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The work presented in this report is the culmination of efforts
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nal research supported by Southwest Research Institute (Pro-
ject 1059-2)., Because of its relevance to experimental work
already completed under the present program (NASA-MSFC
Contract No. NAS8-1555) and published as Technical Report
No. 2, it was felt highly desirable that this work should also
be issued and distributed under auspices of this contract.

The material in this paper is also presented in Part I, Section 3,
of a dissertation titled '"Some Contributions to Unsteady Hydro-
dynamics in Engineering, ' submitted to the graduate faculty of
The Johns Hopkins University in partial fulfillment for the
requirements for the degree of Doctor of Philosophy.
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LIQUID SLOSHING IN A SPHERICAL TANK FILLED
TO AN ARBITRARY DEPTH

SUMMARY

The kernel function for liquid sloshing in a spherical tank
filled to an arbitrary depth is shown to be related to the Green's
function of the second kind and is constructed successfully by numer-
ical means. Natural frequencies are then computed as eigen values
of a matrix. Eigen functions are obtained at a finite number of points
as the eigen vectors which are sufficient for approximate evaluation
of the force acting on the container. Simple formulas of force and
moment are given for both pitching and translational oscillation
under a fixed gravitational field. Finally, comparisons of predicted |
natural frequencies and force response with experiments for a

quarter-full tank are also given,



INTRODUCTION

Disturbances on a rocket or missile can induce sloshing of
fuel in a partially filled tank. It in turn exerts excitation forces on
the vehicle and in some cases can be detrimental to the trajectory or
even results in loss of control, Sloshing in a circular cylindrical tank
has been widely investigated with and without damping. To facilitate
dynamic analysis, an equivalent mechanical model for circular tank
is given in Reference 2. For a spherical tank, ah ingenious semi-
numerical method was given in Reference 1. However, the problem
is only solved for three special cases, namely, nearly full, nearly
empty, and half-full tanks. The restriction is due to the lack of the
Green's function of the second kind (Neumann function) for the spher-
ical bowl, Although the Green's function of the first kind for the
spherical bowl is given in Reference 3, it is doubtful that a simple
expression for the Green's function of the second kind exists in the
toroidal coordinates, since the' normal derivative on the spherical
cap is a combination of two derivatives in this coordinate system.
The sequence method given in Reference 4 is convergent for Green's
function of the first kind but may diverge for the second kind. One
may resort to Liouville-Neumann method (series method, Ref. 5) and

prove it converges., But when the Green's function on the boundary




is desired, the kernel function is singular; thus it becomes increas-
ingly more difficult to evaluate when more terms are needed. If we
do not employ the Neumann function, an integral equation on the {ree
surface is also obtained. Unfortunately, the eigen functions no longer
satisfy the necessary orthogonal relationship (Ref. 6), thus they are
the desired eigen functions only if the Neumann function is employed
(Ref, 1). In this paper, a numerical scheme is devised to determine
the desired kernel function, which is one component of the Neumann
function, and then apply the same procedure as given in Reference 1
to evaluate the sloshing characteristics, Considerably more work is
required to calculate the pressure on the wall, although in principle
this can be done,

After the theory in the present paper was developed, some
other approaches have been published. One approach (Ref. 7) seeks
the variational solution based on Hamilton's principle through Rayleigh-
Ritz method*., Since only an integrated free surface condition was im-
posed, it is somewhat doubtful that accurate prediction of force response
or pressure can be assured (Ref, 8), although error in the lowest mode
frequency was less than one per cent for a flat cylindrical tank, In

another approach (Ref. 9) finite difference techniques were employed to

s
3%

This method has been applied to spherical tank by Riley and Trembath
whose results are shown in Figure 6.



seek eigen values in a boundary condition by three different methods.
Method I and Method 111 (Ref. 9) use either Rayleigh quotient or Rayleigh-
Ritz procedure, but are somewhat inferior (Ref. 9) to the Rayleigh-Ritz
procedure applied to the continuous domain. Method II (Ref. 9) converts
the problem into an equivalent matrix eigen value problem by eliminating
the points outside the free surface through an inversion of matrix if the
number of the other points is small, or through an influence coefficient
type calculation if otherwise. In the latter case if there are N points

on the free surface, N boundary value problems should be first solved
(say by successive over-relaxation) before reduction to the eigen value
problem of a N x N matrix. Depending to a large extent on the number
of net points required for a desired accuracy (say, 3 figures in frequen-
cies and force response), the computing time (based on estimation on

a GE 225 computer)* of the last method for a spherical tank seems to

be comparable to the present method. On the other hand, although
further (significant) acceleration of the rate of convergence of the sub-
routines in the present method in the present problem may be quite

difficult, an alternative numerical scheme devised is expected to reduce

It is estimated under the assumption that there are 20 free surface
points and 300 total net points with 120 iterations for each boundary
value problem (based on experience of a similar problem) and
average speed for 5 multiplications, 4 additions, and one additional
multiplication or division at each point in each iteration. There are
other estimates based on experiences which yield approximately the
same magnitude of computing time.



the computing time to one-half or further. Finally, Reference 10 has
also been published in which the kernel function is constructed empiri-
cally, based on knowledge for half-full and full tank.

The purpose of the present paper is mainly to predict the natural
frequencies and force response and to show how kernel functions are re-
lated to the Neumann function on the boundary and can be constructed
numerically for a spherical tank. Analogous extension to other con-
figurations or other problems may be possible but will not be treated

in this paper.



MATHEMATICAL FORMULATION

A. Kernel Function

Let G(P. @) and G, (P. @) be the Green's function of the second
kind for the interior of the given spherical bowl {Fig., 1) and the sphere,
respectively: (a) Both G(A. &) and @, (P. @) possess continuous second

derivatives and satisfy the Laplace equation inside the bowl and the

sphere, respectively, except the point P=Q ; (b) Both G and G, possess

s / L 2G /
— = . e = _.
a unit sink, 7 Fog at P= @ inside the bowl; (c) 57 ind on the
. 2G _ £ = -/
whole surface of the sphere, 3z =k = - on the surface of the
A +Ar

bowl, R and F; (d) G, be that given in Reference 7; ¢(P, @) satisfies

the normalizing condition j G(ZQR)dS, = 0O (Ref. 11). Folloir&ing
RIF

these conditions, it is well known (Ref. 11) that the Neumann function G

is symmetric as well as @, , i.e., G(P.Q) = G(Q.P) G, (PQ=6,(0.P)

When £ @ are both interior points, analogous to the proof of symmetric

properties, one has

TP
G0 6xPar = [, {600 Sz 150D

an; r

=% G,(I,Q)JSI—/G(I,P) 2620, 4
I

R+F F 6'7 47’?‘24
0
- G(I P) 1]
fﬁ GO s [

which is an integral equation governing G(R Q) where R @ 1is inside

the bowl, not on F and R.



For values of the Green's function with E @ (P;éQ) both on F,
not on R, apply directly the divergence theorem to the surface shown
in Figure 2, Since there is an infinitesimal semi-sphere around the

sinks at P and Q respectively, one finds

2G 2G.(Z Q)
E’G(Q,P)-;_LG.(P,Q)=/ [61.0)5r, —G@R) 571145, [2]
R+F
P#I +Q

By making P and Q in Equation [1] approach P and Q on the free sur-
face along its normal, Equation (1] can be reduced to Equation [2].

In Reference 1, for fuel sloshing in a spherical tank, only those
eigen functions proportional to cos @ are needed: one shall see in the
next section that it is sufficient to know one component A4(P. 5) of the

Neumann function G(P, Q) to determine the sloshing characteristics.

Let
o 2mr ar
HP, Q)= #/a [ G(R.Q) cos g, cosg </6P a’g& [33.]
2n 2w
H,(P, 67):#/ /o G.(RQ) cosg, cos g, J&Pdaa [3b)
Amr 27

h(PQ)=5 / A (6@ -6,(p.@)] cos§, cosa, 46,8 = HE R)-H,(P.G) [3¢c)

Since @ and G, are symmetric functions, 4 , 4, and thus A' are

symmetric functions.,



For points -1—5, Q corresponding to P and Q respectively, inside

the spherical bowl, Equation [1] can be integrated to yield

- 4 — — - - [ Pr— -
A(P.Q) =~ 7(Z,Q)H (P I)d5 —_/3;(1, @) 4, (P I)dS (4]
F _
F
for which the reversing of orders of integration are applied and can be

justified by carrying out the details. The function F is defined by

2n 27 37
7o ! 26Z6) \
F(IQ)= [ = casg o’ézl-/f 263, 1g 3 B, Hy 3 €5 (§-65)
e, Tone w3 b it A A
o o
s . : 2%,
which is a nonsymmetric function as =
T

Similarly, if both P and Q are on F', not on R, integration of

Equation [ 2] yields

b
2Rl )= [ LT 20 0] [VEF At £ %

b
~[ 17T £ ] LA 4 14 6]
where J, and 4, are given in Appendices I and II. For Z=0 ,
% =0 , almost everywhere on F, hence for half-sphere é,(l?P3=0) H=H,

which is in agreement with Reference 1.

B. Eigen Functions

The eigen functions q}, are assumed to possess the following
properties: (a) é, is regular inside the bowl and 727}7 =0
(b) 24 _ 0 onR _a_ﬁ,____s\n ®(2) on F, (c) ¢ ¥ (P)cos (Ref. 1)
oy = C S % () %MF) = f(P cosg, (Ref. 1).

The last condition is appropriate for translational oscillation of the tank.



Analogous to Equations[1] and [2]

% (F) =£G(z,p) S %D IS

when P is inside the spherical bowl, R+ F.

% %(P)= fFG(I, P) m B(I) 45,

when P is on F.

Analogous to Equations[4] and [5] by integration

GP)= [ Wz (D)4, , B not on F.
F
A s P on f‘-
z hip)= hn/ HIP.P) BlpoP dp

This shows only H(P,Q) is needed for the pertinent eigen functions,

C. Sloshing Force and Pressure in Translational Oscillation

By introducing a displacement potential relative to the tank
L =20 ()¢ (-%6), the sloshing force acting on the container is derived
d n /2] 7 g g

from the Lagrangian's equation in Reference 1, namely

/:;=—d/£(j—/f Z/Bn 'Q.,,

where A4 = mass of the liquid =/f 3& [2a3+3a22/; --z;]

» b
o F s = mia | g g

b
= fE A= g g

[71

(8]

[9]

[10]

(11]

(11a]

(111b)
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,&
a” = ” %n [1 1C]
wz - /

The velocity potential

b =32 4)p(nbe) +Un 2]

n=/

The pressure on the container

2 oo jx =-p 2%
P=—pPzat)g(abo)- pux L 37 [13]
within the accuracy of the linearized theory. Equation [11] can also
be obtained directly by integration of pressure (Appendix V).
Once é, on F is evaluated, one may employ G, to obtain
?%,(P) from
IP 1
sig(P)=f [G @G r22 ”é’ - "6( Sl ds, = $(P)cos g, [14a]
RtF
%(P)= f_ Hy (T, P) 20 $(1)dS —[_ F(LB) (1) dS (14b]
F F

The integral on R dropped out as g——fi =0 Se — constant
X

T

on R.

For P on R, not on F, the integrands of the integrals in
Equation [14b] are nonsingular, hence f#, (P) éan be calculated by
well-known numerical methods. For contact points both on R and F,
the value of jf,(f”) may be obtained by evaluation of the integral by

midpoint formula.
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D. The Moment Under Translational Oscillation

For translational oscillations, the velocity potential is propor-
tional to cos & and the flow is antisymmetric. It produces a horizon-

tal force Fs in the x-direction and a couple €, about the center of

S

the tank (Fig. 3a). There is no moment around z axis or x axis by

symmetry. The moment about a fixed point O' on the z axis is

m,

= I —

Fs (4-4) +C f15a]
It is not necessary to determine ,@z when the force A and the moment
774, are the desired information in dynamic problems. For a sphere,

all the pressure forces acting on the shell passes through its center,

hence produces no moment about it, i.e,,

7n,_ = "F Ly tC =0 (15b]

=0

Therefore the moment about O' is simply

My = £ 2 [1 5c]
This statement can be easily shown by integration of the moments due

to pressure on the wall.

E. Pitching Oscillation

Consider a pitching oscillation of amplitude @ around an axis
which is parallel to y axis and at a vertical distance / below y axis

(Fig. 3b). In Figure 3b, it is clear that



z+ 2

Sh x = x

Jz+e)?+ 22 ’ Sz )24 22

CosS A =

The radial distance of any point (x,vy, z) from the axis of ro-
tation is m . The velocity components on the sphere due to
rotation are:

U, = (Jiztor% %2 (?7) cos A = (z+l7)0:y
Wy = — («(z+0) 22 é,) sinA = = x4,
The boundary condition on the wetted sphere, R, is
BB~ (wfrnEemz]
=[(z+20) % sincas@ — sinip cose zéf],-:g
= 9:71 ( sintp cosB)
This is equivalent to a translational oscillation of amplitude U=féy
in the direction of x. Since the boundary condition on the free surface
is the same in the presence of a fixed gravitational field, the result for
translational oscillation can be applied. There is an additional static

tipping force which can be obtained by integrating the additional static

pressure F’ over R (Ref. 14)

P=pP9x Oy [16a]

/-}': & g £/z cos(n,x)dS

[161]
=6 p9 [l dhet?t) IV = 429 = M6,
Y

(3

This force acts along an x axis rotating with the tank.



Similarly, there is an additional moment
Ms = //’,COS(”/X) (z+4)ds -/ /J'cosmz) x ds
at R

= /05% ra s [-3‘-2- +cos¢;—3l-cas3¢f_] =M(39JI

The total force along an axis x rotating with the tank is

Ve

Fth

s

A

The moment about O' is approximately

My =FA+M =F 4

The total force in the horizontal direction is still /‘;

13

[1 6c]

[164]

[166]

When there is

tank fixed axial acceleration, the method of superposition presented in

Reference 14 can be used to determine the x-force.

An equivalent mechanical model for sloshing in spherical tank

is given in Reference 15, but unfortunately the extrapolation to include

damping was not as successful as in the case of a cylindrical tank

(Ref. 2) and could only be used for order of magnitude estimates (Ref. 15).



NUMERICAL METHOD

A, Approximate Determination of the Kernel Function at a
Finite Number of Points

Numerical quadrature formula will be used to replace the in-
tegral Equation [6] by a matrix equation. There is a minor difficulty
due to the presence of logarithm's singularity at P=T1 or b= /3 ,
the latter of which is the integration variable. In the original manu-
script, an attempt was made to devise a more sophisticated quadra-
ture formula, expecting higher accuracy. Unfortunately, it seems to
contain integrals difficult to express in known functions, or require
very careful process of taking limit under the integral signs. Further,
the apparent higher order terms may be actually very large and not
negligible. To reduce total effort, the present numerical scheme
based on midpoint formula is devised.

The integrals are divided into N equal parts (N= 20 will be
used) and the field point is one of the centers of the intervals. A
simple midpoint formula will not be applicable when the logarithmic
singularity appears at the midpoint, but if the interval is subdivided
into four intervals (or more) the error may become acceptable. For
example, consider the integral

a 4
e+ z z

s=/ Ll fe -1 dp, =/ Alplde

4
-z

= Aﬂf("éé)“/-‘ = At b ~ /69315 A4

14

(17]
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With four equal subintervals, the midpoint formula yields

S=[2L (5124 (3)] 5 =[atia+(£4,3-402)a]

[18]
= afna— 1530 A
The error is .164 . For 4=1/20(N=20, b=1), the relative error
is less than 0.18%.
Letb=1,
i‘! = /}l {/0:' f;) /\/ﬂﬂp [l9a]
H(’) '\/_
G = R ) [19b]
6)
= Z. =Jpp. Flp A
3;;' :Z‘ ﬁ'(; 7 ﬂ’/;) (note the order of i & j) [19c]
then Equation [6] can be rewritten as
! ! ©) !
zd, =" = F,9. . dp
= %y /a’:ff //"a" /A, /o AR [20]

Two similar numerical schemes will be presented. The first scheme
was actually employed in the example, while the second scheme is the

alternative scheme requiring much less computer time. In the first

o 0) . .
scheme one evaluates 7. and /‘/; at N x 4N points, assuming four

point midpoint formula. ith point on the free surface is located at the

th

midpoint of the i*" interval (i=1,2, . . . , N), j represents the inte-

gration variable located at the midpoint of the subinterval (j=1,2,. . .,4N).
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Thus
/ (—=1) 4 . .
o=y * n T =7 N0 (b=1 i=t,2.-,nv) [21a]
/ (f-1) A . A
NP NI ARL A Py} B -/ 21b
id 8N * 2N 8 +(¢f ) < (b= l’f =12 '4N') [ ]

To describe the second (alternate) scheme, consider the whole

square domain to be composed of N x N square subdomains. In all the
@)
diagonal squares, Z;

‘¢

(four values in each square), but they will take the value of the functions

©)
and /-/‘ , are evaluated as in the first scheme

at the center of each square in off-diagonal domain, which are also eval-

uated. These data will be denoted by ;2::) , /7‘,:.) Total number of
. ® ©) .
evaluation (both J‘J and /{‘/ } are N x 4N in the first scheme, but

N x N + 3N in the second scheme (4 point midpoint formula for diagonal
integral). For instance, consider

/ &

M. =/ ¥ gp.
'-1 o ;J #‘d. fl,
In the first scheme, P -t being given by Equations [21a], [21b],
¢
kat+s

N
-z *
M(J A=/ )(4"% Z:I //.4 ‘/fl

N 4%
=25 3 4 7y
#= j=gp-3 + LY
4N 4N
=3 272 47 =73 F74,9
i=1 4 Y e Y [22]



In the second scheme, first let /j.:/'A , ,0‘-//0/’ ﬁé

[Zla]

sa+ 3
"o 2/! © “ Z’V o
P 4 “?;‘I f{J d/;' T g= RCZ
l\é—?

@)
S.0=Fyp = Ay
wvi ®) a
A /74/ .z Py ?‘ ’,
W T 3 kg aed ep P

’

given by Equation

LHE, (=K

‘Ef, £=F

S h+ A

Equations [23a] — [23d] can be condensed into the single formula with

/Odv given by Equation [2 1b] and one finds

N

ut

/, = 5 4-‘—‘5

VI(8) gy
=t Gy

Similarly, the second integral on the right side of Equation [20] is

[z <z
o'ﬂ‘%'ﬁ%— 2 Gk G
where

Cp = j:,e

17

[23,]

[23a]

[23b]

[23c]

(234]

(23]

[24]

[24a]



P TP
ke [=4h-3 “ J! 4 i=th-3 Y
) v o) \ (o)
In the second scheme, replace ]’] by j;/. and /‘(J by H‘J

The integral Equation [6] is therefore reduced approximately to the

matrix equation,

+lcl=—tmIl-[c][p]

the solution of which is

[c1=-(m1 { £ 11+ 001"

[1]is a unit matrix. [C], [M], [D] are square matrices of which the
elements of ith row and 1th column are C:‘I , M;! , Dc] , respectively.
As a check of accuracy, the symmetric property C?. .—‘-."9.‘. should

hold approximately. Then we can use the average value for the cor-

rective term in the kernel function, i.e.,

“/f_‘_ 4 te, ﬁ/)"c\f =2L[C9-+C;'£]

The kernel function is therefore

el Hipw )= VR fy Htpe f) &,

wA

C;/ being known at discrete points corresponding to both ﬂ.,c.
given by equation [213.]. The difficulty of the problem, however, lies

@ o
in the accurate and rapid evaluation of the function JF, and f/‘.(.)

4

18

[24b]

—
o
&)

]

[2 5a]

[26]

(271



(n)
B. Determination of Eigen Vectors, 4 and Natural Frequencies

The eigen function takes the value %(/0) on F, which is governed

by
2 b -
hip= f [alppoth P01 %D P dP (28]
where
J2”=“%3- , § Dbeing effective gravitational acceleration [28a]

Let V(”)(f) ="/F %(f) , then

y" () Sty Ef[Wﬁ(ff)]y tp> dp” [291]

Analogous to Section A, the matrix approximation of Equation [29] is

N w n
Y - )
(z23) () -1 | 4 (503
where the factor 1/2 on the right-hand side is in agreement with Refer-

ence 1, since the strength of the Green's function has not been doubled

in this paper. The elements of the matrix A is

v (@ “
Ak = Ui * Cin el (30a]

—_— Z R
4 j=2(R-1)+/ ”#

lis

p ] n
- I €1

where i, k corresponds to A, /% both given by Equation [Zla] and

both vary from 1 to N.



(o)
In the first scheme, Hk is not evaluated at the center of any square

subdomain to reduce computing time and is approximated by

<A .
© 0] £
—t[£= H L @
- 4 . e/ + z R > -
T F s T2, f{,{ ] (e 8=1%N) [30c]
where
©) _H(O)
L7 4% (property of symmetry)
T an 1 - 5 @ X 7 .. - . -
In the second scheme, replace h’(.d. by hg/ iz=ltoN, j=1to 4N).
The largest eigen values —ﬁ_b of Equation [30] yields the
JZ =
”a
s. J2, . And the eigen vectors will

least resonant frequency parameter

be employed in evaluation of the force response

C. Evaluation of Force

The sloshing force for translational oscillation is

a /Bn (7%)
[31]

. .. Do
where

[2a +3a°z -Z ] oM = _553

£ F-&Fl oM, T ga’ =5 [2t35- ] (312]
! N
— o t2 CEN 259 92 2

o=t [ |t ap= 7' 28 E A (31v]

b i
b =@ [ gt ap bl =R (D 2 " (31e]
31c




The nondimensional force

2 -¥2
ES*= _..____.F‘; — M* w’a + _a)_za ; 72.('“_‘)/80%("
2 “a z wz
RagU 3 J =t (L)
D. Precision Problem

The functions f, » H, have been first expressed in terms of
complete elliptical integrals of the first kind, the second kind, and
the third kind and of simple elementary functions (Appendix I, II),
The elliptical integrals of the third kind are expressed in terms of
Heuman's Lamda function A, (Ref. 12), which is again expressed

either in a series form or in a close form of incomplete and com-

plete elliptical integrals of the first and second kind, i.e.,

AP By=2-[ ERF(BA) +K(FE(E.£) —K(#) F(8£)]

In ]3 and Hy; , a serious precision problem occurs due to almost
complete loss of significant figures in subtractions for £, A both
small. At first, the series form of the L.amda function was used,
but it was found that the series is very slowly convergent when the
parameter is near unity, especially if double precision or twelve
significant figures are sought. Then it is resorted to the iterative

methods for evaluating elliptic integrals (Ref. 13), which converges

to 107 within four or five iterations. Although the complete elliptic

integrals can be computed very rapidly, the subroutine NEFF (Ap-

pendix III) for incomplete integrals and a difference related to it

21

(31]

[32]
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consumes 8 seconds (used twice), while the total time for evaluating
7, H, is only 25 seconds at each point, all on the GE 225 computer.
Longer time would be required for higher precision as the number of
iterations increases,

To increase the precision, analytic subtractions are made so
that no significant subtraction remains, if possible. Noniterative sub-
tractions in which four or less figures are lost are acceptable if four
or more significant figures out of eight (single regular precision on
the machine) is desired. The technique can be illustrated by the
following cases:

(1) Let (A — B), the difference of A and B is small but can be
expressed analytically without subtraction. Then, for ex-
should be evaluated from —2 (A-8)

!
{5 JEAE JE+[E
e.g8., A=2, B=2+§_ 6 §<<Il, (A-B)=§

/
ample, "7/—?

(2) Let f’,,‘s be small (positive) quantities containing no sub-
traction, then (/##&)(1+#£.)----- (1+%,) =/ should be evaluated
by repeated application of the simple relation that

(148014 8.)=1 = K14y 1 £ %o

(3) To subtract a desired quantity from a known function may

require a new subroutine for this function performing sig-

nificant subtraction analytically, e. g., NEFF. (Appendix III)
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Aside from relatively mechanical operations, the device of DKEF and

NEFF subroutines, the following relation was expedient (Appendix IV).

- {_«,_, (-2 o) Loy _ ko l
2 [T (- A (o) (1-ot?)

7Z'V=._

~
W
(W8]

L

/[, and /., are defined b Equations [IV-6], | IV-8], respectively.
N /0’ Yy

It is noted that, after a small manipulation, direct numerical

integration of the integrals A, H,; at sampling points of the entire
domain of g4, ﬁ' was also computed by Weddle's rule. Although four
or more significant figures can be obtained, it is deemed too slow over
the major part of the domain. For instance it took about 5 and 2-1/2
minutes respectively for A and H; on a GE 225 computer with 384
intervals, or a relative error of about 10°° otherwise at a point near
the right lower corner of the domain ( Peo 3 Dear unity). These values
at sampling points are valuable as they serve as a good check on the
present computer program, which evaluates Fl’ F,, F3, Hpy» HOZ’
Hp3, all together at a rate of 25 seconds per net point (on the same

computer with an accuracy of four or more significant figures).




EXAMPLE: FUEL SLOSHING IN A QUARTER-FULL TANK

First, ]o and Hoare generated, then the matrix Equation (257 is
solved. The corrective part Cd to the kernel function obtained is sym-
metric almost to four figures (Table I). The relative errors in the sample
points are less than 0.3% or better. Since these values are quite repre-
sentative, the values of C:./ at other points are not shown in the table.

Next, the eigen values and eigen vectors of Equation [30] and then
the force response of Equation [3 1] are calculated. The calculated first
four eigen values are 9.48863, 2.0591201, 1.2003387, 0.84773955, re-
spectively., The corresponding frequency parameters are compared with
experiments in Figures 4a and 4b. It seems that the values are well within
possible experimental error, although it may be slightly less than the
actual value, noting that natural frequencies are somewhat smaller for
larger amplitudes of oscillation.

The constants needed to calculate the force response are compared
with graphical values given by Reference 1 in Table II. Since the coefficient

qz/C, is in agreement with Budiansky's value, the main difference lies
in the value of first natural frequency for frequency range in its neighbor-
hood. Since graphically interpolated value is less reliable, which is also
confirmed experimentally in this case, only the present theory is compared
with experiments (Ref.15) in Figure 5. The difference between theory and
experiments, perhaps, is essentially due to finite amplitude effect. But

the agreement seems to be quite reasonable.
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. ’X),;(( 2 . - '2

n R, = i U’/C,, - (Tﬁ’tj”T/c?)/ ""t

T T T

" Budiansky Budiansky

Chu (Fig.9, Ref. 1) Chu (Fig. 10, Ref. 1)

1 1.2169314 1.1323 0.24919 0.249586
2 | 5.6077376 5. 4443 0.44687 x 10-3 |0.4172 x 10-3
31 9.6197893 9.2325 0.44758 x 10-4 [0.7664 x 10-4
4 ,13.620935 0.112633 x 10-4

L i

TABL.E II: Comparison of Constants with Data

from Reference 1



CONCLUSIONS AND DISCUSSIONS

The present theory and computer program seem to yield
satisfactory predictions of natural frequencies and force response
in comparison with experiments for a quarter-full spherical tank.
The computer program is expected to be applicable to other liquid
depths, although not beyond improvement in efficiency. The results
also confirm the theory that the kernel function is related to the
Neumann function on the boundary and that this function can be con-
structed by adding a corrective part to a known Green's function
numerically for practical applications. Extensions to other prob-
lems may be possible, but one must resolve the precision problem
if it exists and one may also find a more sophisticated numerical

scheme to be more desirable, either in accuracy or in efficiency.
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NOMENCLATURE

A = radius of the spherical tank

AR = area of wetted surface of sphere

b = maximum value of P radius of free surface

d = tank diameter, 2a

(e(2) - k(%))
o) = 22 (c.f. Appendix 111I)
DKEF = a function in the computer program (c.f. Appendix III)

F = the undisturbed free surface

F; = horizontal force acting on the tank due to fuel sloshing

J‘J = .\/IZ‘?; j*:(/;,ﬂ) = %.:.0) (note the order of lo“/; in ‘?‘Zj )

i(ﬁf’) = integrated kernel function related to

effective gravitational acceleration

o
i

i}' - ,\/f,;—/;' é,(ﬂ‘, [o(')
G(RQ) =

Green's function of the second kind for the spherical bowl

G.(PR) =

Green's function of the second kind for a sphere

h(LQ) = additional part of Green's function for spherical tank other
than half-full

ﬁ,(f,f’) = integrated kernel function related to 4(~ Q)
H(E f’() = integrated kernel function related to G(~ @)
H,(f f’) = integrated kernel function related to G,(P Q)

Hy = e Hpuf)
= AR et
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I = point of integration, except 1. being the unit matrix
K(2) £(2) = complete elliptic integrals of first and second kind,
respectively
M, = total mass of liquid (fuel)
7 = outer normal
NEFF = a function in the computer program (c.f. Appendix I1I)
Q = (k-F (c.f. Appendix I11)
2 PP
PXr,¥) = a ring correspondingto p(r ¥ 6)
9, = 2L
() P-’-P
g = 2o
L o
Q T analogous to P but related to Q and I, respectively
Qs defined by Equation [I-10a
y &q
,»}(/,; ©® = spherical coordinates
R = the wetted spherical surface before sloshing unless defined by \I—ZJ
s - 2 ‘
RIPP) = [ri+ & —2L acosy
R Ry R defined by Equations [I-10h], [I-10b], [II-5b], respectively
ta’ th 'Y
R,,Q distance between the points P and Q
AN = element of surface
) = 9SG0 — Pdp onF
U = horizontal displacement of container in the x-direction
X = - cos@
Zr = vertical distance of free surface from center of sphere;

positive upward

o defined by Equation [12b],f $HD) IS,
F
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defined by Equation [12a]

angle between the vectors 91:; and OR!

r;;’;: [- Z/:Z z [%.f *4‘2(P2+P‘)+sz’2j , respectively
Heuman's lambda function (Ref. 9)

Wi

J

= complete elliptic integrals of the third kind (Ref. 9)

radial distance from a point on the free surface to the
center of the free surface

P of integration variable

density of liquid (fuel)

velocity potential, ve =_§Z , _9> being the velocity vector
nth eigen function

nth integrated eigen function related to &,

NP falf?

w = frequency of oscillation
@, = nth resonant frequency
S, wﬂz‘?/j , nth resonant frequency parameter
Subscripts
F related to surface F
i,j,k related to p; ., /}-/ ,”k , respectively
I related to integration variables
P related to the point P(n¥86) or P(/,%)
Q related to the point Q¢ ¢ 6) or Q(laa)
R related to surface R
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APPENDIX I, ANALYTIC EXPRESSION FOR H, (((a)

The Green's function of the second kind for a whole sphere

(Ref. 16) is

G, (P F) / za” |

PP——-—+—- ~
4r] R & a3- 2057-/-[-[? } [I-]J

where

R= "/ra*r'z"z”’“/w;' , R= «/r'2+_f—:'— %—C’azcos} [1‘2]

o) = cosPcosp +sin sin ) cas(o-6 [1-3]
When P and P' both on F,

, / / a
G(RF)= ?{ + +

Vp2pi-2pp cos (6-6) A/,a’,o'ﬁ(,o'2+p’)z;-2ff'a"cos(9-63+b"

D~

24" } [1-4]
a* 2,: —/’,0 cos(0-6) + 4/ P P’ +(lo +f' )z -2,0,0a m(e—e)*b‘
U51ng Equation [I-4], with o= = = 9-6~

Ho(E P) =

27 2
/ , . - ”,
cos & [ G,,(P,P,) casfdo = ‘l G (r.r; cosd";lklpl) casa~ do-

= Ho/ + Foz + Hops

(1-5]
Making use of a new variable ﬁ:%- -g: and a new parameter = i/ didl
2n ' sl
Ho - 1 cos G da
" r\/f"ﬂo"-—zﬁp’cos (6-¢)
) [1-6]

= X 2 (9
2"“//7{(2 g)K(@)-4 5(9)}
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where

K@) =/° 1= 9% si*8 2"5”7,8 G

£(9) = /‘} Ni=g*sinp df

Ho —2”4/./,_ % [-K(3)-2 ()] [1-6a]
where D(9,) is DKEF (3) given by Appendix 111,

By taking limiting process,

f/,,(o,f)=/'/o,(f,0) =0 [I-éb]

Similarly
2r
His =$ a _cos o~ do
L pP-8 4 2P a4 22 P 2 ppat cos o
2 _2 I1-7
zw— {($-2)K@)-ZE@) [1-7]
where
2 LL/T </

" (PP- 82+ 2 (p-p I+ 4,af’az

Also, this can be evaluated more accurately by

%
o

/L/oz= ‘{_K(?z)—zo(?z)}

[I—?a]
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When P or,o is zero

g p~—¢ ( s, 0) = 0
Hio .o =H'F [1-71)
From integration by parts,

2w

"/,3((",,”'):2;/?—/ aij,[

24°

_-Z —PP cas G- +'/(/af—sz+‘flpa(/‘ asa*)+z (F P JCDSO'OIO"

A PPA PPVt 20002 (1-cosa) +3 (p-p )i + PPa*] sin®o- do~

"’a/ VP84 2ppailr-cosa)t 3 (p-p 3 -ppesses, Jepp-sFvappidf-coniz ppy]

" Zma / Z( [ffn/éjf b’)zr‘fffazo-casa')+¢(la-p’) + ,Opa]

[,‘/(/’,0 b’)+sz @' (1-csT)+Z2(p-£P)* ' +ff’cos a] sing=
P casod s TP b4 PP 2pp i cos

do-

=2t {[/’af'* b 4z (pHp) - 2ppaicos a]- a8 -+ dpp wsa*} sin’e
o W/ oY + 2P ) 5200 0F coser (~ppr®) (cosT=,)(casa—),)

da +

/4
+ PP’ @26+ PP caso~

do-
2ma Yo —p%r(cosG-),)(cosT=)s)

= I[+I,+I, +1,

(1-8]




where

sin‘a~ _ / /s = (A, *A2)cosT+), )2
(cesg--),) (casa-),) (coso-— ), )(coso~-2;) (cosa~= ;) (cas@T=A,)

" LI 8%+ 25 (PP ) —2pp 0 cos a + £ L PPp 24 554 (P47 -20°57]
7 =L

T 2mra A (‘,02:0’2),\/,;2,9’+b4+,z;__‘(/0+/>’)2——2f/0'a’car0"

’ Fa
= 2 .2 ,,f-_' -
= z#_n'a [‘*zi/ 2 //-g sn'g - 2 /’g; 2 (/02;:’2> dp+

T
L / L i i A
2, 2 - ’
2ra ff’z, A1-% s (2aA/f,o’/9z)

= ma (L) e | +

% 2 2,2, 2 2,2
* zzr/a ?(ZQW)EFI’ +6*+ 5 (P )20 ]K(Q,)l.
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[-1]de

[I-8a]

2
By using partial fractions, the variable B and the definition of 77—(0(, Z.)

(c.f. Ref. 9) one finds.
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L= f_f_ [f/i/,ﬁ;f{,aﬁn’f 2 ]-PPa‘cosa [ / PR P LTES y
(‘ff/z),,[p? -/-54./.‘;.2(,94-,0)2—2/0 WPeosa | (cosa=)) (casC=),)  (cosa—n,) (casd‘-—)z)J T

_ / LA b 4 (AP P T —pPa%eosa( 3, / ! L
z’mf P f" 65+ 3 (prp)* "‘2/’{’,6!36050‘ A;~Ap \OST X, cosq—- Dz

_ ),4’): A . Az
RO (eax(r- A, cosa'—k)} I+

PR X - 140,
ArAz

N A7 by }
eerromon S spm—— _)z —
),"" Az [ ()l )+60$0‘- ), ca.so‘-—)nz Ja..

“imagy P HE (PP -a] [ 3 [ 25015, %)+

*';\_.l‘;‘" 3 )} 27m a,/ ]{(H)«,)K(%)-f

[1-8b]

()u l)/\; ”(IH’/ )+ (= AZ)A ]7(..;;/ ’ ?ZJ}

where the well-known complete elliptic integral of the third kind is

defined by
k(2
du

2 _ 2 J,B
,2)= = —_—
(e 2) /o(/-o(zs;njs)/ /- 9% sinp .[ (1-ot?snu) [1‘9]




39

- PP
L= (P/’ / (2™ 6+/ofcaso-)a'<r

= 2z (70 (@807

[I—8cj

~ (@% B2) 4 PP cost . (a’—a‘#,of’coscr)(»,hz—(»\.ﬂz)cosc‘)J o
T f/a _/

L (casg=), ) (cas6-X2) (casa=-2,) (cos a-)2)

= / ’ / s 2 2,2
zma pp’ /. { ('\"h\z)f)‘a+(mso~—),)(cosa‘—hz) [ﬂf’ ("")’)2—()'”’))_0'”‘)(“'6 )_:!"

+ ORI Iapp 4 (11302 (@8] | oo

{(A+Az)7r———,ﬁ—[f,oz+(a -] ,./S:'Efp3\2+(a2—b*)1}
[1-84]

where

Hence

H 209 = T L () e+ g ()l e 26025 K-

(’*2": ) el (A—/’ '9]*

+2az(za A/P—F_)[ (,\,4)2)/((9,)1‘9—1)-'1‘”(,,) 9) L)‘")EZIT( = )+

e I (R

[1-8']

+ 5 (@=4*) m+(+39) 7 — > /A,*—/ r p,o’).l-rqf]— P *’hx /(i / Lpp ,\tf-z)_—]}
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When f’ or /’/is zZero,

//as(ozf/) ='L/os(ﬁ 0) = 0 [I—S”J

It was found that there is a precision problem in Equation[I-Sﬂ
when £ and f’, are near zero. This might be anticipated as there is
a very small denominator proportional to (/91"’)‘;é and the result is
expected to be small in view of Equation [I-8']. After somewhat labor-
ious manipulations with Equation [I-8'] to resolve the precision problem,

Hh3 is obtained in the following form (with b=1):

63

/ A £ 2 302, 52,2 2
prery ey ZD(@*,,,,@»(@—/)%)—;;QW R PP -

1#) ’9)+S]

+ 2@0 [(l ):)‘H’),) A )+ LA (A: I))l "-(/f-)., 9) (r- )z) i + RHS]}

N=2y

o

[1-10]

where

% za/pp” [1-10a]

Ry = ,f(/of’—bz)z-f (P~ r4ppd

(1-101]

() /) -
\Se + oY K(?x) ()1 /) ”—
[ /((2’ -?z)]"" 2 (Al—)2))2 N [I-]'OCJ




RHS = RI +ffz +R3 +R¢l
= —-L 2,2 L= 2 / A
A, f,{,'{[ﬁ,’ +2/o,o+¢(/>+f’)]/_?;.?
td
— 2@ [pptrzi(piety] UAe) o, (=A)
sLf P+ Lf f/ 4 O-2)(+)e) 2 & PN

R, = 2a°Q, (A (+X) (“;)") I
71, A,

e ( F RN ﬁ’#r"}
= 7, 2 *
s =200 | Fy +2 2

-/
& o2, /2 2 ,2
oo o s (BEEE 24

ZZFz Rg +§-z

Rea= A 3 +5 (P07 4%

Ry =—F A n-D(NH)

AI>// A2.<0

It must be noted that ()\,"/) p (Azz"/), (/?/;'/)

by direct subtractions, but by accurate formulas.

(Ri-1)=pip? +2pp" + 3 (ptp S

are evaluated not
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[1-10d]

[1-10e]

[1-10f]

[1-10g]

[1-10n]

(1-10i]

(1-10j)

[1-10K]



o0 —1)= R:‘./(/n,)

| p=p| 1| S2F 2R +(p% )
rr X+ PP Fug

I

(»z-1) [l’Fl 222+ 2Ry, +(,°2+f")]%,ﬂ‘,9'2)

(p—/a’) can be calculated without loss of significant figure. It is
also noted that for small Z- , one should replace (54—62:22)=52(b5-a2)
by —% b or (1—a®) by —2):2 with b =1/

It is recalled that Budiansky's technique of differentiation
under integral sign does not seem to lead to simple results, due to
the presence of non-zero Z- , the relative depth measured from the

center of the spherical tank.
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[1-101]

(I—lOm]

(1-10n]
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APPENDIX II. ANALYTIC EXPRESSION FOR 5’(/9,/0')

The outer normal derivative of G,(BP/) on the free surface is

369 / / / a _-
S = g7 (-t S(F72 5% —-———-—-———'F, cas T~ 2”1 4
PE4 4.7 { o '(z ) R'3(l rs ) a"""(CASf—/) "" cas¥ X +
’
¥ s ’2 _ 2, ” 2 - -
@R r3r3( cos*r—1) [(arz +rrz) = (rPr s ta rz)co.s?]} [II 1]
When both P and P! on F,
= = | B (E ) [ rrest —r7]
‘ . Taw e rcosy —ri]+
i X=Z2 =2 Al R arir*(as*yr-1)
+ [ (a*r+rr?)=cr '+a’r’)cosﬂ}’
; rr)—=(r’r .
@ R’ r*r*(cos’y —1) (11-2]
where
l_2= P2+*§:‘2 R r/2=/0'2+ Z;
For P, P' both on F,
HP,P )= / ——’ s da
F+hH*H [11-3]

Using the same technique as in Appendix I, one finds

2
5,’(r°,f’) =/ —;7/?—::2 (—-—— cosq~ d T~
(a> FPa) % ? (& 1)L 2_ o0
= e e | (g ke (114

where a’*—ria = a(*~p*



It is noted that a special case of the reduction formula in Reference 13

can be used to evaluate the following integral, which occurred in 7',’(/-’,/”)

/_%E JP _ /
ja [—/- 9;2 Sl\nz/B]-‘%. /- '9.:

£(%)

Or, use

y
/(25/'172¢60.S¢ — -(/-K%) /¢

é
+ [ 1= 224 o
Ji-K2 sintg o (/- K*sin*p) %2 «[ 1=K2sitp 4

which can be checked easily by differentiation.

When f orf’ is zero,

Flop)= F(po=0 [11-4a]

To increase accuracy in numerical evaluation, Equation [11—4] is

replaced by (with b= 1)

2, 3
Fp.p)= [ /E(gz) +zp(9z)] E%f_'_ (btp)(b-p) [11-4b)
b-p f-}p’ and bz../ola’ can be evaluated accurately for known

discrete values of ﬁ/p’ and (/—%°) is evaluated by

o - (/_Zz)=/(:$,:ff)z+27r’(f—c) -
! “pP o =+ F (P (11-4]

Next, 7 will be expressed in terms of elementary functions,



-

27
“F

. —'/ 4 2
P = rr sy —r’] coso do-
Z(p-£) 47ra£ rir(cs7-1) rrce

CF [ g —(5i4p?)
2ra (§:+Iof'casa')a—(z;+/a’)(77_f+/—2)

cos G dg-

% { / (-2% -p) cwsrt E PH P Ut |
27[’0 PF’ Ff' [COST’A][QSW')ZJ

_ 2, 2 -2 4 2
Sk % [ Ee PP Ly (2 *f’)]
2ppa 2apPiin-2,) -pp") a1
2 (p%p?) +
% E (Pt Pt +3,(232+pY
2Ppa Oy —m[ C-pp?) F ]sz-/
— -2 / (z;-l-,oz)/‘/z;'*z;(#*f})‘f‘?’f"z_ /
s /+ 7 z( 4 2,02, ,,2 2,/2 ]_/-
2ppa 24/;??;1)' Xtz (PHp) + P

F (FHP) A+ PPV 07 ] }

4!
24 ef

FHE )+ o
[11-5]
Some further manipulation is required to avoid precision problems
for P- lp/ small or X small. One finds
-z {_L( z,oszz.,L(;;:+ﬁm)[(l’z+f”')—lfz—f’zl:l].
T ozppra 12 B
L _FEH_(pP) re? [
Ra 224971, | (PP 1% A, [ %1y 47 *ﬁ’m]} II- 5]

=2z + 2R 1P 4P [11-5b]
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When p or /D,—-a.o
Y=%(po)=20
RO [11-5¢]

Finally, % will be expressed in closed form as follows:

2rn

Z(p p)=— “r / / [ (@rigrie?) 2 37
e T ’ ’ ’, \ - =7 , —L’ T /'—r qu S
2 T Jo QarrR rarl'(caszr./) L Jcosa-do

-_2 [(a P+ 2t )—(r'rat) (% +pPpcosa)]
g | (pp= 63 +2pP @ +75(P-p)" 2 ppa" cosO

cosa  Jda

(-3 (PPt praezpp”cost) = (P (=)

_ F [ A [ / —(r ) 7
“[ 24p @ J/—?Jsfn‘ﬁ} { [ ;;'a *p'r*(a.i/\z)(m;—a,)'

2, 2
. [)\. ((r‘+a’)2,=z+ r’(a’vl-r”))— r':;,a (-3:"3(,92-/-/0’2)+f2'0f1)] +

* o2 (o) ear ) el s +rie ) (" Pyl 4p

—ZF 9 /

——-)T,r ~(Fr7+a) K(2) + :
2mapp’ { Feeed 2A g3 p)tpipR

L re)
PP=3+ [+ (e P

‘ [A, ( (Zrep*a") 7 +(z}+p‘)(a€+¢+/:'z)) -

/ .
2 ”/2;:* z;(f%/flz)*'f’zfﬂ

—(z*+a%p?) 4—(/'+P,z)+ﬁ‘p 1 7T(

/'/‘A/’ 1 +

, (-¢F7)
=P+ 7 (e I

—(zf+f2+a’) F(/o"‘f”)""ﬁL] T’.(—)‘ o )}

[ Az ( (Z+a*+pd) 7,.5 HE+P?) (a’+z;f,o'*)}—




O I et
37+ 22 p%p) + p2p2

z 9, 2
=zztaz(f/" )% {( FirsadK@) [ /=

! 2 2 2 2
Gl F TR G p) (2E 5 (zattapsp s ey y) -

~@E ) (i) Tk %) -

L[ (ff' ZF‘)JZ: Z2 PP IPY? I
g 2P P+ F (prp)’

- ( N e N2z"43 (2a’+zf*+fﬂ)+,o‘(a’ff/’)) +

+ (7 +pra?) (52 prep) +f*r‘)] M=% . 9:)

There is a serious precision problem for pA, /D/ small in
Equation [II—()]. After manipulations, the precision problem is re-

solved by employing the following equivalent form.

z 9
% 27raz(lpf/)-‘lé { 1+ 652 ;

where

A= —{ (Ftp*ta?) I, + [ 8, +2(F1p*+a) £+88, ] (K(%)HZ,)}

47

[11-6]

[11-7]

[11-7a]
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(F +p%) [11-71]
Feg (Rea? % +F7)

2

B = (p*-p*)

B, = (Io,z”f’z){ 4 i_Ptg [ [11-7¢]

2’;+,°":I-I?M] }

2" R

Where the terms in the inner bracket could be replaced by —J——

for higher precision, which seems unnecessary as the error in B, is

sufficiently small in the critical range due to the factor p'= p?

F_;Z = l z 3 F(’+31 , z) [II_7d]

&
ZF

2
C-.-:a,s’{____.__(,z_ 2) +
7 2
#er L ) m [t e o)

£’ (%= p?) ] [' + Zﬁvl-,oz-/-lp/z] .
(PP ) (P 2RI R, [ p*3 +14,] PP+ P

(P-p) __ (FHpV(F+P4p%)+(F+277) PP
P+ P*) Ra (F4P%) Fea + 9"

+

(PP }
PR PP +Mal

[11-7¢]



where further manipulation may be needed for very small % to

avoid precision problems in the domain of small g and /0’ ,

* /

G =

|

(5 +p +a) (27 p?) ]

&S =P [F D Rt S

When por p—0, ¥ — 0.

It is important to note that whether P >F’ or /0’>p the sum of
7 » & and 5 always approaches zero as Z =~ 0. Therefore,
for a half-full tank # =4, which is in agreement with Budiansky's
kernel function aside from an apparent factor of two difference

mentioned previously,
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[11-71]

[11-7¢]
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APPENDIX III. SUBROUTINES DKEF AND NEFF (WIZ PROGRAM)

DKEF

i

DKEF (k,k,1,1,1)
NEFF = NEFF (f,*,x",1,1)

The unity arguments are actually dummies, while the five argu-
ments represent five outputs. For DKEF, the outputs are K(k)= DKEF (1),
E(k)= DKEF (2), (E(k)-K(k) )/k% = DKEF (3), K(k)-7/2 =DKEF (4), and the
number of iterations = DKEF (5). DKEF (3) is not obtained from DKEF (1)-
DKEF (2) but is obtained after a significant analytic subtraction in the pro-
gram. For NEFF the outputs are F( g k=% )=NEFF (1), E (/9, k =)
= NEFF (2), (E( B , k) - k sin g )=NEFF (3), the number of iterations for
evaluating F ( ,k)=NEFF (4), the number of iterations for evaluating
NEFF (3)= NEFF (5). NEFF (3) is evaluated after a significant analytic
subtraction in the program while NEFF (2) is simply obtained from NEFF(3)
+ k s'm/S . Although k' =J1_—_1:2 does not appear in the functions sought,
it is calculated from a formula without subtraction, as one can easily see
significant figures of k' would be lost if k is near unity, The basic formulae
are all given in Reference 13. For complete elliptic integrals, the iterative
method based on geometric and arithmetic means was employed. For in-
complete elliptical integrals, the iterative method based on inverse order
of transformation was employed in order to construct NEFF (3). The pro-
grams are written in "WIZ" language for GE 225 computers, which is

analogous to "FORTRAN'" for IBM computers, and are given on the following

pages:



SEQ _LABL_ _

400 _DKEF_._

4ot _
boz_
4o3_
hol _
b0 _*
by
hia_
ba2o_
b21_
Yaz_
430
431
4ho_
Lk

bh2
b43_
Lk

Lys

TY_ STATEMENT

51

WiZ SOURCE PROGRAM

_C_ ZE _NZE _ PL _ Ml _ANY
_ARGHDKEF (1) $OKEF (K,KP,1,1,1) _ _
_ARGP#DKEF(2)

_VA# ,VB#ARGP,PI #3. 1415926536

_QROD #ARG* ARG/{ (1 &ARGP)* (1 %ARGP ) ) ,KNAQROD ,NO#O_ _
_KK#0.5%ROD ,SUN#-0,5%(1&KK)
_KP#VB/VA,SUM#SUN ,PN# 2%*SQRT, (VB*VA)/(vA&vB) _ _
_KNAKN¥KN/( (1&PN)* (1&PN) ) ,ROD2#KN ,ROD1 #.ROD

_QROD #ROD 1 &ROD2&ROD1 *ROD2

_KKAKK*0,5¥KN, SUNASUM=0,5*KK

_VAT#0,5% (VA&VB) ,VBT#SQRT. (VA*VB)

_VAWVAT VB BT ,NOMNO&1
_ABS. ( (QROD=ROD1 ) /QROD)-DELTA o
_ABS, ( (SUN=SUM}/SUN)-DELTA * »

_KNPH#QROD*PI*0.5 ,FKAKNPH&O,.5*PI
_DKEF(1)#K $K(K)
_DKEF {3) #SUN*FK $C(E(K) KK /K/K)_ _
_DKEF(2) #FK&ARG*ARG*SUN*FK  $E(K)

_DKEF (1} #KNPH $K(K)-P1/2

_DKEF(5)#NO
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Wi Z SOURCE PROGRAM

SEQ _LABL_ _ TY_ STATEMENT _C_ 2E _NZE _ PL _ Ml _ANY
S00_NEFF ., _BETA#NEFF(1) $KAPA NONZERO
505_ _ _  _KAPAMNEFF(2),KAPAPANEFF(3) $NEFF(Y%,5) oummy _
510_ _ _VA#1 ,VB#KAPAP ,BNABETA, I F #0,NO1 4O, TEMP #1
515_* _ _ _KPHB/VA,PRODATEMP,IFTHIF
520_  _ _DCHCOS, (2%BN) ,NSH#SIN, (2*BN)
585_  _ _ _BP#c*BNeATAN, ({1-KP)*NS/{(1-KP)*DC&I&LKP) ) - _  _  _ .5
530_14 _ _  _BP#2*BNEATAN, ((1.KP)*(-NS)/((1-KkP)*OCEI&P)) _ _ _ _ _ 15
53515 _ _  _TEMP#PROD/{1%KP)*(8P/8N)
sho_  _ _IF #BETA*TEMP
shs _ _VAT#0.5%(VA&VB) ,VBTH#SQRT. (VA*VB) ,NC1 #NO1 &1
550 _ _VA#VAT ,VBAVBT ,BN#BP
555_ __ _ABS ((IF=IFT)/IF)=DELTA o A
556  _ _ _ $ IF COMPUTED
560_ _ _ _ DELOAKAPAP*KAPAP/ ( 1&KAPA)
565 _ _KKH MUFT ENKSH(1-KAPAY* I F FKK#I FYKAPA*KAPA _
566 _ _No24#0
570_ _KN#KAPA ,DELNADELO,SSO#SIN, (BETA) ,SSN#SSO
S5T5_** _ _ _SSQ#SSN*SSN,SSPAKN*KN*SSQ,RTKNA#SQRT, (KN)
580_  _ _RT1#5QRT. (1-55Q) ,RT2#SQRT. (1-35P) ,ENKTANKS _ _
581_ _ _  _RT3#5QRT,(0.5*(1&RT1)) ,RTU#SQRT. (0.5*(1-RT1))_ _
582_ _ _RT5#SQRT, (0,5*(1&RT2)) ,RT6#SQRT, (0.5*{1-RT2))_ _
583  _ _  _ACHAS*(1&KN)*OELN*SSQ/{ (RTI&RTS)*(RT1&RT2))
584 _AS# = (18KN)*DELN*SSQ/( (RTU&RTE)* (RT1&RT2))/2_ _
585_ _ _ _SSH#RTU,CSH#RT3

586 _DSN#AC*SSHEAS*CSHEDELN*SSN/{ 1 &RTKN)
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WlZ SOURCE PROGRAM

SEQ _LABL_ _ TY_ STATEMENT _C_ ZE _NZE _ PL _ Ml _ANY
587 _ _KKACKFKN, MM#2 MM
590 _ _ _ _SSN#SSNEAC*SSHEAS*CSH, NO2#ND2&! $$
591_  _ _  _DELNADEUN*DELN/( (1&KN)* (1 &KN&2*RTKN) )
592_ _ _ _KN#R*RTKN/{18&KN)
593_ L _VN#-MM*OELN/{KK*KN)
59%  _  _UNF-MMPDSN/SQRT. {KK)
595_  _ _  _ENKSHENKTEFKK*VN-KAPA*UN $ E-K*SIN,(BETA) _ _
596_  _ _  _ABS,((ENKS=ENKT)/ENKS)-DELTA v e
597_ _ _  _NEFF(1)H#IF $ F(BETA,K$KAPA} _ _
598_  _ _  _NEFF(2)#ENKS&KAPA*SSO $ E(BETA,K)
599_  _ _ _NEFF(3)#ENK3,NEFF (4)#NO1 NEFF (5) #NO2 .

$ENKS 1S E(BETA,K)=-K*SIN{BETA} ,K#KAPA

999 10 _ _END
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APPENDIX IV. DERIVATION OF 'ITN

For Tr(__“\ ,92) the formulas 410.01 and 411.01 of Reference 12

are applicable, in which %= _—_/;2-)—- <0 R = LA , i.e.,
— N2

77' n‘(d ﬁ)_ ﬁ K(f) _ 12":0(2/40(‘;',&)

Iv-1
«* JaB-a) (a7 V-l
where
S ya's
¢= S oT’-—-k’
and
oK), ZFLIAGH 1]
2 /-d*® ,/ o (/- a2) (4% #2) LIV—Z]
where
= sin
[ = [IV-2a]
To exploit the possibility of gain in significant figures, ]7;— —/’_i%);—
. : . KR :
will not be computed by simple subtraction of % from either
2

of the above equations. This difference is defined as -ITN'

From simple algebraic manipulation of Equations (IV-1) and (IV-2),

one finds

K(#%) o .
= + 1-43)[ ABR-1] (1-4#)+
% I=2d* Mo (-a®) (a2~ F) { (-0 A T(-24#)

/ 2,2 /
LE-NERY T

[Iv-1la]

iv-3]
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For ﬂ-/@. small, B is near ?‘72' ,» kK is near zero, thus
/!o(/é,)%) is near but less than unity. Also for fZ.p; near unity, k
is near unity. Equation (IV-3) may still lose too many significant
figures through A, ~/ or /- #* . One can further apply the addition
formula (#153.01, Ref. 12) restricted to the condition that £tang.

tan ¥ = 1, i.e.,

2 8 sing casp KI)

AlLR)+M,(p. k) =
7 f cos®s + #3sin’s [1v-4]

where #%= /- 42

Eliminating /I,(f,k)—/ from (IV-4), (IV-1la), (IV-2a), one finds

. = K(#) , { T =15 (1- 1(-“2)4(¢1ﬁ)+ o K(#) (1-£47)

R o (-t %)
[IV-5]
Therefore
_ K08 — o 2 o 4
i (”2 /-—‘;f) W{ 2 (-2 OM4R)- J\/d(/"éz)/r(k)} [IV-6
-6,

Applying the addition formula (IV-4) again, one finds

e {E (- %) L _#K®)
N 2 e (r-a? | av-7]
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Lig =(1-N)={(1=sinp —(N,~ sinp))

— o2

- AI-d? (/'fﬂ/[—g(‘)

4ot [iv-§]

Log= (As—sinp)

= Ez"{ [ R —F®] Flp.K)+K(#) E(p, K>~ F-sinp }

I

2 2 ’, ’, w y; 7w ﬂz /
— 1 & DB)F(BR)+ P(RE(BF)+ > LK) — =
v | €D FR R+ PRIERS+Z oo t)-F 1 ]

S av-9]
where
fIV—9aJ
°(2=—2/(’_/‘Az) . k=9,
D#)=DQ 2z =( E(R)-FR))/# = DKEF (3) [v-9e]
pw)=pPez = ( k(#)- ) < DKEF(®) Iv-9c]

D(ﬁ,k’) =ID2 = (E(ﬁ,ﬂ/) —k’.s:bp) = NEFF(3)
(Iv-9d]
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There is apparently a gain of significant figures of ”N when f: . f‘}-
are small (&, & small) if equation (IV-7) is used, provided that the
term. This is achieved by employing the subroutines DKEF and NEFF

for equation (IV-9).




APPENDIX V. X-FORCE ACTING ON THE TANK BY

INTEGRATION OF PRESSURE

Assume a velocity potential

b= Ux +n§°: a. % (n4e)

where the first term is a particular solution satisfying the normal

derivative condition on the sphere. ¢ are the eigen functions which

have no contribution to the normal velocity on the sphere. In order

to satisfy the free surface condition for sinusoidal oscillations

2

— Y =

9

N

one has

@, =

W’ w’ w2, © . wh
w w + & = Wr
Fh T UG E MR = g b o F
2 . 9 .
_Cu",)‘;ﬁnu _ w? ﬂ’U
wp Wt Wy
(e-5 ) (GE1)
. ’ 2 wy
since $7% are orthogonal on F, 0(,=f¢§,d'$ and ,8,,==-§—" x & ds
E F

The pressure

“ $ . o, .
P=-£ -3—5-——-—/‘1"5, @ (b e)-[UA

N

The x-force can be obtained by direct integration of pressure

[pinds =p {]7 div. [—Z‘Ux—”géz',, ?%(r,m):]afd—W}'o
R (4

AR R A i
%

(]
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v-1]

[v-2]

[v-3]

[v-4]



;s,:[‘2 2% 4y =£{[wn(xv¢>—?7*’{]':z

x2bas + [ x 3o

[
"ﬂ\

=%"Lz%d$

Equations [V-2, -4] are the same results as that obtained in

Reference 1 through Lagrangians' equations.
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FIGURE 2. Surface of Integration



FIGURE 3a.

Moment About Axis of Rotation
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FIGURE 3b. Moment of Tank in Pitching (Rocking) Oscillation
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