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SUMMARY

A mathematical model is developed by which the following satellite

orientation and control problems may be resolved: (1) determining at-

titude for maximum area of solar cells in sunlight; (2) generating slew-

ing commands for a change in attitude; (3) computing star tracker

gimbal angles for maintaining proper orientation; and (4) determining

when guide stars are occulted by the earth, sun, and moon.
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MATHEMATICALANALYSIS FORTHE ORIENTATIONAND

CONTROLOF THE ORBITINGASTRONOMICAL

OBSERVATORYSATELLITE

by

Paul ]3. Davenport

Goddard Space Flight Center

INTRODUCTION

Sometime in 1964 the NASA expects to launch the first Orbiting Astronomical Observatory (OAO).

The OAO, consisting of the spacecraft and the observatory (experimenter's package and equipment),

is expected to have a lifetime of one year. The spacecraft, orbiting at an altitude of approximately

500 miles, will carry highly refined equipment to conduct astronomical experiments free from the

disturbing influence of the earth's atmosphere.

The spacecraft will be capable of directing the experimenter's equipment anywhere in space and

of maintaining this direction with a high degree of accuracy. This will be accomplished by a complex

stabilization and control system whose major elements are: (1) sun sensors, rate gyros, and a jet

system to initially orient and stabilize the spacecraft; (2) coarse inertia wheels to reorient the space-

craft, and fine inertia wheels to maintain the desired orientation; (3) a set of six star trackers to de-

termine the orientation of the OAO; and (4) a magnetic unloading system to keep the momentum in the

fine inertia wheels from building up excessively.

To place the OAO in the proper orientation in space, the precise slewing angles needed to accom-

plish this feat must be known, as well as the gimbal angles of the star trackers when they are locked

on their respective guide stars. In addition to these problems various physical constraints such as

star occultation by various bodies including the earth, sun, and moon must be considered. There are

also many constraints due to the spacecraft itself, which include such things as obtaining maximum

power by proper positioning of the solar paddles, keeping the optical axis away from the sun's dam-

aging rays, and restricting the gimbal angles within their limits. This report describes the develop-

merit of a mathematical model to aid in the solution of these problems.

COORDINATE SYSTEMS

The relative positions of the various bodies in space will be defined by giving their directions

with respect to a fixed right-handed rectangular coordinate system with axes u, v, w and origin at the

earth's center of gravity. The u-v plane will be the equatorial plane at some epoch T, the



positiveu axispointedtowardthe vernalequinoxandthepositive,_.axis towardthetrue northpoleat
time T.

Thepositionof a star will bedenotedby its right ascensionaanddeclination_. In mostapplica-
tions thedirectioncosinesa,b, c of the star will beneeded;theseare givenby

fl -- COS _ COS a ,

b = cos 8sina ,

c = sin 8 .

Since the earth revolves about the sun, the position of the stars is not exactly fixed in this co-

ordinate system; however, the maximum stellar parallax due to this motion is about 0.8 second of

arc for the nearest star.

The positions of the sun, moon, and OAO will be given at any time t (measured from the epoch T)

by their respective orbital elements, which are:

n = mean angular motion in the plane of the orbit

e = the eccentricity of the orbit

= the right ascension of the ascending node; 0 _< f? < 2,

i = the inclination of orbital plane to the u-v plane; 0 _< i <_,

_o = argument of perigee; 0 < c_ < 2-

M0 = the mean anomaly at time T

Since no orbit is truly Keplerian, first and higher derivatives of the various elements may be

necessary according to the accuracy required. It may also be necessary to update these elements

from time to time.

A secondary coordinate system with axes x, y, z is defined with respect to the OAO. The origin

of the system is at the geometric center of the OAO with the optical axis coincident with the x axis.

The positive slewing motions of yaw, pitch, and roll are defined to be clockwise rotations, as seen

from the origin, about the positive z, y, and x axes respectively.

The attitude of the OAO in space is described by specifying the right ascension a and declination

of the x axis and the angle /3, which is the angle the y axis makes with the u-v plane measured in

the y-z plane (positive direction toward the positive z axis).

Because of the great distances involved, the angular coordinates of the stars and the sun will be

considered to be the same whether the origin of the coordinate system is at the center of the earth or

the spacecraft. In the case of the sun, placing the center at the OAO instead of the earth produces a



maximumerror of less than10secondsof arc becauseof parallax (for a 500mile circular orbit).
For thestars this error is completelynegligible. However,for themoontheerror canbecomeas
greatas 1degree.

For eachstar tracker ontheOAOwedefinea coordinatesystemwith axesx_, Yi, zi suchthat
theoutergimbalanglea is in the ×i - Yi plane(positiveanglemeasuredfrom positive xi towards
positive yi) andthe innergimbalangle# is the angle from the x i - Yl plane (positive towards nega-

tive z). Thus the direction cosines of a star (with gimbal angles o and #) in this coordinate system

are given by

8 -- COS _L_COS O- ,

b = cos#sincr ,

c = -sin# .

TRANSFORMATIONS

The mathematical approach here is based on the algebra of rotations (matrix algebra); but, since

we are concerned only with directions, the rectangular coordinates of a vector will be identical to its

direction cosines. Thus, from the preceding definitions, if the attitude of the OAO is given by _, S, fl

and if (u o, v o, Wo) is any vector in the u, v, w system, then the coordinates x o, Y0, Zo of this vector

in the OAO system are given by

ixo/(u0)Yo = TflTSTa Vo

z o w o

where

cos a sin a il
T, = ,-sina cosa , T,

\o o osin:)1 0 ,

0 COS

T_ (i o= cos fl sin

In addition, if the spacecraft is yawed, pitched, or rolled by _, 8, or ¢ respectively, the coordinates

x,. Yl, z, of the vector in this new coordinate system are given by



(')Yl

Z 1

= T_ ()Y0

Z

Te Yo

Z

, or f°lT¢ Yo

Z o

where

T¢

COS _b

sine il
COS _

0

W 0 =

0 -s in 0\

1 0 8) '0 cos

T¢ 0= Cos qb sin $

-sin¢ cos¢

In order that all angles ._ may be defined uniquely, we use the function

= tan -_ (a/b) (1)

with the understanding that the sign of a is the same as that of sin 7 and the sign of b is the same as

that of cos % Thus the signs of a and b in Equation 1 determine the proper quadrant, and the inverse

tangent of a divided by b determines the proper value. For all other inverse functions the principle

value shall be taken. The range of all angles defined above is as follows:

Right ascension of x axis _

Declination of x axis

Roll of y axis fi

Yaw of OAO 4

Pitch of OAO O

Roll of OAO ¢

0<a<2v

-_2 _ S _ v/2

-_<_

-_<_

DETERMINATIONOF FINAL ROLL

If % and _2 are the right ascension and declination of a new target star S2, then we wish to de-

termine the roll Z2which will orient the solar paddles such that they receive maximum sunlight when

the optical axis points towards the star $2. This will be the case when the angle y between the sun-

line and a normal line of the paddle plane is a minimum. Let t, , v , w be the direction cosines of

the sunline in the u, v, w coordinate system. The direction cosines x, Ys, z of the sunline in the

x, y, z system (optical axis pointing toward S2) are then found as follows:

(1 (:1ys : T 8 Ta2 v2

Zs W s



The direction cosines of the sunline in the x, y, z system after a roll of fl are given by

X 5

Ys COS/_ + z s sinj3 ,

z s cos/3 - Ys sin/3 •

If xp, y,. zp are the direction cosines of a directed normal from one side of the paddle plane, the

cosine of the angle y between this normal and the sunline is expressed by

f(/3) : cos7 (2)

: XpX + yp(y, cos /5 + z s sin /5) + zp(z 5 cos fi - y, sin fl).

The requirement that 7 be a minimum implies that cos 7 be a maximum; that is,

df d__.Z"
d/3 - -siny d/_

= yp(z cos/3 - y, sinfl) - zp(z sin/3 + y_ cos/3)

: (ypZ s - Zpy,) COS /3 - (YpYs + ZpZs) sin/3

= 0 ,

OF

YPZs - ZPYs (3)
tan_ = ypy, + ZpZ

There are two possible values of fl that will satisfy Equation 3:B0 and 2r However, the value that

maximizes Equation 2 is the desired value of _; denote this value by /30.

The above analysis has considered only one side of the paddle plane, but the other side is handled

in exactly the same way with the normal whose direcfion cosines are -xp, -yp, -Zp. This requires

that the negative of Equation 2 be a maximum, which again leads to Equation 3. The proper solution

this time will be the other value of P to satisfy Equation 3, namely, /31. Thus, to determine the best

value of 3, we evaluate f(/3o) and -f(/31), and pick the value of/3 that gives the maximum of the two.

GENERATIONOF SLEWINGCOMMANDS

If the OAO has an initial attitude of a,, 31 , B_ and it is desired to reorient in order to obtain an

attitude of _2, $2, /32, the slewing commands needed to accomplish this reorientation must be



determined.Sincethe OAOmaybe rotatedaboutanyoneof threeaxes,thereare twelve possible
slewingsequences.Theseslewingsequencesare listed asfollows:

yaw- pitch - roll
roll - pitch - yaw
yaw- roll - pitch
pitch - roll- yaw
pitch- yaw- roll
roll - yaw- pitch

yaw- pitch - yaw
roll - pitch - roll
yaw- roll- yaw
pitch - roll - pitch
pitch - yaw- pitch
roll- yaw- roll

Theanalysisfor determiningthe amountof slewingrequiredis similar regardlessof the slew-
ing sequence;thereforeweshall refer to a generalslewingsequenceof i-j-k. Thematricesof these
i-i-k rotationswill bedenotedby Ti, Tj, and Tkrespectively.

If v is anyvectorwith coordinatesgivenin theOAOsystemwith attitudea,, a,, /5,, the matrix to

find the coordinates of v in the OAO system with attitude a2, _2, fi2 can be obtained as a product of

six matrices:

TB2 T$ 2Ta_ T_ll T_-ll T_? .

where T -1 indicates the inverse of T. Likewise, if a slewing sequence of i-i-k is given when the OAO

has an attitude of a,, a,, _,, which causes the spacecraft to have a final attitude of a2, _2, /_2, the

matrix of the transformation from the initial attitude to the final is found from the matrix product

T k T j T_ . Therefore T i, T j, and T k must satisfy the matrix equation:

TRTjTi = T_2T_T_2T_'T_I'T_-I ' (4)

The right-hand side of Equation 4 is a 3 × 3 matrix that can be determined from a,, 51, /_,,a2, S2, _2.

Therefore this matrix is independent of the slewing sequence. This right-hand matrix shall be denoted

as C with elements C_j. Thus for each slewing sequence the left-hand side of Equation 4 can be com-

pared with the C matrix to determine the amount of slewing. Several examples are given below:

SE_QUENCE: YAW- PITCH-ROLL

cos 9 cos q: , cos e?sin ¢ , - sin 0TqsTaT,b = sinCsin_cos¢ - cos_sin¢, sinCsingsin¢ + cos¢cos_b, sin¢cos_] ;
\cosCsin_cos_ + sinCsin_b, cosCsin_sin¢ - sin¢cos_b, cos¢cos _//

and comparing with the C matrix implies that



TeT¢T_
cosecos_ ,

= _ - sin _ ,
\sin _cos _b,

SEQUENCE: ROLL- YAW- PITCH

cos_sin¢cos¢ + sinSsin¢ ,

cos _ cos _

sinOsin_bcos¢ - cosOsin¢ ,

cos0sinCsin¢ - singcosqb\

)cos ¢ sin ¢

sinSsin_bsin_b + cos Ocos¢

and comparing this with the C matrix implies that

T_2T6T_I

SEQUENCE: YAW-PITCH-YAW

l cos ¢2 cos _ cos _bI - sin_bl sin_b 2 ,
-(sin_b2cos 0cos_b t + sin_b, cos_b2) ,

sin _ cos _'l

cos¢2cos _sin_b I + sin¢2 cos¢l ,

- sin ¢2 cos 0 sine, + cos ¢2 cosec,

sin _ sin _bI

and comparison to the C matrix gives

Thus for each slewing sequence we obtain two solutions corresponding to the plus and minus sign

of the radical. Therefore there are actually twenty-four possible slewing commands.

We could continue the above process for all twelve combinations of the matrix T k Tj T, , compare

each with the C matrix, and find that there is a definite pattern as to which elements of the C matrix

to choose for a given slewing sequence. Let the numbers 1, 2, and 3 be used to represent roll, pitch,

and yaw respectively (2-1-3 would indicate a pitch-roll-yaw sequence); then, for all sequences i-j-k

where the same type of slew is not used more than once, we have the following relations:

sinj = _r_j_ C_i .

=  reZ,+c:, : ,{<:, +c:,

sin i = -_i,kC_,//c°S J ' sin k = -_,,_C,i/cos j ,



In thedegeneratecasewhere C_j = Ckk -- C ii = C ji = O, the value of j is either plus or minus

90 degrees. In this case i and k nmst satisfy the following:

sin (k ± _i_k i) : crijkCij ,

cos (k ± aij k i) = _O-ijkCik -

The upper signs are taken when j is +90 degrees, and the lower sign when j is -90 degrees.

Example 1 -- Assume the matrix C is given. Determine the slewing angles for a pitch-roll-yaw

sequence.

By definition i is 2, j becomes 1, and k is 3. Here _ is - 1; therefore,

sine : -Ca2 ,

COS _ : ±¢C222 + C122 ,

si. : c3,/os¢ , si.¢ -- c, /cos¢ ,

If the slewing sequence includes the same type of slew twice (of the form i,-j-i2) , and k is the

slew not used, then the slewing angles are defined by

C + Ci2k = +¢Cja t + C asin j = _+ i t _ l '

cos j = Cti ,

sini I : Cij/sin j , slni 2 =

COS i I : gjiCik/Sin j, cos i 2 :

Cji/sin J ,

-GjiCki/sin j ,

= -_32 = 1 ,

When ctj = c_k = Cj_ = ck_ = O, the angle j is either 0 or 180 degrees, depending on whether C1_

is plus or minus. In this case the angles ix and i 2 must satisfy the relations



sin (i2 ± il) = _jiCkj ,

cos(i2 +_i,) = ±c._,

where the plus sign is taken if c i i is positive and the minus sign if Ci i is negative.

Example 2 -- Determine the slewing angles for a yaw-pitch-yaw sequence.

In this case i becomes 3, j is 2, k equals 1, and _ is +1:

sindP = -+¢C322 + C32' = ±¢C223 +C123 ,

COS _ = C33 ,

sin_l = C32/sin_ , sine 2 _- C23/sin(P ,

cos_1 -_ C31/sin_ ' cos¢ 2 -- -Cl3_in_ .

DETERMINATION OF GIMBAL ANGLES

The determination of the star tracker gimbal angles will depend on the physical mounting of each

star tracker with respect to the OAO's coordinate system. Let Ti ( i = 1,.-., 6) be the transformation

that determines the coordinates of a vector in the OAO system from the coordinates of the vector in

the i th star tracker system. Thus, if % and Pi are the outer and inner gimbal angles respectively

of the i th star tracker, the direction cosines in this star tracker system are given by cos #i cos %,

cos #i sin cri. -sin #i and the direction cosines in the OAO system are obtained from the following

relation:

cos #i cos (Yi_

Thus, if the OAO has an attitude defined by %, _2, /32 and the i th star tracker is locked on a star with

right ascension % and declination _L, the direction cosines ×i. Y,. z. of the star with respect to this

star tracker system can be determined from

Yi = Ti-iT_2T_2Ta2_c°sSi sinai;

Zi \ sinSi //



The gimbal angles c_i and _i are then found from the following expressions:

If the OAO is slewed with a j-k-_ slewing sequence and gimbal angles o-i , #i 2 after the slewing

are desired as a function of the gimbal angles _ri 1' gil before the slewing, the following formulas may
be applied:

= Ti"1 TzTkTjT i |c°sPi.l sincri

\ - sin #i 1

cri _ : tan -1 (Yi/_i)

]xi2 = tan -I (-zi/¢xi2 ÷ yi 2 )

SATELLITE CONSTRAINTS

Of the twenty-four possible slewing sequences there may be several that are not applicable be-

cause of restrictions imposed by the spacecraft itself. These restrictions may be investigated by the

same techniques employed in the earlier sections.

One such restriction is that the sun shade may not protect the experimenter's equipment from

the sun's rays if the optical x-axis is within 45 degrees of the sun. The first OAO also will have an

experiment at the opposite end of the optical axis; thus in this case the minus x-axis must also be

kept 45 degrees from the sun.

Although the sun shades are designed to shut if either experimental axis comes within the pro-

hibited area of the sun, it is desirable to avoid a slewing sequence that would require such action. The

avoidance of such slews will eliminate damage to the experimental equipment even if the sun shade

fails to work properly.

Another satellite constraint is that at least two star trackers must not exceed their gimbal limits

during the entire slewing sequence. If this is not possible, new star assignments must be made at

intermediate slews.

10



Todeterminewhethera target star with right ascensionaanddeclination_lies within thepro-
hibitedarea of sun,wemerelydeterminetheanglefrom thestar to the sun. Thecosineof this angle
y is given by

cost = Xs cos Scosa + ys cos Ssina + Zs sins ,

where x, y_, z s are the direction cosines of the sun. Thus, if ), is less than 45 degrees, this star may

not be viewed. In the case of the double-ended OAO, y must lie between 45 and 135 degrees before

viewing is permissible.

To check whether a slewing sequence will cause the optical axis to come within 45 degrees of the

sun, the angle y between the sun and optical axis can be written as a function of the slewing angle.

From this functional relation determine the domain of the slewing angle that nmkes y = 45 degrees or

less. If the desired slew lies within this domain, the slew is prohibited. If _,, _,, 21 definethe attitude

of the OAO before the slewing sequence begins and if u s , vs, ws are the direction cosines of the sun in

the inertial system, the direction cosines of the sun in the OAO system x . Ys, zs are given by

/xs) (/uYs = T/3 _ T_ T a1 1 Vs "

Z s W s

After a slew of 4, where _ may be either a yaw, pitch, or roll, the direction cosines of the sun

x' y: z' after the slew are defined as3' ' S

= Th Ys

g s

The cosine of the angle between the sun and optical axis as a function of _ is then

x cosL + bsink ,

where b -- Ys if _ indicates a yaw and b : -z s if _ is a pitch. A roll slew need not be considered,

since a roll does not affect the angle between the sun and optical axis.

If 40 is the desired slew, the slew will be allowable if

x cos h. + bsin_, < cos 45 ° (5)
s --

11



for all x between0 and _'o"Equation5 maybewritten as

x s 13

--cos k ÷ -- sink

_s 2 + b 2 X_s_ ÷ b2

cos 45 °

or

where

cosecosk + sinesink = cos (e-A)
cos 45 °

<

-- Cxs2 + b 2

-- tan -1 (b/xs) , -77 _ e < 7i

If

cos 45 °

Cx 2 + b 2

> 1

the slew is always permissible. If

cos 45" I.... < 1 ,

Cx _ ¢ b 2
I

the slew is permissible only if none of the following angles lie between o and _o:

e - 7)

£ + T/

c-N't 2w ,

£ +77- 2w ,

where

_o,-, ( co_ 450
/

12



Thenextslewin thesequencemaybecheckedin exactlythe samewayafter replacingx, y,, z

by x:, y:, z:.

The gimbal angles after each slew of a sequence may be obtained in the same fashion that the

final gimbal angles are determined. If % and _i are the outer and inner gimbal angles of the i th
0 0

star tracker and a slewing sequence of l-m-n is to be performed, the gimbal angles after the i th

slew are given by

where

j = 1, 2, 3

I 11. c°s i°c°s itb 1 = T/T i _c°s_i.oSincri ,

cl \ -sinai 0

( i)1CI(a t/atYi : Ti -1 bl ' b2 : T m b I ,

zi c 2 c

Yi = Ti-t b2 , Yi = Ti-1 Tn b2

Zi C2 Zi 2

OCCULTATION

The knowledge of stellar occultation is necessary for several important reasons: First, the at-

titude of the spacecraft cannot be maintained if less than two star trackers are tracking at any time;

second, the occultation of the target star during an experiment would result in wasted time.

The three bodies that cause stellar occultation are the earth, sun, and moon. Occultation due to

the sun and moon will be less frequent than that due to the earth. Because of this, the time of oc-

cultation due to the sun and moon can be determined in a similar manner. In both cases the origin of

the coordinate system is assumed to be centered at the OAO. This introduces an error due to paral-

lax of about 10 seconds of arc for the sun and about 1 degree for the moon.

13



Let i andf_be theinclinationandright ascensionrespectivelyof either the moon'sor sun's
orbit, andlet %and _i be theright ascensionanddeclinationof the i th star. Thedirection cosines
a,b, c of this star in a coordinatesystemwhosex-y planeis theplaneof theorbit are givenby

(!00:} in ilC:°°:}= cos i sin s" f_ cosf_ os 8 i sina

- sin i cos 0 \ sin 81

The cosine of the angle 7 between the star and the sun or moon is then

cost = a cos (c_+_z) + bsin (w÷_)

where o_ is the argument of perigee and p is the true anomaly. The general requirement is to de-

termine when the angle y will be less than some fixed angle _ (45 degrees for the sun, one-half the

angle subtended by the moon plus errors for the moon). When 3, just equals 4, the corresponding time

t is the time of immersion or emersion for that star. This requirement of equality may be expressed

as

acos (_+#) + bsin {_÷#) : cosh , (6)

or

cosecos (oJ+/z) + sin_ sin (c_+_z)
cos _.

(7)

where

= tan -I (b/a) , 0<e<2n

Equation 7 may also be written as

cos (E-_-_)
cos K

_a2 +b 2

so that

where

r/ -- ±
COS - 1 / /

, k = 0, I, 2,

14



Thuseachvalueof v determinesthevalueof _ at animmersionor emersionof the
valueof_ will correspondto an immersionif

andto anemersionif

sin (c-_-#) > 0 ,

i th star. This

sin (e-w-#} < 0

Once _ is known, the corresponding value of time can be obtained by the following relations:

(1/_ - e 2 sin#_
E = tan -1 _- e- +-co_ -/ + 27z[2"_]

M = E-esinE

M - M o

t = n (8)

where e is the eccentricity of the orbit, n the mean motion of the body in the plane of the orbit, Mo the

mean anomaly at epoch, and t the time from epoch.

Although occultation due to the earth is more frequent and troublesome than that due to the sun

and moon, it can be handled in a similar manner. The angle _ (immersion or emersion occurs when

the angle between OAO and the star equals _) in this case is not a constant but a function of the OAO's

range. Thus immersion and emersion can be determined analytically only when the spacecraft is in

a circular orbit. For small eccentricity, however, the circular solution using the mean range should

give sufficient accuracy.

Because of the great distances of the stars we may assume that the line from the origin to a star

is parallel to the line from the OAO to the star. Then, with the additional assumption of a spherical

earth, the cosine of _ (see sketch) may be determined by simple trigonometry.

To star

* Ix] indicates the greatest integer less than or equal to z.

15



Thus

COS _ --

where the unit of distance is the earth's radius. Hence, if r is constant, occultation by the earth may

be handled in the same manner as that of the sun and moon, that is, by Equations 6 through 8, where

the elements are those of the OAO's and where the x-y plane of the coordinate system is the OAO's

orbital plane. The test for immersion or emersion in this case is the reverse of that given for sun-

moon occultation.

CONCLUDINGREMARKS

The analysis and mathematical models contained in this report are intended to be quite general.

In many cases the formulas may be simplified if accuracy requirements warrant it. In other cases

a different coordinate system will simplify some models; for example, the ecliptic system would re-

duce any model involving the sun's coordinates. Thus the formulas contained herein are not de-

pendent on any particular coordinate system, and simplifications may be made by simply omitting

terms in various expressions.
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