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SUMMARY y

Equations have been derived, using vector analysis, which pre-~
dict the incident energy at any given point on an earth satellite. The

derivation is based on a non-spinning satellite and extended to include

spinning vehicles. The satellite was assumed to be oriented in any
one of three ways - toward the sun, toward the earth, and tangent to
the flight path at perigee. The amount of energy received depends
upon the intensity of the radiation and the view factor between the
object and source. The view factor equations are applicable to any
mathematically describable shape. To determine the length of ex-
posure to the sun, simple relations have been developed which pre-
dict the ingress and egress points of the earth's shadow. The
solution to the equations was programmed in a general manner on
an IBM 7090. The input data required consisted of parameters to
specify the orbit and an equation to describe the surface of the
satellite. As anillustrationa cylindrical satellite with hemispherical
ends was chosen. The view factor equations were derived and
numerically integrated, andthe incident energy was calculated for an
arbitrarily selected orbit. The results indicated that spinning reduces
the peak heat fluxes in all cases, and the minimum incident energy
occurred when the vehicle was oriented toward the sun.

The methods outlined in this report are applicable to satellites
of other celestial bodies also. The only additional information
required is a knowledge of the position of the sun and the orbital
plane relative to the body.
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INTRODUCTION

One of the major problems encountered in the operation of
manned and unmanned space vehicles is heating by thermal radiation.
The net heat received by the satellite may be controlled by many
methods, both active and passive. For example, the vehicle may be
oriented to obtain the minimum incident energy, or it may be shielded
and insulated to reduce the heating, or a combination of these methods
may be used. This report will consider the thermal advantages to be
gained by minimizing the incident energy through vehicle orientation.
For a spinning satellite, the problem is simplified somewhat since
the incident energy is uniformly distributed about the spin axis. This
fact will be used to determine the irradiation of a spinning satellite
from the analyses of the non-spinning vehicles.

An object in orbit about the earth receives significant amounts
of radiant energy from three sources - direct solar radiation, earth
radiation, and albedo or earth-reflected solar energy. As long as the
satellite is near the earth it will always receive appreciable amounts
of terrestrial radiation. However, it may or may not be receiving
heat from the remaining two sources depending on the relative position
of the earth, the sun, and the satellite. The amount of heat received
from each source depends on the intensity of the radiation and the
view factor between the object and the source. Equations for the view
factors will be derived for any mathematically describable shape
traveling in a circular or elliptical orbit. These equations will in-
clude three possible vehicle orientations - earth-oriented, sun-
oriented, and tangent to flight path at perigee. To determine the
length of exposure to the solar heat source, equations will be derived
which give the points of ingress and egress of the earth's shadow.
The use of these methods will be illustrated by sample calculations
for a cylindrical satellite with hemispherical ends and a verification
obtained for certain simple cases.
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DEFINITION OF SYMBOLS

semi-major axis of orbit ellipse

semi-major axis of earth's shadow ellipse

total surface area of radiant heat source

total surface area of body receiving radiant energy
finite area increments of satellite surface

average albedo of a planet

semi-minor axis of earth's shadow ellipse

number of days after vernal equinox

diameter of a cylindrical satellite

differential surface area on the radiant heat source

differential surface area on the body receiving radiant
energy

differential area increment of irradiated surface
differential radiant heat flux from dA; to dA;
eccentricity of orbit ellipse

radiation view factor between the earth and the satellite
area, A,i

radiation view factor for a flat plate parallel to a
planet's local horizon

radiation view factor between the satellite area A;j
and earth-reflected solar energy
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DEFINITION OF SYMBOLS (Continued)

radiation view factor between the satellite area Azi and
the sun

radiation view factor for a flat plate vertical to the
local planet horizon

general mathematical function defined as
g(X41 XE’:' Xg) = 0

altitude of a satellite above a planet's surface
inclination of orbital plane to earth's equatorial plane
intensity of earth-reflected solar energy

intensity of planetary radiation

total energy radiated per unit time and area by the
earth

intensity of radiation between the earth and the satellite

unit vectors along the coordinate axes of a rectangular
cartesian coordinate system

2.206 X 10* (KM)? (constant)

1.580570 X 107 (KM)* (constant)

length of cylindrical part of satellite

right ascension of sun in plane of ecliptic
local sidereal time

North

unit vector normal to surface of heat source

unit vector normal to satellite surface



DEFINITION OF SYMBOLS (Continued)

period of orbit
semi-latus rectum of orbit ellipse
incident radiant energy from body 1 to body 2

incident radiant energy from earth to satellite area
Azg

incident energy from a planet

earth-reflected solar energy incident on area A;
solar energy incident on area A;

radius from center of earth to the satellite
radius of the earth = 6378.150 £ 0.070 (km)

radius of perigee

radius from center of earth to any point on the earth's
shadow ellipse

radius vector from earth surface element to satellite
surface element

solar constant 443 Btu/ft? hr £ 2%

unit vector from center of earth directed toward sun
location

scalar components of solar vector along the X;, Xz, X3
coordinate axis, respectively

black body equilibrium temperature of the earth
West
a coordinate of a rectangular cartesian system

rectangular cartesian coordinate system
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DEFINITION OF SYMBOLS (Continued)

vector operator ''del"

right ascension of sun in plane of equator

spherical angle in launch triangle (FIG 6)

spherical angle in perigee triangle (FIG 6)

angle in the plane of orbit, measured clockwise from
perigee to the projection of the sun into the orbital
plane (FIG 9)

declination of the sun

angle between unit surface normal to radiating surface
and vector, r;; (FIG 2)

angle between the unit normal to the surface of the object
receiving radiation and the vector, ?12 (FIG 2)

angles between unit normals to the earth and sun

angle between unit normals to the satellite and the sun
(FIG 4)

latitude of launch site

latitude of initial perigee point

obliquity of the ecliptic - 23° 27' 8, 2"

angular coordinate on cylindrical satellite (FIG 15)

geocentric angular coordinate for position description
on the earth's surface (FIG 2)

geocentric angular coordinate for satellite location
(FIG 3)
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DEFINITION OF SYMBOLS (Continued)

angular measurement in the plane of orbit (FIG 12)

geocentric angular coordinate for position description
on the earth's surface (FIG 2)

geocentric angular coordinate for satellite location
(FIG 3)

angle subtending a side of launch spherical triangle
(FIG 6)

angle subtending a side of launch perigee spherical
triangle (FIG 6)

spherical coordinate (FIG 17)
true anomaly (FIG 8)

angle between the normal to the plane of orbit and the
sun vector (FIG 9)

constant 3.1416

spherical coordinate (FIG 17)

radius of planet

Stefan-Boltzman constant -. 174 x10~% Btu/hr ft? (R°)*
spherical coordinate (FIG 16)

spherical coordinate (FIG 16)

right ascension of ascending node

regression rate of ascending node

side of launch spherical triangle (FIG 6)



DEFINITION OF SYMBOLS (Concluded)

w ®= argument of perigee

» ®= advance of perigee

Coordinate Subscripts

1,2,3 = earth centered triad (FIG 2)
4,5,6 = satellite coordinate system (FIG 5)
7,8,9 = system given by first rotation in equatorial plane

10,11,12 = orbital plane triad

13,14,15 = earth-oriented triad

16,17,18 system given by first rotation to align with the sun

(FIG 10)

19,20,21 = sun-oriented system

22,23,24 = positive hemisphere system

E.O. = earth-oriented system

P = perigee system

S.0. = sun-oriented system
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RADIATION HEAT TRANSFER

In this section, equations will be developed which predict the
thermal energy incident on the satellite. The analysis will be made
for a non-spinning vehicle and then extended to include the spinning
satellite, The irradiation will be assumed to be independent of wave-
length and angle of incidence. It is convenient to use the celestial
sphere concept which assumes that the earth is stationary and the
heavenly bodies revolve about it. Two rectangular cartesian co-
ordinate systems will be employed: one moving with the satellite,
but fixed relative to it, and a geocentric equatorial system. By
calculating the maximum heating that could be received by an earth
satellite, it will be shown that only the earth and sun contribute
significant amounts of thermal radiation.

Consider two diffusely radiating surface elements dA; and dA;,
as shown in FIG 1, which are separated by a non-absorbing medium.
The radiation emitted from dA; and striking dA; is

- -~ cos Y cos Yz
dgi+z = Iz e
|7z |

dA,; dA, (1)

where IT;_ is the radiation intensity. The angles Y; and Yy; are
the angles between the respective normals and a line connecting the
two elements. The total radiation received per unit time by area A;
from A, is

- - cos cos
Qi»z = f J Iz Yl_, > 12 g4, da, (2)
A, A, ‘rlz'

Or assuming that A; is a black body at temperature T, then

- o T,* c cos
Qs = 11 f j os Y1_’ : Yz dA, dA, (3)
A, A, lrl?-l



10

Figure 1.

Radiation Heat Transfer Between Two Surfaces
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and the limits of integration are <cos Y; 2 0, cos Yz 2 0 (4)

A. EARTH PLANETARY RADIATION

If area dA; represents an elemental area on the surface of
the earth and dA, is the satellite area as shown in FIG 2, then

— . 1(]’
cos Yi Eir_;—r; (5)
T2
and
cos Y; =_rir_._—’% (6)
T2

where the unit normal to the earth's surface is

—

N, = sinm;, cos 0; (i;) + sinn;sin®; (i) + cosm (i) (7)
and the elemental area is given by
dA; = RpE? sin n; dn; d6 (8)

The position of the satellite relative to the earth is given by the
vector _15: as shown in FIG 3, and is defined in terms of the geo-
centric angles m; and 6. If the magnitude of ﬁ is denoted as R
then the vector r—;z from the earth's surface to the satellite is

-

ry; = (R sinm, cos 6, - REg sin n; cos 6;) (—i’l) +
(R sin m, sin 8, - REg sinmn, sin 0,) (_i;) + (9)

(Rcosmn, - Rgcosn) (i,)
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Equator / /

Figure 2. Radiation Heat Transfer Between the Earth and Satellite



Figure 3.

Satellite Position Co-ordinates
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The area dA; on the satellite will depend on the particular shape of
the vehicle and will be defined later.

The only vector as yet undetermined is the satellite unit normal.
Let X4, X5, X¢ represent the coordinate axes of a rectangular
cartesian coordinate system which moves with the satellite. This co-
ordinate system is fixed relative to the satellite and chosen to give
the simplest mathematical description of the satellite surfaces.
The general equation of the satellite surface would be

g(Xe, X5, Xg) = 0 (10)

and its unit normal at any point is

> ve
T [Vl (H

with the sign chosen so that N, is always directed outward from the
surface.

The integration of equation (3) may be simplified by studying
the functional dependence of the vectors on area A,;. r], isnota
function of position on the satellite surface, since even for a 100-
foot satellite in a low orbit (100 miles), the differences in 1?12 at
extreme points on the satellite are negligible. Also by subdividing
the satellite surface into increments (Az2;) over which the
direction of the unit normal is constant, the cos Y2 is made piece-
wise independent of A,. The equation for the energy received by
Az; from the earth is

- o T,* cos cos
Qg = —- f dA,, f YL - Y2 qa, (12)
Agi A, 'I‘lzl

or

Qlezi = 0‘T14 Az Fa (13)
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where F,, is the view factor defined as

1 cos cos
Fa = Fg = — f |Y1—>‘z Y2 qa, (14)
T2

Additional information concerning the definition of the view factor is
given in Appendix A.

To apply equation (13) the surface temperature of the earth must
be determined. For a given point on the earth the temperature varies
with the time of day, season and atmospherical conditions, thus
making it impossible to use the Stefan-Boltzman Law. However, it
is possible to compute the total energy radiated by the earth by
means of an energy balance, independent of these variables, and
obtain a mean effective temperature. The thermal energy incident
on the earth consists almost entirely of solar radiation. Since the
sun is so far from the earth, it can be considered as a point source
emitting radiation which impinges on the earth in parallel lines.

The intensity of this solar energy is called the solar constant, S,
and is based on the irradiation of a flat plate normal to the sun's
rays at the earth's mean distance from the sun. The net energy
absorbed by the earth is the difference between the incident solar
radiation and the fraction that is reflected as defined by the albedo.
Since the mean temperature of the earth and its atmosphere does not
vary appreciably over extended periods, it may be concluded that
this absorbed energy is in turn reradiated. Both the solar constant
and average albedo, A, are reasonably well known for the earth

so that this reradiated energy can be readily evaluated. If It is
the total energy radiated per unit area and time, the energy balance
is

(1 - AYSTRE® = 47Rp% It (15)
E E

This assumes that all the surface of the earth is radiating with the
same intensity as a black body; therefore

I, = <TT14 = (1_;_@_ S (16)
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The most accurate value for the solar constant is that given by
Johnson (Reference 1), as

S=443i9%

and the average albedo is 0. 40 (Reference 2). Substituting these
values into equation (16) gives a mean effective temperature for the
earth of 443.5°R, and an intensity of 66, 36 Btu/hr-ft?,

B. SOLAR RADIATION

Since the irradiation of a flat plate normal to the sun's
rays is known (solar constant), it is easy to find the incident energy
on any flat surface. The amount of heat received will be proportional
to the projected area in the direction of the sun. For example, if
the unit normal to the area A;; makes an angle Y;g with the sun's
rays, as shown in FIG 4, then the radiation received from the sun
would be

Qsi = S cos Yag Ay (17)

From the form of the above equation, and the definition of a view
factor, as explained in Appendix A, it can be seen that the solar view
factor is

Fg = cos Yg = § . I:I’Z (18)
where
S = S; (i) *+ Sz (i) + S3 (is) (19)

C. ALBEDO RADIATION

The third source of energy irradiating the satellite is earth-
reflected solar energy. Neglecting the atmosphere, the amount of
solar energy incident on the earth per unit time and area would be



Figure 4.

Solar Irradiation
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S cos Yis (20)
where
cos Yig = s . I:I: (21)

However, all of this energy is not absorbed; some of it is reflected
back to space. The average fraction reflected is defined as the
albedo and accounts for the actual reflected radiation regardless of
the cause of its reflection. Therefore, the amount of the energy
returned to space, per unit time and area, by the earth would be

AS cos Yis (22)

If the energy is reflected diffusely according to Lambert's Cosine
Law then the intensity in any direction is

K S cos YlS

I = p (23)

The amount of this energy received by the satellite can now be
computed in a manner similar to direct earth radiation. The only
difference is the intensity of the radiation. Such an approach gives

Qg, * S'A A, FRj (24)
where
1 COS Y18 COS Y; COSs Y,
FR; = = f = dA, (25)

and the limits of integration are

cos Y >0 cos Y; =2 0 cos Y;g =20 (26)
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The limits of integration given by equations (4) and (26) deter-
mine whether or not a surface is receiving radiation. Specifically,
the limit cos . > 0 means that a given element of area on the
earth is in a posit—ion to emit energy to a particular satellite location.
If the cos 12 is positive, this means that the element of area on
the satellite is in a position to receive the radiation. The limit on
COS Yy insures that the earth surface area element is irradiated
by the sun and therefore should be considered when summing the
reflected solar energy.

D. OTHER CELESTIAL SOURCES

To determine whether or not the radiation from a nearby
celestial body should be considered, the maximum possible heating
loads were calculated. At any given altitude above a planet this
maximum incident energy would occur on a flat plate which is
parallel to the local planet horizon. The view factor between the
plate and the planet is determined by Smolak's equation (Reference 3)
and found to be

(27)

The intensity of the planetary radiation is determined in a manner
similar to that previously described on Page 16. The albedo values
are taken from Reference 2 and listed with the calculated intensitis
in Table 1. The incident thermal energy per unit area on a flat plate
parallel to the planet's local horizon would be

Q =I1_ F (28)

Table 2 gives the amount of incident energy for various
altitudes above the moon and the neighboring planets. It can be seen
that planetary radiation is negligible beyond 30, 000 miles from the
surface of the bodies considered. Therefore, the only sources which
contribute significant amounts of thermal radiation to an earth
satellite are the sun, the earth, and albedo or earth-reflected solar
energy.
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TABLE 1

Planetary Constants

Celestial
Body Earth Moon Venus Mars
I 66.36 | 102.86 | 50.78 | 40.48
Btu/hr-ft2
A 0.40 0.07 0.76 0.15

TABLE 2

Planetary Radiation to a Flat Plate Parallel to the Planet's Local Horizon

h qP (Btu/hr-ftz)
(Statute
Miles) Earth Moon Venus Mars
100 63.0 86.4 48.3 36.7
500 52.0 48.5 39.7 26.2
1000 42.1 28.0 32.0 18.8
5000 13.0 3.17 9.48 3.48
10000 5.33 1.00 3.87 1.19
20000 1.88 0.274 1.30 0.357
30000 0.906 0.636
40000 0.538 0. 386
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E. SPINNING SATELLITE

Spinning the satellite causes the heating loads to be uniformly
distributed about the spin axis. To calculate the incident energy the
satellite is divided into segments which are bounded by planes per-
pendicular to the spin axis. The total irradiation of each segment is
then calculated for the non-spinning case and this value divided by the
exposed surface area of the segment. This solution assumes a
constant spin rate during any one revolution, which will usually be
the case. However, variable rates can also be accounted for by
weighting the averaging process.

ORBITAL PARAMETERS

The parameters which describe the satellite's orbit and motion
will be given in this section. Spherical trigonometry will be used
to relate the launching conditions to the resulting orbit, and the
movement of the satellite in the orbital plane will be described in
polar coordinates. Because the earth is not a perfect sphere,
orbital parameters will not remain fixed but will experience per-
turbations, which will be accounted for by Krause's equations
(Reference 4).

As the vehicle travels in orbit it is assumed to be oriented in
any one of three ways: toward the earth, toward the sun, or tangent
to the flight path at perigee. In each case the vehicle will be assumed
to be capable of maintaining its orientation and not be influenced by
drag or electromagnetic forces. The primary interest here is in
the angular relations and not in expressing the coordinates of a point
in terms of the different coordinate systems; therefore, the trans-
position of the origins will be neglected. The equations relating
various unit vectors of the different coordinate systems are given
in detail in Appendix B, based on the analysis of this section.

The position of the sun relative to the geocentric coordinate
system will be derived and the attitude of the earth's shadow,
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cylinder! will be determined. Since the intersection of the orbital
plane and the shadow-cylinder describes an ellipse, the ingress and
egress points will be found by simultaneously solving the equations
for the orbital and shadow ellipses. Such an approach assumes that
the satellite is a point, which is a reasonable assumption for the
purposes of angular location.

The orbital plane is defined by the angle, i, which it makes
with the equatorial plane of the earth and the right ascension of the
ascending node, Q, as shown in FIG 5. The position of the orbit in
its plane is given by the argument of perigee, w, measured from
the ascending node to the perigee point.

The initial track of the satellite, on the earth's surface, is

illustrated in FIG 6, based on the assumption of a spherical earth
and a launch trajectory confined to the orbital plane.

To correlate the orbital and launch parameters, spherical
trigonometry is used. This method requires the solution of two
similar right spherical triangles. These triangles are formed by
the earth's equator and the track of the satellite, with the third
side being the meridian of longitude through either the launch site
or perigee projection. The launch triangle is solved first since two
of its parts are known. However, the known quantities here are the
inclination of the orbit, i, and the side opposite which is the latitude
of the launch site. This case is ambiguous, giving two possible
solutions; thus, a sketch should be drawn to interpret the results
properly. The spherical angle relations are

sin 81, = sin i sin WL, (29)

tan XL = cos i tan wp, (30)

! Actually the earth's shadow is a cone with an included angle of
0.53° and an apex located 746, 800 nautical miles from the earth's
center (Reference 5). However, the cylindrical assumption is
practical since even at a distance of 10, 000 nautical miles from the
earth the diameter of the cylinder would only be 80 nautical miles
more than the cone, or one percent of the earth's diameter.
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Figure 6.
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and
sin B, = sin A, csc wp, (31)

Using the above results, the parts of the spherical triangle with
the meridian of perigee as a side may now be found. The known
quantities are the angle of inclination, i, and the argument of perigee,
w, which is given by

.w = wj, t downrange cutoff (32)

The remaining relations are calculated by the following equations
which are similar to equations (29) through (31) above

sin 8§ = sin i sin w (33)

tanA = cos i tan w (34)
and

sin Bp = gin A csc w (35)

The date and time of launch appear in the determination of €,
since

Q = LST - Ap, (36)

as can be seen from FIG 6. The angle, AL, is found from the solution
of the launch triangle, and Reference 6 gives the local sidereal time,
LST.

The polar form of the equation of an ellipse which is

a(l - e?)

R
l + ecosv

(37)



will be used to describe the position of the satellite in the plane of
orbit. The angle, v, is called the true anomaly and is measured
counterclockwise from perigee. The radius is measured from the
perifocal point to the satellite. In the case of an earth satellite the
perifocal point is chosen at the center of the earth and the radius,
R, as shown in FIG 3. The eccentricity of the ellipse is e, and a is
the semi-major axis length.

Because of the oblateness of the earth, the perigee and nodal
locations do not remain fixed but vary according to the equations
given below (Reference 4). The location of the ascending node will
change with time according to

Q = Q }initial passage + Number of days since Q
of the satellite initial passage of the (38)
satellite
where
. 27 , K, K4 ( 3 2)
= = = (24)cosi |3—5 + 10 —x {1l *+ = e
e (24 [ (P (®) 2
3
1 v sin? i radians (39)
4 days
and
K, = 2.206 X 10% (KM)? (40)
K¢ = 1.580570 x 107 (KM)* (41)
P = Rp(l + e) (42)

3
P = (2.764 X 10-¥%) [W] f2 hours (43)
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The perturbation of the argument of perigee is
) 2 K, | 3, K 3
H = — (24 3 1--—sm21)+1o (1+—e2)
p (29 [ (12 ®" z

(1 - 5sin? i + 35 sin? 1)] - (cos i) (g’z) radians

8 day
(44)
and the position of perigee will be
w = w ) initial passage + Number of days @
of the satellite since initial passage (45)
of the satellite

The relationship between the satellite coordinate system (X4,
X5, X¢) and the earth-centered system (X;, X;, X3) depends on the
attitude of the vehicle. The derivation of the transformation equations
between these two systems will be explained by a series of rotations.
(FIG 5 is an aid to visualize the physical significance of these
rotations.) First, rotate the X;, X;, X3 coordinate system about the
X3 axis through the angle, Q. This rotation places the X7 axis on
the line of nodes.

The matrix relating the new triad to the earth-centered system
is given below in terms of the direction cosines.

or simplifying

cos cos (/2 - Q) cos /2 X; X4 l

cos (m/2 + ) cos Q cos T/2 X, = Xg

cos m/2 cos m/2 cos 0 X3 Xq
(46)
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- . .
[ cos 2 sin 2 0 X, 1 XJ
- sin Q cos 2 0 X3 = Xg
0 0 1 X3 Xo
~ J - - (47)

To place the base of the triad in the plane of the orbit, the X,, Xs,

X9 system is rotated about the X, axis through the orbital inclination
angle, i (FIG 7)

The matrix relating this system to the previous one is

(1 0 0 X5 X0
0 cos i sin i X = X11 (48)
0 - sin i cos i Xg Xy,

Further orientation in the plane of orbit is accounted for by a
rotation about the X,; axis. When the coordinate system is rotated
through the angle, w, the X;q axis will be pointing toward perigee
and the X;; axis will be tangent to the flight path of the satellite

at the perigee point. This coincides with one of the desired satellite
orientations; and if the axis of the orbiting triad, which is tangent

to the flight path, is X, then the matrix relating the satellite axis
system to the X5, X;;, X;; triad is

- ) r b - R
cos w sin w 0 X0 X4
- 8in w Cos w 0 X1 = X5 (49)
0 0 1 J {Xlz L X

Now the satellite vectors may be expressed in terms of the geocentric
coordinates by successive application of the transformation equations.

To orient the satellite so that the X; axis is always pointing
toward the center of the earth requires only a turning of the satellite



X12

X11

X10,Xy

Figure 7. Rotation of Co-ordinate System About X7 Axis
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in the plane of its orbit. The angle through which the satellite must
be rotated is measured relative to the perigee attitude of the vehicle

T
and, as can be seen from FIG 8, is simply > + v,

If the earth-oriented triad is called X;;3, X4, X;5 as shown in
FIG 8, then the relationship between it and the perigee system is
given by the matrix

- sin v cos V 0 X4 X13
- cos Vv - sin v 0 X = X4 (50)
0 0 1 Xe X5

The sun orientation is more difficult to express mathematically
since the satellite must not only be turned in the plane of its orbdit but
must also be elevated out of the orbital plane. These rotations will
be expressed in terms of the angles which the sun's unit vector
makes with the perigee system as defined in FIG 9. The scalar
components of the sun vector in the perigee system are

sin§ cos I' = § . ;; (51)

cos £ = ; ;:, (52)
and

_sinfsin T = S . 1, (53)

Since the vectors in the above equations are known in the geocentric
system (equation 19 and Appendix B),the indicated vector operations
may be completed and a scalar expression obtained for the right hand
side of each equation. Using these results and the fact that 0 < £ <,
equations (51-53) may be solved for £ and [ .
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T
By rotating the perigee system through the angle > + I' | as

shown in FIG 10, the X; axis is aligned with the sun's projection in
the orbital plane (FIG 9). The relationship between the new triad
(X154, X317, X18) and the perigee system is

' - sin I’ -cos I’ 0 ’ X4’ 'Xlé
{ cos r - sin T 0 X = X7
0 0 1 J Xe J X1s
L L L 1(54)

To complete the alignment with the sun, the satellite must now be

T
elevated about the X ¢ axis through the angle, > - £, so that the

X7 axis now points directly at the sun. The axes of the triad
resulting from the last rotation are labeled X9, X35, X3;. The
transformation between this system and the previous one is given by
the following matrix array:

. 9 - 1 i
1 0 0 X16 X1
0 sin & cos & X7 = 1 X5 (55)
0 - COS g sin g XIB J XZIJ

L J L L

To aid in remembering the orientation associated with each
arithmetical subscript, the important coordinates will hereafter be
referred to by more informative subscripts as listed below.

(perigee system) Xy X5, X¢ = Xp, Yp» 2Zp (56)
(earth-oriented) Xi3, X4y X315 = Xg.Q.r YE.O.@ ZE.O.
(57)
and
(sun-oriented) X19: X205 X211 T X5,0.r ¥S.0.: 2S.0.

(58)
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The location of the sun may be found by using the celestial sphere
concept and spherical trigonometry as shown in Reference 7. The
projection of the path of the sun on the celestial sphere is called the
ecliptic and makes an angle, ¢, with the celestial equator of 23. 45°
or 23° 27' 8.2". Using the vernal equinox as a reference point the
right spherical triangle to be solved is formed by the ecliptic, the
celestial equator, and the meridian circle passing through the sun's
position. If the right ascension in the plane of the ecliptic, Lg, was
known, then the equations could be solved. The relations from
spherical trigonometry would be

tan ¢ = tan Lg cos « (59)
and
sin Y = sin e sin Ly (60)

where a is the right ascension of the sun in the plane of the equator
and Y is the declination of the sun. The expression for Lg will be
found by use of the equation relating true anomaly to mean anomaly,
since the mean motion of the sun is well known. This equation is
(Reference 4)

5
V=M+ZesinM+Ze?‘sin2M+... (61)

where the eccentricity of the earth's orbit is 0. 0167 (Reference 5).
Since the sun completes an orbit every 365.25 days, the mean daily
motion would be

360 .9g56 Je8

365.25 day (62

and the mean anomaly expressed relative to the vernal equinox would
be
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M = 0.9856 (77 + Number of days after v.e.) (63)

The number 77 appears because the passage of the vernal equinox
occurs 77 days after perihelion of the earth. However, basing the
position of the sun on the calendar introduces an error in the
calculations. The calendar neglects the one-quarter day and com-
pensates by adding a full day every four years. To locate the true
position of the sun in any given year a correction factor is added to
account for this discrepancy. The right ascension in the plane of the
ecliptic would then be

Ly = 0.9856 (D + 77) + 1.9481 sin [0.9856 (D + 77)]

+ 0.0207 sin[2(0.9856)(D + 77)] - (64)

77 617° + Number of years since leap year
' 4

where 77.617° is the true anomaly of vernal equinox; and the number
of years since leap year will be 0, 1, 2, or 3. A new leap year is
not counted as four years since the last one, but as zero years. Now
L9 can be calculated, and equations 59 and 60 solved for o and 7.
The relationship between the coordinates o and Y, and the earth
triad, is shown in FIG 11 along with the conversion equations.

The intersection of the earth's shadow cylinder with the orbital
plane is illustrated in FIG 12 and will be described in terms of
previously defined parameters. The angle of intersection is measured
by £, the angle between the normal to the orbital plane and the sun
vector. The plane view shows elliptical shape of the locus of inter-
section and its relation to the X4, X,7, X3 triad system. The
equation of the earth's shadow ellipse is

X : X :
17 16 =
(:) + (I) = 1 (65)
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S = CosS o< cos ¥
S,= sINe< cos ¥
Say= SIN ¥
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Figure 11. Position of Sun Relative to Earth Co-ordinate System
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where ag = cis.Eé and bg = REg (FIG 12). Or, using the angle
® and the radius Rg, measured from the center of the earth to any

point on the shadow ellipse, the equation may be expressed as

RE?
cos® 6 (1 - cos® £) + cos®é

Rs = (66)

The position of the shadow ellipse in the orbital plane is defined
relative to perigee by the angle I".

The equations of the two ellipses in the orbital plane (the shadow
ellipse and the satellite orbital ellipse) are now known. Positions on
satellite orbit are specified by the true anomaly, v, while the angle
©® locates points on the shadow ellipse. From FIG 13 it can be seen
that these angular coordinates are related by the following equation

v =0 + 7/2 -T (67)

The ingress and egress points are two of the four possible inter-
sections of these ellipses, and may be found by simultaneously
solving their equations. This has been accomplished on an electronic
computer by simultaneously computing the two radii and comparing
them. By limiting the comparison to the values of v corresponding
toa O rangeof 0 < 6 < 7, the proper intersections are obtained
(FIG 14).

EXAMPLE PROBLEM

As an example, the incident energy on a cylindrical satellite
with hemispherical bulkheads will be calculated for all three vehicle
orientations. The thermal heating depends on the intensity of the
radiation and the view factor between the object and the source. The
intensities are known and the view factor equations may be evaluated
by double integration. The input data needed to perform the integration
consists of an expression for the satellite surface normal and specifi-
cation of the orbital parameters.
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Figure 13. Angular Relations in the Orbital Plane
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The surface normal equations will be derived in detail for the
satellite oriented tangent to the flight path at perigee. The other
derivations are similar, and the results are given in Appendix C.

Consider the cylinder oriented as shown in FIG 15. The equation
for its surface would be

(xp)? + (zp)? = = (68)

and the unit normal would be (see equation 11)

N, = Up) (xp) + (kp)(zp) 69)
d/2
or using the coordinate transformation
xp = d/2cost (70)
zp = d/2 sin ¢
The surface normal then becomes
l\Tz = (;;)) cos ¢ + (k_I;) sin { (72)

The relationship between the satellite coordinate system and the
earth-centered triad is given by equations (B4-B6) of Appendix B.
Substituting those expressions into equation 72 gives
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Representative Line
in the Xp, Zp Plane

Figure 15. Co-ordinate System for Description of Cylindrical Satellite
Surface
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N, = (il)[cos 4 [coswcosQ - 8in w cos i sin Q] +
sin ¢ [sinisin Q]J +

(iz) {cos ¢ [cos w 8in? + sin w cos i cos Q] +

- sin [sin i cos Q]]+ (73)

(i_;) [Cos 4 [sin w sin i] + sin g [cos 1]]

The hemispherical tank ends will be described by placing limits
on the equation of a sphere. The end nearest the origin of the
satellite coordinate system (negative hemisphere) would be part of

. d L
a sphere of radius 3 whose equation is

(xp)® + (yp)? + (zp)® = d%/4 (74)
and the unit normal would be given as (see equation 11)
I\E;_ - (ip) (xp) + (ip) (yp) + (kp) (zp) (75)

d/2

To restrict the surface to a hemisphere, it is convenient to switch
to spherical polar coordinates as shown in FIG 16. Then the unit

normal is

1\?;_ = sin ¢ sin ¢ (i_i;) + cos ¢ (};) + sin ¢ cos Y (1;;) (76)
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Figure 16. Co-ordinate System for Description of Negative Hemispherical
Bulkhead
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and the limits which define the hemisphere are
0 < ¢ < 2m (77)
T2 < 6 <7 (78)

To describe the other hemispherical end (positive hemisphere)
the origin of the coordinate axes is shifted to xp = 0, y5, = L,
zp = 0, where L is the length of the cylindrical portion of the
satellite. Denoting this new system as shown in FIG 17, the unit
normal here is

N_; = 8in K sin p (i;) + cos p (i;;) + sin p cos M (i;;) (79)
and
ip = i jp = i kp = i (80)

The angular limits are

o
IA

Bo<o27 (81)
0 < p < 7/2 (82)

The equations for the hemisphere unit normals are expressed in
terms of the earth-centered coordinate system just as the unit
normal to the cylinder was giving

g .
Nz = (ij) [sin Y sin ¢ [cos wcos Q - 8in w cos i sin Q] +
cos ¢ [- sin w co8 @ - cos w cos i sin Q] +

cos Yy sin ¢ [sin isin Q” +
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X22

= X23

Figure 17. Co-ordinate System for Description of Positive Hemispherical
Bulkhead
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—
(iz) [sin ¢ sin ¢ [cos wsinQ + sinwcosicos Q] +
cos ¢ [cos wcos icos 2 - sin w sin Q]

cos Y sin ¢ [- sin i cos Q] ] + (83)

(i3) [sind» sin ¢ [sinwsini] + cos ¢ [coswsini]+
cos Y sin ¢ [cosi]]

and

I\E; = (i_;) [sin B sin p [cos wcos Q - sinwcos i sin Q] +
cos P [— sihn wcos Q - cos w cos i sin Q] +
cos B sin p [sin i sin Q]] +
(iz) [sin K sin p [cos wsin 2 + sin wcos i cos Q] +
(84)

cos p [coswcosicosﬂ - sin w sin Q] +

cos M sin p [- sin i cos Q]} +
(-{;) [sin B sin p [sinwsini] + cos p [cos w sin i] +

cos K sin p [cos 1}]

The orbit selected has the following pertinent characteristics

[
1l

28° 45!
a = 4118.7 miles (85)
e = 0
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Launching will be assumed to be made from Cape Canaveral on
May 11, 1962, in the south-east direction. The geographic co-
ordinates of the Cape are

latitude, 28° 45'N

longitude, 80° 34' W

From this information, the ''launch triangle' may be solved using
equations 29 through 31; the results are

wy, = w/2 Ay, = 7/2
(87)
Assuming a downrange cutoff of 15° gives a value for the argument of
perigee of

w = 105°

from equation 32. The other parts of the perigee triangle are found
from equations 33 through 35 and are

& = 27° 41" (89)
A = 107° (90)
B = 81° 55 (91)

The local sidereal time at midnight on May 11, 1962, is given in
Reference 5 as

LST = 228° 31'22" (92)
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and the right ascension of the ascending node is then

Q = 228° 31' 22" - 90° = 138° 31' 22" (93)

from equation 36.

Since this is a circular orbit, equation 37 reduces to

R = a (94)

The perturbations of the orbital parameters are calculated from
equations 39 through 44; these give the position of the ascending node
as

£ = 138° 31'22" + (-7.6725) (Numbers of days since
initial passage of the (95)
satellite)

and the argument of perigee varies according to

w = 105° + (12.423)(Number of days since initial (96)
passage of the satellite)

The ingress and egress points of the earth's shadow are found to
be at v = 270.2° and 57.7°, respectively, for the initial orbit.

The position of the satellite in terms of earth-centered coordinates,

02 and n1;, is needed to compute the vector r_;z (equation 9). The
equations for these angles were given with FIG 3 and are

Cos np = % (97)
X>

sin 6, =

(98)
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Xy
0 —_—1
cos 6, R s (99)
The relationship between the earth-centered coordinates, X;, X,
and X3, and the perigee system may be found from equations 47
through 49. Substituting this information along with the fact that
xp = R cos vw
. in the plane
yp = R sin vp of orbilz (100)
zp = 0
p J
into (97), (98), and (99) gives
cos My = (sinisinw) cosv + (sinicos w) sinv (101)
sin 0, = [sinﬂcos w + cos Qcos isin w] —SB-S—V
sin n;
(102)
sinv
+ [cochosicosw - sin 2 sin w] -
sin M2
and
cos 6, F [cos Qcosw - sin R cos isin w] c‘osv
sin M
(103)
. . sin v
- [cos Qsinw + sin Qcos i cos w] -
sin M

The sine of n; is given by

sin n; = V1l - (cos np)?
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since n, always lies between zero and 7.

The components of the other vectors needed in the calculations
of the view factors may be determined from the above equations and
data. To integrate the view factors the areas A,;; must be chosen,
This selection is easy for the cylindrical part of the satellite since
the direction of N, does not change with axial distance (see equation
73) but only with angular position, {. Therefore, if the cylinder is
approximated by a circumscribed polygon, I\—I; will have a constant
direction over the surfaces of any side. The hemispherical ends
present more of a problem since the unit normal varies with both
angular coordinates. By approximating the hemispherical surface
with tangent planes the surface normal is made constant over the
areas. Using methods such as these, the surfaces of a satellite may
be approximated to any degree of accuracy desired by choice of the
sizes of area, A;;. The resulting integrals have been programmed
in a general manner on the IBM 7090, using the numerical method of
Gauss. Typical curves for the planetary, albedo and solar radiation
view factors are shown in FIG 18 through 20 for each orientation.

A detailed description of the irradiation may now be determined,
using equations 13, 17, and 24. A typical curve showing the earth
planetary radiation incident on the cylindrical part of the satellite,
at £ = 0, is presented in FIG 21. The solid line gives the heat flux
for a non-spinning vehicle and the dotted line for a spinning satellite.
The total incident energy on the cylinder is listed in Table 3 according
to the source of the radiation and the orientation of the satellite. The
same information is given in Tables 4 and 5 for the positive and
negative hemispheres, respectively.

RESULTS AND DISCUSSION

A check on the view factor equations, as derived in this report,
may be obtained for certain simple cases. Smolak in Reference 3
gives the view factor equations for planetary radiation to a flat plate
parallel or perpendicular to the local horizon. If the plate is
perpendicular to the local horizon this equation is

I __P_P/h_) (op/n)yTTZE 7R
Fy = e tan (\/1 + 2pp/h - (1 + pp/h)?

(105)
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TABLE 3
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Source of

Incident Thermal Energy for One Orbit_.ﬁ__%E

ft2

Btu

Radiacion Satellite Orientation

git%egt géi%:;e Toward Earth Toward Sun
Earth 35 32 36
Sun 123 111 0
Albedo 21 19 22
Total 179 162 58
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TABLE 4

Positive

Hemisphere

Source of

Incident Thermal Energy for One Orbit

Q Btu
2TTRZ ft

Radiation Satellite Orientation
Pach at Perigee | Tovard Earth | Tovard Sun

Earth 36 58 36

Sun 112 64 191

Albedo 20 35 16

Total 168 157 243




TABLE 5

Negative Hemisphere

59

Source of

Incident Thermal Energy for One Orbit Q_ Btu

2TTRZ ftZ

Radiation Satellite Orientation
Tangent Flight Toward Earth Toward Sun
Path at Perigee
Earth 24 14 36
Sun 86 131 0
Albedo 24 8 27
Total 134 153 63
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(The horizontal view factor has previously been given as equation 27.)
In FIG 22 the results of the numerical integration of the earth view
factor are shown for a flat plate oriented tangent to the flight path

at perigee. The values given by the Smolak's formulas are shown as
circle symbols in FIG 22 and agree exactly with the predictions of
this report.

To determine the intensity of the earth's planetary radiation, a
uniform black body temperature is assumed for the entire surface,
This assumption is necessary since the local temperature is a function
of many variables and is not predictable. In Reference. 8, Francis
made a more detailed analysis of the earth's radiosity. Using the
meterological data of other researchers, a mean environment was
obtained for each locale, at various times of the year, and the
resulting irradiation of a plane surface was studied. It was found
that the local variations from the uniform temperature results were
quite high for polar orbits (-17% to +33%) but agreed within 5% for
equatorial orbits and average conditions on the earth.

The benefits to be gained from controlling the incident energy
through vehicle orientation may be determined by studying the results
of the example problem. By orienting the satellite toward the sun,
the total heat flux to the cylinder is reduced by 120 Btu/ft?‘ each orbit,
However, the incident energy to the positive hemisphere is increased
by 76 Btu/ft? and the heat load to the negative hemisphere is reduced
by 50%. Consequently, it is very advantageous from a thermal view-
point to orient the satellite toward the sun. Orienting the vehicle
toward the earth does not offer much, since the proximity of the earth
reduces the effectiveness of the satellite as a shield.

The methods outlined in this report may be extended easily to
predict the incident energy on satellites of other celestial bodies. The
major problems would be locating the orbital plane and sun relative
to the body. However, the extension to a lunar satellite is very simple
since the sun and the vernal equinox have almost exactly the same
direction at the moon as at the earth.
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APPENDIX A

VIEW FACTORS

The standard equation for the radiation emitted by black body A,
which falls on the body A, is

Qvy = GT' _f f COS V1 C95 Y2 g4a, dA, (1)
lr_;z|2
1

The integral in this equation is usually combined with either the
area of the receiver, or the emitter, and is referred to as the view
factor. If the area of the emitter is used, the physical meaning of the
view factor is more obvious. Multiplying the numerator and denominator
of the R.H.S. of the equation by A; gives

4

Q-2 = oT, A, Fy; (2A)
where
cos Y; cos
Fip = — f L% Y2 ga, da, (3A)
1 rlZI
A

The term o T;* A, is the total energy radiated by area A; and,
therefore, the view factor represents the fraction that is intercepted
by A,. However, it is equally correct to base the view factor on the
area of the receiver, if the numerator and denominator of the R. H. S.
of equation 1A are multiplyed by A;. Then

4

Q-2 = 0T, A; Fy (4A)
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Ccos cos
Fa = = I f YorS Y2 ga, dA, (54)
T A2 ll'le

and the order of the subscripts on the view factor is reversed to
indicate that the reference used in the definition is the area A,. A
comparison of equations 5A and 3A shows the following relationship
to exist:

A, Fay = A} Fype (6A)

This is known as the reciprocity theorem.

In this report the area of the receiver has been used to define
the view factor and it is assumed that the integration is piecewise
independent of the area A,. That assumption simplifies equation 5A
to

F, = % I cos YL =02 Yz 44, (74)
A Irlzl

The equation for the thermal radiation received is unchanged, retaining
the form of equation 4A.

Another identifying property of the view factor is its numerical
value which ranges from zero to plus one. It should also be recognized
from studying the form of the radiation heat transfer equation, since
the product of the intensity of the source and the view factor gives the
incident radiant energy per unit area and time.
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APPENDIX B

COORDINATE TRANSFORMATION

Using the transformation equations 47 through 49, the unit vectors
of the satellite triad may be expressed in terms of the geocentric co-
ordinate system. The method consists of successively applyirz’g these
equations until the desired result is obtained. Consider the ip vector.

-
1

L = cos w (i) + sinw (i) + (0) (ip) (1B)

— —
or substituting for i, and ij;, then

-

= cosw (@ + @@ + @ @)+

sin w [(0) (i) + cos i(ig) + sini (ig)]

— = =

Expressing iy, ig, ig in terms of earth triad gives

—

ip = cos w [cos Q (i—;) + sin Q(i:) + (0) (i—;)] +
sin w cos i [- sin Q(i—:) + cos Q(i—z’) + (0) (i_;)] + (3B)
sin w sini [ (@ + @ + 1)@

which simplifies to

:1—1; = [coswcosQ - sin&'zsinwcosi] (i;) +
[cos w sin € + sin w cos i cos Q] (i) + (4B)

[sin w sin i] (;;)
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The remaining unit vectors are derived similarly and are obtained

as
j_;) = - sin w cos - coswcosisinQ] (E:) +
[ -
cos w cos i cos 2 -~ sin w sin Q] (i;) + (5B)
cos w sin i] (i_;)
and
k—; = [sin i sin Q] (i) + [-sin i cos QJ (L) +
(6B)

[cos i] (i_;)

The earth-oriented triad may be expressed in terms of the perigee
system by similar methods. The results are

ig.o. = - sinwv (ip) + cos vy (jp) (7B)
jE. O. = = COS v (ip) - sin v (Jp) (SB)
kp.o. = kp (9B)

The equations for the sun-oriented triad are

?s.o. = - sinD (i_;;) - cos T (J';) (10B)
js,o. = sin & cos T (ip) - sin & sin T' (jp) + cos £ (kp)
(11B)
and
Ks.0. = =-cos & cosT (ip) + cos £sinT (jp) + sin £ (ip)

(12B)



APPENDIX C

SATELLITE SURFACE UNIT NORMALS

The surface unit normals for a cylindrical satellite with hemi-
spherical ends, oriented toward the earth, are given below

Cylinder:
N, = -sinv [cos§ [coswcosﬂ - sinw cos i sinQ] (Z) +

cos § [cos ws8in 2 + sin w cos i cos Q] (i—;) +
cos § [sin w sin i] (;;)} +
cos v [cosC [— sin w cos § - coswcosisinQ] (?1) +
cos [cos wcosicos Q - sin w sin Q] (i—;) +
. (10)
cos { [cos w sin i] (i3)} +
sin ¢ [sin isin Q] (i_;) + sin £ [— sin i cos Q] (TZ) +
sin § [cos i] (i;’)}
Positive Hemisphere:

—

-

Nz = cos v sinp sin p[[- sin w cos 2 -~ cos wcos 1 sin Q] (i;) +
. . 3 -

[cos wcos icos 2 - sin w sin Q] (i) +

[cos w sin i] (i-;)] +



67

- sinv sinp sin p [[cos wcos - sinwcos i sin Q] (i;) +
3 » -
[cos wsin + sin wcos i cos Q] (i) +
. -
[smwsini] (i;)} +
- cCO8S v cos p [ cos w cos 2 - sinwcosisinﬂ] (i;) +
L
cos w 8in Q + sin w cos i cos Q] (i) +
[ . - -
sin w sin i] (13)] + (2C)

d —
- 8inv cos p { -sinwcos - cos wcos isin Q] (i) +
L

[cos wcos icos - sinw sin Q] (i) +
[cos w sin i] (i3)] +
cos u sin p [[sinisin Q] (i;) + [-sinicos Q] (i) +

[cos i] (i—;)]

Negative Hemisphere:

-

-
Nz = cosv siny sin ¢ [[— sin w cos 2 - cos w cos i sin Q] (i;) +
—
[cos wcos i cos - sin w sin Q] (iz) +
—
[cos w 8in i] (i3)] +

r -
- sin v sin Y sin ¢ [ cos wcos 2 - sin w cos i sin Q] (i;) +

.

—_>
cos w 8in 2 + sin w cos i cos Q] (iz) +

[ . -
sin w 8in 1] (13)] +
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[ . .. e
- cos V cos ¢ [ coswcosﬂ-smwcosxsmﬂ] (i) +

[ —
cos wsin  + sin w cos i cos Q] (i) +

-

L

sin w sin i] (I;)] + (3C)
- sinv cos ¢ [[-sin wcos 2 - cos wcos i sin Q] (;’1) +
[cos wcos 1cos 2 - sin w sin Q] (i_;) +
[cos w sin i] (i?)] +
cos ¥ sin ¢ [[sin i sin Q] (i_;) + [— sin i cos Q] (i_;) +
[cos i] (;;)]

The equations for the sun-oriented vehicle are given below.

Cylinder:
N = - sinT'cos [ [cos w cos 2 - sin wcos i sin QJ (i;) +

[ -
cos w sin  + sin w cos i cos Q] (iz) +

[ —
sin w sin i] (ig)] +

'3 —>
- cos I' cos { - sinwcos 2 - cos w cos 1 sin Q] (i;) +
L

[ —
| COs w cos 1 cos 2 - sin w sin Q] (i) +

[cos w sin i] (i—;)} +
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-sinf cos § cos T [ cos w cos 2 - sinmcosisinQ] (i_;) +

cos sin 2 + sin wcos i cos Q] (i) +

rsin w sin i] (i—;) + (4C)

r

-
sin¢ cos § sin T" [ - sin w cos Q -~ cos w cos i sin Q] (i;) +

[ —>
cos wcos i cos Q - sin w sin Q] (i) +

:COS w sin '1] (1?)] +
sin £ sin ¢ [[sin i sin Q] (;;) + [- sin i cos Q](I;_) +
[cos i] (i—;) ] +
Positive Hemisphere:

—>

—
Nz = -sinI' siny sinp {[cos wcos Q - sin w cos i sin Q] (i) +
. —>
[cos wsin 2 + s8in wcos i cos Q] (iz) +
[sin w sin i] (i3)} +
- » . et
-~ cos I" sinp sin p {[- sin w cos 2 - cos w cos i sin Q](i;) +
[cos wcos icos - sin w sin Q] (i) +
[cos w sin i] (13)] +
sin § cos T cos p [ [cos wcos Q - sin wcos i sin Q] (i) +
[cos wsin 2 + sin wcos i cos Q] {iz) +

sinmsini] (i__;)] +
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cos £ cos p {[sinisin Q] (i_;) + [- sin i cos Q] (i_;) +

[cos i] (i—;)] + (5C)
- sin £ sin T cos p [.- sinwcosQ—coswcosis‘inQ] (i_;)+

[ —
cos w cos i cos 2 - sin w sin Q] (i) +

[ —
cos w 8in i] (i3)] +

. [ . >
-cos§ cos I'cos u sin p [ cos w cos 2-8in w cos i sin Q] (i;) +

f —
cos wsin 2 + sin w cos i cos Q] (iz) +

- -
sin w sin i] (i3)] +

r

-
cos § sin I" cos psin p [ - sin w cos 2 -~ cos w cos 1 sin Q] (i;) +

" —
cos wcos 1 cos 2 - sin w sin Q] (iz) +

—

cos w sin i J(i;;)} +

sin € cos . sin p [[sinisins'z] (i—;) + [- sin i cos Q] (i_;) +
[cos i] (i_;)] +

Negative Hemisphere:

-

-

N; = -3s8inl sin{ sin ¢ {{coswcosﬂ-sinwcosisinﬂ] (-i:) +

[ -
cos w 8in 2+ sin w cos i cos Q} (iz) +

[ . .. e
sin w sin 1] (13)] +



71
- cos I sin Y sin ¢>{[—si,n wcos  -CO0swcos i sin Q] (i_;) +
[cos w cos icos® - sinw sinQ] (;;) +
[cos w sin i] (i_;)] +
sin £ cos I' cos ¢ [[cos w cos -~ sin w cos i sin Q] (iT) +
[cos w sin  + sin w cos i cos Q] (i—;) +
[sin w sin '1] (3;)] +
cos § cos ¢ {[sin isin Q] (i_;) + [- sin i cos Q] (;2) +

[cos i] (i—;)] + (6C)

-sin € sin T cos ¢ [[- sin w cos 2 - cos w cos i sin Q] (i) +
A} ) -
[cos wcos icos Q- sin w sin Q] (i) +
—
[cos w sin i] (i3)] +
-
-cos § cos I'cos Y sin¢ [[cos wcos 2 - sin w cos i sin Q](il) +
-
[cos wsin 2+ sin wcos i cos Q] (iz) +
. Bl
[sm w sin i] (13)] +
. - e
cos £ sin"cos ¥ sin¢ [[- sin w cos Q - cos w cos i sin Q] (i;) +

-
[cos wcos i cos 2 - 8in w sin Q] (i) +

[cos w sin i] (1?)] +
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sin £ cos ¢ sin ¢ [[sin i sin Q] (i_;) + [- sin 1 cos Q] (?z) +
[cos i] (i—;)]
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