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RESEARCH MEMORANDUM 

THRUST AND PUMPING CHARACTERISTICS OF A SERIES OF EJECTOR-TYPE 

EXHAUST i\Tozzms AT SUBSONIC AND s~JPmsc)mc FLLGW SPED5 

f ss By Donald P. Hearth and Alfred S.  Valerino 

SUMMARY 

An invest igat ion was conducted i n  t he  8- by 6-foot supersonic wind 
tunnel t o  determine the  th rus t  and pumping charac te r i s t ics  of a series 
of e j ec to r  exhaust nozzles. 
e t e r  and spacing r a t i o s  at free-stream Mach numbers of 0.10, 0.63, 1.50, 
and 1.90 over a pressure-rat io  range of  1 t o  10 and secondary-primary 
weight -f low r a t i o s  t o  0.36. 

D a t a  were obtained f o r  various e j ec to r  diam- 

Results of t h i s  ' investigation indicated t h a t  free-stream Mach number 
had no e f f ec t  on the pumping and jet-thrust cha rac t e r i s t i c s  of the ejec- 
t o r s  i n  t h e  range f o r  which t h e  secondary flow w a s  choked. The mass-flow 
discharge coef f ic ien t  of t he  primary nozzle was reduced as secondary 
weight flow was increased f o r  some of the  shroud configurations.  How- 
ever, t h e  flow coeff ic ient  w a s  not affected by primary pressure r a t i o  o r  
free-stream Mach number. 

INTRODUCTION 

It has been shown ( r e f s .  1 and 2 )  t h a t  increases i n  the  basic  th rus t  

These e jec tor -  
of a conventional convergent nozzle may be obtained when cooling a i r  is  
pumped through an e jec tor  surrounding the  primary nozzle. 
type exhaust nozzles a l s o  represent a form of variable-geometry j e t  e x i t  
( r e f .  2 )  which i s  desirable  f o r  engine operation over a wide range of 
pressure r a t i o s .  Numerous investigations (refs. 3 and 4, f o r  example) 
have been made i n  quiescent air  t o  determine the  t h r u s t  and pumping char- 
a c t e r i s t i c s  of various types of ejector nozzles. 

I n  order t o  f u l l y  evaluate such exhaust systems, determination of' 
t he  interferences between t h e  in te rna l  and external  flows are required. 
Invest igat ion of t h i s  problem has been in i t i a t ed ;  results concerning the  
ex terna l  flow influence on e j ec to r  pumping performance and the  external  
drag charac te r i s t ics  are reported in references 5 Rnd 6. Hnweve_rj the 
external  flow e f f ec t  on measured internal  t h rus t  f o r  e jec tor  configura- 
t i ons  has not been reported.  



To provide information cmeW%ing t h i s  problem, an invest igat ion 
was conducted i n  the  NACA 8- by 6-foot supersonic wind tunnel on a s e r i e s  
of ejector-type exhaust nozzles proposed f o r  use on supersonic a i rplanes.  
Gross-thrust data, as well  as the  pumping charac te r i s t ics ,  are presented 
f o r  various e jec tors  a t  free-stream Mach numbers of 0.10, 0.63, 1.50, and 
1.90 and a t  primary pressure r a t i o s  of 1 t o  10. 
flow was varied from zero t o  36 percent of the  primary weight flow. The 
primary nozzle w a s  s e t  f o r  simulated afterburner-on operation. Analyses 
of these data were made t o  provide an over-al l  comparison of t he  various 
configurations and a l s o  t o  compare the  net-thrust-augmentation character-  
i s t i c s  of t h e  e jec tors  t o  those of conventional nozzles. 

The secondary weight 

APPARATUS AND PROCEDURE 

I n s t a l l a t  ion 

The e jec tor  configurations were mounted on an e x i t  model which was 
ins ta l led  i n  t h e  8- by 6-foot supersonic wind tunnel, as shown i n  f igures  
1 and 2 .  A i r  preheated t o  250° F was introduced in to  the  model by means 
of the  two hollow support s t r u t s  shown. Although a can-type combustor 
was ins ta l led  i n  the  e x i t  model ( f i g .  3), a l l  data w e r e  obtained without 
a hot primary j e t .  

Shown schematically i n  figure 3 a r e  the  in t e rna l  details of the  e x i t  
model. For  the  purposes of t he  present invest igat ion,  the  external  after- 
body was gradually tapered from the  maximum body diameter of 8.25 inches 
a t  s ta t ion 49.25 t o  a diameter of 5.86 inches a t  s t a t i o n  70.61. The ex- 
t e r n a l  shrouds investigated were mounted at t h i s  s t a t i o n .  A simulated 
ve r t i ca l  f i n  w a s  mounted on the  afterbody as indicated.  
bleed valve ( fo r  varying the  secondary weight flow), and inner l i n e r  were 
attached in te rna l ly  t o  the  outer s h e l l .  A more detailed discussion of 
the  bas ic  e x i t  model and i ts  in s t a l l a t ion  i n  t h e  tunnel i s  included i n  
reference 7 .  

The combustor, 

Ejector Configurations 

Presented i n  figure 4 are schematic drawings and tables of i n t e rna l  
coordinates f o r  t he  various external  shroud configurations.  A l l  t he  con- 
figurations were investigated with the  same primary nozzle, t h e  th roa t  
diameter of  which was 3.75 inches. This sonic nozzle represented the  
afterburner-on case (nozzle-entrance diameter, 4.10 i n .  ), where the  
co l l a r  shown simulated t h e  mechanism f o r  varying t h e  nozzle-throat area. 

The various e jec tors  a re  designated by two numbers; t h e  first r e -  
f e r s  t o  the diameter r a t i o ,  while t h e  second r e f e r s  t o  the  spacing 
r a t i o .  The "basic configuration" had a diameter r a t i o  ds/dp of 1 .16  

0 
Ln 
M 
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and a spacing r a t i o  S/dp of 0.80. Ejector 1.16-0.80-S consisted of 
t h e  basic  configuration with simulated s t i f f e n e r  r ings i n s t a l l e d  on the  
inside of t he  shroud downstream of the primary nozzle such t h a t  the e x i t  
shroud diameter w a s  not r e s t r i c t e d .  
length of the basic  e jec tor  resu l ted  i n  an e jec tor  (1.29-0.54) having a 
l a rge r  diameter r a t i o  and a smaller spacing r a t i o .  The base bleed con- 
f igurat ion,  e jec tor  1.48-0, was obtained by cu t t ing  the  basic  e jec tor  a t  
t h e  plane of the  nozzle e x i t  so t h a t  the diameter r a t i o  was 1.48. Ejec- 
iur i.i6-0.38, wnicn nad t he  same diameter r a t i o  but a smaller spacing 
r a t i o  than the  basic  configuration, was obtained by increasing t h e  boat- 
t a i l i n g  of t he  external  shroud. 

Cutting 0.98 inch from the  mixing 

Data Reduction 

Symbols a re  defined in appendix A .  The method of th rus t  measurement 
is  described i n  appendix B.  This method d i f f e r s  from t h a t  of reference 7 
i n  t h a t  t h e  momentum of the  enter ing nozzle a i r  was measured by the  
s t r a i n  gage along with the  external  body drag and the  in t e rna l  drag. 
Thus, t h e  balance measured the  j e t  t h r u s t  minus external  drag d i r ec t ly .  -"o 

d s c: Gross e jec tor  force Fe i s  defined as the  j e t  t h rus t  minus t o t a l  
x u external  drag f o r  the  given configuration plus the je t -off  ex terna l  drag 

of t he  bas ic  configuration. This l a t t e r  value w a s  obtained from the  
balance with no flow passing through t h e  basic  configuration. Thus, the  
gross e j ec to r  force f o r  any given configuration consisted of i t s  j e t  
t h rus t ,  t h e  change i n  external  drag due t o  the  j e t  exhaust, and any d i f -  
ferknce i n  je t -off  external  drag between tha t  of t he  configuration under 
consideration and t h e  basic configuration. Such a parameter permitted 
an over -a l l  comparison of the  configuration. Force data are presented 
i n  terms of t he  primary nozzle-jet  thrust  ( f i g .  5),  which w a s  obtained 
from a t h r u s t  ca l ibra t ion  with the  primary nozzle only i n s t a l l e d  on the 
e x i t  model. 
t o  f2 percent .  

A check of the  force data on a bench test  indicated accuracy 

Total  weight flow through the  nozzle was obtained from the  sharp- 
edged o r i f i c e  shown i n  f igure  1 and a rotameter which measured the  pre- 
heater  fuel  flow. Primary-nozzle weight flow Wp was calculated by 
subtract ing t h e  amount of weight flow through the  ca l ibra ted  bleed valve 
Ws from t h e  t o t a l  weight flow. Primary-nozzle t o t a l  pressure Pp w a s  
obtained from continuity re la t ions  at the nozzle entrance where the 
weight flow, the  s t a t i c  pressure, t he  area, and t h e  t o t a l  temperature 
(measured i n  t h e  support s t r u t s  and assumed constant throughout t he  
model) were known. Secondary t o t a l  pressure Ps was measured by means 
of t h e  total-pressure rake shown i n  figure 3. 

flow, were calculated with the equation shown i n  appendix A and a re  
accurate t o  percent.  

Mass-flow coef f ic ien ts  
fur- i i~e  p r imary  ~ i u z z i e ,  &fined as the i-ati.0 of actual to i dea l  KGSS 

*> 



DISCUSSION OF RESULTS 

Primary-Nozzle Mass-Flow Coefficients 

The e f f ec t s  of free-stream Mach number and pressure r a t i o  on the 
primary-nozzle mass-flow coeff ic ient  are indicated i n  f igu re  6. Data 
are presented only f o r  the  basic  configuration, e jec tor  1.16-0.80-S, 
since the same e f f ec t s  were obtained f o r  t h e  other  configurations.  A s  
noted i n  reference 5 f o r  a cy l indr ica l  e jec tor  and i n  references 7 and 
8 f o r  other types of nozzles, there  w a s  l i t t l e  or no e f f ec t  of e i t h e r  
free-stream Mach number or pressure r a t i o  on the primary-nozzle mass- 
flow coeff ic ient .  

5: 
M 
M 

Figure 6 does indicate,  however, tha t  there  was an e f f ec t  of sec- 
ondary weight flow on the  mass-flow coef f ic ien t .  
a l s o  noted i n  reference 5, can best be seen in  f igure  7 i n  which data 
f o r  a l l  f i v e  configurations are presented as a function of only the  sec- 

This trend, which was 

- 

. A s  indicated, a l l  the configura- W S - 6  

w*G ondary weight -flow parameter 

t ions  yielded the  same mass-flow coeff ic ient ,  0.995, f o r  secondary weight- 
flow ra t ios  up t o  0.15. Above th i s  amount of bleed, however, t h e  sec- 
ondary f l o w  appeared t o  have r e s t r i c t e d  the primary nozzle f o r  e jec tors  
1.16-0.80, 1.16-0.80-S, and 1.16-0.38, and the flow coef f ic ien t  decreased 
rapidly.  No decrease was noted f o r  - 

data were obtained 

1.29-0.54 occurred a t  the very high 
diameter r a t i o  appears t o  have been 
phenomenon. 

e j ec to r  1.48-0 in the  range f o r  which 

0.27).  A small e f f ec t  on e j ec to r  

amounts of bleed. Thus, e j ec to r  
t he  governing c r i t e r i o n  on t h i s  

A one-dimensional analysis  of th i s  phenomenon has been made i n  ref- 
erence 9 i n  which it was assumed t h a t  equal s t a t i c  pressures ex i s t  at 
the  primary nozzle and the shroud ex i t s ,  and that isentropic  flow ex i s t s  
i n  the  primary and secondary flows. By applying these assumptions t o  
continuity re la t ions,  contraction of t h e  primary-nozzle vena contracta 
due t o  excess secondary flow can be determined as a function of the var- 
ious physical areas .  The mass-flow coef f ic ien ts  obtained by th i s  ana- 
l y s i s  are shown i n  f igure  7 f o r  a l l  configurations.  Although very good 
agreement of absolute values was' obtained, it is probably more signifi- 
cant that  t h e  analysis adequately predicted the  amount of secondary 
w e i g h t  flow at  which further increases i n  bleed flow would result in 
reduction of t h e  primary-nozzle mass-flow coef f ic ien t .  



Performance Comparison of Configurations 

Pumping and gross e j ec to r  force  data f o r  a l l  t h e  configurations are 
presented i n  f igu re  8 a t  free-stream Mach numbers of 0.10, 0.63, 1.50, 
and 1.90. Secondary-primary total-pressure r a t i o  Ps/Pp and gross 

W 

are shown as a funct ion of t h e  weight-flow 2 e  e.jector force r a t i o  7 

Pumping cha rac t e r i s t i c s .  - These data ind ica te  that cu t t ing  back 
the  contour of t he  basic ex terna l  shroud t o  obtain e j ec to r s  1.29-0.54 
and 1.48-0 from 1.16-0.80 resu l ted  generally i n  an improvement i n  the  
pumping charac te r i s t ics ,  that is, f o r  the same to ta l -pressure  r a t io , ,  
more secondary weight flow was obtained. T h i s  advantage increased with 
bleed flow and primary pressure r a t i o  but was l o s t  a t  t h e  very low values 
of these operating conditions.  Ejector 1.16-0.38, f o r  which the  diameter 
r a t i o  of t he  basic  configuration w a s  maintained at a smaller mixing 
length,  exhibited e s sen t i a l ly  the  same pumping cha rac t e r i s t i c s  as the  
basic  e j ec to r .  Thus, t he  improved pumping for t he  cut-back confiLwra- 
t i ons  i s  believed t o  have been due t o  the increase i n  minimum secondary- 
flow a rea .  

Gross e jec to r  force charac te r i s t ics .  - A comparison of t h e  various 
configurations on an over-al l  ( th rus t  minus drag) basis is  made i n  f i g -  
ure  8 by t h e  use of t h e  gross e j ec to r  force r a t i o  Fe/FjIp. The gross 
e j ec to r  force  has been defined as the  th rus t  minus drag obtained from 
t h e  balance plus  the  je t -off  external  drag of t h e  bas ic  configuration. 
Thus, t h i s  parameter includes the j e t  t h rus t  of t h a t  configuration, any 
difference between the  je t -off  external drag of t he  configuration under 
consideration and t h a t  of the basic ejector ,  and t h e  change i n  ex terna l  
drag due t o  t h e  je t  exhaust. 

These data ( f i g .  8) indicate  tha t  t he  gross e j e c t o r  force  charac- 
t e r i s t i c s  of t he  basic  configuration were improved by cu t t i ng  the shroud 
back about one-third of the  mixing length, which resu l ted  i n  a l a r g e r  ' 

diameter r a t i o .  
mary pressure r a t i o s  and/or high secondary weight flows. 
ment was a l s o  obtained by reducing the mixing length  of t h e  basic  shroud 
without changing t h e  diameter ra t io  (achieved by increasing the  amount 
of ex terna l  boa t t a i l i ng ) .  The simulated s t i f f e n e r  rings had no e f f e c t  
on the  bas ic  e j e c t o r  pumping charac te r i s t ics  and l i t t l e  e f f e c t  on the  
force cha rac t e r i s t i c s  except i n  t h e  very l o w  pressure- ra t io  range. 

This improvement was more not iceable  at t h e  high p r i -  
S l igh t  improve- 
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The trends shown i n  f igure 8 are influenced by the e f f ec t  of sec-  
ondary weight flow on the  primary nozzle shown in  f igure  7 .  
e jec tors  1.29-0.54 and 1.48-0 did not have a decreasing primary-nozzle 
mass-flow coeff ic ient ,  it would be expected tha t  the  gross e jec tor  force 
r a t i o  for  these configurations would increase r e l a t ive  t o  t h e  other  con- 
figurations a s  secondary weight flow w a s  increased. 

Because 

Effect of Free-Stream Mach Number on Ejector 1.16-0.80-S 

M To determine the  influence of free-stream Mach number on e jec tor  Er) 

performance, t h e  data f o r  t h e  various configurations as presented in 
f igure  8 have been cross-plot ted as a function of primary pressure r a t i o .  
Presented in  f igure  9,  as an example o f  these cross p lo ts ,  i s  the varia- 
t i o n  of the gross e jec tor  force r a t i o  f o r  the  basic configuration, 
e j ec to r  1.16-0.80-S, at weight-flow r a t i o s  of 0.05, 0.10, 0.15, and 0.30. 
T h i s  f igure indicates t h a t  except f o r  t he  anomalous 4.4 pressure-rat io  
data a t  Mach number 1.50, there  appears t o  have been no e f f ec t  of f r ee -  
stream Mach number, although the  gross e j ec to r  force parameter shown 
consisted of  external  drag changes (due t o  the j e t )  as well  as the 
nozzle- j e t  t h r u s t .  

I n  order t o  show e f fec t s  on only the  je t  th rus t ,  it w a s  necessary t o  
subtract  the interference drag from the  gross e jec tor  force .  Suf f ic ien t  
instrumentation was not i n s t a l l ed  on the  model in the  present investiga- 
t i o n  t o  determine the change i n  drag due t o  the  j e t .  However, an inves- 
t i g a t i o n  of the  same external  shroud configuration, but w i t h  a smaller 
primary nozzle, has been conducted f o r  which changes i n  ex terna l  drag 
were obtained. Although the drag charac te r i s t ics  f o r  t he  two investiga- 
t i ons  may not have been exactly the  same, as a f i r s t  approximation, t he  
drag values obtained with the  smaller primary nozzle ( f i g .  10) were 
used. The r e su l t i ng  j e t  t h rus t  r a t i o s  are shown i n  f igure  11 and agree 
within ~ t 2  percent with the  r e s u l t s  of a quiescent a i r  invest igat ion 
( r e f .  10) of conical shroud e jec tors  with approximately the  same spacing 
r a t i o  and diameter r a t i o s .  

. Included i n  f igure  11 a r e  the  pumping charac te r i s t ics  f o r  e j ec to r  
1.16-0.80-S obtained from cross-plot t ing f igure  8. The secondary-to- 
primary total-pressure r a t i o  Ps/Pp decreased for increasing primary 
pressure r a t i o  u n t i l  the  secondary flow "choked" (reached sonic veloci ty  
i n  the  secondary passage (see r e f .  11)). Above th i s  value of primary 
pressure r a t i o  (approximately 3 . 0 ) ,  t he  secondary t o t a l  pressure remained 
constant . 

Figure 11 indicates  no e f f ec t  of free-stream Mach number on e i t h e r  
the pumping charac te r i s t ics  or the  e jec tor  j e t  t h rus t  cha rac t e r i s t i c s .  
Similar resu l t s  were obtained by cross-plot t ing t h e  data of t h e  other 
configurations. The absence of free-stream Mach number e f f e c t s  i s  



probably due t o  secondary flow choking over t he  pressure r a t i o  range in -  
vest igated at supersonic free-stream conditions (except 1.48-0 f o r  which 
no supersonic data were obtained). Supersonic ex terna l  flow could pos- 
s ibly influence in t e rna l  e j ec to r  perfonnance i f  the  secondary flow were 
imchoked, as was noted i n  reference 1 2  f o r  a base bleed configuration. 

Net T h r u s t  Character is t ics  f o r  Ejector  1.16-0.80-S 

Although f igure  11 indicated a continued increase of e j e c t o r  jet 
t h r u s t  w i t h  secondary weight flow, the net  e f f ec t  of bleed, if  free- 
stream air is u t i l i z e d  i n  the  e jec tor ,  can only be shown i f  the inlet 
momentum of the  secondary flow is  considered. Therefore, net  t h r u s t  

Fn e 
2 ( f i g .  12)  were calculated i n  which the  t o t a l  inlet momentum 
Fn,, 

r a t i o s  

of t he  p r G r y  and secondary flow was subtracted from the  e j e c t o r  j e t  
t h rus t  and the  primary-flow i n l e t  momentum was subtracted from the p r i -  
mary j e t  t h r u s t .  
r a t i o  as shown in appendix C . The following assumptions were made: 

!Chis parameter was computed fran the e j e c t o r  jet thrust 

(1) Alt i tude = 35,OOO f e e t  

(3) Tp = 3500° R 

The general  results were not influenced by the  values assumed. 
shown in f igure  12 a r e  the maximum secondary weight flows obtainable f o r  
inlet pressure recoveries PJPO of 1.00 and 0.50. Since weight flows 
above those shown f o r  100 percent recovery could not be obtained without 
compressor bleed, calculat ions of t he  net  thrust r a t i o  were terminated a t  

Also 

Ps/Po = 1.00. 

For the  supersonic Mach numbers, an optimum bleed flow is evident.  
As would be e q e c t e d ,  the  value of the optimum bleed decreased as Mach 
number was increased because of t h e  increasing i n l e t  momentum penal ty  
of the  secondary flow. The maximum bleed flow (Ps/Po = 1.0) increased 
as free-stream Mach number was increased because of the higher p o t e n t i a l  
ram recovery of the  secondary flow. 
recovery, of course, would be l e s s  than 1.0 and would decrease as free- 
stream Mach number was increased, thereby influencing the maximum see- 
ondary flows that could be obtained. 

The maximum obtainable pressure 



Comparison w i t h  Conventional Nozzles 

Presented i n  f igure  13 is  the  
Fn e 
A with primary-nozzle pressure 

1.29-0.54. These curves a r e  f o r  a 
Fn,P 

var ia t ion  of the  net  thrust  r a t i o  

r a t i o  f o r  e j ec to r s  1.16-0.80-S and 

weight-flow r a t i o  of 0.15, o r ,  if t he  
flow were l imi ted  by pressure recovery, f o r  that weight f low at ’ 

P,/Po = 1.00. 

Figure 13 indicates  the  attainment of net  jet  augmentation over t he  
convergent primary nozzle at  subsonic free-stream conditions.  A t  super- 
sonic Mach numbers, however, the  net  t h r u s t  augmentation decreased and 
i n  some instances a penalty resu l ted .  
l a rge r  penalty encountered i n  taking secondary flow aboard. 
performance of t h e  1.29-0.54 configuration compared with the  1.16-0.80-S 
configuration at  the  higher pressure r a t i o s  is probably due t o  the  in-  
creased diameter r a t i o  ( r e f .  2 ) .  

This t rend was a r e s u l t  of the  
The b e t t e r  

Reexpansion of t he  convergent primary nozzle would a l so  cause 
t h r u s t  augmentation. The maximum net  t h r u s t  augmentation obtained in 
t h i s  manner would r e s u l t  from complete isentropic  expansion of t h e  p r i -  
mary flow in a var iable  expansion r a t i o  nozzle. This case is indicated 
i n  f igure 13 by the  dashed curve, where the  j e t  thrust was obtained by 
adding t o  t he  ca l ibra ted  primary j e t  t h r u s t  the  divergent t h rus t  incre- 
ment f o r  complete isentropic  expansion ( r e f .  13). 
within the accuracy of t he  e j ec to r  force data shown i n  f igure  13, a f ixed  
e j ec to r  would have net  t h rus t  augmentation fea tures  comparable with those 
of a variable convergent-divergent nozzle. The comparison shown i n  f i g -  
ure 13 could, of course, be a l t e r e d  by the  matching of an auxiliary in-  
l e t  t o  the e j ec to r s  as well  as the  i n l e t  ex te rna l .drag .  

L 

It would appear that ,  

The amount of j e t  t h rus t  developed by the  e j ec to r  is  compared i n  
f igu re  14  with the  maximum or  idea l  j e t  thrust which could possibly be 
rea l ized  by the  primary and secondary flows independently. The idea l  
t h r u s t  for  each of the  two systems is  defined (same as i n  r e f .  2 )  as the  
product of t he  mass flow and the  idea l  veloci ty  r e su l t i ng  from complete 
isentropic expansion at the  given pressure r a t i o  (P /p 
Th i s  f igure indicates  a peak value of approximately 0.985 at a pressure 
r a t i o  of 4 .0  with 10 percent bleed flow. The parameter shown in f igure  
13 may be usefu l  f o r  comparison with conventional nozzles i f  the cooling 
air pumped through the  e j ec to r  was obtained f romthe  engine r a the r  than 
from f ree  stream. The peak obtained with t h i s  e j ec to r  was approximately 
the  same as f o r  a convergent-divergent nozzle ( r e f .  14) .  

or PS/po). P O  



SUMMARY OF RESULTS 

The following results were obtained from an invest igat ion conducted 
on a s e r i e s  of e jec tor  configurations with t h e  primary nozzle i n  t h e  
afterburner-on posi t ion at  free-stream Mach numbers of 0.10, 0.63, 1.50, 
and 1.90 over a pressure-rat io  range of 1 t o  10 and secondary-to-primary 
weight-flow r a t i o s  t o  0.36: 

1. Free-stream Mach number had no eTfect on e i t h e r  t h e  measured J e t  
t h rus t  o r  pumping charac te r i s t ics  i n  the range f o r  which t h e  secondary 
flow was choked. 

w w 
u1 
0 

2 .  Neither free-stream Mach number nor primary pressure r a t i o  had 
any e f f ec t  on the  mass-flow coefficient of t he  primary nozzle. 
smaller diameter r a t i o  configurations, however, a decrease i n  t h e  flow 
coef f ic ien t  resu l ted  from an increase in  secondary weight flow. 

For  t he  

Lewis F l igh t  Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, August 20, 1954 
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APPENDIX A 

SYMBOLS 

The following symbols a re  used i n  t h i s  report: 

A area, sq f t  

B strain-gage-balance reading, lb 

b o a t t a i l  drag coeff ic ient ,  - 
r a t i o  of measured primary t o  computed sonic je t  t h rus t  

mass-flow discharge coeff ic ient ,  

% 
cD %%l 

wP 
j ,P 

cF 

cf 

jet-off external  drag, l b  

jet-off external  drag f o r  basic  configuration, l b  

reduction of external  drag due t o  je t  exhaust ( interference 
drag), Djo - ~ j , e  

t o t a l  external  drag, Djo - Di, l b  

e jec tor  diameter r a t i o  

+ Di + ( D '  - D .  ), lb 
Fj,e j 0  JO gross e jec tor  force,  

j e t  thrust ,  

e jec tor  j e t  

primary j e t  

e jector  net 

primary net 

mV + AAp, l b  

thrust ,  l b  

th rus t ,  l b  

th rus t ,  F j , e  - (rnsVs + mpVo), lb 

th rus t ,  FnJe - %Vo, l b  

E: 
M 
M 



E 
tn 
0 

g 

J 

M 

m 

P 

PS 

pP 

- pP 

- 

P 

q 

S 

S - 
dP 

T 

t 

v 

W 

ws G 
wP* 

r 

P 

accelerat ion due t o  gravity,  32.2 f t / sec2  

t o t a l  momentum, mV + Ap, l b  

Mach number 

mass flow, ~ A V ,  slug/sec 

t , n t a l  pressurej Ib/sn, ft. 

secondary-to-primary total-pressure r a t i o  

s t a t i c  pressure, lb/sq f t  

primary-nozzle pressure r a t i o  

dynamic pressure, ypM2/2, lb/sq f t  

mixing length, in .  

spacing rat i o  

t o t a l  temperature, OR 

s t a t i c  temperature, 91 

veloci ty ,  f t / s ec  

weight flow, lb/sec 

weight-flow r a t i o  

r a t i o  of spec i f ic  heats f o r  air 

s t a t i c  density, slug/cu f t  

Subscripts : 

i ideal, complete expansion t o  free-stream s t a t i c  pressure 

m maximum 
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APPENDIX B 

EVALUATION OF EJEG’~Q@@’ORCES FBOM EiAWCE 

The strain-gage balance w a s  connected t o  t h e  model as shown sche- 
mat ical ly  i n  the  following sketch: 

Ab I I 
__ - 

IA:.““”””n” ” ” ” ’  ’ ”“ ’  ’ ‘ , ”  I T A z  

I 
Sta t ion  1 

I 
Sta t ion  2 

E jec tor  j e t  t h rus t  i s  defined as 

F j y e  = F2 = mvz + Pz+Z - poA2 

“ j , e  = JZ - POAZ 

Jz = J1 - N 1 - 2  

Equation (Bl) i s  equivalent t o  

(B2 1 

The momentum a t  s t a t i o n  2 i s  related t o  the  momentum at s t a t i o n  1 by 

(B3)  

S inc e 

J1 = PlAl  

equation (B2) becomes 

The strain-gage balance as indicated on the  sketch measured the  
following: 
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Substi tution of AJl-, from equation (B5) i n to  equation (B4)  
yie lds  

Fj,e = PIAl + + P&l + Dj,e  + P&b PaAl - P&c - P&z (B6) 

Since A1 + Ab = A, + A2 

Thus, t he  e j ec to r  j e t  t h rus t  minus the  t o t a l  external  drag was 
measured by the balance and wits calculated as shown in  equation (B7).  

Gross e jec tor  force i s  defined as 

- Dj,e)  + D! 
Fe = (Fj,e J O  

s ince for  any configuration, 

D j , e  = D j o  - D i  (B9 

The gross e j ec to r  force and e j ec to r  j e t  thrust are ,  therefore ,  r e l a t ed  
as 

The gross e j ec to r  force and e j ec to r  j e t  t h rus t  have been presented as a 
function of the ca l ibra ted  j e t  t h rus t  of the  primary nozzle: 



irj w cn 
0 

APPENDIX c 

EVALUATION OF NET THRUST RATIO 

Ejector  net  t h rus t  and primary net  t h rus t  have been defined as: 

The net t h rus t  r a t i o  can thus be wri t ten as: 

The momentum term can be wri t ten as (Mp = 1.0): 

2Qk= 
Fj  ,P Tp YP 

neasured 
where 

the primary nozzle and is included so  t h a t  the momentum term i s  based 
on the  same j e t  t h rus t  as  the e jec tor  j e t  t h rus t  r a t i o .  

thrust r a t i o  was calculated f o r  a given 

making the  following assumptions: 

Thus, the  net 
F 
F 

and d by %, 
j , p  

(1) Alt i tude = 35,000 f t  

(2)  Tp = 3500" R 

(3) T, = Tg 

(4) v, = vo 
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Figure 2. - Exit model in 8- by 6-foot tunnel. 
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Lo 
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p o  1 l a r  

Ejector 1.16-0.80 

71.66 
72.72 
73.77 

21 

Ejector 1.16-0.80-S 

Inside dlamet er 

1 4.86 
4.34 

( a )  Ejectors 1.16-0.80 and 1.16-0.804. 

[Fuselage station1 Inside diameter] 
70.61 
71.66 
72.72 
73.71 

(b) Ejector 1.29-0.54 (%=1.295, &= 0.538 . 1 
Figure 4 .  - Sketches and pertinent dimensions of configurations invest igated.  (All dimensions are in  

Tnehen. 1 
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.30 - 

5 . 5 5  

I t 

70.61 
71.66 5.55  

I Fuse lage  s t a t i o n  I I n s i d e  d iameter  

70.61 
71.15 
71.66 
72.20 
72.7'2 
73.18 

5.74 
5 . 6 3  
5.43 
5.15  
4 . 7 5  
4.34 

( d )  E j e c t o r  1.16-0.38 
dp 

0.381 1 
F i g u r e  4 .  - Concluded. Ske tches  and p e r t i n e n t  dimensions of c o n f i g u r a t i o n s  i n v e s t i g a t e d  

dimensions are i n  i n c h e s . )  
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(a) Primary-nozzle jet thrust characteristics. 
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(b) Comparison of measured to computed primary jet thrust. 
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Figure 5. - CalL-ed*primary-nozzle jet thrust. 
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Free-stream Mach number, 

NACA RM E54Hl9 

1 

4 

MO 

1 .o 

.o 

(a) Weight-flow ratio 

1.1 
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(b) Weight-flow ratio WsdTs - 0.066. 
WP&’ 

1.1 

1.0 

I I I I I I I 1 I I I I I I 

r Y  

(c) Weight-flow ratio -- 0.150. 
W P 6 ’  

1.0 

.9 

(6) Weight-flow ratio s, 0.268. 

1.0 

.9 

1 I I I I I I I I I I I I I 

0 2 4 6 8 10 
.8 

Primary pressure ratio, P d p o  

( e )  Weight-flow ratio !L& 0.360. 

Figure 6. - Primary-nozzle mass-flow-coefficient characteristics. Ejector 

Wp 6’ 

a.. 1.16-0.80-5. 
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( a )  Ejectors  1.16-0.80 and 1.16-0.80-S. 
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0 
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(b) Ejector  1.29-0.54. 
1.1 

1 .o 

.9 

( c )  Ejector 1.48-0. 

1.1 

1 .o 

.9- 
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Wetght-flow r a t i o ,  - 
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(d)  Ejector  1.16-0.38. 

Figure 7 .  - Effect of secondary weight flow on primary-nozzle mass-flow coe f f i c i en t .  
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(a) Free-stream Mach number, 0.63. 

(b) Free-stream Mach number, 1.50. 
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Figure 10. - Estimated boattail drag characteristics. 
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Figure 11. - Effect of free-stream Mach number on pumping and ejector jet 
thrust characteristics for ejector 1.16-0.80-S. 
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