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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION OF ROTATING-STALL LIMITS IN
A SUPERSONIC TURBOFAN ENGINE

By James F. Dugan, Jr.

SUMMARY

A theoretical mixed-jet one-spool turbofan engine was analyzed over
a range of flight Mach numbers up to 2.95. The engine was characterized
by an eight-stage fan-compressor unit. The compressor and fan perform-
ance maps were computed from experimentally determined stage data and a
stage-stacking procedure. To supplement the analytical results, experi-
mental tests were conducted on a rotor-blade row rigged to simulate
first-stage operation of a turbofan engine.

The variation of the turbofan inlet flow coefficient with flight
Mach number and the experimental results indicate that turbofan flow
would probably be free of rotating stall.

INTRODUCTION

The turbofan engine offers a potential method of avoiding the severe
blade vibratory stresses excited by rotating stall that have plagued
various turbojet engines. The rotating stall in these engines occurred
whenever an engine was operated below some limiting value of equivalent
speed (usually, in the range from 70 to 80 percent of design equivalent
speed). Stator adjustment, interstage bleed, and inlet baffles have
been used successfully in turbojet engines to remedy the excessive blade
vibratory stresses caused by rotating stall (refs. 1 to 4). The use of
a turbofan engine is another possible way of avoiding rotating-stall-
excited blade vibratory stresses. If the fan operates near design flow
conditions over a wide range of equivalent speed, tip-rotating stall
(which is the most common type) will not occur.

In order to determine the operating limits for the occurrence of
rotating stall, fan and compressor operation in a supersonic turbofan
engine was investigated. 1In previous turbofan investigations, which
were concerned mainly with engine performance (e.g., refs. 5 to 8), the
fan performance map was considered to be that which would be obtained
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from testing the fan as a separate component. In this investigation,
however, a different approximation of fan performance is desirable, be-
cause the radial variations of flow parameters ahead of and behind the
fan affect the phenomenon of rotating stall. For conventional axial-
flow compressors, rotating stall usually occurs initially at the blade
tips of the first stage. 1In the turbofan engine, the throttling at the
tip section of the first stage may be less severe than that at the root
section. This type of engine, then, may be less susceptible to the
occurrence of rotating stall.

A theoretical mixed-jet one-spool turbofan engine is analyzed here-
in over a range of flight Mach numbers up to 2.95. 1In addition, experi-
mental tests conducted on a rotor-blade row rigged to simulate first-
stage operation of a turbofan engine are described. The analytical
engine is characterized by an eight-stage fan-compressor unit. The fan
is composed of the outer annulus of stages 1 and 2, while the compressor
is composed of the inner annulus of stages 1 and 2, and stages 3 to 8.
The flow through the fan and compressor is idealized by considering an
imaginary shroud separating fan flow from compressor flow in the first
two stages. Fan and compressor performance maps are computed from the
interstage data of the NACA eight-stage compressor (ref. 9) and the stage-
stacking procedure of reference 10. Fan and compressor operating lines
are found by matching the turbofan-engine components for operation over
the whole flight range at the design values of mechanical speed and
turbine-inlet temperature.

METHOD OF ANALYSIS
Analytical Procedure

A cross section of the turbofan engine is presented in figure 1.
The imaginary shroud which separates fan flow from compressor flow is
shown by the dashed line between axial stations A and B. The fan con-
sists of the outer part of stages 1 and 2, while the compressor is com-
posed of the inner part of stages 1 and 2 and stages 3 to 8. At design
conditions, about 59 percent of the total airflow bypasses the compres-
sor, combustor, and turbine components. This value lies within the range
of interest for turbofan engines. A supersonic turbofan would have an
afterburner, but none is considered in this report, since engine per-
formance is not calculated. The presence or absence of an afterburner
does not affect the component matching required to establish full-power
operating lines on the fan and compressor performance maps.

Fan performance. - Turbofan fan performance was obtained by con-
structing generalized performance curves and then computing fan perform-
ance from the generalized curves and specified design information. The
generalized curves were obtained from eight-stage interstage data used
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in preparing reference 9. During the compressor tests (ref. 9), total-
pressure and total-temperature rakes were located behind stator blade
rows and between blade wakes. The rakes had five measuring tips located
at centers of equal annular areas. To obtain the generalized fan curves,
the data at the compressor inlet and behind the second stator were used.
The fan-exit total pressures and total temperatures were obtained by
arithmetically averaging the readings from the outer three rake measur-
ing tips. Generalized fan performance curves were plotted as equivalent
total-temperature rise and equivalent total-pressure ratio against flow
coefficient. These parameters are defined by the following equations

(all symbols are defined in the appendix):

(=) - (2
TA eq TA

e/

v
(— 1 ( Um)2 -1
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(e, L@ - (iﬁéd i @
. Vel

(3)

The fan design information necessary to compute a fan performance
map resulted from assigned turbofan-engine design values. The fan de-
sign equivalent tip speed was set equal to 1218 feet per second, which
is also the design equivalent tip speed of the modified eight-stage com-
pressor (ref. lO). Other turbofan-engine design values were assigned

as follows:

Equivalent weight flow, 1b/sec . . e e e e _ 100
Equivalent specific weight flow, (lb/sec /sq ft e e e e e e 30
Inlet compressor-hub to fan-tip radius ratio . . . . . . . . . . . 0.46
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The imeginary hub radius at the fan inlet, which is also the imag-
inary tip radius at the compressor inlet, was assigned to be the mean

radius of the annulus at the turbofan inlet.
Turbofan fan design values are as follows:

Total-pressure ratio, (Pp/Pplg - « « + « « « « « « « -
Mean equivalent rotor speed, (Um/w/a)A,d’ ft/sec . . .
Equivalent weight flow, (w1/5/8)A’d, lb/sec . . . . .
Tip relative Mach number, Mé,A,d e s e e e e e e e e
Anmmulus area at fan inlet, Aan,A’ sq ft . . .. ...
Adigbatic efficiency, LT R

Compressor performance. - The turbofan compressor
from generalized stage curves, design information, and

map
the

.« e . 1.95
.« . . 1054
. . . 59.25
. e e 1.237

. e s 1.557
. . . 0.874

was computed
stage-stacking

procedure discussed in reference 10. The generalized curves for com-
pressor stages 1 and 2 in combination were obtained from the eight-stage
interstage data used in preparing reference 9. The total pressures and
total temperatures at the exit of stage 2 were obtained by arithmetically
averaging the readings from the inner three rake measuring tips. Gener-
alized performance curves for compressor stages 1 and 2 were plotted as
equivalent total-temperature rise and equivalent total-pressure ratio
against flow coefficient. The generalized performance curves of com-
pressor stages 3 to 8 are the same as those of stages 3 to 8 in

reference 10.

Turbofan compressor design values are as follows:

Total-pressure ratio, (Po/P1)g « « - « - « = - -
Equivalent weight flow, (WW/_/S)l a’ lb/sec ..
Adiabatic efficiency, Me,d * * * . e e
Mean equivelent rotor speed, (Um/w/—)l as ft/sec ...
Annulus area at compressor inlet, Agpn 1, 8q ft . . .
Tip relative Mach number, M%,l,d’ e e e e e e e e e

The values of annulus area ratio, mean-radius ratio, and

. .- 8.45
. e e 40.75
.« .. 0.874
. .. 724.7
e . 1.071
.« v 0.974

absolute flow

angle needed to compute compressor performance by the stage-stacking

technique (ref. 10) are listed in the following table:
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Stage | Annulus |Mean- |Absolute
area radius flow
ratio, |ratio, angle,
Agn,n-1 | Tm,n Pn>
Aa.n,n m,n-1 deg
1& 2| —ccee | —--e- 0
3 1.304 1.246 30
4 1.370 1.030 30
5 1.152 1.010 30
6 1.174 1.010 30
7 1.184 1.008 30
8 1.145 1.006 30
Combustor performance. - Combustor efficiency and total-pressure
ratio were assigned to be constant for all operating conditions:
Combustor efficiency, 2,3 « « - - e e e e e e e e e e e e 0.95
Combustor total-pressure ratio, P3/P2 e e e e e e e e e e e e 0.94

Turbine performance. -~ Several simplifying assumptions are made re-
garding turbine performance. The equivalent weight flow at the turbine
inlet is assumed constant for all operating conditions. The turbine
efficiency is assumed to vary according to the following equation, which
is a development of the efficiency parabola discussed on page 222 of
reference 11.

N 2
n34~a+bi—-c (4)
’ Hy - Hy
03
where
a design value of turbine efficiency, 0.85
b -a/c?
c design -value of (N/1/63)/1/(H5 - Hy)/63

Turbine efficiency in the turbofan engine varied from 0.83 to 0.85 for
the range of operation considered.

Component matching. - Fan and compressor operating lines were cal-
culated from the assigned flight conditions, the assigned mode of engine
operation, component performance, and a component matching procedure.
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Flight conditions were specified by flight Mach number and altitude.
For full-power operation in the stratosphere, flight Mach number varied
from 1.28 to 2.95. The values of turbofan mechanical speed and turbine-
inlet temperature were held fixed at their design values for all flight
conditions.

Before the component matching procedure could be used, turbofan
constants had to be calculated or assigned. The annulus area at station
5 (see fig. 1) was sized to give a design Mach number at this station
equal to 0.2. The annulus area at station C was sized to satisfy the
condition that ©pg = p5 at design conditions. The area at station 6 was

set equal to the sum of the flow area at stations 5 and C. Duct total-
pressure ratio PC/PB was assigned to be 0.97.

For a specified flight condition and mode of engine operation, the
compressor operating point was found by satisfying the following
equation:

T3
B N1y | wVes (Wl‘\/es) (s)
5 P2 82 52 /Ja

Py

Equation (5) implies that the fuel-air ratio, as well as combustor total-
pressure ratio and turbine-inlet equivalent weight flow, is constant.

The fan operating point is found by iteration. A trial fan oper-
ating point is assigned along the known equivalent-speed line (N/+/6),.
The static pressure is calculated at station C, where axial flow is as-
sumed to exist. A turbine operating point is calculated for the known
compressor operating point and the trial fan operating point by using
the condition that fan power plus compressor power equals turbine power.
The static pressure is also calculated at station 5, where axial flow is
assumed. If pg does not equal pp, & second trial fan operating point

is assigned. The iteration is repeated until Pg equals pp, thereby
fixing the correct fan and turbine operating points.

Experimental Procedure

The inlet flow coefficient below which rotating stall exists in the
turbofan engine is probably influenced by the condition of separate
throttling in the outer and inner annuli. In order to investigate this
probability, a rotor-blade row was run at conditions simulating turbofan
operation. The annulus behind the blade row was divided into two annuli
by a cylindrical shell. The diameter of the shell was equal to the
arithmetic mean of the inner and outer diameters of the total annulus.
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A strip of rubber was clamped to the inner surface of the inner annulus.
By regulating the air pressure beneath the rubber strip, additional

throttling in the inner annulus could be achieved. The rotor was first
operated at 60-percent design speed with no additional throttling in the

inner annulus. The airflow was decreased until the presence of rotating
stall was detected by means of hot-wire anemometers. The rotor was then

operated with various amounts of additional throttling in the inner
annulus. Again, the speed was held constant while the airflow was de-
creased until rotating stall was detected.

In order to learn how the flow readjusted when more flow than nor-
mal was forced through the outer annulus, flow ahead of and behind the
rotor was measured during operation with and without additional throt-
tling in the inner annulus downstream of the rotor.

RESULTS AND DISCUSSION
Performance Maps

The turbofan fan performance is shown in figure 2. Figure 2(a)
shows the generalized performance curves that resulted from data used in
preparing reference 9. Figure 2(b) is the fan performance map obtained
from the generalized curves and specified design values.

The generalized stage curves of the turbofan compressor stages 1
and 2 are shown in figure 3(a). Figure 3(b) shows the turbofan com-
pressor performance map obtained from the generalized stage curves of
figure 3(a) and reference 9, the specified design information, and the
stacking procedure discussed in reference 10.

The full-power operating lines on the fan and compressor maps of
the turbofan engine are shown in figure 2(b) and 3(b). These lines re-
sult from matching engine components for the assigned full-power oper-
ating mode in which engine mechanical speed and turbine-inlet tempera-
ture are held constant at their design values. Engine operation at de-
sign equivalent speed corresponds to a flight Mach number of 1.28 in the
stratosphere, and at 70-percent speed corresponds to Mach 2.95.

Rotating Stall

Reference 10 estimates that rotating stall will exist up to about
72 percent of design speed for the modified eight-stage compressor.
In the reference, a line representing first-stage operation at the flow
coefficient corresponding to meximum first-stage equivalent total-
pressure ratio was located on the predicted compressor performance map.
Compressor operation to the left of this line corresponds to stalled
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operation of the first stage. The actual performance of the modified
eight-stage compressor is discussed in reference 12. Three- and four-
zone rotating-stall patterns were indicated up to equivalent speeds of
approximately 73 percent of design speed (72 percent of design speed was
predicted). Rotating-stall-excited rotor-blade vibratory stresses as
high as £17,700 psi and stator-blade vibratory stresses as high as
459,500 psi were recorded. For this analysis, it is assumed that rotat-
ing stall is likely to occur whenever the inlet flow coefficient becomes
less than the value corresponding to maximum equivalent total-pressure
ratio for the inlet stage.

The variation in turbofan compressor and fan inlet flow coefficients
with equivalent speed and flight Mach number is shown in figure 4. The
compressor inlet flow coefficient decreases with decreasing equivalent
speed (increasing flight Mach number). At an equivalent speed of 81-
percent design (Mach 2.27) the inlet stages of the compressor operate at
the flow coefficient for maximum equivalent total-pressure ratio. The
fan inlet flow coefficient behaves quite differently. It increases as
equivalent speed decreases, so that the average fan incidence angle is
always equal to or less than design. Whether or not these conflicting
trends of the compressor and fan will result in rotating stall is exam-
ined by considering the variation of the turbofan inlet flow coefficient
based on the total flow through the fan and the compressor.

In figure 5, the total flow coefficient for both the fan and com-
pressor of the turbofan engine is plotted against equivalent speed and
flight Mach number. Although the total flow coefficient decreases as
flight Mach number increases, even at Mach 2.95 the inlet flow coeffi-
cient is considerably greater than the value corresponding to maximum
first-stage equivalent total-pressure ratio. Thus, although the com-
pressor inlet flow coefficient (for the inner part of the annulus) de-
creases below the value for which rotating stall might be expected, the
total flow coefficient (for the complete annulus) always remains well
above its limiting value because of the high flow through the outer part
of the annulus.

Rotor-blade-row experimental tests were made to determine whether
the limit for rotating stall would be set by the average flow coeffi-
cient for the complete annulus or by compressor flow coefficient for
the inner part of the annulus. These tests indicated that the limiting
value of inlet flow coefficient for the complete annmulus (below which
rotating stall is present) decreases as more and more airflow is forced
through the outer part of the annulus. The maximum decrease attained
during the tests was about 7 percent. This trend would lower the stall
limit in figure 5 at high flight Mach numbers and therefore further de-
crease the probability of encountering rotating stall in the turbofan
engine. Thus, rotating stall is not likely to be encountered in a
turbofan engine with conventional compressor designs. If the turbofan

L ]
. .: ...: .:. ® oo LA N J LE X I e seces oo [ J L] (X )
. . cos : . [ ] L J L] [ ] (XXX ] L o o e o [ ]
o . . . .: : ... [ X ] L] . [ ] o o8 o o L J
@60 0000 000 00006 90 oeoe °* * : * ¢ : .: : :

AShFIp¥NTIAL® °°




(X4 o0 e e6® 0600 8000 06O [ X X X J :...
T AU S N L O S N
:o.: E .E ..oo :oo. :..: .00. oo.. o:o : eee oose 0de
NACA RM ES7G268 CONFIDENTIAL 5

engine had an unconventional compressor design in which stall occurred
at the hub, this conclusion probably would not be valid.

Turbofan Inlet Axial Velocity

The assumption regarding the division of flow between the turbofan
fan and compressor results in sizable differences between the fan and
compressor average inlet axial velocities (fig. 6(a)). The ratio of fan
to compressor average axial velocity increases from 1.00 at Mach 1.28 to
1.63 at Mach 2.95 (fig. 6(b)).

The results of the experimental tests on the single rotor-blade row

were inconclusive with regard to inlet axial velocity variations. The

data obtained at 60-percent design speed with and without inner-annulus

additional throttling are shown in figure 7. In figure 7(a) mass flow

per unit flow area at station b (midway between the trailing edge of the

rotor blades and the leading edge of the cylindrical annulus divider) is

plotted against radius at station b. The weight flow for each run was

slightly greater than the weight flow below which rotating stall nor-

mally exists. Operation with additional inner-annulus throttling re-

sulted in a shift of flow from the inner to the outer annulus. The

ratio of flow per unit flow area with inner-annulus throttling to that

without inner-annulus throttling is plotted against radius at station b

in figure 7(b). Without inner-annulus throttling the ratio of outer-

annulus weight flow to inner-annulus weight flow is 0.66. With inner- \

annulus throttling, the ratio increased to 0.96.
\
|

The effect of this large radial shift in mass flow downstream of
the rotor on the inlet axial velocity is shown in figure 7(c), where the
ratio of inlet axjal velocity with inner-annulus throttling to inlet
axial velocity without inner-annulus throttling is plotted against inlet
radius. The maximum increase in inlet axial velocity in the outer part
of the annulus is about 2.5 percent. The trend could have been expected,
but the small increase in outer-annulus axial velocity is not necessarily
representative of the increase in an actual turbofan engine. The flow
conditions for the experimental data do not simulate the flow conditions
that would exist along the full-power operating line of a turbofan
engine. The experimental data with inner-annulus throttling are for a
ratio of inlet flow coefficient to design inlet flow coefficient of Q.56
and a ratio of outer- to inner-annulus mass flow of 0.96. For the turbo-
fan of this report, the former ratio varies along the full-power oper-
ating line from 1.0 to 0.91, and the latter ratio from 1.46 to 2.27.
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Weight-Flow Variations

A high turbofan weight flow at equivalent speeds less than design
results from the fan characteristics and the position of the full-power
operating line on the fan performance map (fig. 2(b)). The fan, being
a low-pressure-ratio unit, passes relatively more flow at all equivalent
speeds less than design than does the higher-pressure-ratio turbofan
compressor. At 70-precent speed and maximum efficiency, for example,
the fan passes about 76 percent of its design weight flow (fig. 2(b))
compared with about 52 percent for the turbofan compressor (fig. 3(b)).
Thus, if the full-power operating lines on the fan and compressor maps
follow the maximum-efficiency lines, the fan relative weight flow would
be considerably higher than the compressor relative weight flow for the
higher supersonic flight Mach numbers. The fan weight-flow advantage is
even more pronounced because the full-power operating line on the fan
map lies on the high-weight-flow side of the maximum-efficiency line
(fig. 2(b)), whereas the operating line of the turbofan compressor (fig.
3(b)) tends to follow the maximum-efficiency line.

The variation of turbofan weight flow with flight Mach number is
shown in figure 8. At Mach 2.95 (70 percent of equivalent design speed)
the turbofan weight flow is 68.5 percent of its design value (fig. 8(a)}).
The turbofan fan and compressor weight flows relative to their design
values are compared in figure 8(b). The turbofan compressor weight-flow
variation is about what could be expected for the compressor of a turbo-
Jet engine having the same design campressor total-pressure ratio as the
turbofan engine. At Mach 2.95, compressor weight flow is only 51.5 per-
cent of its design value. A turbojet engine with a lower design total-
pressure ratio would pass more weight flow, but only a very low design
total-pressure ratio would result in a weight-flow variation approaching
that of the turbofan engine. For the turbofan engine of this analysis,
then, at Mach 2.95 the turbofan passes about 33 percent more airflow
than would a turbojet of about the same design compressor total-pressure
ratio. This compares with about a 25-percent turbofan weight-flow ad-
vantage at Mach 3.0 predicted in other analyses where fan performance is
assumed to be that which would be obtained from testing the fan as a
separate component,

CONCLUDING REMARKS

The variation of turbofan inlet flow coefficient based on total
flow with flight Mach number (or equivalent speed) indicates that turbo-
fan flow would be free of rotating stall. The experimental tests on a
single rotor-blade row rigged to simulate turbofan operation indicated
a favorable trend with regard to rotating-stall limits. The inlet flow
coefficient below which rotating stall exists was found to decrease as
more and more airflow was forced through the outer annulus.
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Turbofan weight flow at part speed was high. At 70 percent design
speed, it was 68.5 percent of its design value. This is much higher
(about 33 percent) than the weight flow attainable in a turbo jet engine
having a comparable design compressor total-pressure ratio.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 12, 1957

LR J oee oe0e o ® oeoo (X A} see ¢ oe® G0 so e
L] (A X XJ L] L] L] L 2 L [ ] L L
L XX J [ ] [ ]

oo. : Coﬁrlbm (X X ] o:t :-oo o:o seee oo




12

a,b,c

p
Subscrip

A,B,C

200 000 o0 L X ¥ ...CO];]FIDH\I I LY X ] ....

*“ACA RM E57G26a

APPENDIX - SYMBOLS

area, sq ft
constants in eq. (4)

function

stagnation enthalpy, Btu/lb

Mach number

rotational speed, rpm
total pressure, lb/sq ft
static pressure, lb/sq ft
radius, ft

total temperature, °R
rotor speed, ft/sec

air velocity, ft/sec

weight flow, 1b/sec

flow angle, measured from axial direction, deg

ratio of specific heat at constant pressure to specific heat at

constant volume

ratio of total pressure to NACA standard sea-level pressure of

2116 1b/sq ft

adiabatic efficiency

ratio of total temperature to NACA standard sea-level temperature

of 518.7° R
density, lb/cu ft

ts:

turbofan stations: fan inlet, fan outlet, and duct outlet

(see fig. 1)
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annular

experimental rotor blade exit
compressor

design

equivalent

fan

mearn

stage number

tip

throttling in inner annulus
axial

ambient

compressor inlet

outlet of second compressor stage
combustor inlet

turbine inlet

turbine outlet

turbine diffuser outlet

exhaust-nozzle inlet

Superscript:

relative to rotor
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Figure 3. - Turbofan compressor performance.
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Mass flow per unit flow area, (pV,)y, 1b/(sq ft)(sec)
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