl0 p = {0.192 - 0.00183[lOgl0At- lOgl0(-logeR)] +

1

+ 0. 000213[lOgloAt - lOgl0(-1ogeR)]Z}. _ (169)

When these results, Eqs. 166 through 169, are substituted

into the Eq. 29 formula, one gets the contours of equi-probable values
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of necessary equivalent free wall thickness p versus the effective

area-time exposure product At as illustrated graphically in Figs. 9

through Ii for the hard aluminum alloy and values of 0.85, 0.90, and

0.95 respectively for the puncture-free probability R, and in Figs. 1Z

through 14 for the hard stainless steel and values of 0.85, 0.90, and

0.95 respectively for R.

D. VARIATION OF OPERATIONAL PARAMETERS

As an illustrative example, consider that one has a vehicle

with a total surface area of 390 square meters (4200 square feet) of

0. 318 cm (eighth-inch) free wall of hard aluminum alloy, and one

wants to know how long the vehicle can remain in a near-earth orbit

with not less than an even chance that the no-puncture probability

is as high as 0.90.

In Fig. 10, the horizontal line at 0. 318 ca, corresponding

to the eighth-inch wall thickness, intersects the 50% confidence contour

at the indicated ordinate, corresponding to the 107"9° square-meter-

seconds value for At. As the numerical values for meteoroid flux,

which were established in Section LII.A. 4. and used in the derivation

of the relations which are illustrated in Fig. I0, are based on the

assumption that only half of the surface area of the vehicle which is

facing away from the earth will be considered in the flux-area-time

product, the appropriate value for A in this example is 195 square

meters, corresponding to the 2100 square feet hemispherical area.

The permissible exposure time is therefore (10 TM /1951 seconds,

which is 4.8 days.

E. VARIATION OF DESIGN PARAMETERS

As a further illustrative example, consider that one has a

vehicle with a total surface area of 390 square meters (4200 square

feet), and one wants to know what equivalent free wall thickness of

hard aluminum alloy will give not less than an even chance that the

probability of no puncture is not less than 0.90 as the vehicle remains

in a near-earth orbit for not less than 30 days. The (3901 {30_ square

meter days corresponds to the 108.70 square-meter-seconds value for

At, for which an ordinate has been marked on Fig. I0. This ordinate

crosses the 50% confidence contour at the 0.54 cm value for p,

corresponding to the 0.21 inch neccessary wall thickness.
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F. RELATIVE CONTRIBUTIONS TO THE DEGRADATION OF

CONFIDENCE

One coincidental but convenient relation between wall thickness

and confidence can be seen to be common to all of the Figs. 9 through

14: with both materials for all three values of the no-penetration

probability, and for all values of the exposure product within the

interval I0 "l __ At _ i0 |z square meter seconds, confidence is increased

from the 25% value to the 50% value, or from the 50% value to the 75%

value, accurately by doubling the wall thickness.

The relative contributions to the uncertainty can best be

taken as the relative components of the variance of the logarithm of

the necessary wall thickness, i.e., by the ratios of each of Eqs. 157

through 165 to the square of Eq. 156. The numerical values, which

are indicated in Table I, have been calculated for the specific example

described in Section IV. E.

TABLEI

Parameter Source of the Uncertainty Magnitude of the

Uncertainty

Yl Flux versus Mass 53.2%

x z Angular Deviation from the Normal 15.8

Y3 Closing Velocity 3.9

Y4 Mass-Dependence of Density 0.1

Ys Mass-Dependence of Density 0.2

Y6 Penetration Exponent of Velocity 10.8

Y7 Penetration Coefficient 3.5

Y8 Penetration versus Target Density 7.0

y Target Thickness Factor 5.5
10
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The last four lines in Table I indicate the relative components
(of the variance of the logarithm of the necessary wall thickness) which
are due to our inability to predict more accurately what will happen in
a specified hypervel ocity impact; and the sum total of these four
components is only Z6.8%. But if these four components could be
entirely eliminated, then the probable error in the logarithm of the
necessary wall thickness would only be reduced to 85.6% of its present
value; i.e., (1.000 - 0.Z68) ½ = 0.856.

G. AMELIORATING CONSIDERATIONS

Lest one might be apprehensive of the considerable free wall

thicknesses which are inferred in Figs. 5 through 14, it is appropriate

to note that Nysmith and Summers [33] report: "...two-sheet structures

are probably the most efficient multiple-sheet structures. The most

substantial gain in penetration resistance is achieved by filling the void

between the sheets with a glass-wool filler. For the one case, investi-

gated, namely, a two-sheet structure with a sheet spacing of one inch,

the penetration resistance of the structure with the glass-wool filler is

about twice as great as that of the structure without the filler material

and about 4.4 times greater than that of a single sheet of material of

the same total-sheet thickness. "

SECTION V. CONCLUSIONS

It can be seen from the numerical results, which are graphically

illustrated in Figs. 5 through 14, that if a vehicle which is very large,

and which also has thin walls, remains very long in orbit near the

earth, it may be punctured by a meteoroid.

For a vehicle of given size, given time in orbit, and given

no-puncture probability, it is necessary to increase the effective free-

wall thickness by a factor of 2.00 to change the confidence from 50%

to 75%. Ifhypervelocity puncture effects on given materials were

completely predictable for projectiles of specified density and velocity,

then the above factor would be 1.81 instead of 2.00. This would help

appreciably, but not so much as would a reduction in the uncertainty of

the mean-time-between-hits per unit of surface area for meteoroids of

mass equal to or greater than stated values.

The reader should be aware that there still exists some

controversy over the available meteoroid flux, density, velocity

and angular distribution statistics. Therefore, for any design

studies the latest accepted values should be employed.
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