_NACA RM L57H13

P see . . °
..‘

... esde ess seee seo, 37

i CoMRENTALL - L E By

OTS PRICE

RESEARCH MEMORANDUM

BUFFET TESTS OF AN ATTACK-AIRPLANE MODEL WITH EMPHASIS

yd
/

$

XEROX
MICROFILM §

D, Lo pL
), T st

S
BNY

ON ANALYSIS OF DATA FROM WIND-TUNNEL TESTS

By Don D. Davis, Jr., and Dewey E. Wornom

Langley Aeronautical Laboratory
Langley Field, Va.

X

CLASSIFIC.TION ¢ .G
UMCLASSIFIED = 10

MSA 1757 #1, Dec 1, 196
RENAAS

CLASSIFIED DOCUMERT

This material contains info: mau aif cting the National Defense of the Gmtedstate s within the meaning
of the esplomage laws, Tuel , Secs. 793 and 794, tle transmission or revelatioa of whick in any

manner to an unsuthorized pers 1p hitedbvlaw

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

WASHINGTON
February 21, 1958

v’\(’/_? /

(;adf:’v 4

RO 'I'CO.N?IDIEN]:IAE TR d

... .... Te® 00600 000 oeoe LA R ) . ..

-

J



- .
: : oe eo . see

oCUMIﬁENﬁtAL..' et ’

NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS

[X X R J

(XXX
(X XK XJ
[ ]
s0000
[ X N J
00060

NACA RM LSTHL% ..

RESEARCH MEMORANDUM

BUFFET TESTS OF AN ATTACK-AIRPLANE MODEL WITH EMPHASIS
ON ANALYSIS OF DATA FROM WIND-TUNNEL TESTS

By Don D. Davis, Jr., and Dewey E. Wornom

SUMMARY

The buffet characteristics of a 1/10-scale model of an attack air-
plane have been investigated at Mach numbers from 0.80 to 1.00. The wing
had a modified delta plan form with an NACA 0008 (modified) airfoil sec-
tion at the root and an NACA 0005 (modified) airfoil section at the tip,
a leading-edge sweep of 41.11°, an aspect ratio of 2.91, and a taper ratio
of 0.226. Modifications to the basic configuration included a tapered
wing-leading-edge extension with camber, an addition to the wing trailing
edge sweeping it forward 100, and an area addition to the rearward fuse-
lage section. In the speed range where the buffet boundary of the basic
configuration was lowest, the buffet intensity was reduced substantially
when these modifications were added to the model.

During buffet, the wing vibrated primarily in the first symmetrical
mode. The damping of the vibration was not primarily aerodynamic as is
the case for airplanes in flight at these speeds but, instead, was mostly
structural apparently because of friction in a dovetail joint., As a
result, any attempt to predict flight buffet stresses from the results
of this investigation must be based on an estimate of the aerodynamic
damping for the airplane.

A technique is described for making wind-tunnel buffet measurements
and for deducing the system damping from the power spectrum of the wing
vibration. Equations are derived for the buffet response of a platelike
wing, the structural characteristics of which are described by mass and
flexibility-influence-coefficient matrices.

For the mathematical model of the buffeting wing there is a relation-
ship that connects the band width, the peak response, and the mean-square
response. The experimental results show that this same relationship holds
for the actual buffeting wing.

In designing buffet models, it is desirable to keep the structural
damping very low, because the aerodynamic damping ratio is much lower for
so0lid metal model wings than for actual airplane wings.
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INTRODUCTION

Several attempts have been made to establish a correlation between
the buffet boundary of an airplane and some quantity that is observable
in wind-tunnel tests of a model. Certain quantities associated with the
static 1lift characteristics have been used with some success for this
purpose (refs. 1 and 2), as have measurements of wake-pressure fluctua-
tions (ref. 3). The buffeting of models has also been observed directly
by placing strain gages on the wings (ref. 3). With the aid of strain
gages and modern data-handling techniques, it has recently become possible
to give serious consideration to the more difficult problem of predicting,
from wind-tunnel data, the loads that will be encountered during buffeting
in flight.

The suggestion is made in reference 4 that the methods of generalized
harmonic analysis can be applied to the problem of airplane buffet. Anal-
yses of flight buffet data have since indicated the validity of this
approach (refs. 5 and 6). By using these same techniques, a method has
been derived for predicting flight buffet loads from model tests in a wind
tunnel. Two comparisons between flight and wind-tunnel data are presented
in reference 7 and the correlation, while perhaps not entirely adequate,
is certainly very encouraging.

The primary purpose of the present buffet investigation was to make
a wind-tunnel study of the buffet characteristics of a model of an
attack airplane and, in particular, to evaluate the effects of certain
modifications on the buffet characteristics. The tests were conducted
at Mach numbers from 0.80 to 1.00 in the Langley 8-foot transonic pres-
sure tunnel.

The instrumentation that was used was in accordance with the method
of reference T, and the tests were designed in such a way as to provide
a check on some of the assumptions of that reference. The results show
that an important assumption regarding the system damping did not apply
in this test. Consequently, a large part of this paper is devoted to
determining why this assumption did not apply, and to presenting the
analysis techniques that were developed to circumvent this difficulty.
This material is of particular interest to those readers who will be
required to conduct buffet tests or to interpret the results of such
tests.

SYMBOLS
lA(w),2 square of absolute value of system admittance
[A] matrix of flexibility influence coefficients
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wing span, ft

wing chord, ft

average chord, %, ft

1lift coefficient, Lift

qs

first-mode generalized lift-curve slope for damping com-
ponent of aerodynamic force due to wing vibration,

5 ) *

, per radian

S
generalized normal -force coefficient for first-mode
N
vibration, i
aSy
frequency, cps

natural frequency of first symmetrical wing mode, cps

amplitude of force exciting vibration, 1b

7S,2M
dimensionless structural factor, Mm’l 881 1
My 2\ 9525y

structural damping factor

constant relating the damping component of local pressure
differential due to wing vibration to local angle of
attack (in radians) and free-stream dynamic pressure

physical factor, ay g- CavoMy, ft2-lbl/2

generalized damping constant for first-mode wing vibra-
1b-sec

tion, s

mass, slugs
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wing mass per unit span, slugs/ft
mass of an element of the wing, slugs
free-stream Mach number

diagonal inertia matrix for wing, made up of the
elements my

effective moment (for firs;-mode vibration) of mass out-
b/2
board of point Yo Jp (y - yg)m(y)wl(y)dy, slug-ft
Jg

generalized wing mass for nth-mode vibration,

Z “‘xn(q’rn(n)>2 or f:i m(Y)Wne(Y)dy, slugs

b/2
mass of wing, E:: my, or 2J1 m(y)dy, slugs
m 0

integer denoting wing vibration mode

time-dependent generalized (for first-mode vibration)

buffet force acting on wing, ? A@mFQO(l)’ 1b
m

column matrix representing a set of static loads applied
to wing

local pressure difference (vetween bottom and top surfaces
of wing) that excites the buffet vibration

free-stream dynamic pressure, lb/sq ft
Reynolds number based on mean aerodynamic chord of 12.96 in.

time-dependent displacement of wing element for which
¢(n) =1

wing area, sq ft
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Sy weighted wing area for first-mode bending,
b/2
E stm(l) or 2 c(y)wy(y)dy, sq ft
m 0
So weighted wing area for fir7t—mode bending,
b/2
2
> Sm(%n(l)) or 2f c(y)v, 2(y)dy, sq ft
m 0
Sm area of mth element of wing, sq ft
t time, sec
T kinetic energy of vibrating system, 1b-ft
[u] dynamic matrix for wing, [A] [M]
v free-stream velocity, ft/sec
wn(y) deflection of wing elastic axis in nth wing bending
mode, normalized to unit deflection at the wing tip
y spanwise distance from fuselage center line, ft
Vg spanwise distance from fuselage center line to strain-gage.
location, ft
z vertical displacement
Zn time-dependent displacement of the mth wing element, ft
a angle of attack, deg or radians
B phase angle by which displacement lags the force
V4 aerodynamic damping ratic based on critical damping,
Myan V
p air density
G root-mean-square value
@m(n) normalized deflection of mth wing element for wing vibra-

tion in the nth normal mode
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¢ power spectral density
w circular frequency, 2xf, radians/sec
W, undamped natural circular frequency for nth mode
O resonant frequency
Q frequency ratio, w/ay
Qr resonant frequency ratio, a&/ah
91/2 frequency ratio at half-power point
Ja\y) difference between frequency ratio at half-power point
above (,. and frequency ratio at half-power point
below Q..
Subscripts:
M buffet bending moment
n nth natural mode, where n is any integer
r at resonance

Dots over symbols denote derivatives with respect to time.
APPARATUS AND TESTS

Tunnel

The investigation was conducted in the Langley 8-foot transonic
pressure tunnel which is a single-return tunnel with a rectangular slotted
test section (fig. 1) capable of permitting continuous operation through
the transonic speed range at stagnation pressures from 1/4 to 1 atmosphere.
Automatic temperature controls maintained a constant and uniform stagnation
temperature of 120° F during the tests. In order to prevent condensation,
the dew point was maintained at 0° F or lower.

Local Mach number distributions over the test-section length occupied
by the model are shown in figure 2. These distributions were obtained at
a stagnation pressure of 1 atmosphere from a multiorifice axial survey tube
on the tumnel center line. Changes in stagnation pressure have essentially

CONFIDENTTAL
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no effect on the Mach number distributions. The design of the sting-
support system, figure 1, is such that the model remains near the center
line of the test section throughout the angle-of-attack range.

Model

Tests were performed with a 1/10-scale model of an attack airplane.
A three-view drawing of the model is shown in figure 3. The modified
delta wing, made of 24ST alupinum alloy, had an NACA 0008 (modified)
airfoil section at the root and an NACA 0005 (modified) airfoil section
at the tip, a leading-edge sweep of 41.11°, an aspect ratio of 2.91, and
a taper ratio of 0.226.

Modifications to the basic configuration included a tapered wing-
leading-edge extension with camber, an addition to the wing trailing edge
sweeping it forward 10°, and an area addition to the rearward fuselage
section. A drawing of the basic wing and the leading-edge modification
is shown in figure 4 and the ordinates are listed in table I. The wing
trailing-edge modification required the extension of the trailing edge at
the wing root and this resulted in a gap between the trailing edge of the
wing and the bottom of the fuselage. This gap was eliminated by a fairing.
Details of the trailing-edge extension and the fairing are shown in fig-
ures 5 and 6, respectively. The addition of area to the rearward fuselage
section was based on the transonic area rule (refs. 8 and 9). Details of
the area addition (called the modified full area bump) are shown in fig-
ure 6. The cross-sectional area distribution of the basic model is shown
in figure 7. Also shown are the effects of two of the modifications on
the area distribution; the area distribution for the leading-edge modifi-
cation was not available. The inlets were open during the test. The area
distribution rearward of the inlet has been modified by deducting an area
equal to inlet area multiplied by mass-flow ratio (0.75) to account for
the internal flow.

The model was mounted on a six-component strain-gage balance that
was in turn supported by a sting mounting system. Photographs of the
model installed in the 8-foot transonic pressure tunnel, with all three
modifications in place, are presented in figures 8(a) and 8(b). The
weights of the various model components were as follows:

Component Weight, 1b
Fuselage and tail surfaces . . . . . . . . 69.0
Strain-gage balancCe . .« « « « o o e o o . 4,25
Wing, inside fuselage . . « « « + « « « & 6.1
Wing, outside fuselage:
BasiC & v v v 4 e b e e e e e e e e e e 18.9
Basic + leading edge . . . . « . . + o . 19.0
Basic + leading edge + trailing edge . . 20.1
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Shake tests were made to establish the natural frequencies of all
vibration modes that seemed likely to appear in the test results. The
frequencies determined with the model mounted in the tunnel are shown
in the following table:

Mode Natural frequency, cps
| Rigid-body vertical translation (on sting) . . 7
Rigid-body pitching . . « « « ¢ « o o ¢ o « & 14
Rigid-body TOLLANE + « + « « o o o o o o o o 4 22%
First wing mode . . . « « « ¢ o o « o o o o . 184
Second Wing mode . . 4+ 4+ 4 e e e e e e e s 240
Third wing mode . + « ¢« ¢ o« o & o« o « o o o s 388

Shake tests of the various configurations showed that none of the modifi-
cations changed the first-mode natural frequency by more than 1 percent.
The node lines for the first three wing modes are sketched in figure 9.

In comnection with the type of buffet analysis that is used in ref-
erence 6, certain constants are required. For this model, these constants
have the following values based on the mode shape used in reference 6:

Fg dimensionless structural factor, 0.052
kg physical factor, 2,197 £t2-1b1/2
Instrumentation

The model 1ift was determined from the normal force and chord force
indicated by a six-component electrical strain-gage balance that was
mounted within the model. The lift coefficients are based on the area
of the basic wing, 2.60 square feet. Through consideration of the static
calibrations of the balance and repeatability of data, the lift coeffi-
cient is estimated to be accurate within +0.007 for data taken at a
stagnation pressure of 0.80 atmosphere and *0.0l7 for data taken at a
stagnation pressure of 0.33 atmosphere.

Angle of attack was determined with a pendulum-type strain-gage unit
located in the model support strut. Corrections were made for sting and
talance deflections under load. The estimated accuracy of the angle of
attack is 0.1°.

A bending-moment strain-gage bridge was mounted in a recess at the
57.14 -percent-chord location near the root of the left wing as shown in
figures 3 and 8(b). Analysis of static load calibrations showed that
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this bridge measured pure bending moment about an axis that intersects
the longitudinal axis of the model at an angle of 28°. The bending-
moment axis is shown in figure 3.

During the tests, the output of the bending-moment gage was recorded
on magnetic tape. A record of about 45 seconds in duration was taken at
each test point. The power spectral density was determined from the tape
record by means of the equipment and procedure described in reference 10.
The filter band width used in the analysis varied from 30 cps, for a broad

picture of the oversall spectrum, to l%-cps for detailed study of the spec-

trum in the vicinity of the natural frequency of the first mode of the
wing.

Tests

Buffet tests were made at Mach numbers from 0.80 to 1.00, with an
angle-of -attack range of approximately -4° to 9°. All configurations
were tested at a tunnel stagnation pressure of 0.80 atmosphere. (Balance
force limits prevented testing at higher pressure.) In order to determine
the effect of density on the magnitude of the buffet bending moment, the
basic configuration was also tested at a much lower stagnation pressure,
0.3% atmosphere. The Reynolds number ranges for the two stagnation pres-
sures are shown in figure 10.

RESULTS AND DISCUSSION

The discussion starts with an examination of the frequency spectrum
of the wing bending moment in order to learn which vibration modes are
evident and which are significant. The effect of air density on the root-
mean-square bending moment is then shown, and is followed by an extensive
examination of the system damping coefficients. The results of this part
of the analysis determined the process that was used to reduce the buffet
data. The next section covers the buffet input force and the effect of
the modifications on this force. The discussion closes with comments
regarding the prediction of flight buffet loads from wind-tunnel tests.

Frequency Spectrum of Bending Moment

The power spectral density of the output of the bending-moment gage,
as determined by electrical analysis with a filter band width of 30 cps,
is plotted in figure 11 for a typical buffet condition. These results
are for a 1lift coefficient beyond the buffet boundary at a Mach number
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of 0.95. The most striking feature of this spectrum is the high concen-
tration of energy in a few narrow frequency bands. The indication is
that for the purposes of analysis the model and supporting structure
could be regarded as a system with only a few degrees of freedom.

Influence of support flexibility.- The low-frequency peak shown in
figure 11 was found to be present throughout the investigation. The
shake tests show the presence of three well-defined low-frequency modes
that are connected with the flexibility of the sting and the strain-gage
balance. 1In order to determine which of these modes was responsible for
the observed low-frequency response, the data for several test points were
analyzed with a 3-cps band width filter. Samples of these analyses are
shown in figure 12. Figure 12(a) shows data obtained at o = 0° at a
Mach number of 0.95. Peaks are observed at frequencies that correspond
approximately to the natural frequencies of vertical translation and
rolling, respectively. The vertical translation response predominates.
Figure 12(b) shows similar results obtained during buffet (a = 4°). Note
the change in scale. The same two modes are present, but in this case
the rolling response predominates. These results indicate that the buffet
excitation contains sizable antisymmetrical components even at low fre-
quencies. The spectral-density values in figure 12(b) are much higher
than those in figure 11 because of the increase in tunnel pressure and
the decrease in filter band width.

Because support flexibility is a factor that is not present in flight,
it is desirable to eliminate the effects of the low-frequency response in
the analysis of the wind-tunnel data. Two effects must be considered.
First, there is the direct contribution of the low-frequency response to
the wing stress. This contribution will be eliminated simply by disre-
garding the low-frequency part of the power spectrum in the analysis and
in the discussion that follows. Second, there is the possibility that
the low-frequency motion of the wing might change the flow over the wing
in such a manner that the buffet excitation at higher frequencies would
be affected. This effect is assumed to be negligible. In this connection,
a previous investigation (ref. 11) showed that oscillating an airfoil at
one frequency had negligible effect on the random air forces due to turbu-
lence and buffeting at higher frequencies under the conditions of that
experiment.

In buffet testing, it is highly desirable to have the support roll
frequency far removed from the first wing bending frequency. If this
condition cannot be satisfied, it is necessary to take steps to remove
the roll response from the output by other means, as for instance by
combining left- and right-wing gage outputs in such a way as to cancel
the antisymmetrical outputs.

Wing modes.- In addition to the low-frequency peak in the spectrum
shown in figure 11, which is to be neglected, there are several other
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peaks. Most prominent is the peak in the vicinity of the wing first
bending frequency. Smaller peaks are shown at frequencies corresponding
to the natural frequencies of the second and third wing modes. The first
mode obviously dominates the response of the wing in buffet. This result
is in agreement with full-scale flight data (refs. 5 and 7) that show the
predominant influence of the first mode for wings of various plan forms,

including a 6%-percent-thick 60° triangular wing (ref. 7).

Because the power in the second and third wing modes is small com-
pared with that in the first mode, a study of the large peak by itself
should provide a good indication of the buffet characteristics of the
wing. In the remainder of this paper, therefore, only the first-mode
response of the wing is considered. The root-mean-square bending moments
that are presented were determined by integration of the spectrum between
limits of 150 and 210 cps.

Effect of Density on Root-Mean-Square Bending Moment

A change in the air density affects the magnitudes of both the force
that excites the buffet vibration and the aerodynamic damping due to the
motion of the wing. Flight tests at a constant Mach number and varying
altitude have shown (refs. 6 and 7) that the net result is that the root-
mean-square buffet stress is approximately proportional to the square
root of the dynamic pressure. In these flights at constant Mach number,
the velocity variation was much smaller than the density variation.
Therefore, the results indicate that the bending stress is proportional
to the square root of the density. Analytically, this result would be
expected if the damping were predominantly aerodynamic, as was assumed
in reference 7. In order to determine the effect of density on the buf-
fet stresses of the wind-tunnel model, the basic configuration was tested
at two different values of tunnel stagnation pressure. The results, for
a Mach number of 0.80, are shown in figure 13 where the ratios oy/q and

UM//Q' are plotted as functions of Cy. The velocities at the two stagna-

tion pressures are identical; hence, q varies only because p varies.
The results shown in figure 13 indicate, therefore, that the root-mean-
square bending moment is more nearly proportional to p than to J_.
Thus, the effect of air density on the buffet intensity is different for
this model than for airplanes for which flight data are available. As a
result, the equation presented in reference 7 (essentially, eq. (BlL)
with g = 0) cannot logically be used as a basis for the reduction and
analysis of these data, nor can it be used to predict flight buffet loads
from the data for this model. One of the basic assumptions underlying
this vaffet equation apparently has been violated in this test.
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After observation of the preceding results, it was obvious that a
new technique for data reduction was required. Before such a technique
could be developed, however, it was necessary to determine the reason
for the observed difference between flight and model results in the
effect of density on the bending moment due to buffet. A study of the
system damping coefficients proved most informative, and the results of
this study are presented in some detail in the following section. The
reader who is interested only in the buffet results of the present
investigation may find them by turning to the section entitled "Buffet
Input Force."

System Damping Coefficients

Determination of damping coefficlents.- In the case of forced vibra-
tion of a single-degree-of-freedom linear system, it is possible to infer
the value of the system damping from the shape of the response curve of
the system. Two independent methods are available for this purpose and
they are derived in appendix A. One method makes use of the relation-
ship between the mean-square response and the peak response:

g 2

-2
% (%)

(1)

~
+
R

=1
7

where 202 is the mean-square response and ¢ZO(Qr) is the peak response

of the system. The other method uses the relationship between the band
width at the half-power points and the frequency of resonance:

g_1
7+ 35 =300 (2)

where AQ 1is the difference between the frequency ratios at the two half-
power points. The half-power points are those points on the spectrum at
which the spectral density is exactly one-half as high as the spectral
density at resonance (peak response). These two equations are given as
equation (A12) and equation (A15) in appendix A. If, in an experimental
investigation, the measured quantity were the wing bending moment, °M2

would be inserted in equation (1) for the mean-square response and ¢M(Qr)
would be inserted for the peak response.

Two assumptions are required to justify the use of these relation-
ships in the analysis of buffet data. The first is the assumption that
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the wing behaves like a single-degree-of-freedom system in the vicinity
of the natural frequency of the first symetrical mode. The second
assumption is that the system input is independent of the frequency in
the range where the output is significant. For the buffeting model,
this frequency range is so narrow that the assumption will be substan-
tially satisfled by any reasonably smooth input spectrum, and therefore,
the asumption seems reasonable.

In either of the two methods for obtaining the damping coefficient,
it is essential that the band width of the filter that is used to obtain
the spectrum be considerably less than the band width of the system being
studied. The 30-cps band width used to obtain the spectrum shown in
figure 11 is much too large and, in fact, it proved necessary to use the

smallest available filter band width, about li-cps, to obtain the damping

coefficients for this wing. A typical spectrum obtained by narrow-band-
width analysis is presented in figure 14. This spectrum was obtained
from the same data as the spectrum shown in figure 11. Comparison of
figures 11 and 14 shows that the wider band filter gives a peak value
that is far too low and a spectrum band width that is far too wide.

There are certain statistical problems encountered in making a
narrow-band analysis of the type shown in figure 14. For a fixed length
of record (in this case a 30-second loop of tape was analyzed), the con-
fidence that can be placed in the value obtained for any given point on
the spectrum will decrease as the filter band width decreases. Roughly
speaking, the problem is that as the filter band width is decreased, a
point is reached eventually where the mean value in the 30-second time
interval for this tiny segment of the frequency range may differ consid-
erably from the long-time mean value for this segment. The presence of
such errors is indicated by sharp erratic. dips and peaks in the frequency
spectrum, some of which are evident in figure 14.

The effect of these errors on the accuracy of a damping-coefficient
determination must be considered. One method for determining the damping
coefficient is based on measurements of the peak response and the mean-
square response (eq. (1)). Only the peak response is affected by the
error under consideration. The other method requires the determination
of the band width at the half-power points (eq. (2)). The damping coeffi-
cient, as determined by this method, is affected by errors at the half-
power points and the peak. Both methods were used in the present analysis
In the first method, it was necessary to modify the constant 1/rx in
equation (1) to account for the fact that the mean-square values were
obtained by integrating only from 150 to 210 cps rather than from O to
o ¢ps. This modification was accomplished by multiplying l/n by the
ratio of the part of equation (A10b) in brackets to equation (AlOa).

These equations are for 7y = 0. The assumption of ¥ = O for the deter-
mination of this ratio causes negligible error, because the damping for
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these tests was mostly structural, and it greatly facilitates the cal-
culation. The modified equation that was obtained by this manipulation
was solved graphically. In the second method (eq. 2), the response

curves had to be smoothed in some instances in order to obtain a single-
valued answer for the band width. The damping constants obtained by the
first method have been plotted against those obtained by the second method
in figure 15. The scatter is small except at the high damping values that
were measured under nonbuffet (low-1lift) test conditions. Thus, the sta-
tistical errors that are inherent in figure 14 do not interfere seriously
with the determination of the system damping.

Figure 15 also permits a test of the assumption regarding the single-
degree -of -freedom behavior of the buffeting wing. If equations (1) and
(2) are equated, the result is a relationship that connects the band
width, the peak response, and the mean-square response. If the output of
the buffeting wing does not satisfy this relationship, then the assumption
that the buffeting wing behaves like a linear, single-degree-of-freedom
system with constant-spectral-density input is incorrect. The fact that
the average of the data in figure 15 falls almost on the line of perfect
agreement proves, however, that the experimental output does satisfy this
relationship. The agreement is necessary, but not sufficient, to prove
that the assumption is correct.

Effect of density.- In figure 16, damping coefficients are plotted as
a function of Cj for tests of the same configuration at two different

values of tunnel density. The corresponding values of dynamic pressure
are given in the figure. The effect of a 2%-fold increase in density is

to decrease slightly the total system damping. The total damping is com-
posed of two parts - aerodynamic damping and structural damping. Aero-
dynsmic damping increases with increasing density; yet, in this experi-
ment the total damping was found to decrease. Hence, the aerodynamic
damping in this experiment is apparently much smaller than the structural
damping .

Effect of 1ift.- Both sets of data in figure 16 show a large decrease
in damping with increasing Cj. Because the aerodynamic damping is appar-

ently small, the origin of the damping variation with Cj must be sought

in the mechanical system of the model and supporting structure.

In this connection, it was observed that the damping at low values
of Cy, is considerably higher than would be expected for a solid aluminum

wing. This observation led to a careful examination of the model in
search of a possible source of sliding friction. The most likely source
appears to be the dovetail joint by which the wing was attached to the
fuselage. The supposition is that at low lift the joint is sufficiently
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loose so that a bending vibration of the wing causes a slight relative
movement between the wing and fuselage portions of the joint and that

the damping is increased by the energy dissipation due to friction in
this joint. At high 1ift, the steady forces are supposed to result in

a tightening of this joint with a resultant decrease in the relative
movement due to vibration and, therefore, in the damping. If this is the
case, there should be a better correlation between the actual 1ift and
the damping than between Cj, and the damping.

In order to test this supposition, two additional plots were made.
For the first plot, the damping coefficlents for the basic configuration
that were determined with 0O < Cy < 0.15 were averaged with the use of

data at all Mach numbers. Similar averages were formed for other inter-
vals of 0.15 in Cp. The data at the two different tunnel pressures were

treated separately. The results are shown plotted against CL in fig-

ure 17(a). As was the case at M = 0.80, the increase in tunnel pressure
resulted in a decrease in damping.

For the second plot, a similar averaging procedure was used, with
1ift intervals of 100 pounds for the low-pressure data and 250 pounds
for the high-pressure data. The results are shown plotted against lift
in figure 17(b). There is a much better correlation between the damping
and the 1ift than between the damping and Cy. This experimental result

is in accord with the supposed action of the wing-fuselage joint.

As a result of this investigation, it has become apparent that care
should be exercised in the design of buffet models to minimize the struc-
tural damping and to eliminate any variation of the structural damping
during wind-tunnel tests.

Buffet Input Force

Determination of input force.- The fact that the damping varied
considerably during the test means that the wing bending moment is not a
direct measure of the magnitude of the buffet forces that excite the wing
vibration, because the bending moment is a function of the damping as
well as of the exciting forces. Thus, in order to determine the effect
of the modifications on the buffet forces, it is necessary first to elimi-
nate the effect of variations in damping. The equations that govern the
response of a wing in buffeting have been presented in reference 7 for
the case where the wing is treated as a simple beam.

In appendix B, corresponding equations are derived for the more gen-
eral case of a platelike wing, the structural characteristies of which
are described by flexibility-influence-coefficient and mass matrices.

CONFIDENTTAL
000 o00e 000 o oo oee o0 o ® o080 o0 L ] L ] (X )
L [ [ 4 *® * [ ] [ ] L] LI X Ad L J L] e o [
L L d [ X X ] [ 4 o0oe ° o0 L X ] [ 2 L] [ d e &0 o o [ d
L] L J [ 4 [ d (.4 L ] e [ N J L] * o ® © o9 o L ]
000 0000 000 000E o000 o000 (X 1) L 2 L] [ X ] L] ® o L]



l6 ... (XX X ] ... e ooe ... cUNFiﬁéﬁ : o0 : E :..: NACA RM L57H15

Unfortunately, the present wing was no longer available at the time it
became clear that the influence of damping variations would have to be
removed from the data, so the influence coefficients could not be deter-
mined and it was necessary to rely on the simple-beam analysis. Although
the accuracy of results derived by representing the wing of this test as
a simple beam may be open to question, the comparisons between the vari-
ous configurations are not affected by either the beam assumption or the
choice of mode shape.

For wings that can be treated as simple beams, a strain-gage instal-
lation on the wing can be calibrated in terms of the bending moment
carried by a cross section of the wing, and a relationship between input
force, damping, and bending-moment output can be derived. The equation
for the spectral density of the generalized normal-force coefficient is

o vy v a2 M2 47+ §) (3)
Cw,1\ " v ava 2q252 T,

This equation is obtained by combining equations (Bl2) and (Bl3), which
are derived in appendix B. This equation has been used in the reduction

of the data from the present investigation. The factor = was modified,

as previously explained, to account for the fact that GM2 is obtained

by integration from 150 to 210 cps instead of 0 to « cps. The assumed
mode shape was the same as in reference 6.

The square root of the spectral density of the generalized normal-
force coefficient is plotted as a function of CL in figure 18 at Mach

numbers from 0.80 to 1.00. The spectral density of the generalized
normal -force coefficient at the first-mode natural frequency o 5

o 01 Cay
C
N,1\ V

is the quantity that is fundamental to the generalized harmonic analysis.
Under the assumptions made in the present analysis, however, the root-
mean-square bending moment in the wing is directly proportional to the
square root of this spectral density. The results are presented, there-
fore, in terms of the square root, which is denoted by
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Basic configuration.- The results for the basic configuration
(fig. 18) are given by the circular symbols. Flagged circles indicate
data obtained at a tunnel stagnation pressure of 0.33 atmosphere. The
solid lines plotted in figure 18 were obtained by fairing straight-line
segments through the data for the basic configuration. The sharp break
(discontinuity in slope) defines the buffet boundary, as determined from
the wind-tunnel tests. The value of Cj at the buffet boundary decreases

from nearly 0.5 at M = 0.80 to about 0.15 at M = 0.95. As the Mach num-
per increases above M = 0.95, the val® of C;, at the buffet boundary

increases rapidly.

Effect of modifications.- The modifications were tested only at the
higher stagnation pressure (0.80 atmosphere). For this tunnel pressure,
the angle-of -attack range was limited by the internal strain-gage balance
so that data were obtained beyond the buffet boundary of the basic config-
uration only at Mach numbers from 0.90 to 0.95, where the buffet boundary
is lowest. The results for Mach numbers of 0.90, 0.925, and 0.95 show
that the buffet forces at the higher values of Cj, were substantially
reduced by the modifications. At M = 0.925, for instance, the buffet
forces were reduced by the addition of the cambered leading edge. Adding
the swept trailing-edge extension resulted in a further reduction 1in the
buffet intensity. Adding the body bump had no appreciable effect at this
speed, but the data for M = 0.95 show a reduction in buffet intensity due
to the bump. Inasmuch as changes in body shape are known to affect both
the strength and the progression of the main flow shock over the wing,
this is a reasonable result. In general, it would seem that modifications
that improve the flow over the wing would reduce the buffet intensity.

The results are less conclusive with regard to the effects of the
modifications on the buffet boundary. The data for the fully modified
configuration at M = 0.95, for instance, seem open to either of two pos-
sible interpretations: (1) the buffet boundary is essentially unchanged
by the modifications, but the buffet forces have became particularly mild,
or (2) the buffet boundary has been moved out to a C1, beyond the range

of the test. In either event, the effect of the modification is favorable.

Effect of turbulence.- It is typical of figure 18 that at a given
Mach number the exciting force at low values of Cj, 1is approximately con-

stant independent of both CL and the modifications. This excitation is

believed to be due to wind-tunnel turoulence. Experience has shown that
if the turbulence level is too high, the location of the buffet boundary
tends to become obscured. From the nature of the power spectrum (fig. 11)
it is obvious that the important factor is not the overall turbulence
level in the tunnel, but rather the turbulence level at frequencies in the
vicinity of the wing natural frequency f7. In the present tests the
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root-mean-square value of the lateral component of turbulence in the
frequency interval from 180 to 190 cps is estimated at less than 0.02°
on the basis of turbulence surveys of the tunnel.

Comments Regarding Prediction of Flight

Buffet Loads From Wind-Tunnel Tests

W1Cavy ;
If CN,l( = } and CLQ} are known, either from experimental

results or theory, the root-mean-square amplitude of vibration can be
calculated from the following equation which was obtained by substituting
the appropriate values for @y(w;) and y 1in equation (B9):

o
©1Cav) (2
o)
Op. = CN;1< v g_aﬁcav Sy (4)
1 CL&’quE g L v Mla&2
—_— + =2

In deriving the equation for the root-mean-square vending moment
that is presented in reference 7, it was assumed that the structural
damping is so small that it can be neglected in comparison with the -
aerodynamic damping. The corresponding equation for the vibration ampli-
tude is obtained by setting g = O in equation (4)

L
o (fmcav) 2 B
_ S,V x Cav S1 (5)
0‘rl - c Ja 2 2 M;5o 2
Loyl “1

Available flight data support the assumption that the ratio of structural
to aerodynamic damping is sufficiently small so that the structural damping
can be neglected in buffet calculations (refs. 6 and 7). The results of
the present investigation, however, show that this is not necessarily true
for wind-tunnel models. (See the section of this paper entitled "System
Damping Coefficients.")

There is a general tendency for the aerodynamic damping ratio 7y of
solid-metal model wings to be considerably lower than for airplane wings
because of the higher density of the model wings. If, as in the present
test, the values of q and V approximate the flight values, the aero-
dynamic damping will be proportional to the value of the constant Sg/Mlad
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for the model and for the airplane. For the Douglas D-558-I1, this con-
stant has the value 0.00858 for the 1/16-scale model described in ref-
erence 12 and 0.0646 for the full-scale airplane. Thus, the serodynamic
damping ratio for the model is only about one-eighth of that for the
airplane. Because of this tendency toward much lower aerodynamic damping
ratios, the structural damping assumes a greater relative importance for
models than for airplanes. Thus, it would seem advisable in the design
of models to be used in buffet tests to try to minimize the structural
damping.

With regard to the results of the present investigation, any attempt
to predict flight vibration amplitudes or stresses must be based on an
estimate of CLOL 1 for the airplane. Unfortunately, there seem to be

J

no experimental data for swept wings on which to base this estimate.
Experimental aerodynamic damping ratios for two unswept wings are pre-
sented in reference 11.

CONCLUDING REMARKS

The buffet characteristics of a 1/10-scale model of an attack air-
plane have been investigated at Mach numbers from 0.80 to 1.00. The wing
had a modified delta plan form with an NACA 0008 (modified) airfoil sec-
tion at the root and an NACA 0005 (modified) airfoil section at the tip,
a leading-edge sweep of 41.11°, an aspect ratio of 2.91, and a taper
ratio of 0.226. Modifications to the basic configuration included a
tapered wing-leading-edge extension with camber, an addition to the wing
trailing edge sweeping it forward 100, and an area addition to the rear-
ward fuselage section. In the speed range where the buffet boundary of
the basic configuration was lowest, the buffet intensity was reduced
substantially when these modifications were added to the model.

During buffet, the wing vibrated primarily in the first symmetrical
mode. The damping of the vibration was not primarily aerodynamic, as is
the case for airplanes in flight at these speeds, but instead was mostly
structural, apparently because of friction in a dovetail Jjoint. As a
result, any attempt to predict flight buffet stresses from the results
of this investigation must be based on an estimate of the aerodynamic
damping for the airplane.

For the mathematical model of the buffeting wing there is a relation-
ship that connects the band width, the peak response, and the mean-square

response. The experimental results show that this same relationship holds
for the actual buffeting wing.
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In designing buffet models, it is desirable to keep the structural
damping very low because the aerodynamic damping ratio is much lower for
solid-metal model wings than for actual airplane wings.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., July 31, 1957.
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APPENDIX A

DERIVATION OF EQUATIONS RELATING DAMPING CONSTANT AND

POWER SPECTRUM OF SYSTEM RESPONSE

Consider a linear single-degree-of-freedom system with aerodynamic
damping and structural damping both present. The equation of motion for
such a system, in a steady-state forced vibration, can be written (com-
bine egs. (3.25) and (3.68), ref. 13):

. . F :
Z+ 2072 + a2l + ig)z = 7% elwt (A1)

where «, 1is the undamped natural frequency and 7 1is the aerodynamic
damping ratio. If a solution of the form 2z = zoei(wt'B) is assumed,

the vibration amplitude 2z, 1is found to be given by the following equation:

Fo
2
Zo = 2m‘nn' (A2)
2 2
) R g)
en? \
With the substitution Q = % this becomes
@
Fo
2
2, = e (A3)

J(l - 92)2 + (290 + g)2

The frequency of maximum response is termed the resonant frequency
(% or .). This frequency can be found by maximizing equation (A3).
The exact result is

oo TR .
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which can be solved easily by iteration. An approximation that is
entirely adequate for lightly damped systems, for which @, 1s nearly 1,
is

Qp =~ \/l - 272 - g (A5)

0. When the dsmping is
0.15), the error is about

This equation is exact for 7 =0 or for g
30 percent of critical (with 7 = 0.15, g/2
1/10 of 1 percent.

[}

According to the principles of generalized harmonic analysis, if
the system is excited by a random force with spectral density QFO(Q),

then the spectral density of the displacement is
2
0, (2) = op_(2)]a0)]

2
where \A(Q)l is the square of the absolute value of the system admit-
tance. (This input-output relationship is given in reference 4 in terms
of the impedance, which is the reciprocal of the admittance.) From equa-
tion (A3)

and, therefore,

¢, () e (26)

When equation (A4) is substituted into equation (A6), the spectral
density of the displacement at the resonant frequency is found to be

QFO(Qr)
2. 4
e, (Q) = ~n 6
© (27 + )2 - 72(40” + byg + &%) + O(" >
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The integrated mean-square response of the system is given by

o (2)
R nZuy*
© o (1 - 92)2 + (270 + @)%

or, for the special case where the spectral density of the exciting force
QFO(Q) is a constant independent of frequency

I (Q) 00
Zo2 = °Zo N ljj > a (A8)
mean® U0 (1 - 02)" + (27 + )7

If either g or 7y 1is zero, the integral in equation (AB) can be eval-
uated in closed form. For g = 0,

Q
1 1 297‘1 B

Qp .
- = _E___~.log L4+ L tanl =7
(1 02)2 (270)2 5 erp by 1. Q?J
QA - + 7! 8\/1 -y

(A9a)

dy

where

ry =1+ Q% + 2041 - 72
rp =1+ 02 - 20/l - 5

When the integral of equation (A9a) is evaluted for the limits Qn = O
and Qp = » and the result is substituted into equation (A8), the
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following equation is obtained:

—_— op (Q)
2 _ _fo ' X
07T 2, b (A9b)
For vy = O:

Q

WB
) 1 2 1
> = 1+ g - 1 loge ;— -
2 o 2
2,2 g/l + g

QA (l - 92) + g

g

’Ji + g8+ 1 tan™t Ty (A10a)

- QA

r = 0% + 2J§-Q,Nl + g2 + 1 + Jl + g2
L
] — |
ro = L?e - EJE_Q Jl + g2 + 1 + Jl + g2

Zofllee? -1

Qe -1 + g2

where
1/2

1/2

When the integral of equation (Al0a) is evaluated for the limits Qp = 0

and Qp = « and the result is substituted into equation (A8), the fol-

lowing equation is obtained:

—3 QFO(Q)_“_\F l+g

VA =
© 4 |2
mz% g h_ + g2

(A10b)

For the case where the system damping is low, a satisfactory approxi-
mation to equation (A8) is
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o T 3% u(7+i§.) (A11)

This result has been obtained for the special case ¢FO(Q) = Constant.

The error of the approximation in equation (All) has been determined for
three combinations of 7y and g/2, each with a total damping ratio of
0.0k, with the following results:

Error in eq. (All),
4 g/2 percent
0.04 0 o
.02 .02 .11
0 Ol .024

For the special case of a lightly damped system with constant den-
sity excitation, equations (A7) and (All) can be combined to yield a

relationship between the damping, the mean-square response, and the peak
response:

y+ 8L I (a12)

In case the mean square value is obtained from an integration over a
limited range rather than from O to «, this equation can be modified as
explained in the discussion of figure 15 in the section of the paper
entitled "System Damping Coefficients."

A second equation for the damping can be derived independently from
the frequencies at the half-power points on the response curve. These
frequencies can be determined by finding the maximum value of the inte-
grand in equation (A8) and then solving for the frequencies at which the
value of the integrand is exactly one-half of the maximum value. This
has been done for the two special cases g =0 and 7y = 0. For g = 0:

/e = [1 -2f t 27,/1 - 7211/2 (A13a)

The two solutions given by this equation yield the difference AQ between
the upper and lower half-power points. The solution for ¥ in terms of
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this difference is

1/2
y = %[1 + %(AQ)2 - ’1 + -lg-(m)ﬂ / (A1%b)

For vy = 0O:

91/2 =1l tg (Al)-l-a)

and

g = AQ./]_ - -111(&1)2 (Alkb)

For combined viscous and structural damping, a sultable approximation for
lightly damped systems is

7+%—=%AQ (A15)

The error in equation (A15) has been determined for three combinations of
¥y and, g/2, each with a total damping ratio of 0.04, with the following

results:

Error in eq. (Al5),
7 g/2 percent
0.0k 0] 1.965
.02 .02 .165
0] .ol .080
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APPENDIX B

DERIVATION OF EQUATIONS GOVERNING BUFFET

RESPONSE OF A WING

In deriving the buffet equations the procedure will be to determine
the normal modes of the wing, to set up the equation for a steady-state
forced vibration by Lagrange's method, to solve thls equation in order
to determine the admittance of the vibrating system, and then to apply the
methods of generalized harmonic analysis to determine the response of the
system to a random (buffet) input.

The normsl modes of vibration can be determined from the structural
characteristics of the wing as described by certain matrices (ref. 13,
14, or 15). For analysis, the wing is divided into a suitable group of
elements, each of which is associated with a particular point in the plane
of the wing. The elastic properties of the wing are contained in a square
matrix of flexibility-influence coefficients, which can be determined by

analysis of the structure or by direct measurement. If {P}- is a set of
static loads and {z} is a corresponding set of displacements, then

(-} - (¢

where [A] is the matrix of flexibility-influence coefficients. The

inertial properties of the wing are described by a diagonal matrix, each
element of which is the mass associated with an element of the wing.

This matrix is denoted by [M]. The matrix [U] = [A}[M} is called the
dynamic matrix.

The matrix equation

fe}- L0

is solved to obtain the frequencies and shapes of the normal modes of
vibration (ref. 13, p. 169). The frequency of the nth mode will be
written o, and the column matrix containing the associated normalized

set of deflections will be written {¢(n)}.
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The displacement of the mth element of the vibrating wing can be
written in terms of a series utilizing the normal modes:

Zm = Z rnq)m(n)

n

where the terms 1, are functions of time. The kinetic energy of the
vivrating system is then (ref. 13, p. 45)

1 EZ: . 2
T=§ Mnrn
n
where

My = nZ mm(@m(n)>2

and the terms m, are the elements of the inertia matrix [M]. The
elastic strain energy V is (refs. 13 and 1k4)

V = % zz: wnE.Mnrn2
n

These expressions for the kinetic and potential energies, when lnserted
in Lagrange's equation, yielded the equation of motion for the nth mode:

M,y + wthnrn = EE: Pm?m(n) (B1)
m

where P, represents the forces, other than inertial and elastic, that
act on the element m.

The results of this test and others (refs. 5 and 7) have shown that,
in many instances of wing buffet, most of the energy in the power spectrum
of buffet bending moment is concentrated at frequencies in the vieinity of
the natural frequency of the first mode. Normally the first mode is well
separated from the higher modes, and as a result the response of the
higher modes at the first mode frequency is very small. Attention can
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be confined, therefore, to a study of the first mode. The set of equa-
tions (Bl) then reduces to the single eguation

One of the forces that contribute to Py is the pressure fluctua-

tion that causes the buffet; this pressure fluctuation is called the
exciting force. The force on element m is Apys, and the corresponding

generalized force on the wing is
Ny = § AP S _Q (1)
m :

It is convenient to define what might be termed a generalized normal-force
coefficient for the first mode:

CN,l = — (B3)

where
=2 5,9, ) (B4)

Another force that contributes to P; 1is the aerodynamic force due

to the motion of the wing. For simple harmonic motion, this force for
an element m of the wing is of the form

apty + by + Cury

with the corresponding generalized force being

oe . l
n EZ: am@m(l) + I E:: bm‘prn( ) 4 r EZ: cmmm(l)
m - i

In this simplified treatment of the buffet phenomena, the first and last
terms of this generalized force are assumed to be negligible in comparison
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with Ml?l and wlelrl, respectively. Further consideration is given

to the second term, which arises from the aerodynamic forces that oppose
the vertical velocity of each element m. The resulting pressure dif-

ference has the form

= -q

B P e

Apy, = -Aly

where ém/V is an effective angle of attack and kyp 1is a constant of

the nature of a local lift-curve slope that depends on the plan form
and mode shape. The minus sign signifies that the pressure opposes the

motion. The corresponding generalized force is
ey - 33 o)
-Iry = -4 KrSm\Pm
m

It is convenient to define what might be called a generalized lift-curve

slope for the first mode:
zz: kmSmQQm(l)>2
__m

Ly, S, (25)

where
Sp = Z Sm(@m(l)f (B6)

so that
Ii7q = C 1 g8
ri = —= g
17 Vg1 v T8
The equation of motion can now be written as

.o . 2 _
erl + Llrl + U)l erl = Nl
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The term Llfl is the generalized aerodynamic damping force. Structural
damping can be included in the equation by adding a term iguleerl

(ref. 13, p. 197). For a sinusoidal exciting force Ny = N sin wt the
equation of motion is then

M¥F) + g7y + (1 + ig)opMr) = N sin wt

which is of the same form as equation (Al).

The steady-state solution
of this equation is

ry = N sin (ot - B)
Myan 2 2
lwl l-ﬁ +(27£+g)2
an 2 |
L
vhere vy = 1

v and B 1s the phase angle by which the displacement
191

lags the force. For use in the generalized harmonic analysis of buf-
feting, the square of the absolute value of the admittance is required:

2
|A(w)| = ;‘ '
2 k e 2
M; “wy (1-$>+(27a—“§+g>

According to the principles of generalized harmonic analysis the
response of this system to a random input QN(w) is

(B3)

0, (@) = oy(w) |a(w)]®

The mean-square value is given by

;F=£W¢N(w)|A(w)‘2m

In the case of a lightly damped system, the response is concentrated
in a narrow frequency band near @) . In that band the response is very
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nearly

or, (o) = oy(wy)]a(w)]®

if the input spectrum is reasonably smooth. Flight-test results (ref. 7)
show that all but a very small part of the response power for a buffeting
wing is found in the frequency band near ) and, therefore, the mean-

square response will be very nearly

¥=¢N(“’l)j; |2t P

Approximating the integral as in equation (All) gives

(B9)

Assume now that a strain gage has been mounted on the wing at any
point that experiences strain fluctuations during first-mode vibration
of the wing. When the wing vibrates in the first mode, the elongation
sensed by the gage and hence the gage output, will be directly propor-
tional to the amplitude ry of the vibration. Hence, r; can be

determined with a properly calibrated strain gage. (The case where the
wing 1s vibrating in several modes is not considered herein. Such a
case involves solution of the set of equations (B1) rather than of a
single equation of the set.) Thus the power spectrum @rl(w) and the

mean-square value r12 of the vibration amplitude can be obtained from
analysis of the strain-gage output.

The value of the damping v + g/2 can be determined from an analy-
sis of the strain-gage output by either of the two methods deseribed in

appendix A. With the damping and the mean-square response known, egua-
tion (B9) can be solved for the spectral density of the exciting force:

—— My P ( + %-)

® - 2 B1O
N (@) =711 o (E10)
CONFIDENTIAL
o : : .o.o :o.. :..: .o.. 0... .:. ° 08 o000 oo
: :..: : R : : : .0. o [ J :0. : :0. : :
o o L] o0 [ ] LR ] [ X X J LR X ] .:. :... .:. :... :...



oo o000 0000 00
P ') sse s 0:0 bt e o .

NACA RM L57H13 :oo: E .E :o.C(;NFI]i].N.IfIAL.. ooo. -:o ° ese® So0e 00O 33

This result can be converted to coefficient form by means of the power-
spectrum equivalent of equation (B3), that is,

oy, (o)
ey (@) =
N,1 Q?Sle
with the following result:
—_ 2 yfy+ 8
2 4 M ( g)
o =r Bil
CN,l(wa) 1M q2312 Ty (BLL)

In the case where a wing can be treated as a simple beam, the
strain gages can be calibrated in terms of the beam bending moment, and
a relationship can be derived between the bending moment and the gener-
alized input force for first.mode bending of the wing. This is the pro-
cedure followed in reference 7. The equation for the spectral density of
the generalized normal-force coefficient is (compare with eq. (Bll))

g
_af WP 4(y + §)
Mm,l2 q2512 ey

(B12)

where GM2 is the mean-square bending moment. The constants M, Mm,l:
and S; are as defined in reference 7. Because the wing is considered as

a continucus beam, the generalized masses and areas are obtained by inte-
gration rather than by summations such as equation (B4).

The results of the present investigation are presented in terms of

Wy
the nondimensional frequency parameter -ivéx by use of the transforma-

tion

MCav) _ Vv
QCN,1<—_VEE3'_——_-QCN,l(wl) (B13)

Cav

The use of this parameter was suggested in reference 16.
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The equation for the root-mean-square bending moment as a function

of @C <“°lcav> is
N,1\ V

1/2

o (wlcav)
ﬁ CN;l \'

g C
1l + =
,/ 25 Lo, 1

oy = 2kFg (B14)

The derivation of this equation is essentially the same as that of
equation (1) in reference 6, except that structural damping g has been
included in this case. Equation (BlL4) also differs from equation (8) in
reference 7 (same as eq. (1), ref. 6) by a factor of 2 that was inadvert-
ently omitted in the derivation of that equation. Thus the values of the
quantities symbolized by

[

CN( a\]1/2

Q
&
<|£ <
(@]
S’

and

()]
o[®8) o ] o | T\V
\' aACNC (un_ﬁ)

La\'V
as presented in references 6 and 7 are exactly twice as large as the

values that would be obtained by the use of equation (Blk). Because
the references use the same equation consistently, the values of oy

are not affected by the omission of this constant factor.

For the limiting case vy = O, the root-mean-square bending moment
is, from equations (B12) and (Bl3),

1/2 '
_ Sle,l 7 Cav 01 Cay
™M Ty j;_g,/ v qEDCN,l< v >] (515)

Thus for 7 = 0, oy « q « p; while for g =0, oy« IE « JB (eq. (BLL)).
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TABLE I.- AIRFOIL ORDINATES FOR BASIC WING

AND LEADING-EDGE MODIFICATION®

*
[ ]

57

Root-chord ordinates Tip-chord ordinates Modified leading-edge
of modified NACA 0008, of modified NACA 0005, ordinates at O.873b/2,
percent c percent c percent c
Station| Upper| Lower Station| Upper | Lower Station| Upper | Lower
0 0 0 0 0 0 -9.48 | -2.65] -2.65
1.1 1.50 | -==~- 1.2 B3 | —---- -9.42 -2.391 -2.92
1.4 -—— -1.14 1.3 -———- B The -9.33 -2.251 -3.03%
2.3 2.19 | —==-- 2.4 122 | -=--- -9.18 -2.07| -3.13
2.7 | ---- | -1.53 2.6 | —--- -.55 8.5 | -1.71] -3.32
4.8 3,15 | —==== hot 177 | ----- -8.02 -1.31 | -3.43
5.2 | ---- | -2.00 5.1 | ——-—- -.61 -6.55 -. 70| -3.41
7.3 | 3.80 | ——--- 7.4 | 2.15 | —==-- -5.57 -.181] -3.32
7.7 | ---- | -2.31 7.6 | ---- -.65 -3.61 271 -3.18
9.9 | 4.25 | ----- 10.0 | 2.41 | -—--- -.66 1.01] -2.90
10.1 —_—— -2.54 10.1 -——— -.71 2.27 1.59| -2.67
15.0 | k.72 -2.88 15.0 | 2.73 -.90 5.20 2.09| -2.49
20.0 | 4.85 -3.08 20.0 | 2.89 | -1.12 8.14 2.491} -2.37
25.0 | 4.83 | -3.17 25.0 | 2.98 | -1.33 11.07 2.80| -2.27
30.0, | k.75 -3.20 30.0 | 3.05 | -1.50 14.01 3.07 | -2.24
4LOo.0 | 4.46 | -3.13 40.0 | 3.10 | -1.78 16.96 3.22 -2.25
50.0 | 4.01 -2.90 50.0 | 3.05 | -1.95 19.89 3.28 | -2.35

60.0 | 3.41 | -2.53 60.0 | 2.86 | -1.98
70.0 | 2.70 | -2.0k 70.0 | 2.47 | -1.81
80.0 | 1.89 | -1.45 80.0 | 1L.85 | -----
90.0 .99 -.T7 90.0 | 1.0k -.82
95.0 .52 -.41 95.0 .59 -.48
100.0 } © 0 100.0 | O 0
L.E. radius: L.E. radius:
0.70 percent c 0.21 percent ¢

8Stations and ordinates referenced to the leading edge and wing
reference plane of the basic wing.
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Leading-edge modification
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Figure 4.~ Dimensional details of wing leading-edge modification.

dimensions are in inches unless otherwise noted.
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Figure 5.- Dimensional details of wing trailing-edge extension. All
dimensions are in inches unless otherwise noted.
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(a) Three-quarter front view.

Figure 8.- Model installed in the Langley 8-foot transonic pressure tunnel.
wing leading edge, wing trailing edge, and fuselage included.)
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(b) Three-quarter rear view.

Figure 8.- Concluded.
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Figure 11.- Typical spectrum of the output of the bending-moment gage
with a filter band width of 30 cycles per second. BRasic model at
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