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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

Ramp boundary-layer separation has been observed on a number of s ide  
i n l e t s ,  and s teps  have been taken t o  bleed off  t h i s  boundary l aye r  i n  the 
region of t h e  in le t  throat .  
been shown i n  cases where inlet  throa t  boundary-layer removal was employed 
(refs. 1 t o  4 ) ,  even when t h e  fuselage boundary l aye r  ahead of the  inlet 
was removed. Three basic  bleed types have been investigated: 

Improvements i n  net-thrust-minus-drag have 

(1) a per- 
, fora ted  surface,  ( 2 )  a f lush  s l o t ,  and (3)  a ram scoop. 

PERFORMANCE OF A SUPERSONIC RAMP-TYPE SIDE INLE!T WITH RAM-SCOOP 

T-e.nn*T ELF% !JE TJA% I?JS FUEFj-GE ~ ~ ~ ~ " ~ ~ y y -  L+?u"&? Rzh.;G;'& 

MACH NUMBER RANGE 1.5 TO 2 .0  

By Glenn A. Mitchell  and Robert C. Campbell 

SUMMARY 

An experimental invest igat ion of combinations of ram-scoop th roa t  
bleed and fuselage boundary-layer removal f o r  a fuselage-mounted 14O ramp 
hi le t  was coiiducted a t  Mach numbers of 1.5, 1.8, and 2.0. 

Provided su f f i c i en t  th roa t  bleed w a s  employed, m a x i m u m  pressure re- 
coveries of 0.87 t o  0.88 a t  a Mach number of 2.,0 were obtained regardless 
of t he  amount of fuselage boundary l aye r  ingested by the  iLdet .  Side 
f a i r i n g s  on the  inlet  f u r t h e r  increaqed the maximum recovery t o  0.90 and 
0.91while  decreasing c r i t i c a l  drag coef f ic ien ts  as  much as  8 p e r c e n t  and 
increasing critical mass-flow r a t i o s  as much as 5 percent.  Peak pressure 
recoveries  were comparable f o r  two axial  posit ions of t he  scoop-type 
bleed. Calculations ind ica te  t h a t  with optimum th roa t  bleed, th rus t -  
minus-drag w a s  highest  without fuselage boundary-layer removal ahead of 
t he  i n l e t .  

I INTRODUCTION 

Reference 4 ind ica tes  t h a t  with f lush  s l o t  bleed a t  the  throa t ,  it 
was possible  t o  maintain or  increase over-all  thrust-minus-drag perfor- 
mance while decreasing the  amount of fuselage boundary l aye r  removed ahead 
of t he  i n l e t .  A s  an extension of the  work of reference 4, a study was 
made t o  evaluate the  effect iveness  of a ram-scoop bleed a t  the  throa t  of 
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0 the  14 ramp i n l e t  of t ha t  reference. Combinations of fuselage and i n l e t  
throat boundary-layer removal s imi la r  t o  those of reference 4 were inves- 
t igated with and without i n l e t  s ide  f a i r i n g s  f o r  two a x i a l  pos i t ions  of 
the ram scoop. Included i n  t h i s  invest igat ion are da ta  f o r  an 18' ramp 
i n l e t  which was believed t o  reduce or  eliminate the  separation behind the  
i n l e t  terminal shock. The model was t e s t ed  a t  zero angle of a t tack  and 
free-stream Mach numbers of 1.5, 1.8, and 2.0. 

SYMBOLS 

A area,  sq in.  

internal-bleed minimum-flow area,  sq  in.  *B,min 

maximum f r o n t a l  area of basic  configuration, 0.759 sq f t  AF 

A i  i n l e t  capture area,  19.51 sq in .  

Ath i n l e t  th roa t  area, 13.55 sq in.  f o r  14' ramp i n l e t ,  12.76 
0 sq in .  f o r  18 ramp i n l e t  

d i f fuse r  area a t  model A2 s t a t i o n  85.0, 22.96 sq in .  

CD drag coef f ic ien t ,  
qOAF 

D configuration drag, l b  

AD incremental drag, D - %, l b  

F in t e rna l  t h r u s t  of turbojet-engine and inlet  combina- 
t lon,  l b  

h fuselage boundary-layer d i v e r t e r  height,  in .  

0 
m 

main-duct mass-flow ra t io ,  main-duct mass 
PoVoAi 

P t o t a l  pressure 

P2,max - P2,min maximum total-pressure va r i a t ion  across pressure rake 
a t  s t a t i o n  85.0 

P2~max - PZ,min total-pressure d i s to r t ion  

p2 
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Subscripts : 

b 

m a x  

min 

0 

2 

3 

free-stream dynamic pressure, 1 poVo 2 
2 

fuselage boundary-layer thickness, approx. 0.55 in .  

veloci ty  , f t /  sec 

weight flow per un i t  area, referenced t o  standard sea- 
l e v e l  conditions, ( lb/sec) /sq f t  

r a t i o  of t o t a l  pressure t o  NACA standard sea- level  
t o t z l  =ressl?re of 2116.22 l??/sq ft 

r a t i o  of t o t a l  temperature t o  NACA standard sea- level  
temperature of 518.688' R 

mass density 

basic  configuration: 14" ramp i n l e t ,  smooth-contour 
d i f fuse r  (ram scoop closed) with s ide  f a i r i n g s ,  a t  
h / t  = 1 

maximum 

minimum 

f r e e  stream 

d i f fuse r  total-pressure survey s t a t ion ,  model s t a t i o n  
85.0 

d i f fuse r  s ta t ic -pressure  survey s ta t ion ,  model s t a t i o n  
99.2 

APPARATUS AND PROCEDURF: 

A schematic drawing of the  fuselage,  i n l e t ,  and boundary-layer- 
removal system f o r  the  14' ramp with t h e  a f t  ram scoop i s  i l l u s t r a t e d  i n  
f igu re  1, and photographs of the model appegr i n  f igure  2. 
i n l e t  with an i n t e r n a l  cowl l i p  angle of 18 replaced the 1 4  ramp i n l e t  
during p a r t  of t h i s  invest igat ion.  
ed on t h e  f l a t  underside of a basic  body-of-revolution consis t ing of an 
ogive nose and a lo-inch-diameter cy l indr ica l  afterbody downstream of 
m,nde1 statfon 46.2.  Fer all confi,m-?rstions t.he inlet. cowl l i p  w a s  located 

18' ramp 

The in le t -d i f fuser  assembly was mount- 
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a t  model s t a t i o n  61.9. Swept s ide  f a i r ings ,  when used on the  inlet ,  ex- 
tended from t he  cowl s ides  t o  the  leading edge of t he  ramp. 

The fuselage boundary-layer d ive r t e r  height w a s  var ied with spacers 
The d i f -  i n se r t ed  between the  body and the  in l e t -d i f fuse r  i n s t a l l a t ion .  

fuser reference l i n e  w a s  maintained p a r a l l e l  t o  the  body axis a t  all 
times. 

The bleed scoops of t h i s  inves t iga t ion  and the  f lu sh  s l o t  of re f -  
erence 4 were located on the  ramp s ide  of t he  i n l e t  and extended from 
wall t o  wall. The minimum-flow area of t he  bleed passage w a s  located at  
the  bleed i n l e t s  of t he  ram-scoop configurations and a t  t he  bleed ex i t  of 
the f lush  s l o t  configuration of reference 4. 

The ram scoop w a s  formed by a sec t ion  of t h e  d i f fuse r  f l o o r  hinged 
a t  i t s  downstream end. Variations i n  scoop-inlet area (and, consequently, 
bleed mass flow) w e r e  accomplished by ro t a t ing  t h i s  sec t ion  of t he  f loor ,  
i n  trap-door fashion, about i t s  hinge l i n e .  The scoop leading-edge rad ius  
was 0.01 inch f o r  t he  ram scoops, compared t o  a leading-edge radius  of 
0.04 inch f o r  the  f l u s h  bleed. Mass flow drawn i n t o  the  bleed passage 
was ejected through openings i n  e i t h e r  s ide  of t he  in le t  cowl. 

Zero bleed mass flow through the  f lu sh  .s lot  of reference 4 w a s  ac- 
complished by closing the  bleed e x i t ,  while t he  bleed passage remained 
vented t o  t'ne d i f fuse r  at t h e  bleed i n l e t  s l o t .  However, t h e  completely 
closed ram scoop presented a t y p i c a l  smooth-contour d i f fuse r  t o  t h e  pass- 
ing flow. The a f t  ram-scoo;! leading edge w a s  located 4.03 inches (more 
than 1 hydraulic diam.) downstream of the  cowl l i p .  
leading edges were located 0.65 and 0.78 inch from t h e  cowl l i p  f o r  t he  
14' and 18' ramps, respectively.  

The forward ram-scoop 

The d i f fuser  area var ia t ions  f o r  t he  14' and 18' ramps are  shown i n  
f igure 3 .  Area var ia t ions  r e su l t i ng  from t y p i c a l  open pos i t ions  of t he  
forward and a f t  ram scoops are represented by the  dashed l i n e s .  

The model was connected t o  t h e  support s t i n g  by a strain-gage bal-  
ance t h a t  measured axial forces .  Inlet mass flow was var ied by means of 
a remotely controlled movable t a i l p i p e  plug attached t o  the  s t ing .  

Pressure instrumentation consisted of a flow-field survey rake ahead 
of the i n l e t  a t  model s t a t i o n  55.1, to ta l -pressure  tubes  and s t a t i c -  
pressure or i f  i ce s  at s t a t i o n  85.0 i n  the  d i f fuse r ,  s ta t ic -pressure  o r i f i c e s  
a t  s t a t ion  99.2 i n  the  d i f fuser ,  base-pressure o r i f i c e s ,  and chamber- 
pressure o r i f i c e s  located i n  the  model-balance cavity.  The outermost 
total-pressure tubes a t  s t a t i o n  85.0 were located 0 .2  inch from the w a l l ,  
o r  a t  0.927 of the duct radius.  



The main-duct mass-flow r a t i o  was determined from t h e  s ta t ic -pressure  
measurements a t  s t a t i o n  99.2 and the  known area r a t i o  between t h a t  sta- 
t i o n  and the e x i t  plug where the  flow w a s  assumed t o  be choked. Average 
t o t a l  pressure w a s  calculated by area-weighting the  to ta l -pressure  meas- 
urements. 
from free strew t o  diffijser exit., and base forces resi i l t ing from t he  dif- 
ference i n  base pressures from the  free-stream s t a t i c  pressure have been 
excluded from the model force data.  

The forces r e su l t i ng  from the change i n  i n l e t - a i r  momentum 

The model w a s  t es ted  a t  zero angle of a t tack and free-stream Mach 
numbers of 1.5, 1.8, and 2.0 with a max imum of four  ex terna l  d i v e r t e r  
heights f o r  each configuration. 
fuselage d ive r t e r  heights a t  which each was t e s t ed  are l i s t ed  i n  the  
following table:  

The configurations invest igated and the  

onf ig- 
1 r a t  i 9n 
le signa- 

t i o n  

A- 1 

B-1 

c-1 

A- 2 

B- 2 

c- 2 

14 

14 

18 

14 

14 

18 

Side 
f a i r ings  

O f f  

O f f  

O f f  

On 

On 

on 

c onf i g- 
ura t ion  layer  thickness) , 

( f rac t ion  of boundary- 

Forward 
ram scoop 

scoop 

Forward r 
scoop 

Forward ram 
scoop 

A f t  ram 
scoop 

Forward r 
s c oop 

1 

Figure 
number 

A t  each d ive r t e r  height and Mach number, the main-duct mass-flow r a t i o  
w a s  var ied f o r  several  i n l e t  throat-bleed minimum-flow areas. 
olds  number was  approximately 4 . 5 ~ 1 0 ~  per  foot.  The Mach number ahead of 
t h e  inlet ,  as determined from the  survey rake a t  s t a t i o n  55.1, w a s  within 
+0.02 of the free-stream Mach number, and the fuselage boundary-layer 
thickness, also determined from t h i s  rake, w a s  0.55 inch a t  t he  Mach num- 
be r s  tes ted.  

The Reyn- 
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RESULTS AND DISCUSSION 

Inlet  performance charac te r i s t ics ,  consis t ing of d i f fuse r  t o t a l -  
pressure d i s to r t ion ,  total-pressure recovery, and ex terna l  drag coeff i -  
cient,  are presented i n  f igures  4 t o  9. These da t a  are p lo t ted  as a func- 
t ion  of main-duct mass-flow r a t i o  f o r  several  combinations of fuselage and 
i n l e t  t h roa t  boundary-layer removal. I n  several  cases where data  a re  
lacking, the dashed l i n e s  ind ica te  extrapolations used i n  the subsequent 
calculations of th rus  t-minu s-drag . 

Improvements i n  both pressure recovery and d i s t o r t i o n  by inlet  th roa t  
bleeding were observed a t  a l l  Mach numbers and fuselage d ive r t e r  heights 
fo r  a l l  configurations tes ted.  I n  general, both c r i t i c a l  and peak pres- 
sure recoveries were increased by i n l e t  th roa t  bleed, though the increase 
i n  c r i t i c a l  pressure recovery w a s  f requent ly  not as grea t  as  the  increase 
i n  peak pressure recovery. 
recoveries obtained with in le t  t h roa t  bleed a t  reduced fuselage d ive r t e r  
heights w e r e  as good as or better than the peak recoveries obtained a t  the 
maximum d ive r t e r  height.  The exception, configuration C-2 a t  a Mach num- 
ber of 1.8 ( f i g .  9 ( b ) ) ,  probably occurred because su f f i c i en t  bleed area 
was not  t e s t ed  i n  t h a t  instance. 

I n  a l l  instances except one, peak pressure 

The pressure d i s to r t ions  obtained with i n l e t  t h roa t  bleed were gen- 
e r a l l y  comparable a t  all fuselage d ive r t e r  heights f o r  any given configu- 
r a t ion  and Mach number. 

Some e f f e c t s  of ram-scoop bleed loca t ion  on t h e  pressure recovery of 
the 14' ramp i n l e t  without s ide f a i r i n g s  are found i n  f igures  4 and 5. 
The peak pressure recoveries with th roa t  bleed were generally comparable, 
although obtained a t  s l i g h t l y  d i f f e ren t  mass-flow r a t i o s  f o r  the two con- 
f igurat ions ( A - 1  and B - l ) ,  and a t  a Mach number of 2.0 were about 0.87 t o  
0.88. 
sure recoveries of t h e  two configurations were s t i l l  within 0.01 t o  0.02 
where s u f f i c i e n t  bleed flow areas  were tes ted,  and a t  a Mach number of 
2.0 were increased t o  0.90 and 0.91. 

With the  addi t ion of in le t  s ide  f a i r i n g s  ( f ig s .  6 and 7 )  peak pres- 

A t  comparable mass-flow ra t io s ,  l i t t l e  e f f e c t  of the  addi t ion of s ide  
f a i r ings  could be found on the l e v e l  of pressure d is tor t ions .  It appears, 
however, t h a t  f o r  t he  14' ramp i n l e t  configurations ( f ig s .  4 t o  7 )  the  
appropriate use of in le t  th roa t  bleed reduced inlet  c r i t i c a l  pressure 
d is tor t ions  t o  between 5 and 10 percent of the  average diffuser  t o t a l  pres- 
sure as compared t o  15 percent and grea te r  without th roa t  bleed. 
reductions i n  in le t  c r i t i c a l  pressure d i s t o r t i o n s  were observed f o r  the 
f lush bleed of reference 4. 
than those of the 14O ramp i n l e t .  

Similar 

Distor t ions of t he  18' ramp i n l e t  were higher 

The boundary l aye r  on the 14' ramps of t h i s  inves t iga t icn  w a s  ob- 
An 18' ramp i n l e t  served t o  separate behind the i n l e t  terminal shock. 

CONFIDENTIAL 



am m o m  m m m  m m m  *.ma * o m  m a  m m m m  m m m  m e  
m a  a m  ma 

e o  ma m m m  mmo m a m m a  m a  
* m a m a  m m m  e m  m a  

a m  

NACA RM E56126 : : ' . m C & X D ~ & . *  m m m  am*  m m m  maam mea 7 

having a reduced ramp Mach number was then invest igated.  
sure r i s e  across the i n l e t  terminal shock generally tends t o  thicken the  
ramp boundary layer ,  t h i s  18' ramp d id  not exhib i t  the  extensive separa- 
t i o n  noted on the 14' ramp. A comparison of t he  r e l a t i v e  e f f e c t  of ram- 
scoop bleed on the  performance of the two campression angles (configura- 

and 9. 
Without inlet  throa t  bleed, both ramps generally had about the  same pres- 
sure recoverg f o r  the  Mach numbers and fuselage d i v e r t e r  heights  tes ted .  

second oblique shock, and apparently these e f f e c t s  tended t o  counter- 
balance each other. Throat bleed generally improved the peak pressure 
recoveries of the 14" ramp i n l e t  s l i g h t l y  more than it did  f o r  the  18' 
ramp i n l e t .  

Though the  pres- 

tions A-1, A-2, c-1, mci C-2) i s  i l l m t r a t e d  i n  f i g ~ r e s  4 , 5, 8, 

while t.hc 14 rn-9 i_nlet. hn_d sl-garation, it. nlsn had the &rantage of a 

The c r i t i c a l  main-duct mass-flow ratios without i n t e r n a l  bleed de- 
crease with decreasing fuselage d i v e r t e r  height ( f i g s .  4 t o  9) .  The re- 
duction i n  c r i t i c a l  mass-flow r a t i o  f rom i ts  value a t  the  maximum exter-  
na l  d i v e r t e r  height is, i n  most cases, very close t o  the  t h e o r e t i c a l  mass- 
flow decrement predicted f o r  a fuselage boundary l aye r  with a l/rl-power 
ve loc i ty  r a t i o  p r o f i l e  ( r e f .  5).  
1 4  ramp with s ide f a i r i n g s  and no fuselage boundary-layer removal were 
reduced more than the  theo re t i ca l ly  predicted mass-flow decrement because 
of sp i l lage  behind the ramp leading-edge oblique shock a t  Mach numbers of 
1.8 i o  2.0. The addi t ion of side f a i r i n g s  t o  the  14' ramp i n l e t  a t  Mach 
numbers of 1.8 and 2.0 increased the c r i t i c a l  mass-flow r a t i o  without in- 
t e r n a l  bleed about 3 t o  5 percent, down t o  d i v e r t e r  heights  of one-third 
the boundary-layer thickness. In other cases, the  addi t ion  of s ide  f a i r -  
ings general ly  had l i t t l e  e f f e c t  on c r i t i c a l  mass-flow r a t i o s  without 
th roa t  bleed. 

However, c r i t i c d  m~ss flows f o r  the 
0 

The data  of f igures  4 t o  9 generally were obtained by reducing the 
main-duct mass-flow r a t i o  u n t i l  the inlet terminal shock and the d i f f u s e r  
s t a t i c  pressure ( s t a t i o n  85.0) were observed t o  o s c i l l a t e .  The extension 
of some curves t o  the l e f t  of the l a s t  symbol i nd ica t e s  t h a t  such osc i l -  
l a t i o n s  were not  observed i n  t h a t  case. Occasionally, quant i ta t ive  da t a  
were taken of the amplitudes of the pressure f luc tua t ions .  The numerals 
adjacent t o  the t a i l e d  symbols on the pressure-recovery - mass-flow p l o t s  
of f igures  4 t o  9 indicate  the t o t a l  amplitude of the  f luc tua t ions  t o  
the nearest  percent of d i f fuse r  t o t a l  pressure. 
da ta  on these amplitudes were not available.  

Where no numerals appear, 

From the curves of drag coef f ic ien t  shown i n  these f igures ,  it i s  
evident t h a t  t he  minimum drag decreased for decreasing fuselage d i v e r t e r  
height.  These curves a l so  show t h a t  the minimum drag f o r  configurations 
with side f a i r i n g s  was lower than t h a t  f o r  s imi la r  configurations without 
s ide  f a i r ings .  
i r2e t  decreased 3 t~ 8 p e r c e i ~ t  x i t t  the eddition of aide fairings. 
ever, a l a rge  percentage of t h i s  decrease in the minimum drag coef f ic ien t  

For example, the minimum drag coe f f i c i en t  f o r  the 14' ramp 
Zm- 
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was due t o  the  increase in capture mass flow obtained with the addition 
of s ide f a i r ings .  Without the s ide fa i r ings ,  the drag r i s e  obtained by 
bleeding a t  the i n l e t  th roa t  (differences between minimum drag coeff i -  
c ients  a t  successive bleed-minimum-flow-area r a t i o s  

somewhat l e s s  than the subc r i t i ca l  drag r i s e  f o r  the same amount of mass- 
flow spi l lage.  With the side f a i r ings  in s t a l l ed ,  the increase i n  drag 
fo r  i n t e rna l  bleeding was s l i g h t l y  greater  than the s u b c r i t i c a l  drag r i s e  
f o r  the smaller amounts of bleed. However, with l a rge r  amounts of bleed 
(&,min/Ath = 0.16 or  grea te r ) ,  the  drag r i s e  was equal t o  or  l e s s  than 
the subc r i t i ca l  drag r i s e .  
of the f lush  s l o t  of reference 4, it was noted t h a t  the bypass drags of 
the ram-scoop configurations were generally higher than those of the f lu sh  
s l o t  configuration. 

%,rnidAth) was 

I n  comparing these bypass drags with those 

Inlet-engine thrust-minus-drag w a s  computed t o  determine the over- 
a l l  performance of each configuration f o r  the combinations of boundary- 
layer removal investigated.  Thrusts were obtained f o r  a t yp ica l  tu rboje t  
engine assumed t o  be operating a t  35,000 f e e t  with m a x i m u m  afterburning. 
A t  each Mach number and fuselage d ive r t e r  height, the i n l e t  and engine 
were matched over the mass-flow range of each configuration. The maximum 
thrust-minus-incremental-drag values obtained are presented i n  f igure  10 
a s  a percent of the maximum th rus t  of the basic  configuration. Incremen- 
t a l  drag represents the difference between the drag of a given configu- 
ra t ion  and t h a t  of the basic  configuration. The basic  configuration i s  
defined a s  the 14 ramp i n l e t  with the smooth-contour d i f fuse r  (ram scoop 
closed) and s ide  f a i r i n g s  ( f ig s .  6(a) and 7 ( a ) )  at  an ex terna l  d ive r t e r  
height equal t o  the  fuselage boundary-layer thickness (h / t  = 1). 
thrust-minus-drag values f o r  the f lu sh  s l o t  of reference 4 are  included 
i n  figure 10 t o  f a c i l i t a t e  comparisons. The th rus t s  of the basic  config- 
uration of t h i s  report  and those of reference 4 are  iden t i ca l  a t  Mach 
numbers of 2.0 and 1.8, but  d i f f e r  s l i g h t l y  a t  a Mach number of 1.5. The 
thrust-minus-drag values of reference 4 are corrected f o r  t h i s  d i f f e r -  
ence i n  f igure  10. In  a l l  cases, external  drag coef f ic ien ts  and model 
f ron ta l  areas were assumed t o  remain constant f o r  the changes i n  i n l e t  
s i z e  required t o  accommodate changes i n  d i f fuse r  weight flow. 

0 

The 

The optimum amount of i n l e t  t h roa t  bleed a t  each fuselage d ive r t e r  
height i s  defined herein a s  t ha t  which affords  the m a x i m u m  thrust-minus- 
drag. These m a x i m u m  net- thrust  r a t i o s  are presented i n  f igure 10 a s  a 
function of the  fuselage d ive r t e r  height parameter. For the 14' ramp con- 
f igurat ions investigated,  optimum in t e rna l  bleed provided net  t h r u s t s  over 
the f u l l  range of fuselage d ive r t e r  height t h a t  were equal t o  or  grea te r  
than theothrustsoof the  basic  configuration. 
(both 14 
throat boundary-layer removal provided the  highest  t h r u s t s  a t  the lowest 
fuselage d ive r t e r  height. 

For most configurations 
and 18 ramps) the optimum combination of fuselage and i n l e t  

The f lu sh  s l o t  of reference 4 i n  general  showed 
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n e t  t h r u s t s  higher than those of the ram scoops reported herein.  Net 
t h rus t s  f o r  the two pos i t ions  of the ram scoops were within 1 t o  2 per- 
cent of each other. A t  Mach numbers of 2.0 and 1.8 the ne t  t h r u s t s  of 
configuration A without s ide f a i r ings  were 1 t o  5 percent l e s s  than those 
obtained with s ide f a i r ings .  The maximum th rus t  r a t i o s  obtained with 

ta ined with the 14' ramp configurations, and i n  some cases were as  much 
a s  5 percent lower. Maximum th rus t  gains obtained with bleed over the 

f igura t ion  without i n t e rna l  bleed a t  the maximum fuselage d ive r t e r  height. 

the  180 r m p  Lulu&~ra t lo i i s  nn-*---- were a t  b e a t  about equal  t o  the lowest ob- 

*yank? R,dzmey rzLge  Tn'crC =l-,c;t 8 p"'cer.t of L l - - - - L  ll111U3b VI -n L'-- bllt: ' - -- .  U t i b l C  curl- 

SUMMARY OF RESULTS 

An experimental invest igat ion t o  evaluate ram-scoop th roa t  bleed i n  
combination with several  degrees of fuselage boundary-layer removal was 
conducted i n  the Lewis 8- by 6-foot supersonic wind tunnel a t  Mach num- 
be r s  of 1.5, 1.8, and 2.0. The following r e su l t s  were obtained: 

1. Provided su f f i c i en t  th roa t  bleed xzs e q l e y e d ,  t h e  maxlmm pres- 
sure  recovery of a 14' ramp i n l e t  w a s  0.87 t o  0.88 a t  a Mach number of 
2 .0  regardless  of the amount of fuselage boundary-layer removal. 

2.  I n l e t  s ide  f a i r i n g s  increased the maximum recovery with throa t  
bleed t o  0.90 and 0.91 a t  a Mach number of 2 . 0  regardless of the  amount 
of fuselage boundary-layer removal. Side f a i r ings  decreased the c r i t i c a l  
drag coef f ic ien t  as much as 8 percent and increased the c r i t i c a l  mass- 
flow r a t i o  as much as 5 percent. 

3. With throa t  bleed, peak pressure recoveries and calculated thrus t -  
minus-drag values were within 1 t o  2 percent f o r  t w o  longi t tud ins l  pns i -  
t i o n s  of the  ram scoop. 

4. Calculations indicate  t h a t  with optimum th roa t  bleed, th rus t -  
minus-drag w a s  highest  without fuselage boundary-layer removal ahead of 
the i n l e t .  

Lewis F l igh t  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, October 10, 1956 
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(a) Model installed in 8- by 6-foot supersonic wind tunnel. 

(b) 140 Ramp inlet with side fairings. Fo~ard ram scoop nearly closed. 

Figure 2 . - Photographs of model . 
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Figure 3. - Subsonic diffuser area variation. 
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(a) External diverter height paremeter, h/t, 1. 

Figure 6. - Inlet performance characteristics of forward r a m  scoop having 14' ramp with side 
P a i r i n g s  (cnrtfigumtion A-2) .  
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(b) External diverter height parameter, h/t, 1/3. 

Figure 6. - Continued. Inlet performance characteristics of forward r a m  scoop having 14’ 
ramp with side fairings (configuration A-2). 
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(c) External diverter height parameter, h/t, 0. 

Figure 6. - Concluded. In l e t  performance characterist ics of forward 'ram scoop having 14' 
ramp with s ide f a i r ings  (configuration A - 2 ) .  
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(a) Ederna l  diver ter  height parameter, h/t, 1. 

Figure 7. - Inlet pe r fomnce  character is t ics  of a f t  ram scoop having 14' ramp w i t h  side 
fa i r ings  (configuration B-2). 
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Figure 7. - Continued. In le t  performance characterist ics of aft  r a m  scoop having 14' ramp 
with side fairings (configuration B2). 

CONFIDENTIAL 



......................... . 0. 0 .  . 
0 .  0 .  0 .  . 0 .  . ........ . . . . . . . . . . . . . . . .  . ...... 

NACA RM E56126 
0 . .  e 4  ..a. 0 .  0..  ........... :*;&@Ii&+yd< : .... 0 .  

.60 

.40 

.20 

0 

1 I I Bleed-minimum-flow- 
area ratio. 

*B,mln 
k h  
0 
.08 
.16 
.24 
.3P 

Tailed symbols denote 
data taken in inlet 
pulsing regions; n u -  
bers denote total am- 
plitude of pulses, 
Dement diffuser total 

Free-stream Wnoh number. 2.01 I 

.5 .6 .7 .a .9 
mass-flow ratio, mJ/mo 

.6 .l .8 .9 1.0 

(c) External diverter height parameter, h/t, 113. 

Figure 7. - Concluded. Inlet performance characteristics of aft ram scoop having 14' ramp 
with side fairings (configuration B-2). 
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Figure 9. - Concluded. Inlet performance characteristics of forward ram scoop having lBo ramp with side fairings (configuration c-2) .  
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