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A SATELLITE ORBIT COMPUTATION PROGRAM
FOR 1ZSAK’S SECOND-ORDER SOLUTION OF

VINTI'S DYNAMICAL PROBLEM

by
Raymond V. Borchers
Goddavd Space Flight Center

SUMMARY

This report extends the results of Vinti and Izsak and pre-
sents a’computational procedure designed specifically for Izsak's
second-order solution of Vinti's dynamical problem. With this
procedure, the coordinates and velocity of an unretarded satellite
can be obtained from a knowledge of its initial conditions r and v.

In this procedure, the derivation is given for the complete
set of six canonical constants from initial conditions. Three of
these have been determined by Vinti and the remaining three by
the author. All six of them are assumed known in Izsak's solution.

This report includes an adaption of a Newton-Raphson itera-
tion scheme specifically designed to solve a certain system of
nonlinear equations introduced by Vinti for the purpose of numer-
ically factoring a certain quartic equation. The solution by this
method can be used instead of certain infinite series to obtain
Izsak's elements a and e. An example is included to illustrate
how these elements may be obtained by the Newton-Raphson
method.

Appendix B gives the derivation of exact expressions for the
components of velocity in Vinti's accurate intermediary satellite
orbit using Izsak's orbital elements. The derivation is one of the
necessary steps in comparing such a method with others.






CONTENTS

SUMMALY . . ot et st vt e s e e st it s s s s e s e

INTRODUCTION. . . . ... . i i e e e e e

DETERMINATION OF CANONICAL CONSTANTS
FROM INITIAL CONDITIONS . .. .................

References . . ... ... . i i i ittt o ennnaos
Appendix A—Listof Symbols . .......... .. ... .. ....

Appendix B—Derivation of the Velocities in Vinti's Accurate
Intermediary Orbit of an Artificial Satellite. . . .

iii

10

17

19

20

20

20

23

29






A SATELLITE ORBIT COMPUTATION PROGRAM
FOR 1ZSAK’S SECOND-ORDER SOLUTION OF

VINTI'S DYNAMICAL PROBLEM

by
Raymond V. Borchers
Goddard Space Flight Center

INTRODUCTION

This report provides a computational procedure for determining the orbit of an arti-
ficial satellite in the earth's gravitational field. The procedure is based on Izsak's second-
order solution of Vinti's dynamical problem (Reference 1). This computing procedure
differs from many other methods in that the potential function is included in an analytic
solution of the equations of motion. This is advantageous because the difficulties associ-
ated with the slow convergence or divergence of some series expansions used in orbit cal-
culations are avoided; also the problem of small divisors is avoided. Another advantage
of this procedure is that it does not involve several multiplications of Fourier series, a
task common to certain satellite programs. Although Fourier series are well adapted to
numerical computation, it is certainly desirable from the standpoint of machine storage
and computing time to minimize the total number of such series. In many satellite theories,
Fourier series are used from the very beginning to obtain successive approximations of
different orders to the solution. The use of Vinti's potential minimizes the use of pertur-
bation theory; Izsak (Reference 1) states that the oblateness perturbations which are not
accounted for by Vinti's potential can be treated by a first-order method, that is, without
multiplications of Fourier series.

As was pointed out by Izsak (Reference 2) it is advantageous for several practical
purposes to have satellite orbits with very small eccentricities. Since the eccentricity
never appears as a divisor, this procedure is valid for arbitrarily small values of ¢ or
e = 0. However, we must avoid polar orbits and orbits which have inclinations of less than
2 degrees.

Vinti (Reference 3) found an axially symmetric solution of Laplace's equation in oblate
spheroidal coordinates which may be used as the gravitational potential about an oblate
planet. This potential, which leads to separability of the Hamilton-Jacobi equation, is a

1



2

remarkable approximation to the actual gravitational field of the earth in that it fits the
zeroth and second zonal harmonics exactly and accounts for over half of the fourth zonal
harmonic. Naturaliy, the oblateness perturbations are only a part of the factors which
affect the satellite motion. Other perturbations not accounted for in this procedure are
" the effects of the odd harmonics, the residual fourth harmonic, the lunar-solar forces,

and aerodynamic and electromagnetic drag.

MATHEMATICAL PROBLEM

In Hamiltonian form, the equations of motion of a dynamical system of n degrees of

freedom assume the forms

dp; aH
dt  ~ 3q, ’
o= 1,2, -0 (1)
da; gy
dt = dp; '

where H(ql » Gy """y 9,5 Py Ppy TTCs P t) is the Hamiltonian function (in which time ap-
pears explicitly) of the system with n generalized coordinates q,, q,, ***,q, and the con-
jugate momenta p,, p,, ", P,.

Solving the Hamilton-Jacobi equation

n

oW Ce% a0 9w
at'{*qu’ qz' e qn’ aql . aq2 ’ ,aq = 0,

where W is Hamilton's characteristic function, is equivalent to solving the Hamiltonian
equations of motion (Equation 1). If it is possible to separate the variables in the Hamilton-
Jacobi equation, then the solution can always be reduced to quadratures.

Vinti's dynamical system belongs to a class of systems which are scleronomic, con-
servative, and holonomic. Furthermore, it belongs to a class of dynamical systems which
are said to be of Stickel's type. The separability properties of the Hamilton-Jacobi equa-
tion of the form solved by Vinti follow from certain conditions determined by Stickel. The
separability of the variables occurs only in certain coordinate systems.



The oblate spheroidal coordinate system is related to the geocentric rectangular co-
ordinate system by

x = }/(pz + cz)}/l - o? cosa,

y = }/p’ +c2)/1—a2 sina ,

z = po,

}/pz + C2(1 - 0'2) y

~
1

where x, y, and z are rectangular coordinates; r is the geocentric distance of the satellite;
p, o, and a are the coordinates in the oblate spheroidal system; and ¢ is a constant defined
by Vinti's expression

CZ = Jz 3132 , (2)

where J, is the coefficient of the second-degree Legendre polynomial in the earth's force
function F. The quantity F is expressed as

e a
R T I

where ¢ is declination of the satellite, a_ is the earth's equatorial radius, and . is the
product GM where G is the gravitational constant and M is the earth's mass.

The potential which Vinti obtained in oblate spheroidal coordinates is

= -k
V P2+C20'2

Similarly, the Hamiltonian and Lagrangian are

1 Hp
= =12 - —I .,
H 2 U p2 + 252

L :%U2+_ﬂi_

¥
02 + clo?
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where the speed of the satellite U is found from

2 4 02527 24 o252 )
gz = £ 7 7 o2 02+ pl 7 62 + (p7+c2) (1-02)a2 .
0 c -

The generalized momenta are defined by
gL B

P, T g

oL

dL

The Hamiltonian does not contain the time explicitly, so the Hamilton-Jacobi equation
is

1 a2 ( )(aW)2 ( 1 c? \/afv)i* o
2 4+ oy |—=— + —o?2i=—] + - — -—_— =
'2(,02 + c2g2 [(p C)(ap) 1 -0 5s 1 -02 p2+ c\d2 o2 + c20? f,

where, in the limit as ¢2 ~0of Keplerian motion, fi is the total energy in the orbit; k is
always negative,

The implicit equations of motion for the determination of p, o, and a are (Reference 1)

oW P p2dp v o2 do . h
= + 2 = t~-t,
oh L Plo) ), YQlol
1

A ff e (e

a = =C = c = @,

at L‘ YPlo) ), Yol ;
—6&‘1- - 26‘ p——ﬂ——-—-d - G 7 ———'—'da + a = ﬁ

oG ] (or+c?) VPIp) . (1-02) ¥0lo)

1



where

P{p) 2h ot + 2upd - (62 - 2c? ﬁ) p? + 2c2up - c2<62—67) ,

3)

Qo) = -2c2hot - (82-2¢201) 02 + (82-87).

The symbols h, &, G, - f, &, and 0 are a canonical set of constants of integration. In the
limit as ¢?-0 of Keplerian motion, the canonical constants have the following meanings:

fi total energy in the orbit, f is always negative;

¢ total angular momentum;

z component of the angular momentum, G is positive or negative according as

[ov )

the motion is direct or retrograde;
-t time of perigee passage;
& argument of perigee; and
{} right ascension of the ascending node.
Exact expressions for three canonical constants a;, oy, and a,, denoted by Izsak as
fi, &, and G, respectively, are determined from initial values of the coordinates and their
derivatives (Reference 4). Numerical values of these a's are used to determine a certain

set of orbital constants a,, e , and i, (the initial values of the semimajor axis of the orbit,
the eccentricity of the orbit, and the angle of inclination, respectively). These are used to

find the o, p,, A, and B (the perigee of the orbit, the apogee of the orbit,and coefficients
in the quartic polynomial F(p) — see Appendix B — respectively) necessary to factor

Flp) = =20 (p=p))(p,=p)(p2 +A0+B) . (4)

where p, = all1-e)and p, = a{1+e). Similarly, this same quartic designated by Izsak as
P(p), Equation 3, can be factored into a form which is equivalent to that of F({,), Equation 4.
That is,

Plp) = -2ﬁ(p2'p)(p—p‘) [(p-a»<)2+a2)\21 )
and we find that

p2 t Ap + B = (p-ax)? + a?A2.



The values for p, +p, , p,0,, A, and B are determined initially by solving the follow-
ing system of nonlinear equations:

_ -1 N
pl+p2—A = —pa = 230,
B+ - + A = 2 —l 24571 = 2 4
P RN € 2 % % ¢ 24Py ,
\
{6y *Py) B-pyp, A = “payle? = 2agc?,
. B = L a2 o2\, -1 - 24in? |
PPy 2°7\% "% )% g Py ctsin® 1, D,

Vinti (Reference 4) has given a second-order solution of this system by a method of
successive approximations. However, if higher order accuracy is desired, it is first
necessary to obtain additional terms in the series solutions; this is a laborious task. A
numerical method to obtain the solution is given in the next section.

NEWTON-RAPHSON ITERATION SCHEME

The solution of a set of nonlinear algebraic equations usually involves a great deal
more work than that needed for linear systems. When n, the number of equations, is large,
the solution of linear systems entails considerable computation time even on high-speed
computers; the solution of nonlinear systems may often be almost prohibitive.

The Newton-Raphson method (References 5, 6, and 7) can easily be applied when a
solution is required for only a few equations.

To solve a system of nonlinear equations such as

(py t o) —A = 2ay . (5)
Btpp, = (o +p) A = e +agpg (6)
(Py*tp;) B=pyp, A = 2a5¢% (M

~ 22
PyrP, B a,p, ¢ sinZ i, » (8)



with unknowns (p, + Py) s P1Pys B and B by the Newton-Raphson iteration we begin with a

trial vector

X(k+1y = x(k) - J-I F(X(k)) ,
Xy Py ¥ Py 2a,
X PP a,p
_ 2 _ 1 P2 _ o Po
X = X, - A - 0 (9)
x, B 0
Denoting Equations 5, 6, 7, and 8 by f, f,, f, and f,, respectively, that is,
fl(xl, X, Xj, x4) = (pl+pz)-A—2ao,
fo(xr %50 %30 %) T Bt o py - (Py ¥ 4,) A-c?-agpg,
Fa(xy %50 X5 "4) = (p1+p2) B-p p, A 2a,c%,
f4(x1, Xy1 Xy, x4) = PR, B—a0p>oc25'xl'\2 ig
we introduce the usual Jacobian matrix
7 - o (. f,. £y, f,)
F] (xl, X,y Xy, x‘)
0 -1 0
A 1 - (e, +P,) 1
) ' (10)
B —A TP Py PLtPy
0 B 0 Py P,

It will be noted that for the initial vector, the Jacobian determinant can be written

1 0 ~1 0
0 1 —2a, 1

I3l =1 o 0 ~a, p, 2a, = -a2p? = _304(1 - e02)2_
0 0 0 a, P,

The condition that |J! is not close to zero will be satisfied provided e, is not close to

unity.



Next, we determine the exact inverse of Equation 10; only the final result is given

here:

11 Z12 Zy5 24y
231 24, 235 254
J—l =
Z3l 232 233 234
241 242 243 244
where
_ (pxpz_B)(B_Az) - BA (A+P1+p2)
Zyy T oroo s
, ~ py Py At (p1+0))B ,
12 A
PPy - B
Zy3 © A
At py TPy
Zyy T 7 A

o A

Z,, = A- {(pl 02) (Avoy *0y) (B-47) ~BA(A TRy 1 o)? ¥ BA[(p, o, - B) + A(A*Pl"f%ﬂ} :

N
"

A

[ - {(pxpz_B){_A(A+p1+p2) ¥ B] - B(A+pl+p2)2}

(*Dxpz)(A+p1+p2)
Z,3 5 ° (p1p2) Zy, A '

z = _(A+px tp,)? * (P, B) + A{A+p, tp,)
= < ,

Zy 7 (2ym1) 7 A

_ l:(plpz-B‘)(B-Az) 3} BA(A+p1+p2)j| ,

(o) 03)A* (Py *05)B

Zy, = 24, ¢ A
(P12, -B)
Zy3 T 2y, T A '
- (Ate, th,)
Zyy T 2y, T '

B2(p, +py) * BA(e, y)

Z,, = BZ;, = A




B(p, P, ~B
Z4 < B, < A ’

—B(A+p1+p2)
Z,3 T BZy, = A !

_ (plpZ—B) J’A(‘R‘J'pl”’z)
Zyo = T2y, v AZ, < - A ’
where
A= - [(p1p2_3)2 + Aoy 0, ~B)(A+p, +p,) +B(A+pl+p2)2:l

The Newton-Raphson iteration can now be written

xl(k:l) xl(k) le Zl2 Zl3 214 fl
x2(k D = XZ(k) - 221 222 223 224 f2
x3(k+l) x3(k) 231 232 233 234 f3
x4(k+l) x4(k) Z4l 242 Z43 244 f4

A solution will have been obtained when

Max (xi(kH) - x;k)) <

i

€,

where ¢ is any tolerance sufficiently small to obtain the degree of accuracy desired.

The first-order solution through k, is obtained in one iteration by beginning with the
zero-order solution of Equation 9. It is expected that four iterations will be sufficient to
obtain the solution through O(ko3).

Table 1 gives the solution to the system as computed on the IBM 7090 using a single
precision floating point Fortran program. The solution of Equations 5 through 8 was ob-
tained accurately to seven significant digits in four iterations withe = 1077,

The initial values of the unknowns, together with other necessary constants were com-
puted from orbital data of Explorer XI (1961 v).



10

Table 1
Numerical Results Obtained with the Initial Conditions
py * Py = 2a, = 15.0588664,
PPy T 8ypP, T 56.2660106,
A = 0.0,
B = 0.0,
2 = J,af = 0.044029034,
sin io = 0.474484778,
e = 1.0x 1077.
Iteration . A
Number Pr 7 P £1P2 B
1 15,0497347 56.1626263 -0.00913084351 +0.00991251186
2 15.0497213 56.1624885 -0.00914439194 +0.00993078329
3 15,0497213 56.1624877 -0.00914439194 +0.00993078336
4 15.0497213 56.1624877 -0.00914439209 +0.00993078336

We immediately obtain the values of the elements a and e from

_ pl + p2
a - 2 |
Apy P
e = 1 - ._lg._?——i
(Py )

DETERMINATION OF CANONICAL CONSTANTS FROM
INITIAL CONDITIONS

If the initial conditions (denoted by zero subscripts) tys Xo» Yor Zgs Xq, ¥4y and z, are
known, we can determine a complete set of canonical constants a, e, S, -t, {}, and « essen-
tial to Izsak's second-order solution. The canonical constants have the following meanings:

a semimajor axis of the orbit,

eccentricity of the orbit,

sine of the inclination of the orbit,

in the limit as ¢2 ~ 0 of Keplerian motion - t is the time of perigee passage,

in the limit as c2 -0 of Keplerian motion {! is the right ascension of the ascending

~y W

o

node,
« a constant of integration.



We first give the method of determining a, e, andS. The following expressions are
computed:

2 = 2 4 2 4 2
ro xo yo ZO 3
2 - %2 + 92 + g2
Vo XO yo Zo ’

. 0 %o
p, = s
o ,02 + ¢c202
. % TeTo T PoZo
(o4 = ]

1, HPg
a, = Fvy ~ , a <0,
1 2 Vo ('%2 + C20025
%3 Xg¥o T YoXo

2 al * (-ograiy t PoEg)? 252

a = -

) 1 -o2 22y cfog
0

11

(11)
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2
a
- 2
P, = T
2
C
K, = —.
1] 2
PO
Pyt P, = QPOX-Z[I - K, x?y? - K02 x?y2 (2)(2 ~ 3x2y?2 - 4 + 8y2) + ] ,
PP, = Pozx‘i’(:l i Ko y2 (x2_4) - K02 y? (12)(2 - x% - 20x2y2 - 16 + 32y? + x* y2) + ...} s
N |
a = g (e te,)
4p, p
[ -e2 = —1f1 (12)
+ 2
(1 *P2)
Py ™ P
e:(z_x_): 1- (1-e2) ,
P1 Py

1

. 1
Tlo (51n 10) {1 _Txo’(zy2 tg Koz x4 y? (7y2-4) + } )

where 7, x sinI=S. Alternately 5, may be computed from

-2 LT T PR
"o 2(0.22—(132) 1

We now have determined Izsak's elements a, e, and S from initial conditions; these

elements are accurate through 0(k?) and are used as input to the orbit computation
procedure.

We are now ready to determine the remaining canonical constants - t, 0, and «. We
set ¢ =E = 0 whenever e = 0. If e 7 0, we determine E from

] .
PoTgTet cooy2,

V-2 Yo - v atar (a-g,)

E = tanl
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since

a = p,
cos E = e '

., 2. s
] _ PaTgeTg clogz,
sin E = ,

ae}/— 2h 'l/r(p"em)2 + a2 a2

where o is given by Equation 11, ¢ is given by Equation 2, and

4

aZx? = a? [vi’s? - (1_”—,), (1-s?) (1-552) + J : (13)

v2(1-82 v4(1-82
o - 2l S ) 1)

.~ e
“2h T F{1TA)- (15)

The angle ¢ is completely determined by

cos E ~ e,

cos ¢ = T= e, cos E ’ (16)
¥1 - e? sinE
siné = "7 -6 cosE ' (17)

where e, is given by

4

e, = e{l o 1_’262(1—252) + (1_1’—62)3[(3-163“1454) - 2(1-82)2e2] + } . (18)

We next determine the angle ¥ from

sint/J:"‘g" S7o0 - (19)

_ C s
T9FeTo T PoZo

2 +)\2
a¥V-2h V1 - e2 ]/L—T— Y1 - t2sin2y
v

cos Yy =

(20)
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where (1-e?) is given by Equation 12 and

v? 82 414 s2
er = 1 - e2 - (1‘e2)3(1_s2) P (21)

k1 + A2 42 82 44 §2
= 82+ (1-s2) +(T’_’—82T(1-sz) [(1—332) - (1+S’)e2:| t o (22)

Next we compute a "mean anomaly” ¥ from

~

M = E-K esinE -K,é - K;sin¢ + K,sin2p + K ¢ -Kssin2\ll +K,sin4y ,

where

v2(1-87) | »4(1-8?)

Tl e ) (23)
2 - a2 4 —al
K, = St - 1V5(1ie2e)3 [(24- 9652+ 785%) - (8-1157) s2e?] | (24)
-t g
K, Tl-e7) (4 -ss?)s?e . (25)

=
1t

4]/_242
3v1eSe, (26)

‘ 32(1-e2)3

B {Vz Y1 -e? v4Y1 - e? [(24_2752) _ (8' 1182)e2]}52 , (27)

% "V 2(-e2) " 16(1-e7)0

K, - {V: ('11— ;2)62 - y84 (Vll‘--eze)z3 [(6 _ 752) - (2 _352)62]} 52 | (28)
v Y1~ e2 |

K7 = ST (29)

We can now compute - t as follows:
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where

o - #" Vz-z) V‘-z) 2 2) @2
R AN REI ! SR

The right ascension of the satellite a is determined from

Xo
cos a = ]
2 +2 -—a 2
Vog tcf Yl-o4

sina

yo )

When the right ascension a is known, the right ascension of the ascending node {is

computed from

0 = a- tan! (Vl-SztanL/J) +R, ¥ -~ R,sin2) + R, ¢

+ R, sing¢ + R, sin2¢ - R‘5 sin 3¢ - R, sin4p

where
v2 1 - ST 4 91 - s2
R] = 2(1_62) - 16(1—62)3 [(30"3552) + (2+3SZ) e2] , (31)
_ A1 -8
K2 7 32(1-e2)2 ’ (32)
R3 = V;(:ie-;)s:(z 82) + ?;(‘11_ ;2): [(24_5652) - (4"’6482)92 - (2+3sz) eq] , (33)
v2 V1 - 82 1491 - §?
A {2 (e afioene L4725 - (6475 8’]} e (34)

v2¥1 - 87 491 - 5?2
R, = { 4(1-e2)2 - 8(1-c2)* [11 + (1+sz)e2]} e? (35)
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R =V‘V1"52

6 4(1_e2)4 (2—82) ed

_ v 71 - 82

R, = 54(1-—e2)4(2+52) et .

(36)

(37)

We next compute W and v, which are analogous to the argument of latitude in Keplerian

motion and the true anomaly in Keplerian motion, respectively, from

W = ¢ -Msin2y ¢+ M, sin4¢1,
and
vV = @ +Llsin2¢ +L25in4¢ ,
where
g2 g2
LI (1*T>
4
M, = 256 -
_ - k2 2
L, =73 (1 +T> ’
_ 3k*
L, = 756 -
The mean argument of perigee » is given by
w = W-V.
The constant of integration « is given by
w = W= (1+e)v,
where
V2 2) V‘ 2
€ = ————(12~1582%) + —F——— -1 S? +103584
4(1-82)2( 64 (1—92)4 [(288 296 035 )

- (144 + 28852 - 51054) e2] +oe

(38)

(39)
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ORBIT COMPUTATION PROCEDURE

With the exception of the velocity formulation, the computational procedure developed
here makes use of the unmodified expressions of Izsak (Reference 1).

Input

The 11 inputs are: a,e,s,-t,0,«, J,, ag, u, At, and T,. The six inputs a, e, S, - €,
{i, and » are constants of integration (see definitions on page 10). The other inputs have
the following meanings:

J, the coefficient of the second-degree Legendre polynomial in the earth's gravita-
tional potential,
the earth's equatorial radius,

»  the product GM where G is the gravitational constant and M is the earth’'s mass,

At time interval of integration,

T, final time.

The following values of «, J,, and a, determined by W. M. Kaula (Reference 8) were
used in the computations:

p =3.986032 x 102 megameters?ksec™?,

J, =1.0823 x 1073

a, =6.378165 megameters.

Equations and Fundamental Constants

From Vinti's expression (Equation 2) and the input constants determined by Kaula, we
have ¢ = 0.20983097 megameters. In addition to «2A? (Equation 13), « (Equation 14), - 2h
(Equation 15), cos ¢ (Equation 16), sin¢ (Equation 17), e, (Equation 18), ¢ 2 (Equation 21),
(«2 + )\2)/1/2 (Equation 22), A (Equation 30), v (Equation 38), and ¢ (Equation 39), the follow-
ing equations are used in the computation:

22 = £2—
a? '
2 o2 402
. (1l.le:)2 - (11-};)4[(1_103“115‘) Fster] v
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and the generalized Kepler equation

E-KesinE = A(t-f) +K, ¢ +K;sind - K, sin2¢ - K ¥ + Ky sin2) - K, sin 44 . (40)
where the K, are given by Equations 23 through 29,

The right ascension a is computed from
a = {I + tad! ({1——52 tanl,b) - R,y +R,sin2y - R,¢ - R, sing
- R sin2$ + R sin3p + R, sin4dp ,
where the R, are given by Equations 31 through 37.
The argument of latitude y is computed from the following equations:
W o= (1+e)V+aw,
Y = W+ M sin2W + M, sin4W + ---
The mean argument of perigee «» is computed from
z = eV+tw.

The anomalistic mean motion n, is computed from

¢

R 3v* Y1 - e?
n, = A [‘m(s-m“zsv) ¢ ]

The motion of the node 7 is computed from

=_37,/2V1'S2 3v* ¥1 - 82
2(1-e2)? 16{1-e2)4

[(18-1357) + 2as2e2] - ---

The oblate spheroidal coordinate o is computed from

o = ssiny .
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The z component of the angular momentum G is computed from

G2 = —2&ﬂ(1-sﬂ|}1-eﬂ C%ﬁ%;) -y;}.

The oblate-spheroidal coordinate p is computed from
p = a(l —ecosE) .

Initially for t = t, we start with values ¢ and y determined from Equations 16, 17, 19,
and 20 to solve the generalized Kepler equation given by Equation 40 using a Newton-
Raphson iteration scheme, We test|E(¢,,,. ¥,,,) “E(¢;, ¢;)| <¢,where ¢ >0 was chosen
to be 10-7, In general, only two or three iterations are required before sufficiently ac-
curate values of E, ¢, and ¢ are obtained. The oblate-spheroidal coordinates p, o, and a
are then computed; p, o, and a are then used to calculate x, y, and z.

OUTPUT

This program generates position and velocity for equally spaced intervals of time,
Oblate-spheroidal coordinates are defined by the equations

x = Yp? +c2V¥1 -o2cosa :

Ye? + c2¥1 - o2 sina

<
1]

z = pPT

H

The formulas for velocity are given in Appendix B, they are

-ay + x PP - i ’
R p2+c2 1 - o2

[
1

. PP a5
tax + - !
y (p2 + ¢2 1 - 02)

z = p&topo
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where
L= - 2h (}/ 2 2 2)-
p = m ae (p—aK) + a? A?/sinE -
}/_ {> 2 2
& = m%a{l'—e—il/K 5'&—{1_—m_\pc0sxp’
a = G
(p2+%) (1~
REMARKS

The computational procedure as it exists in this report was programmed by the author
in single-precision floating-point Fortran for an IBM 7090 computer at the Goddard Space
Flight Center. All machine results were compared with hand calculations and the practi-
cality of the method was confirmed. The procedure is presently being compared with both
single and double precision numerical integration.
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Appendix A

List of Symbols

coefficient in the quartic polynomial Flp). See Appendix B.

canonical constant, one of Izsak's elements, semimajor axis of the orbit.

the earth's equatorial radius.

initial value of the canonical constant a.

coefficient in the quartic polynomial F{p). See Appendix B.
2

a constant defined by Vinti's expression c? = J,ag .

a canonical constant; in the limit as ¢2 -0 of Keplerian motion & is the
total angular momentum.

angle corresponding to the eccentric anomaly.

the ith value of the eccentric anomaly.

the (i + 1) th value of the eccentric anomaly.

canonical constant, one of Izsak's elements, eccentricity of the orbit.
initial value of the canonical constant e,

second eccentricity.

the earth's force function.

quartic polynomial fundamental to Vinti's theory.

representation of a set of four equations to be solved by the Newton-
Raphson method.

the gravitational constant.

a canonical constant; in the limit as ¢?~0 of Keplerian motion & is the
z component of the angular momentum. § is positive or negative ac-
cordingly as the motion is direct or retrograde.
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Ty

|71

J2

the Hamiltonian,

q,; Py» Pyr TTTe Pui t) the Hamiltonian function (in which time appears

explicitly) of a dynamical system of n degrees of freedom with n gen-
eralized coordinates q,, q,, -*-, q, and the conjugate momenta
Py. Pyy "7y P,

a canonical constant; in the limit as ¢2 ~ 0 of Keplerian motion h is the
total energy in the orbit and always negative.

one of Izsak's elements, inclination of the orbit.
angle of inclination.

initial angle of inclination.

the Jacobian matrix of the Newton-Raphson method.
the Jacobian determinant.

the coefficient of the second-degree Legendre polynomial in the earth's
gravitational potential.

notation used for the coefficients in Kepler equation.

2

the value — .
P 2

0

modulus appearing in elliptic integral of the first kind.
modulus appearing in elliptic integral of the first kind.
the Lagrangian.

the earth's mass.

""mean anomaly"'.

the anomalistic mean motion.

a constant used in the generalized Kepler equation, the auxiliary mean
motion.



X, ¥, Z

Xgr Yoo

z
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2

the value “2_ .
13

quartic polynomial fundamental to Vinti's theory.
the generalized momenta.
quartic polynomial fundamental to Vinti's theory.

notation used for the coefficients in the equation for right ascension of the
ascending node,

the geocentric distance of the satellite.
the initial geocentric distance of the satellite,

canonical constant, one of Izsak's elements, sine of the inclination of the
orbit.

final time.

time.

initial time.

time interval of integration.

a canonical constant; in the limit as ¢2- 0 of Keplerian motion - t is the
time of perigee passage.

the speed of the satellite,

a "true anomaly’ analogous to that in Keplerian motion.

the potential which Vinti obtained in oblate spheroidal coordinates.
velocity of the satellite.

initial velocity of the satellite.

"argument of latitude' analogous to that in Keplerian motion.
Hamilton's characteristic function.

a trial vector for the solution of a set of nonlinear equations by the
Newton-Raphson method.

coordinates in the rectangular system,

the initial values of the coordinates in the rectangular system.
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X, v, Z the velocity coordinates in the rectangular system.

Xgr Vo1 Zg the initial value of the velocity coordinates in the rectangular system.

z,, element of the inverse Jacobian matrix.

a the right ascension of the satellite.

o, a,. and a; Vinti's canonical constants denoted by Izsak as h, &, and G
respectively.

) the declination of the satellite.

€ the motion of perigee.

€ an arbitrarily chosen small positive real number (used as a tolerance

in the Newton-Raphson method).

Ui the motion of the node.

K a series used in the computation: defined by Equation 14.

i the product oM where G is the gravitational constant and M is the earth’s
mass.

v2 a dimensionless parameter of the order 10™* in the case of the earth.

g, o, a coordinates in the oblate spheroidal system,

Pgr Tor % the initial condition of the coordinates in the oblate spheroidal
system.

p, G, & the velocity coordinates in the oblate spheroidal system.

Por Tor g the initial conditions of the velocity coordinates in the oblate

spheroidal system.

Py perigee of the orbit.

Pq apogee of the orbit.

@ "true anomaly".

' margument of latitude'.

9 a canonical constant; in the limit as <? - 0 of Keplerian motion { is the

right ascension of the ascending node.
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a canonical constant, one of Izsak's constants, a constant of integration.

a canonical constant; in the limit as c? - 0 of Keplerian motion & is the
argument of perigee.

the mean argument of perigee.
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Appendix B

Derivation of the Velocities
in Vinti's Accurate Intermediary Orbit
of an Artificial Satellite

Introduction

Izsak (Reference Bl) has given an analytic solution for Vinti's intermediary orbit, with
both periodic and secular terms correct through the second order in a certain oblateness
parameter v = c/a (to be defined later). His solution giving the position vector of the satel-
lite makes extensive use of Jacobian elliptic functions, linear transformations, and map-
pings in the complex plane. Vinti (Reference B2) also has given an analytic solution to this
problem of satellite motion using rapidly converging infinite series instead of Jacobian
elliptic functions. His solution not only gives the periodic terms correct to the second
order, but also the secular terms to an arbitrarily high order.

This appendix presents the derivation of the velocity vector through the use of equa-
tions from both Vinti and Izsak. However, the orbital elements used in this derivation were
introduced by Izsak.

Determination of Velocity

The oblate spheroidal coordinates p, o, and o are defined by

x = Yp2 +c? VY1 -oZcosa, (B1)
y = ¥p2 +c? V1 -0?sina, (B2)
z = po, (B3)

r = pE ot c’(l - o?) | (B4)
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where o is the right ascension of a satellite; r is the geocentric distance; and c is a con-
stant defined by c¢? = J,a?. The quantity J, is the coefficient of the second-degree
Legendre polynomial in the earth's gravitational potential

w

v o= —%{ ‘Zjn(flg)nPn(sinS)} (B5)

n=1

where § is the declination of the satellite, a, is the equatorial radius of the earth, and
w« = GM, where G is the gravitational constant and M the mass of the earth.

Differentiating Equations B1-B3 with respect to time we find

.- . pp__ oo
X ay + x(pz + o2 [ - 02> , (BS)
. . pop oo
y = tax + y<p2 T o2 1 - 02) ’ (B7)
z = potop. (B8)

Squaring and adding Equations B6-B8 we obtain

U2 = )‘(2 +92 + i2
2 4 o252\ | 2 4 o252\, .
e L e R RS [T LR

The expressions for p, &, and & can be obtained from the following equations, which define
the generalized momenta:

_9L ., - 98, YPGB
P, = S; = h?p = 35 el (B10)
oL . _ 95 YQlo)
PU = ;0.'— = h220' - 3o - 4 1 - 02 r (Bll)
aL . _ 98 s .
P, = % hla = 3, = G » (B12)

*The caret above h, ¢, and G (that is, fi, ¢, and G) indicates canonical constants, referred to by Izsak (Reference B1), where
fi is the total energy in the orbit and always negative, ¢ is the total angular momentum, and G is the z component of the
angular momentum, positive for direct motion.
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where
e N R IO
Plp) = 2hp* + 2up3 - (62 - 2c21:‘1),o2 + 2c2up - c2(8? - 62) . (B14)
Qlo) = -2c2hot - (82 - 2c2R)0? + (&2 - G2) . (B15)

S = S(p, o, a) is the action function, and L is the Lagrangian given by L = T -V, where
- 1)’
T = 2%t
1 , . .
= 5(}112 pz + h; o2 + h32 a2) ,

- up

vV o= Vip, = —HP
('D o) p2+C2C72

Here ds/dt is the speed along the path and V(p, o) is the potential function introduced
by Vinti (Reference B3).

The radicand in Equation B10 can be written in the form
Plp) = =20 (p - p)(p, - R)(p - ps)(p - py) (B16)

where p,, ©,, Py, and p, are the zeros of P(p). Izsak (Reference Bl) has given the zeros

in the form
p, = all —e), p, = all +e), p, = alk-i\), p, = alc +irN). (BIT)

The orbital elements a and e are the semimajor axis and the eccentricity of the orbit, re-
spectively, even though it is not an exact ellipse. They are defined by the first two of Equa-
tions B17. The quantity i is the imaginary unit (y=1).

If we substitute o, and p, from Equations B17 into Equation B16:

Plp) = -2h (p - pl) (p2 - p) [p’ - 2axkp + a’(x2 + )\2)]

The quantities « and «? +\? are given in Reference Bl in terms of a, e, and s = sin 1,
where I is the inclination of the orbit:

) y2(1 = s2) (1 - e? - y2s2) 7 '
(L= er - 7)1 - et - 7251) + ay2s? (B18)

K



2 + A2 = 7?s? [(1 - e? )(1 - e? - 71252) + 472] , (B19)

-2 3
(1 -2 - yz) (1 -~ o2 - 7252) + 4y2s2

where v = c/a, a small dimensionless parameter.

The quartic Ql{o) contains only even powers of ¢ and can be written
Qlo) = -2¢?h (012 - 02)(022 - 02) ,

where the four real zeros of Qo) = 0 are icrland to,r 020 <1, 0 » 1. As pointed
out by Izsak (Reference B1), o oscillates between the values -0, and +o,. Therefore, o,

is a convenient parameter to use as the sine of the inclination 1 of the orbit.

When we introduce Izsak's formulas,

py, = all —e), p, = all +e) ,
p = all - ecosE} ,

o, = s < sinI

o = ssiny

2

fi_ = i = 12

2 2 ,

9 9,

42 S° 4 2 2
Cs—zza(1~e2)(ﬁ< +>\) ,

where E is the eccentric anomaly and v is the argument of latitude, and several of the afore-
mentioned relations into Equations B10 and B1l1l we obtain

Y-2h
P, = -————pz I W— 2axkp + a? (K2 + )\2) sinE (B20)
Y~ of a2
p = ot Y1 e Y2+ a2 YT - %sin?y cosy. (B21)

2 1 -02 ¢
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The coefficients and the roots of the quartic equation P{p) = 0 can be related to those
of Q(¢) = 0 in the following manner:

2all +x) = -& (B22)
&2 _ 2{;
[(1—e2) + 4ic (2+>\2)] = == 2ﬁ2°h
2
= cz(sz +j—,) , (B23)
223[(1 - e+ (2 +07)] = -erk (B24)
(1 - e2)(x2 +22) = -¢2 & 2—562
2
= st (B25)

Consider the following expression for I? given by Izsak (Reference B1)

: . _s? (1 - e2 - 57) (1 - e? - y252) + 4y2s? ‘
' 1 - e? l:(l - e? ~ 'y"') (1 - e? - 'y’s’) + 4y? (B26)

If we substitute c/a for v and solve for s?/1? we obtain

s? az(l - ez){[ 2(1(1 - 92) -c ] [azh - 92) - czsz] t 4a’c? } . (B27)

E c? [a2 2) - } [32(1 - e?) - c?s?] + 4a2cis?

Next we introduce a parameter p = a(l - e’), the semilatus rectum, which Vinti (Refer-
ence B2) uses in his oblateness parameter k = c’/p’. It is clear that Equation B27 can be
written

5_2 _ ap [((ap - C2) (ap -~ C252) + 4alc? } . (BZB)

12 c? | {ap - c?)(ap - c252) + 4aZc?s?

From Equation 4.13 of Reference B2:

(ap - c?) (ap - c?ng) + 4a2c?
= 2.2
B € o (ap - c’) (ap - c"'no?) + 4aZcing? (B29)
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where 7, = s = sin I, we see that c*s*/12 = Bap. Solving for c?s2/1% from Equation B23 and
inserting it into Equation B25, we obtain

Gz = (1 - sz)(é’2 + 20217152) . (B30)
From Equation B23,
_ 22 2
i = -c2(1 - sz) + c’j—z . (B31)
2h

Multiplying Equation B28 by ¢? to obtain c252/12 and inserting it into Equation B31 we find

- B (ap - cz) (ap - Czsz) + 4a2c?
2h ¢! (l SZ) " |:(ap - C2) (ap - c’sz) + 4a2c?s? | (B32)

Vinti has given an identical result in Equation 4.15 of Reference B2:

-ag i} ) ¢ ap l:((ap - c’) (ap - cind) + 4alc? :l _ (B33)

_e2 (1 -
2a; 89Pg ¢ (1 Mo ap - Cz)(ap - c2n?) + dalcin?

where a, is a semimajor axis, p, the semilatus rectum. Since h = a,, & = a,, and G = a,,
we can easily rewrite Equation B30, using Equation B33, to obtain the final result for G,

~ ] C252
c=e‘/(1- )(1-52). (B34)
2pPg

Equation B34 is equivalent to Vinti's Equation 4.15a of Reference B2,

< Czn:)
a = a 1 - cos I.
3 2

24Py

Using Equation B34 we obtain, as in Equation B12,

(ST

p, = G (B35)
It should be noted that the following formulas relate « and «2 + A% to Vinti's A andB:
82(K2 + ,\2) = B |, (536)

-2ax = A, (B37)
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where A and B are given by Equations 4.12 and 4.13 of Reference B2:

L mel ) (- et )
(ap - cz) (ap - c27;02) + 4aZcin? ,
; (B38)
B = o2 (ap - c’) (ap - 027702) + 4a2c? .
Clon - (o - ohng) aweing

From Vinti's Equation 4.16 (Reference B2) we have

2 (ap - cz)(ap - cipl) + 4alcing ) i
T e (ap - c2)(ap - c¢2n?) + 4a2c? T ctngt (Bap)t, (B39)

where 7, = o,. Using Equations B36-B38, together with the values for P{p) and Qlo), we

find that in Vinti's notation the quartics P{p) and Q(c) can be factored in the form
Flp) = -2a,(p, - p)(p - p,)(P* +Ap+B), (B40)

Gln) = -2a,c3(nd - n?) (0} - %), (B41)
wheren = o.

The following equations for p, &, and & are easily obtained from Equations B10-B13,
B20, B21, and B35:

p = —/——— ae Vp? - 2axp + a’(xz + A% sinE , (B42)

Y-oh 2
& = g Y1 -e2Vk?2 + A271 - 125in2y cos ¥, (B43)

p? + c2g2 ©

. G
RO (B44)

If we write the equations for 4. &, and & in Vinti's notation, we obtain

po= ae Yp? *Ap * B sinE, (B45)
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y - 2a‘l
5 = 5 57 ™ Y1 - q2sin?) cos g, (346)

p? + e

. %3
SRR PRI ¥ ) B (B47)

where q = 7;0/7)2.

Now, substituting Equations B42-B44 into Equations B6-B8 we obtain the following:

A ¢ , xa Y-2h | pe Vp? - 2axp + a%(x? + A7) | E
x (02 + c2)(1 - 02)  p2 + c2o? 02 + c? sin
Y1 - e2
-_‘7_1___2L _‘2‘ Ye2 + )2 V1 - 1Zsin2y cosy |, (B48)
-o
. +Gx ,ya ¥-2h pe YV p? = 2axp + 82(K2 + )7) inE
= = in
y (pz + Cz) (1 - 02) 0? + c20? p? + c? s
Vl - i
__cr_l_ze % Y2 + 32 V1 - 1?5in 2y cos ,(B49)
-
Y- 2R
3= o 2 V1 -2 Vi + 27 Y1 - 2sin?y cosy
p? +c20o?2 | €

toe Yp? - 2akp + a2 (K2 + K’) sinE:,. (B50)

The velocity components given above are now being used in an orbit determination
program formulated by the author.
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