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NATIONAL ADVISORY COMMITTEE FOR AERONAWCS 

RESEARCH MEMORANDUM 

L O W - T E N P E B A ~  C m C A L  STARTING OF A 20O-POUND-TEIRUST Jp-4 - NITRIC 

ACID ROCKET ENGINE USING A THREE-FLUID PROPELLA" VALVE 

By Glen Hennings and Gerald Morrell 

Studies i n  a 200-pound-thrust rocket engine showed tha t  s t a r t i n g  of 
JP-4 - n i t r i c  ac id  propel lants  could be accomplished at temperatures as 
low as -65' t o  -60° F with hydrazine-water i g n i t e r  f u e l s .  
i gn i t e r - fue l  compositions f o r  s t a r t i n g  at -60° F were 55 and 69 percent 
hydrazine. An e s s e n t i a l  fea ture  of t h e  propellant system w a s  a three- 
f l u i d  flow control  valve, which a l so  scheduled the  t r ans i t i on  from ig -  
niter f u e l  t o  JP-4. 

Limiting 

The same technique w a s  used with an organophosphorus i g n i t e r  f u e l  
(RF 208) and with a blend of 70 percent triethylamine and 30 percent - 0- 

toluidine;  starts w e r e  obtained at  -80° F. 

The tendency toward unstable combustion of Jp-4 - n i t r i c  acid i n -  
creased as temperature decreased. 

INTRODUCTTON 

The je t  f u e l  - n i t r i c  ac id  propellant system has been proposed o r  
specif ied f o r  a va r i e ty  of t a c t i c a l  l iqu id  rocket applications.  Typical 
mi l i t a ry  spec i f ica t ions  now require  r e l i ab le  ign i t i on  over a temperature 
range of -40' t o  120° F ( re f .  1). Future requirements are expected t o  
lower the  l i m i t  t o  -65' F o r  less; r ed  fuming n i t r i c  ac id  containing 1 2  
t o  20 percent nitrogen dioxide will probably be used as an oxidant be- 
cause of i t s  low melting point (about -85O F) and good ign i t ion  charac- 
t e r i s t i c s  (ref. 2 ) .  References 3 and 4, f o r  example, show that the  pres- 
sures developed i n  storage of such acids i s  low, and t h a t  a solut ion of 
t he  corrosion problem i s  i n  s igh t .  

Jp-4 and n i t r i c  ac id  do not i g n i t e  spontaneously at normal tempera- 
tu res ;  one method f o r  supplying ign i t ion  e n e r a  i s  t o  i n j e c t  ahead of 
t he  hydrocarbon f u e l  a material t ha t  ign i tes  on contact with the  acid.  
Previous research (refs. 1 and 5) has shown t h a t  hydrazine-water mixtures 
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(approximately 69 percent hydrazine) are su i t ab le  i g n i t e r  f u e l s  a t  -40° F 
and higher.  I n  these s tud ies ,  flow sequence and i g n i t e r  composition ap- 
peared t o  be qui te  c r i t i c a l  at the  lower temperature. 
i es  of permissible water content i n  hydrazine-water blends have been pub- 
l ished. For f i e l d  service espec ia l ly ,  there  are advantages t o  having as 
wide composition l i m i t s  as poss ib le .  

N o  systematic stud- 

Certain f u e l s  such as dioxaphospholanes, alkylthiophosphites,  and 
aromatic amine - a l ipha t i c  amine blends have shor t  i gn i t i on  lags  with 
n i t r i c  ac id  a t  temperatures as low as -95' F (refs. 6 t o  8) j these should 
be sui table  f o r  i gn i t i ng  the  j e t  f u e l  - ac id  system at  temperatures w e l l  
below -40' F. 

This study w a s  conducted t o  measure the  temperature-composition l i m -  
i t s  of hydrazine-water blends as i g n i t e r  f u e l s  f o r  the  Jp-4 - r ed  fuming 
n i t r i c  ac id  system. 
three- f lu id  valve w a s  used; the  e n t i r e  propel lant  system w a s  immersed i n  
a cold bath.  The proportion of f u e l  and oxidant at any valve pos i t ion  
w a s  kept constant.  Only the  valve opening r a t e  w a s  var ied i n  addi t ion  
t o  temperature and i g n i t e r - f u e l  composition. 

A 200-pound-thrust rocket engine equipped with a 

Another object  of t he  study w a s  t o  evaluate two representat ive ex- 
tremely low-temperature i g n i t e r  f u e l s  using the same technique, tank, 
and rocket engine. 
dioxaphospholane and a blend of 70  percent tr iethylamine and 30 percent 
- o-toluidine.  A s  a coro l la ry  of this object ive,  it w a s  desired t o  l ea rn  
whether the Jp-4 - ac id  system could be ign i t ed  near -80° F by chemical 
means. 

These f u e l s  w e r e  4-methyl-2-dimethylamino-l,3,2- 

AF'PAFATUS AND PROCEDURE 

Propellant System and Engines 

A d i ag ram of the pressure-feed propellant system used f o r  t h i s  study 
i s  shown i n  f igure  1. The d i s t i n c t i v e  f ea tu res  of t h i s  system, as corn- 
pared with tnat used i n  a previous study of engine s t a r t i n g  ( r e f .  5) ,  are 
the  separate i g n i t e r  f u e l  tank and the three- f lu id  propellant cont ro l  
valve. This valve, developed f o r  the  N a v y  Bureau of Aeronautics, has two 
functions: 
and it schedules the t r ans fe r  from i g n i t e r  f u e l  t o  running f u e l  (ref.  1). 

it controls  the  flow of propel lants  t o  the  t h r u s t  cylinder,  

For  t h i s  inves t iga t ion  the  fuel-flow sequence during s t a r t i n g  w a s  
as follows: 

(1) 100 percent i g n i t e r  f u e l  w a s  admitted during less than 5 per- 
cent of valve t r a v e l .  
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(2) 90 t o  95 percent igniter f u e l  (5 t o  10 percent JP-4) w a s  admit- 
t e d  during approximately the  next 60 t o  65 percent of valve t r ave l .  

(3) A t r a n s i t i o n  t o  100 percent running fuel took place during the 
remaining 35 t o  40 percent of valve t rave l .  

N i t r i c  ac id  
Nitrogen dioxide 
Water 

All s t a r t i n g  experiments w e r e  run i n  a nominal 200-pound-thrust 
Both aluminum and copper t h r u s t  cyl inders  w e r e  used; they rocket engine. 

w e r e  made by spinning tubing t o  the desired shape. 
impinging-jet type with four  sets of o r i f i ce s  spaced 90° apart .  
set consis ted of one f u e l  o r i f i c e  and two oxidant o r i f i c e s  with the f u e l  
on the  outs ide.  
shown i n  figure 2. 

The i n j e c t o r  w a s  an 
Each 

D e t a i l s  of the  th rus t  cylinder and in j ec to r  design are 

Compositions of oxidants, 
percent by weight 

Batch 1 Batch 2 

75.40 75.40 
21.12 18.90 
3.48 5.70 

For low-temperature runs,  t he  en t i r e  propel lant  system and engine 
w a s  immersed i n  a dry i c e  - methylene chloride bath.  A pump c i rcu la ted  
the  r e f r ige ran t  i n  the bath and through the nozzle shroud ( f ig .  2); t h i s  
equalized the  bath temperature and cooled the  nozzle during a run. 

I Instrumentation 

Strain-gage-type pressure transducers w e r e  used t o  measure chamber 
pressure,  fuel i n j ec t ion  pressure, and oxidant i n j ec t ion  pressure.  Flow 
rates were measured by o r i f i c e s  f i t t e d  with strain-gage d i f f e r e n t i a l  
pressure t ransducers .  
by a l i n e a r  potentiometer connected t o  t h e  common yoke. 

Travel of the  control  valve p i n t l e s  w a s  measured 

Outputs of t he  pressure transducers and pos i t ion  ind ica tor  were 
recorded by a multichannel oscil lograph. Propellant and bath tempera- 
tures w e r e  measured by copper-constantan thermocouples and recorded by 
a multipoint self-balancing potentiometer. 

Propellants 

Oxidant. - Low-freezing-point red  fuming n i t r i c  ac id  w a s  the  oxidant 
used f o r  a l l  runs. Two batches of ac id  were used; the  compositions are 
shown i n  the  following t ab le :  

Batch 2 w a s  prepared f o r  experiments below -80' F. 
ference w a s  observed i n  combustion behavior of the two oxidants. 

N o  s ign i f icant  dif- 
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Sample 

Ign i t e r  fue l s .  - For most of t he  runs, the  i g n i t e r  f u e l s  were 
hydrazine-water mixtures made by blending 93 percent hydrazine with dis- 
t i l l e d  water. Mixture compositions were checked by measuring r e f r ac t ive  
index according t o  the  method of reference 9. The following table shows 
the  r e s u l t s  of three tes ts  made t o  compare the r e f r ac t ive  index method 
w i t h  the  more conventional ac id  t i t r a t i o n  method: 

Hydrazine, 
percent by weight 

Refractive index method T i t r a t ion  method 

1 
2 
3 

Two other  i g n i t e r  f u e l s  were used. One was undiluted 4-methyl-2- 
dimethylamino-1,3,2-dioxaphospholane (RF' 208) . 
of 70 percent triethylamine and 30 percent - o-toluidine by volume, both 
of which were commercial grade. 

The other  w a s  a blend 

92.6 92.6 
74.1 73.9 
65.6 65.6 . 

Running f u e l .  - Jet f u e l  (Jp-4) conforming t o  mi l i t a ry  spec i f ica t ion  
MIL-F-5624B, amendment 1 w a s  used as running f u e l  f o r  a l l  experiments. - 
This material had the following propert ies  : 

Initial boi l ing point,  . . . . . . . . . . . . . . . . . . . . .  136 
Final  bo i l ing  point,  OF . . . . . . . . . . . . . . . . . . . . . .  498 
Hydrogen-carbon r a t i o  . . . . . . . . . . . . . . . . . . . . . . .  0.17 
N e t  heating value, Btu/lb . . . . . . . . . . . . . . . . . . . .  18,700 
Refractive index . . . . . . . . . . . . . . . . . . . . . . . .  1.4206 
Aniline point, ?I? . . . . . . . . . . . . . . . . . . . . . . . .  132.4 
Aromatics, percent by volume: 

S i l i c a  g e l  method . . . . . . . . . . . . . . . . . . . . . . .  10.7 
A.S.T.M. D875-46T . . . . . . . . . . . . . . . . . . . . . . .  8 -5 

Procedure 

The following procedure was used t o  f i r e  t h e  rocket engine. Refrig- 
erat ion w a s  s ta r ted ,  after t h e  propellant tanks were loaded, by f i l l i n g  
the  cooling bath with methylene chloride and adding dry i ce .  
phase of t h e  coolant w a s  c i rcu la ted  through the  nozzle shroud during 
cool-down and through the run. 

The l i q u i d  

When a l l  propellant temperatures w e r e  
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within So F of t he  desired t e s t  temperature, the  tanks were pressurized 
and the  rocket w a s  fired. 
tank loading, su f f i c i en t  t i m e  w a s  allowed between runs f o r  the e n t i r e  
system t o  r e tu rn  t o  the t e s t  temperature. 
changed, the  s t a r t i n g  fuel system w a s  cleaned by draining, f lushing re -  
peatedly with a solvent such as acetone, and blowing dry with i n e r t  gas. 

If more than one run was made from a s ingle  

When igniter fuels were 

Accuracy of Data 

"he temperature data are  estimated t o  have an e r r o r  of +2O F due 
pr imari ly  t o  the multipoint recorder.  Calibrations of the chamber pres- 
sure and i n j e c t i o n  pressure transducers indicate  an over-al l  accuracy of 
L L O  pounds per  square inch, o r  2 t o  3 percent e r ro r .  

For these experiments, e r r o r s  i n  flow measurement a re  due t o  e r r o r s  
i n  d i f f e r e n t i a l  pressure readings, o r i f i ce  flow coef f ic ien ts ,  and pro- 
pe l lan t  dens i t i e s .  Calibrations of the s t r a i n  elements of the transduc- 
e r s  and the recording system indicated a maximum va r i a t ion  of fl- percent.  

Flow ca l ibra t ions  showed t h a t  an o r i f i c e  coeff ic ient  of 0.61 could be used 
with an e r r o r  of k l  percent. I n  the  range -80' t o  -40° F, propellant den- 
si t ies were found not t o  vary great ly ,  and the  following average dens i t i e s  
were used t o  simplify data reduction: 

1 
2 

Acid, lb/cu f t  . . . . . . . . . . . . . . . . . . . . . . . . . . .  105 

Hydrazine-water blends, lb/cu f t  . . . . . . . . . . . . . . . . . .  64.4 
RF 208, lb/cu f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  68.7 
o-Toluidine - tr iethylamine, lb/cu f t  . . . . . . . . . . . . . .  51.0 

Jp-4, lb/cu f t  . . . . . . . . . . . . . . . . . . . . . . . . . . .  47.5 

- 
This procedure introduced an e r r o r  of about fl percent. 
t o t a l  e r r o r  i n  flow measurement i s  about22  percent, and the maximum e r -  
r o r  i n  cha rac t e r i s t i c  ve loc i ty  would be 3 percent.  

Therefore, the  

REsZnTS AND DISCUSSION 

A l l  t he  s t a r t i n g  data a re  shown i n  tables  I and II. 
the s t a r t i n g  data f o r  hydrazine-water blends superimposed on the freezing- 
point curve. 
pos i t ion  records obtained under various conditions. 
portions of the oscillograms have been reproduced here.  

Figure 4 shows 

Figures 5 t o  9 are examples of flow, pressure, and valve 
Only the  s t a r t i n g  

L 

For t h i s  study, a sa t i s f ac to ry  start i s  defined as an i g n i t i o n  and 
t r a n s i t i o n  from i g n i t e r  f u e l  t o  Jp-4 f u e l  t h a t  i s  f r e e  f r o m  over- 
pressure peaks o r  other  abrupt chamber pressure var ia t ions.  
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Hydrazine-Water Blends 

The s t a r t i n g  data  f o r  hydrazine-water mixtures ( tab le  I and f i g .  4) 
reveal  t h a t ,  f o r  compositions containing more than 55 percent hydrazine, 
the lowest temperature f o r  a sa t i s f ac to ry  start w a s  the  f reezing point 
of the i g n i t e r  f u e l .  A s  hydrazine content w a s  decreased, s t a r t i n g  be- 
came e r r a t i c  i n  a region extending from 47 t o  54 percent at 0' F, and 
f rom 53 t o  55 percent at the  ign i t e r - fue l  f reez ing  point .  To t he  l e f t  
of t h i s  region, energy re lease  w a s  apparently too low t o  i g n i t e  the  Jp-4. 
On the bas i s  of the chamber pressure records, it appears t h a t  a l l  the  hy- 
drazine compositions ign i t ed  with acid.  It i s  possible ,  therefore ,  t h a t  
more e f f i c i e n t  u t i l i z a t i o n  of heat  re leased by the  i g n i t e r  f u e l  might 
s h i f t  the  composition l i m i t s  f o r  s a t i s f ac to ry  starts t o  lower values .  

These da ta  show t h a t  the  present temperature l i m i t  of -40' F f o r  
Jp-4 - w h i t e  fuming n i t r i c  ac id  with eu tec t i c  hydrazine i g n i t e r  f u e l  can 
eas i ly  be extended t o  -60' F, provided low-freezing r e d  fuming n i t r i c  
acid i s  used as the oxidant. Furthermore, it does not seem necessary t o  
specify the  eu tec t i c  composition (69 percent hydrazine), since mixtures 
containing as l i t t l e  as 55 percent hydrazine s t i l l  gave sa t i s f ac to ry  
starts, as i l l u s t r a t e d  i n  f igu re  5. To prevent f reez ing  of i g n i t e r  f u e l  
at -60° F, it would be necessary t o  l i m i t  the upper concentration t o  
about 69 percent hydrazine. 

Conditions t h a t  were maintained f o r  the  experiments corresponding 
t o  the unshaded da ta  symbols of f igu re  4 can be described as follows: 

(1) Valve opening time w a s  long enough t o  prevent i gn i t i on  over- 
pressure t rans ien ts ;  t h a t  i s ,  hydrazine accumulation during the ign i t i on  
delay period w a s  i n su f f i c i en t  t o  cause explosions. 

(2)  Valve design together with the  opening rates selected gave a 
r e l a t i v e l y  gradual t r a n s i t i o n  from i g n i t e r  f u e l  t o  Jp-4 as compared with 
the  t r a n s i t i o n  obtained during so-called "slug" starts. 

(3) Valve design promoted intimate mixing of Jp-4 and i g n i t e r  f u e l  
throughout the t r a n s i t i o n  period. 

The r e s u l t s  probably apply t o  other  configurations and engine sca les  
t o  the extent  t h a t  the  above conditions a r e  maintained. 

When condition (1) w a s  el iminated by decreasing valve opening t i m e  
t o  0.3 second or l e s s  ( tab le  I (b) ,  and shaded points ,  f i g .  4) the  starts 
were usua l ly  accompanied by over-pressure t r ans i en t s .  An example i s  
shown i n  f igu re  7 .  The s t a r t i n g  l i m i t s  seem t o  be about the same as f o r  
t h e  long valve opening times ( f i g .  4 ) .  



Previous research, similar t o  tha t  reported i n  reference 5 i n  which 
conditions (2) and (3) were not s a t i s f i ed ,  r e su l t ed  i n  a s t a r t i ng -  
temperature l i m i t  of about 20' F with hydrazine hydrate (64 percent hy- 
draz ine) .  
of hydrocarbon i n  the  hydrazine hydrate, s t a r t s  could be obtained a t  
-400 F with w h i t e  fuming n i t r i c  acid. 

When t r a n s i t i o n  w a s  made more gradual by suspending 5 percent 

Other Igniter Fuels 

With low-freezing red  fuming n i t r i c  acid at - 8 5 O  F, 4-methyl-2- 
dimethylamino-1,3, E-dioxaphospholane (RF 208) has an ign i t i on  l a g  of 7 
milliseconds ( r e f .  6) , and a blend of 30 percent o-toluidine and 70 per- 
cent tr iethylamine by volume has an ign i t ion  l a g  zf 28 milliseconds ( r e f .  
7 ) .  These two fue l s  a r e  examples of a se r ies  of organic materials which 
have been found t o  give very rap id  ign i t ion  with n i t r i c  acid at extremely 
low temperatures. 

Both f u e l s  were evaluated by the same technique used f o r  hydrazine- 
water blends, and both gave sa t i s f ac to ry  s t a r t s  at  temperatures as low 
as -85' F ( tab le  11, and f i g s .  8 and 9 ( a ) ) .  
r e su l t ed  i n  abrupt flame-outs shor t ly  a f t e r  t r a n s i t i o n  was completed 
( f i g .  9 (b ) ) .  
when mixed with JP-4 at  low temperatures deposited a sludge t h a t  d id  not 
completely redissolve on warming. 
o-toluidine may have been the  source of the sludge. A possible explana- 
t i o n  of the  flame-outs i s  t h a t  sludge deposited i n  the flow system broke 
loose and temporarily in te r rupted  the  flow; t h i s  could have been followed 
by a surge which caused flame-out. Figure 9(b) shows an in te r rupt ion  i n  
flow and a s l i g h t  surge i n  chamber pressure j u s t  before flame-out. 

Two of f i v e  o-toluidine runs 

Further invest igat ion revealed t h a t  the  o-toluidine blend 

P a r t i a l  a i r -oxidat ion of the 
- 

The one flame-out with RF 208 immediately followed a run with 
It may be t h a t  the cleaning procedure did not remove sludge o- toluidine.  

t h a t  had deposited during the  previous run.  Succeeding runs with RJ? 208 
showed no evidence of flame-out, and it i s  believed tha t  the  s ingle  m a l -  
function does not ind ica te  a deficiency i n  t h i s  i g n i t e r  f u e l .  

- 

I n  a l l  cases, i gn i t i on  and t r ans i t i on  were sa t i s fac tory ,  which in -  
d ica tes  t h a t  the subsequent malfunctions cannot be r e l a t ed  t o  the  
ign i t ion- lag  cha rac t e r i s t i c s  of these fue ls .  

It appears that the lower temperature l i m i t  f o r  s t a r t i n g  Jp-4 - 
n i t r i c  ac id  can be -80' F, provided a low-freezing red  fuming n i t r i c  ac id  
i s  used, and the  i g n i t e r  i s  selected t o  have low v i scos i ty  and ign i t i on  
lag .  Care should a l so  be taken tha t  t he  i g n i t e r  f u e l  and Jp-4 do not 
p rec ip i t a t e  insoluble  mater ia ls  when mixed. Since the alkylthiophos- 
ph i tes ,  f o r  example, triethyltrithiophosphite, have physical and chemi- 
c a l  propert ies  similar t o  RJ? 208 ( r e f .  6) ,  it may be expected t h a t  they 
too would be su i t ab le  f o r  use at  -80° F. 



Combustion Pressure Osci l la t ions  

A s  shown i n  t ab le s  I and 11, many of the  runs exhibi ted combustion 

The increase i n  number of cases of pressure o s c i l l a -  
pressure osc i l l a t ions  after t r ans i t i on .  
of t h i s  behavior. 
t ions as temperature decreased suggests a s ign i f i can t  increase i n  com- 
bustion time delay ( r e f .  12), which i s  the i n t e r v a l  between propel lant  
entry and conversion t o  combustion products. 
probably lowered mixing ef f ic iency  due t o  higher propellant v i scos i ty  
and an in j ec to r  design t h a t  i s  sens i t i ve  t o  pressure osc i l l a t ions .  Other 
research ( r e f s .  1 and 13) has shown t h a t  t r i p l e t  impinging j e t  i n j ec to r s ,  
such as the  one used f o r  t h i s  study, are prone t o  give unstable combus- 
t ion  of hydrocarbons and n i t r i c  ac id  over a wide range of mixture r a t i o s .  

Figures 5(b) and 8 show examples 

The primary causes are 

Although the  da ta  revea l  no apparent r e l a t i o n  between temperature 
and o s c i l l a t i o n  frequency, the general  l e v e l  of frequencies (100 t o  200 
cps) implies a feed-system i n s t a b i l i t y .  
agreement with the  idea  t h a t  the rough burning i s  associated with poor 
propellant preparation. The occasional o s c i l l a t i o n  of 15 cps observed 
i s  probably a gas-regulator or propel lant- l ine i n s t a b i l i t y .  

"he frequencies are thus i n  

I n  every case, combustion of the  i g n i t e r  f u e l  w a s  very s t ab le  ( f ig s .  
5, 6, 8, and 9) even at the  lowest temperatures. 
quent i n s t a b i l i t i e s  were probably not connected with ign i t i on  t r ans i en t s  
and so did not a f f ec t  the  s t a r t i n g  l i m i t s  observed. 

Therefore, the  subse- 

I g n i t e r  Combustion Efficiency 

Theoretical  combustion temperzture and cha rac t e r i s t i c  ve loc i ty  fclr 
No t r a n s i t i o n  was the i g n i t e r  f u e l  were calculated f o r  runs 14 and 18. 

obtained f o r  run 14, which represents  conditions at the  lower boundary 
of the useful  s t a r t i n g  range; run 18 represents  conditions w e l l  wi thin 
the  usefu l  s t a r t i n g  range. The products of combustion were assumed t o  
be nitrogen dioxide, nitrogen, and w a t e r  vapor; thermal data  were taken 
from references 14, 15, and 16. For run 14 the theo re t i ca l  values ob- 
tained were 9 4 8 O  F and 2360 feet  per second, and f o r  run 18 the  values 
were 2540' F and 3656 feet  per second. 
mental cha rac t e r i s t i c  v e l o c i t i e s  and the  charac te r i s t ic -ve loc i ty  e f f i -  
ciencies were 1495 feet per  second and 63 percent, and 3410 feet  per  
second and 93 percent, respect ively.  

For these same runs, the  experi-  

The poor e f f ic iency  and low temperature obtained f o r  run 14 show 
why t r a n s i t i o n  could not be obtained w i t h ' i g n i t e r  f u e l s  having less than 
55'percent hydrazine. They a l s o  show t h a t ,  fo r  oxidant-fuel r a t i o s  fa r  
removed from stoichiometric,  the main-stage i n j e c t o r  gives poor mixture 
preparation for the  i g n i t e r  f u e l .  Consequently, i f  the  i g n i t e r  f u e l  
could be burned more e f f i c i e n t l y ,  it appears possible to  extend the 
composition limits f o r  hydrazine-water mixtures t o  values lower than 
those found i n  t h i s  inves t iga t ion .  
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SUMMARY OF RESULTS 

Chemical s t a r t i n g  s tudies  w e r e  made i n  a 200-pound-thrust rocket 
engine using Jp-4 and a low-freezing red  fuming n i t r i c  ac id  as main-stage 
propel lants .  
4-methyl-2-dimethylamino-1,3,2-dioxaphospholane (RF 208) ,  and a blend of 
70 percent tr iethylamine and 30 percent o-toluidine.  A th ree- f lu id  pro- 
pe l l an t  cont ro l  valve w a s  used, which alEo scheduled the t r a n s i t i o n  f r o m  
i g n i t e r  f u e l  t o  main-stage f u e l .  

The igniter f u e l s  evaluated were hydrazine-water blends, 

The r e s u l t s  of these s tudies  can be summarized as follows: 

1. For hydrazine-water blends containing more than 55 percent hy- 
drazine,  s t a r t i n g  w a s  l imi ted  only by the f reez ing  point of the  mixtures. 
A t  -60' F, f o r  example, l imi t ing  mixture compositions were 55 percent and 
69 percent hydrazine. 

2. With RF 208 and the tr iethylamine - o-toluidine igniter fue l s ,  
starts w e r e  obtained a t  temperatures near t h e  f reez ing  point of t h e  acid 
(-85' t o  -80' F) .  

3. Below -80' F, several  flame-outs were experienced after f u l l  
main-stage pressure had been reached. 
it w a s  postulated t h a t  r e s idua l  sludge, depositgd a t  the  low temperature, 
temporarily in te r rupted  the  flow. 

For the  o-toluidine i g n i t e r  fue l ,  

4. The number of runs exhibi t ing low-frequency combustion i n s t a b i l i t y  
(100 t o  200 cps) increased as temperature w a s  decreased. 
buted t o  an increase i n  combustion-time delay due t o  poor propellant 
preparation w i t h  the  i n j e c t o r  used. 

This w a s  at tr i-  

5.  Calculated combustion e f f ic ienc ies  f o r  t he  hydrazine-water mix- 
tures w e r e  high a t  the  hydrazine-rich limit and low at the  hydrazine- 
lean l i m i t .  

Lewis Fl igh t  Propulsion Laboratory 
National Advisory Connnittee f o r  Aeronautics 

Cleveland, Ohio, May 6, 1955 

REFEXEXCES 

1. Moe, G .  T., Gates, M. F., and Sullivan, F. D.: Design, Construction, 
and Testing of Model XLRZO-AJ-2 and Model xLR24-AJ-2 Rocket Engines. 
Vol. I11 - XLR20-AJ-2 Rocket Engine - Results of Inves t iga t ion  and 
Development;. F ina l  Summary Rep. No. 596, A p r .  1, 1948-Feb. 29, 
1952, Aerojet Eng. Corp., Feb. 27, 1953. (Contracts N O a s  9495 
and NOas  51-726-c. 16-c .) 



2 .  Miller, Riley 0.: Effects  of Nitrogen Tetroxide and Water Concentra- 
t i o n  on Freezing Point and Ign i t ion  Delay of Fuming Ni t r i c  Acid. 
NACA RM E53G31, 1953. 

3. Fei ler ,  Charles E., and Morre11, Gerald: Inves t iga t ion  of 
Additives on Storage Propert ies  of Fuming N i t r i c  Acids. 
E5 2J16 , 195 2.  

4. Fei ler ,  Charles E. ,  and Morrell,  Gerald: Invest igat ion of 
Fluoride on Corrosion of 2s-0 Aluminum and 347 Sta in less  
Fuming Ni t r i c  Acid a t  170° F. NACA RM E53L17bY 1954. 

Ef fec ts  of 
NACA RM 

Effect  of 
S tee l  i n  

5. Hennings, Glen, and Morrell,  Gerald: Preliminary Invest igat ion of a 
Chemical S t a r t ing  Technique f o r  the  Acid-Gasoline Rocket Propellant 
System. NACA RM E52K21, 1953. 

6.  Ladanyi, Dezso J., and Hennings, Glen: Organophosphorus Compounds i n  
Rocket-Engine Applications. NACA RM E54A26, 1954. 

7 .  Ladanyi, Dezso J.: Orthotoluidine and Triethylamine i n  Rocket Engine 
Applications. NACA RM E52K19, 1953. 

8. Ladanyi, Dezso J.: Ign i t ion  Delay Experiments with Small-scale Rocket 
Engine a t  Simulated Alt i tude Conditions Using Various Fuels with 
N i t r i c  Acid Oxidants. NACA RM E51J01, 1952. 

9 .  Saw, D. R. B. ,  and Maggs, F. T . :  Analysis of Hydrazine/Water Mixtures 
by Measurement of Refractive Index. Tech. Note R.P.D. 32, B r i t i s h  
R.A.E., June 1950. 

10. Mohr, Paul H., and Audrieth, L. F . :  The Hydrazine-Water System. 
Jour. Phys. and Colloid Chem., vol .  53, no. 6, 1949, pp. 901-906. 

11. Elverum, Gerard W . ,  Jr., and Cole, Leland G. :  Some Physical- 
Chemical Studies of System Hydrazine - Hydrazine Nitrate - Water. 
Memo. No. 20-79, Jet  Prop. Lab., C . I . T . ,  Dec. 30, 1952. 
No. DA-04-495-Ord-18, Dept. Army,  Ordnance Corps., ORDCIT P ro j . )  

(Contract 

12. Tischler,  Adelbert 0. , and Bellman, Donald R .  : Combustion I n s t a b i l i -  
t y  i n  an Acid-Heptane Rocket with a Pressurized-Gas Propellant 
Pumping System. NACA TN 2936, 1953. (Supersedes NACA RM E51Gl l . )  

13. Male, Theodore, Kerslake, W i l l i a m  R., and Tischler ,  Adelbert 0. :  
Photographic Study of Rotary Screaming and Other Osci l la t ions i n  a 
Rocket Engine. NACA RM E54A29, 1954. 

14. Huff, V e a r l  N . ,  Gordon, Sanford, and Morrell,  Virginia  E. :  General 
Method and Thermodynamic Tables f o r  Computation of Equilibrium Com- 
pos i t ion  and Temperature of Chemical Reaction. NACA Rep. 1037, 
1951. (Supersedes NACA T"s 2113 and 2161.) 

CONFIDENTIAL 



15. FtLqaud, M. G.: Constantes Thermodynamiques des Gaz aux 
Elevkes. N o .  266, Pub. Sci. e t  Tech. (Paris), 1952. 

Ternpgratw-e s 

16. Rossini, Frederick D., e t  al.:  Selected Values of Chemical Thermo- 
dynamic Propert ies .  Circular 500, N a t .  Bur .  Standards, Feb. 1952. 

CONFIDENTIAL 



....................... 0 .  . 0 .  . 0 .  0 .  ...... 
12 : : ........... .... 

0 .  ................................. 0 .  . . .  

6 
m c  Y d x  u" 
3ar .c 
.ad O 

M M  Y Y  

5 5  
4 
m o  Y Y Y Y  a m m m d  a m  a a a m  

a a a a  
WU3 o r l  a a a a  
r l '  f i f i h f i  a0 m m m m  x c.c.c.c w VIrnmVI 

Y Y  s 1 
a a 

R 
R o m  0.R 

rlu 4 0  0.a 
m o  f i h  m 
E E  c 
co rn  m C C  

m m  

m m  
o m  

m 
O 

2 

E O  
0 3  0 4  

4 
3 m  
rl 

a a  a m m  a u u  u 
m m  m 

m m  P a  0 0  

m m  r l r l  

a a a  a m a  u uu 
m m m  

9 9 9 595  9 5959 
4? d gd 2 ;  P P P P  P a p g g p  
a a o a  a0 0 0 0 0  0 a0000 

VI 4 V I 4  VIVI VI 4 4 m  VI 4 m 4 V I V I  

x 

: m  - 
g e  c 
m 
a 

0 0 ,241 
0 rl 0 0  0- 0 N r i O  0 Oor io 1 0 0 1 1 )  1 1  
rl I d m  4 0  o I I C  rl r l ~ ~ + ~ d d n ~  
N 0 r l i  rl- N 0 0 -  N rlrlorl l r l r l r l  t i  

d 
rl ON4 rl 

000000 
m)(o r l r lmcc  
r l r l N N 4 r l  

3 0  n m  
+rl 

a -  
a m  x -  

VI v) C C v )  4v) CC 444 CC VI4ZZ4RRCCVIC 

I- 
d i m  I m a  . . ,  . .  
ern I mC) 

F 
m I d r n +  + I r l m m r n m m ( ~ d ~ r  
. I  . . .  . ,  . . . . . . . . .  
d I + r o d  d I ( D d d n T ) + d m ( D .  a 

, a  .w 
C M 3  m m 
rl m o o \  
m * d m D  
E rnC f i r l  

m F -  I ~ ( D  
m m  i o 0  . . ,  . .  

I dri 
a o W 

U 
3 
rl a 

5 
rl 

A 

. E  

r l d m m m  m w d + w m r n a  . . . . . . . . . . . .  
* + d r l O  O m m m m d d l  
C ~ m u J t -  CWW(DWU3lOU 

I m 

0 -a a m 0  
E f i  
a J Y  h U  

CONFIDENTIAL 



. 0 .  . 0. ...... ........ ......................... 0 .  0 .  . 0 .  0 .  0 .  0 .  0 .  ................................. ~~I&&&, ............ : : 13 NACA RM E55E04 

- 

E 
d a 
d 
3 
rl 
0 
c, 
I 
0 

c, 
c 
a, 
0 
k 
a, a 
0 
M 

I 

E 

5 

d 
E 
cd 
A 

a, 
d 
7.4 
Q 

c, 
c 
a, 
0 
k 
a, 
%I 

rl 

2 - 
n 
d 

k 
a, 
c, 
CI 
ld 
c , o  sa, o m  
I 
a,cu 
E .  
ldcu  

F 
ri 

k k aJ a, 
c, Q 
CI CI 
ld ld 

rl r i  
E G, 

C 
0 
d 
c, 
d 
V I  TX 
k h  
BQ 

5 555 I 
0 0 0 0  I 

0 0 0  I 2 B E E  
m m m m  

c 
a, s 
?I 
0 c 
P 
m 
0 
F: 
Cl 
ld 

d 
TY 
I cu 

M 

rl 
I 
0 
E: 
d 
E 
cd 
A 
ri 

s 
2 
d a 
I cu 
I 

rl 
A 
5 
; * 
a, 
0 cu 
F 
p: 

(d 

v 

- 
v 

3 0 0 0  mu3 
-i -*cn CD* 
N r i r l r l  drl 

0 l m o  I * I c u u 3  I 
rl I r i r l  I 

p: m z m  m m 
a, 

a 
P 
k 
3 
c, 
m 
d a 
a, a 
3 
c, 
d 
rl a 
E 
ld 

; 

2 
rl 

h 
k 
a, > 

8 
LI 

a, 
k 
cd 

rn c 
2 

- r  
C Q  
6 0 0  
3 0  
O E  
L r n  

II 3 
p:k 

r o  
r) *(urn MLD 

'i ??? ?? 
i r i r i  r l r l  

* mLDm r-i 
0 0 0 0  0 . . . . .  
ri r l 7 I r - i  rl 

r .  

0 ocncu - 
0 o m m  0 * *lo* - 

7 o w 0  o m  
7 a** m a  . . . . . .  0 0  0 cu d a m  CD 

r i d  ri 
. . . . .  

-I r l r - i r i  

I 
fi 
ir 

u cualcu cum 
f- r-r-a a m  
I I l l  I I  

3 O N N  m 
D i O f f l C 0  
I I l l  I 

C 
5 
C 

CONFIDENTIAL 



NACA RM E55E04 

High-pressure 
helium supply + 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I n I Three-way 

I vent  valve 

/ Regulator 

I 
I 

vent  va lve  

Thermocouples 

Pres  sure  
t ransducer  

P res  sure  
Rocket t ransducer  
engine 7 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I --------- 
I 

Figure 1. - Diagramatic ske tch  of rocke t  engine flow system for s t a r t i n g  experiments. 
Complete system immersed i n  r e f r i g e r a n t  ba th .  
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Figure 9 . - Concluded. 
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Pressur e and flow curves during engine s tarts wlth o-toluidine - triethylamine igniter fuel at _80 0 . F,: .••• ~ 
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