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SUMMARY

Outlines for a theory of large deformations, including folding,

of arbitrary inextensible membranes are presented. The approach

to the problem utilizes isometric mapping techniques complemented

by the additional topological constraints of the folding problem in

real membrane structures. The theory is applied to an inextensible

membrane in the form of a torus. Rigorous solutions are found for

a particular class of deformations. Theoretical results are veri-

fied, qualitatively, by realization of predicted folding patterns on

two torus models.

IN TROD U C TION

Expandable pneumatic structures, i.e., structures that can be

packaged into small volumes and erected by inflation into relatively

rigid devices, have been considered for a number of space missions.

Of particular interest is the design of expandable large sized manned

orbital space laboratories in the form of a modified torus, either

partially or fully constructed from flexible materials.

Other examples where expandable structures can find applica-

tions are the large surfaces required for reflectors of electromag-

netic radiation (Echo satellite), collectors for solar energy, and
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expanding and retracting devices for manipulation of instruments dur-
ing flight or re-entry, or for operations after landing on foreign ce-
lestial bodies.

In many of these applications the operating pressure and/or the
size of the expandable structure is such that considerable structural
forces arise from pressurization. This requires a wall construction
which is strong and, as a consequence, stiff, at least in directions
tangential to the surface. Thus, while optimum design and materi-
als selection may result in a thin walled strong shell that retains suf-
ficient bending compliance to allow relatively sharp bending radii,
these designs exhibit normally sufficient membrane stiffness to limit
the membrane strains to small values. As a limiting case, such
structures can be considered as inextensible but completely flexible
membranes.

A theory of"momentless" (i.e., flexible) shells with a detailed

discussion of their inextensible deformation characteristics is pre-

sented, for instance, in reference 1. The discussion in reference 1

is limited, however, to shells of revolution and concerns itself pri-

marily with infinitesimally small deformations in the normal sense

of the theory of elastic structures. For the purpose of an analytical

treatment of the packaging and folding problem of expandable struc-

tures a more general theory is required. Such a theory can be de-

veloped based upon isometric mapping techniques (references 2, 3,

and 4).

This research has been performed with the support of the Na-

tional Aeronautics and Space Administration.

SYMBOLS

E,F,G

R

S

X

Gaussian coefficients of the first fundamental

form

radius of circumferential center line of torus

surface

radius vector



f,g, h,k

n

P

U_ V

X, y, Z

k

P

Subscripts in parentheses,

of a function X.

Plain subscripts, such as

the function

auxiliary functions of (u, v)

integer

deformation parameter

curvilinear surface coordinates

Cartesian coordinates

direction of propagation on surface

radius of meridonal circular torus section

The superscript * refers to functions of the deformed surface.

such as X(u ) , refer to the variable

X , indicate a partial derivative of
u

X with respect to the variable u

GENERAL CRITERIA FOR DEFORMATION OF

INEX TENSIBLE MEMBRANES

Consider a thin walled structural shell. Its shape can be de-

scribed by a neutral surface S located between the two faces of the

shell. Assume that the neutral surface admits no membrane strains

in tangential direction and that the shell is completely compliant in

bending. Such a structural shape will be described as an inextensible

membrane.

Let the neutral surface S be deformed continuously into a con-

secutive set of new surfaces S where p is a continuously vary-
(P)

ing parameter. For the corresponding inextensional membranes to

be deformable into the consecutive shapes described by the paramet-

ric set of surfaces S , the following conditions need to be satis-

fied:
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(a) All surfaces of the set S must be isometric with S ,

i. e. , the transformation S -_ S must retain all lengths (and, conse-

quently, all angles) on the entire surface. Isometry of transforma-

tion satisfies the condition of zero membrane strain required by in-
extensible membranes.

(b) In the domains where the original surface S is continuous,

the surfaces of the set S must also be continuous. It will not be

required, however, that the derivatives of the surfaces S be con-

tinuous at all points. Thus, the deformation may involve ridges and/

or folds along certain lines that may either be fixed on the surface or

traveling over the surface with a variation of the deformation param-

eter p The admission of slope discontinuities for the deformation

of membranes constitutes a departure from the usual conventions of

deformations in thin shells. For instance, closed analytical sur-

faces of continuously positive curvature (egg-surfaces) are normally

considered as rigid (references 2 and 4). This is true only if defor-

mations involving slope discontinuities are excluded.

(c) The topological characteristics of the surfaces S must be

equal to the topological characteristics of the original surface S

This refers particularly to the surface connectivity (genus) and sur-

face orientation (insides of closed surfaces must remain inside).

The condition of invariant connectivity excludes, for in-

stance, the case of mapping a closed, periodic surface upon an infin-

itely extended open surface. An example of this is given in the map-

ping of a torus upon a corrugated tube, discussed in the section "Iso-

metric Deformation of a Circular Torus."

The topological condition of surface orientation must be ap-

plied to exclude those deformations which, while isometric and con-

tinuous, would require the membrane to change sides by mutual per-
meation.

An example of admissible and inadmissible isometric deforma-

tions generated by reflection of the surface on intersecting planes

and involving ridge formation is shown in figure 1.



BASIC EQUATIONS FOR ISOMETRIC

DEFORMATION OF SURFACES

Let the inextensible membrane in consideration be represented

by its neutral surface S Its analytical expression may be given

by the vector X(u, v) extending from an origin 0 to a point P on

the surface and referred to the three dimensional Euclidian system

of coordinates (x,y, z) as shown in figure 2.

The parameters u and v describe a parameter net of curvi-

linear coordinates u = Constant and v = Constant on the surface

S The vector X(u,v) can be written in terms of its components
as follows :

x(u'v)1
X(u,v) =  Y(u, v) (i)

\Z(u, v)

The "infinitesimal" vector dX from the point P(u, v) to the

point Q(u + du, v + dr) is given by the components:

x u du + x dv 1

v

dX = Yu du + Yv dv (2)

du + z dv
Zu v

_x

where the subscripts refer to the partial derivatives Xu =--Su
etc.

The absolute value of dX is equal to the length of the line ele-

ment ds of the surface. The square of the differential length,

ds 2 , can be obtained by scalar multiplication of dX with itself:

(ds) 2 = (dX • dX) = E(u 'v)dUZ + ZF(u, v)dUdv+ G(u, v) dv2 (3)



This is the "first fundamental form" of the surface S with the

Guassian fundamental functions of u and v :

E(u,v ) = (Xu)z + (yu)z + (Zu)2

F(u,v) = XuXv + YuYv + ZuZv (4)

G(u, v) = (Xv)2 + (Yv)z + (Zv)2

Consider now a second surface S which is represented by

the vector X with the coordinates
(u,v) X(u,v) ' Y(u,v) '

Z(u, v) referred to the same parameters u,v as X(u, v) The

two surfaces S and S are called locaIIy isometricai if in the

points u, v on S the differential length ds is equal to the differ-

ential length ds in the corresponding point u,v on S This

means that for arbitrary directions of propagation

equation

du
I = n the

dv

I ds h2 Edu 2 + 2Fdudv + Gdv 2 El 2 + 2FX + Gds_/ E_du 2 + 2F dudv + G dv E"), 2 + 2F;I"X + G

= 1 (5)

must be satisfied. Here E F G are the
(u,v) ' _. (u,v) ' (u,v)

Gaussian fundamental quantities of S referred to the same curvi-

linear surface coordinates u,v to which S is referred. The two

surfaces S and S are entirely isometrical if equation(5) holds

for all points (u, v) and for arbitrary directions _ This is pos-

sible only if the following identities hold:

E = E , F = F , G= G (6)

Let the surface S be represented by
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X

I X,(u, v)1
Y (u,v)

z (u,v)

(7)

The necessary and sufficient condition that S be isometrical

to S is that the components x , y , z satisfy the following

system of partial differential equations:

-'- )2 (y • 2 1

(x + ) + (z) = E
U U U

-:.- _- .,.-'- ..:_ %- .,.-'-

x x + YuVv_ + z z = F .
U V L1 V

J'"_ 2 _','_2 ;:_"2

(x) + (yv) + (z) = GV V

(8)

where E, F, G are the Gaussian fundamental quantities of the orig-
inal surface S

The entirety of surfaces which are isometrical to the given

surface S is obtained from the entirety of solutions x , y ,

z of the system (8).

Trivial solutions of (8) can be found by rigid body displace-

ments :

x..:== x + clP3_ }

y = y + c2P

z = z + c_D

(9a)

where c 1 , c 2 , c 3 are arbitrary constants and p is the con-

tinuously varying deformation parameter. Another class of iso-

metric deformations is obtained by intersecting the surface by a

plane and reflecting the portion of the surface on one side of the
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plane upon the other side, such as shown in figure 1. For instance,

if the reflecting plane is parallel to the xy-plane and is described

by z = p , then the coordinates of the deformed surface are:

X = X /

y = y

z = z for z <p

z = 2p-z for z > p

(9b)

This deformation generates normally a ridge along the line of inter-

section traveling on the surface with a change of location p of the

reflecting plane.

Since the system of equations (8) is nonlinear in the derivatives

of its functions, it will be difficult to find general solutions. In

specific cases, it may be convenient to transform system (8) into a

linear system by the following substitutions:

x = ,/E cos f cos
u

Yu = _ cos f sin

z = ,/-E--sin f
u

g

J
__c°scos1

x = ,/-G-- h k
v

Yv = _ cos h sin k

= ,/-G--sin hz
v

where f(u,v) ' g(u,v) ' h(u,v) ' k(u,v)

functions of u and v

are four auxiliary

(lOa)

( 10b)

The first and third conditions of system (8) are implicitly

satisfied by equations (lOa) and (lOb). The second condition in



system (8) yields the algebraic relation:

cos f cos h cos (g-k) + sin f sin h _

F
(11)

The integrability conditions for twice differ entiable domains

of the surface (i. e., domains excluding slope discontinuities) re-

_ ,i..j,

X = X
UV VU

Yuv = Yvu

z = z
uv vu

quire :

(12)

Differentiating equations (10a) and (10b) and substituting into

equations (12)

b

f cos g) - (Vc -cos h

b

8---_(_-E'-cos f sin g) = -_u (Qf-G--cos h

8 8
(_-E-sin f) - 8u (VfG- sin h)

cos k)

sin k)

J
(13)

The system (13) constitutes three simultaneous differential

equations for the four functions f, g, h, k of u and v which are,

as an additional condition, related by the algebraic equation (11).

These four equations are equivalent to the system (8), and may in

specific cases be more convenient for the purpose of finding non-

trivial, twice differentiabIe isometric deformations.

A general solution will not be attempted here. Instead, the

specific case of an inextensible torus membrane will be investi-

gated.
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ISOMETRIC DEFORMATION OF A CIRCULAR TORUS

A class of deformations for a torus, as shown in figure 3, can
be obtained explicitly by integration of equations (ll) and (13). For
the coordinate system shown, the radius vector to a point (u, v) on
the torus is given by

X(u,v) 1
= \ Y(u,v)

vJ

/(R + p cos u) cos v_

(R + p cos u) sin v

p sin u

(14)

where R is the distance from the origin 0 to the centerline of the

torus and 0 is the radius of the meridional circle which generates

the torus by revolution about the z-axis

The curvilinear coordinates u = Constant and v = Constant ,

in this case, represent parallel circles and meridians, respectively;

u is the angle between the radius D and the xy-plane , v is the

central angle between the plane containing the meridian v = Constant

and the xz-plane . The coordinates u and v are equivalent to the

latitude and longitude angles conventionally used as spherical coor-
dinates.

By inspection of the coordinate geometry shown in figure 3,

line element of the torus is:

the

ds 2 = pZdu2 + (R + O cos u) 2 dv z (15)

and the Gaussian fundamental quantities become by comparing equa-

tion 115) with (3}:

E = pZ }

F = 0

G = (R + p cos u)z

Solutions for isometric deformations will now be restricted to

(16)
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those where parallel circles remain curves in parallel planes

(z = O)
v

With the expressions in equations (16), a set of solutions of

equations (ll) and (13} can then be given by:

: is u)
g = -_'+ pv

h = 0

k = pv+-_

(17)

Inserting these solutions into equations (10a) and (10b)yields

* O
x = - -- sin u cos pv
u p

and

* = - --P sin u sin pv
Yu p

* / 1 2

z = P V1 - -- sin uu 2
P

x
v

- (R + p cos u) sin pv

Yv
(R + p cos u) cos pv

z = 0
V

(18a)

(18b)

From these equations the components of X

surface S can be obtained by quadrature:

X =

y =

Z =

describing the

1 (R + O cos u) cos pv - c, /
P £ /1
- (R + D cos u) sin pv - c Z

J
u 0

(19)
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The three integration constants c 1 , c 2 , and c 3 represent a

rigid body translation which can be disregarded for further discus-

sion.

In this case the surface

ridional curve defined in the

J_

S is generated by revolution of a me-

xz-plane by the parametric relation:

.i.
-i-

X

(u)

z

(u)
1p (R + O cos u) ]

D J _/1 - -_lzP sin2 _ d_

(20)

The integral expression of the second of equations (20) repre-

sents an elliptical integral of the second kind. Values for this inte-

gral, tabulated in reference 5, have been used for the construction

of the meridional curves discussed in the subsequent section.

DISCUSSION OF RESULTS

Solutions for the meridional shapes according to equations (20)

are shown in figure 4 for selected parameters p If p is any

value between zero and one, the curve consists of segments of real

branches (figure 4(a)). The openings between these branches cor-

-I
respond to parameter values u > sin p (i.e., to those values of u

1 2

for which the radicand (i - ---_sin u) is negative). These solutions

P

cannot satisfy the topological restraints for a complete torus sur-

face and will therefore not be considered further.

It will be observed that the meridional curves described by

equations (20) even for p > 1 are not necessarily closed; thus the

conditions of equal topological connectivity between S and S is

not satisfied a priori. Closed meridians can be obtained, however,

by reflection. The simplest case is obtained by axial folding, that

is, by reflection on a plane z = Constant through the parallel cir-

cles u = +-_ The result is a lenticular section with two ridges, as
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shown in figure 4(c). This reflection can be expressed mathemati-

cally by the convention that the square root under the integral in

equation (20) be taken positive for - --2< u <-_ and negative for

_u_
2 2

With the convention of simple reflection at u = +-_ , closed

curves are obtained for all values of p a 1 For p = I , a cir-

cle is obtained which generates exactly the original torus (figure

4(b)). As p approaches infinity, the meridional curve degenerates

into a line covering twice the z-axis from - D_ to + D_ (figure
4(d)).

A set of more general closed meridional sections can be ob-

tained by reflection on planes through u = Constant and u + y = Con-

stant , as shown for the case p = 2 in figure 5(a). Further shapes,

particularly shapes of vanishing cross-sectional area, may be ob-

tained by subsequent reflections on other planes z = Constant as

shown in figure 5(b).

A similar situation exists with respect to the circumferential

coordinate v : Topological connectivity of the surface in circum-
.-,,_

ferential direction requires that the surface S be periodic in v

with the period 27 This can be accomplished, for instance, by a

circumferential folding technique as follows:

Consider n equal segments of the deformed torus where the

end meridians of each segment enclose a central angle of

2_ -p Each segment can now be reflected on a vertical plane
n

bounded by the z-axis , intersecting the segment at an angle p +______I?r
n

By this reflection, the segment will be folded into itself and the

2o
increment in central angle between end meridians becomes -- By

n

joining all n segments, the topological periodicity condition that the

end of the last segment v = 2y coincide with v = 0 is satisfied.

Figure 6 shows a circumferential folding schematic for p = 3 , n = 2.

By this method certain domains of the deformed surface are
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covered by the membrane in multiple layers. The minimum number
of layers is three for i < p < 3 For p = 3 , the whole torus do-

main is triply covered. Further increase of 3 < p < 5 will require

quintuple coverage of certain domains up to p = 5 , etc.

Finally, it should be remarked that the necessity for circum-

ferential folding disappears if the torus can be cut along any merid-

ian {torus segment}. Such a structure may be folded into a tight

scroll of vanishing enclosed volume and frontal area.

EXPEKIMENTAL VERIFICATION

Qualitative verification of the theoretical data presented has

been obtained by experimentation with two torus models. For this

purpose, a full and a quarter torus have been fabricated with the

following overall dimensions:

R = 19.5"

p = 3.5"

The method of fabrication consists of winding two overlapping

layers of 2. 5 mil thickness adhesive-coated tape on an inflatable
mandrel made from a standard-size 670-15 automotive inner tube.

The tape is applied in such a manner that the adhesive-coated side

of the two layers are in mutual contact. This process results in an

average wall thickness of 7 mils. After completion of the winding

process, the rubber tube is removed through a slit, and the slit is

repaired for the closed torus by an overlay of tape. The models

fabricated in this fashion approximate closely the idealized condi-

tions of inextensible membranes.

The two torus models are shown in figures 7 and 8 in their ex-

panded condition. Figure 9 shows the folded shape of the complete

torus with circumferential and axial folding according to the folding

schematic shown in figures 5(b) and 6. Figure 10 shows the quarter

torus segment folded into a closed shell (p = 4) exhibiting the pre-

dicted lenticular meridional shape. Figure 11 shows the torus seg-

ment in a tight scroll according to figure 4(d).

An interesting variant of folding deformation deviating from
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rotational symmetry is shown in figure 12. This shape involves de-

formation of the original parallel circles u = Constant into leafed

curves resembling epicycloids. The reverse fold required at the

cusps between leafs is topologically possible since the cross-section

at these meridians degenerates into a double line at the reverse fold

locations. While, in principle, the leafed shape is possible for a

completely closed torus, attempts to produce this pattern from the

original full torus were not successful, indicating that no continuous

isometric and topologically invariant set S exists between the

leafed "epicycloid" shape and the original complete circular torus.

CONCLUDING REMARKS

It is clear that, for instance, the circumferential folding tech-

nique shown in figure 6 in its pure form is possible only for infin-

itely thin membranes. For practical structural shells of finite

thickness, such a problem can be overcome, for instance, by a pe-

riodic variation of the torus cross-section, allowing finite spacing

of the concentric layers. Furthermore, axial folding involving con-

cave folds such as shown in figures 5(b) and 9 can be used to reduce

the difficulty in circumferential folding.

A second, possibly more serious, practical difficulty is the

presence of stationary and traveling cross folds (i. e. folds crossing

ridges), as indicated in figure 6. Practical implementation may re-

quire specific provisions in the wall design allowing for finite mem-

brane strains in the domains occupied by cross folds. Other possi-

bilities may be provided by different folding patterns, such as those

of the type shown in figure 12, which may eliminate traveling cross

folds.

Fui'ther study should be directed toward isometric deformations

that do not necessarily retain rotational symmetry. Also of interest

will be the expansion of the general theory to shells which admit

finite membrane strains. Such an expansion will be particularly use-

ful for a study of local fold and cross fold areas.

Astro Research Corporation,

Santa Barbara, California, July 20, 1961.
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\

Non- Admissible
Admissible

Figure I.- Isometric Deformation of Torus Membrane by

Reflection on Intersecting Planes.
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Z

u= Constant

v= Constant

B

X(u, v)

u + du,

Z(u'v) Y(u,v)

v + dv)

Y

X(u,v)

X

Figure 2.- Coordinate System for General Surface.
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v

X

R

\

Y

(R+ p cos u) dv

x

Figure 3.- Torus Coordinates.
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(a)

(b)

Figure 5.- Closed Isometric, Meridional Torus Cross-Sections

Obtained by Reflection.



Outside Fold 

Inside Fold 

Figure 6. - Circumferential Folding Schematic of Torus for 
n=2, p=3. 
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Figure 7. - Full Torus - Expanded. 

Figure 8. - Quarter Torus - Expanded. 
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Figure 12. - Full Torus - Folde d (Epicycloid). 
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