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AT CONDITIONS S-G HIGH-ALTITUDE SUPERSONIC FLIGHT 

By Eugene V .  Zett le,  Carl T. Norgren, and Herman Mark 

SUMMARY 

The perf o m m e  of two experimental annular t u r b o j e t  combustors w m  
inves t iga ted  a t  operating conditions typ ica l  of h igh-a l t i tude  supersonic 
f l i g h t .  
nu la r  combustor designed t o  fit i n  a housing with an outside diameter of 
255- inches, an  in s ide  diameter of 1% inches, and a combustor length  of 

approximately 2 3  inches. 
chamber from t h e  upstream face  of t h e  combustor; i n  addi t ion,  a f u e l -  
s tag ing  technique WBB invest igated.  

Each combustor consis ted of a onequa r t e r  s ec to r  of a s i n g l e  an- 
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Liquid f u e l  waa in jec ted  i n t o  t h e  combustion 

Combustion efficiencies near 100 percent were achieved i n  both ex- 
perimental cornbustors operating with combustor reference v e l o c i t i e s  of 
200 f e e t  per second and g rea t e r  at simulated supersonic f l i g h t  cond i t iom.  
These high e f f i c i e n c i e s  were maintained at  t h e  highest  combustor-outlet 
temperatures invest igated,  namely, 1800' F f o r  one combustor and 2000' F 
f o r  t h e  o ther .  
and were considered sa t i s f ac to ry .  
10.2 and 12 .6  percent f o r  t h e  two combustors at a ve loc i ty  of 165 feet  
per second and a temperature r a t i o  of about 1 .7 .  
l o s ses  of t h i s  magnitude, ca lcu la t ions  indicated t h a t  t h e  increase i n  
engine s p e c i f i c  - fue l  consumption reaul t ing  from combustor pressure lo s ses  
would be no g r e a t e r  i n  the  engine for supersonic propulsion than  i n  cur-  
r e n t  t u r b o j e t  engines. These pressure losses the re fo re  appear accepta- 
b l e  for t h e  supersonic f l i g h t  conditions.  Combustor-liner d u r a b i l i t y  and 
carbon-deposition cha rac t e r i s t i c s  of t h e  combustors were not evaluated i n  
t h i s  inves t iga t ion .  

Reasonably f l a t  outlet-temperature p ro f i l e s  were obtained 
The maximum to ta l -preesure  lo s ses  were 

For combustor pressure 

Research on compressor and turb ine  aerodynamics has indicated that 
increases  i n  a i r  flow Der u n i t  f r o n t a l  area of aa much aa 30 percent are 
possible  for t hese  comionents of t h e  turbojet  - engine ( r e f s .  1 t o  4) .  



2 

......................... . . . . . . .  
0 .  0 .  0 .  . 0 .  . ........ . . . . . . . . . . . . . . . .  . 
0 .  0 .  .......... 

I n  addi t ion,  t h e  advancement of turbine-cooling techniques indicates that 
increases i n  operat ing temperatures of as much 88 500' F over cu r ren t  
prac t ice  are poss ib le  i n  f u t u r e  engines (refs. 5 and 6 ) .  High supersonic 
f l i g h t  speeds wi th  t u r b o j e t  engines can be more e m i l y  realized wi th  t h e  
grea te r  power r e s u l t i n g  from higher a i r  flows and temperatures. The t u r -  
bojet  combustor designed f o r  use  i n  an engine incorporat ing these  d- 
vancements and powering an aircraft a t  high supersonic speeds (Mach num- 
bers of 2.0 t o  3.0) w i l l  be required t o  operate  wi th  much higher  air  flows 
and at higher temperature l e v e l s .  This means higher combustor v e l o c i t i e s ,  
i f  t h e  combustor f r o n t a l  area is not  t o  exceed t h a t  of t h e  o the r  engine 
components. The high a i r  flows a l so  indicate higher f u e l  flows and higher  
hea t - re leme rates. 

From t h e  r e s u l t s  of previous inves t iga t ions  ( re f .  7 ) ,  increased com- 
bustor  flow v e l o c i t i e s  t h a t  are desirable i n  supersonic propulsion would 
be expected t o  r e s u l t  i n  decreased combustion e f f ic iency .  
pressures and combustor-inlet temperatures encountered a t  supersonic 
f l i g h t  conditions may, however, tend t o  a l lev ia te  t h e  adverse e f f e c t  of 
veloci ty  on combustion e f f ic iency .  
a l s o  increase combustor pressure loss, which adversely a f fec ts  engine f u e l  
comumption. The higher combmtor-inlet  and -out le t  temperature leve ls  
(of the order of 400' t o  500' F above cur ren t  combustors) w i l l  increase  
t h e  du rab i l i t y  problems involved i n  t h e  combustor pa r t s .  

The higher  

The increased flow v e l o c i t i e s  w i l l  

The preliminary inves t iga t ions  t h a t  are reported here in  are a p a r t  
of a general  research  program a t  t h e  NACA Lewis labora tory  t o  determine 
design c r i t e r i a  of combustors f o r  t u r b o j e t  engines operat ing a t  high d- 
t i t udes  and supersonic f l i g h t  speeds.  Performance c h a r a c t e r i s t i c s  of 
two experimental single-annulus combustors were obtained a t  combustor- 
in le t -a i r  conditione approximating those  of an engine with advanced de- 
sign components operating i n  t h e  range of a l t i t u d e s  from 60,000 t o  80,000 
fee t  and of f l i g h t  Mach numbers from 2.0 t o  3.0. One-quarter s ec to r s  of 
t h e  combustors were invest igated i n  a direct-connect system. Pressure-  
atomized l i q u i d  f u e l  w a s  used i n  both combustors. Hollow-cone spray 
nozzles injected f u e l  a x i a l l y  from t h e  upstream f a c e  of t h e  cornbustors; 
i n  addition, one combustor was equipped with f l a t  spray nozzles i n j e c t i n g  
r a d i a l l y  i n t o  t h e  combustor f o r  t h e  purpose of f u e l  s tag ing  a t  high 
flow rates. 

The performance of each combustor w a s  evaluated a t  a single in l e t -  
a i r  temperature of 870' F, a range of inlet-air  pressures from 10 t o  30 
pounds p e r  square inch absolute,  and a range of combustor v e l o c i t i e s  f r b m  
125 t o  2 2 5  feet  per  second. Combustion e f f i c i enc ie s ,  pressure losses ,  
and combustor-outlet-temperature p r o f i l e s  were determined a t  these  con- 
d i t i o n s .  Combustor-liner d u r a b i l i t y  and carbon depos i t ion  were not evalu- 
ated during t h i s  inves t iga t ion .  

, 
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Combustors 

Two experimental annular combustors me here in  descr ibedj  ne i ther  
of t hese  combustors necessar i ly  represents an optimum design. Since t h e  
a i r  flow per u n i t  f r o n t a l  a r ea  of t h e  engine is  very high i n  a tu rbo je t  
engine f o r  supersonic appl icat ion,  an annular configurat ion was  s e l ec t ed  
f o r  t h e  combustors i n  order t o  maintain as low a f l a w  ve loc i ty  88 possible .  
Each combustor consis ted of a one-quarter t l t s t o r  of a ~i~@e-n_nni-ilas com- 

bustor designed t o  f i t  i n t o  a housing with a3 outs ide diameter of 252- in- 

ches, an  i n s i d e  diameter of 1% inches, and a combustor length  of approxi- 

mately 2 3  inches. The maximum combustor c ross -sec t iona l  area of t he  sec-  
t o r  w a s  105 square inchea, which corresponds t o  420 square inches f o r  t h e  
complete combustor. I n  each of t h e  combustors t h e  primary air w a s  ad- 
mitted gradually and the  secondary a i r ,  rap id ly  through l a r g e  rectangular  
s l o t s .  Three-quarter cutaway views of the assembled combustors are shown 
i n  f i g u r e  1. 
hole  geometries a r e  shown i n  f igures  2 t o  4 .  

1 

5 

The combustor longi tudinal  c ross -sec t iona l  and a i r - en t ry  

The geometric shape of combustor A ( f i g .  2 ( a ) )  w a s  s i m i l a r  t o  t h a t  
reported i n  reference 8 i n  t h a t  t h e  combustor occupied t h e  same volume 
and pos i t i on  wi th in  t h e  housing. The pr imary  zone w a s  designed with a 
s e r i e s  of c i r c u l a r  holes ( f i g .  3(a))  which allowed primary air t o  en te r  
between t h e  f u e l  nozzles, thus establ ishing alternate f u e l -  and a i r - r i c h  
zones. Large secondary s l o t s  ( f i g .  3 ( a ) )  were used t o  provide adequate 
pene t ra t ion  of t h e  secondary air  and t o  minimize flow r e s t r i c t i o n s .  
Fuel was introduced through f i v e  hollow-cone spray nozzles (10.5 gal/hr; 
60' spray angle)  located a t  t h e  upstream face  of t h e  combustor. 
design of combustor A w a s  t h e  r e s u l t  of t h e  research described i n  re- 
ference 8 aimed toward the  development of a high-performance combustor 
f o r  high-al t i tude,  subsonic f l i g h t  conditions.  

The 

Combustor B w a s  s p e c i f i c a l l y  designed t o  meet t h e  requirements of 
high-al t i tude,  high Mach number f l i g h t  of an engine with advanced design 
components. Since a high combustor velocity is  encountered a t  the design 
f l i g h t  conditions,  maintaining a minimum pressure loss i n  combustor B w a s  
a primary considerat ion.  
by designing combustor B with a somewhat smaller  combustion space ( f i g .  
2 ( b ) ) .  
combustion eff ic iency,  pa r t i cu la r ly  a t  low pressures ( r e f .  7 ) .  Analyti-  
c a l  s tud ie s  of severa l  f l i g h t  missions of i n t e r e s t  f o r  supersonic turbo- 
j e t  a i r c r a f t  have indicated t h a t  t h e  combustor pressure w i l l  be above 
about 1 atmosphere a t  all f l i g h t  conditions considered i n  the  ana lys i s  
(unpublished d a t a ) .  
quirements of providing high ef f ic ienc ies  a t  very low pressures;  t h i s  

A n  attempt was made t o  reduce t h e  annular l o s ses  

Making t h e  combustion space small, however, a l s o  adversely a f f e c t s  

It w i l l  therefore  not  be necessary t o  meet t h e  r e -  
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makes poss ib le  a compromise i n  combustor design t o  obta in  lower pressure  
losses  a t  t h e  expense of combustion e f f ic iency  a t  low pressures.  

Primary a i r  was admitted i n t o  combustor B through a number of inverted 
louvers, ae shown i n  f i g u r e  2 (b ) .  
t i o n  of t h e  primary a i r  w a s  admitted i n  t h e  upstream half of cornbustor B 
( see  f i g .  4) which served t o  f u r t h e r  decrease t h e  pressure-loss coef-  
f i c i e n t .  
technique waa indicated t o  be p a r t i c u l a r l y  advantageous a t  high heat-  
re lease  conditions ( ref .  9 ) .  When t h e  combustor w a a  operated without f u e l  
staging, a l l  t h e  f u e l  wae  i n j ec t ed  through nine,  hollow-cone, swir l - type 
nozzles (10.5 gal/hr; 60' spray angle)  a t  t h e  upstream end of t he  com- 
bustor l i n e r .  During operat ion with f u e l  staging, two-thirds of t h e  f u e l  
w a e  injected through e ight  fan-spr8y i n j e c t o r s  located 6 inches downstream 
and spraying r a d i a l l y  i n t o  t h e  combustor as shown i n  f i g u r e  l ( b ) .  

I n  addi t ion,  a r e l a t i v e l y  l a r g e  propor- 

Provis ion was made f o r  f u e l  staging i n  combustor B s ince  t h i s  

Combust o r  I n s t a l l a t i o n  

A schematic diagram of t h e  combustor i n s t a l l a t i o n  is  shown i n  f i g u r e  
5. A i r  of desired quant i ty ,  pressure,  and temperature wae drawn from t h e  
laboratory air-supply system, passed through t h e  combustor, and exhausted 
i n t o  t h e  al t i tude-exhaust  system. Combustor-inlet temperatures were con- 
t r o l l e d  by use of a gasol ine- f i red  preheater  which burned a por t ion  of t h e  
a i r  upstream of t h e  combustor. The quant i ty  of a i r  flowing through t h e  
preheater, t h e  t o t a l  a i r  flow, and t h e  combustion-chamber s t a t i c  pressure 
were regulated by three remote-control valves.  Two observation windows 
were i n s t a l l e d  i n  t h e  t e s t  s ec t ion  i n  order t o  permit v i s u a l  observat ion 
of the combusticn process. 

Instrumentation 

Tota l  temperatures and pressures  were measured at  t h e  th ree  s t a t i o n s  
indicated i n  f i g u r e  5. The pos i t i on  of t h e  instruments i n  each of t h e  
three  planes is  shown i n  f i g u r e  6. Combustor-inlet t o t a l  temperatures were 
measured with th ree  bare-junction, unshielded, iron-constantan thermo- 
couples a t  s t a t i o n  1, as shown i n  f i g u r e  6 ( a ) .  S l i g h t l y  upstream were 
located 1 2  to ta l -pressure  tubes, t h r e e  tubes i n  each of four  rakes as 
shown in  f i g u r e  6 ( a ) .  
wi th  30 bare-junction, unshielded, chromel-alumel thermocouples; f i v e  
thermocouples i n  each of f i v e  rakes were located across t h e  duct a t  s t a t i o n  
2 ,  23 inches from t h e  upstream end of t h e  combustor (fig. 6 ( b ) ) .  
t i o n  3 were located 15 to ta l -pressure  tubes i n  t h r e e  rakes of f i v e  pres- 
s u r e  tubes each ( f i g .  6 ( c ) ) .  
centers of equal a reas .  S t a t i c -p res su re  o r i f i c e s  were i n s t a l l e d  a t  t h e  
w a l l ,  as shown i n  f i g u r e  6 (c ) .  
temperature probes a r e  shown in  f i g u r e  7 .  

Combustor-outlet t o t a l  temperatures were measured 

A t  s ta -  

A l l  instruments were located a t  approximate 

Construction d e t a i l s  of t h e  pressure and 
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Rotameters were used t o  meaeure the f u e l  flow; MIL-F-5624A grade 
Jp-4 f u e l  w a s  used throughout t h e  invest igat ion.  

PROCEDURE 

The combustor w a s  operated at conditions considered t o  be  repre-  
s en ta t ive  f o r  an engine with a compressor r a t i o  of 7, f l i g h t  Mach num- 

I bers  from 2.0 t o  3.0, and f l i g h t  a l t i t udes  from 60,000 t o  80,000 feet. 
I 

F l i g h t  analyses such as shown i n  reference 10 indica ted  t h a t  t h e  
m i  n i m i i m  c~mbust.or-inl& p r ~ s s i c e g  enccimt.ered would be &ox.re 1 E?+,~cs- 
phere. 
inch absolute  f o r  a given in t e rcep to r  f l i g h t  p l an  and w a s  t he re fo re  
chosen as a standard tes t  poin t .  
pounds per  square inch absolute  were also included i n  t h e  t es t  schedule 
t o  show t h e  e f f e c t  on performance of var ia t ions  i n  i n l e t  pressure.  
bustor  reference v e l o c i t i e s  typical f o r  these  conditions of supersonic 
f l i g h t  ranged from approximately 150 t o  200 f e e t  pe r  second. Data were 
obtained over a range of v e l o c i t i e s  from 125 t o  225 feet per  second t o  
determine t h e  e f f e c t  of va r i a t ion  i n  velocity on performance. Minimum 
combustor-inlet temperatures w e r e  determined t o  be about 870° F, and 
therefore  t h i s  value w a s  chosen as a standard tes t  parameter. Turbine- 
i n l e t  temperatures of 2000' F have been shown (ref .  10) t o  be d e s i r a b l e  
f o r  obtaining t h e  high t h r u s t  necessary f o r  high supersonic speed. Be- 
cause of instrumentation l imi ta t ions ,  average combustor-outlet tempera- 
t u re s  were maintained at  1800' F f o r  most of t h e  runs; a s i n g l e  run  w a f ~  
made a t  a 2000' F o u t l e t  temperature w i t h  combustor B. The t e s t  condi- 
t i ons  are shown i n  t abu la r  form i n  t h e  following t a b l e :  

The minimum combustor-inlet pressure w a s  18.4 pounds p e r  square 

Combustor-inlet p ressures  of 10 and 30 

Com- 

C ombus t or - 
i n l e t  t o t a l  
pressure,  

lb/sq i n .  abs 

~ 

I 18.4 

Combustor - 
inlet  t o t a l  
temperature, 

OF 

870 
870 
870 
870 
870 
87 0 
876 

C ombk t o r  
reference 
veloci ty ,  
ft/s ec 
(a) 

165 
165 
12  5 
165 
2 04 
225 
2 04 

Combustor - 
o u t l e t  
temperature, 
9 

1800 
1800 
1800 
1800 
1800 
1800 
2 000 

&Based on maximum combustor cross-sect ional  area of 105 sq i n ,  
and combustor-inlet a i r  densi ty .  
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Combustion e f f ic iency ,  o u t l e t  temperature p r o f i l e ,  and pressure 
losses  were evaluated f o r  each combustor. Combustion e f f ic iency  w a s  com- 
puted as t h e  percentage r a t i o  of a c t u a l  t o  t h e o r e t i c a l  increase i n  en- 
t ha1 py from t h e  combust o r  - i n l  e t  t o  t h e  c ombus t o r  -out 1 e t  instrument a t  ion  
planes by using t h e  method of re ference  11. The ar i thmet ic  mean of t he  
30 out le t  thermocouple readings w a s  used t o  obta in  the  value of  t h e  
combustor-outlet enthalpy. The accuracy of t h e  combustion e f f i c i ency  
calculated from these  readings w a s  considered t o  be about ~3 percent .  
The r a d i a l  out le t - temperature  d i s t r i b u t i o n  w a s  determined f o r  an average 
out le t  temperature of approximately 1800' F.  The temperature a t  each of 
f i v e  r a d i a l  pos i t ions  was computed as t h e  average of s i x  c i rcumferent ia l  
thermocouple readings a t  each pos i t ion .  
as the percentage r a t i o  of pressure loss through t h e  combustor t o  t h e  
i n l e t  t o t a l  pressure.  

The pressure loss w a s  computed 

RESULTS AND DISCUSSION 

The performance of two experimental annular combustors, over a 
l imited range of operat ing conditions t h a t  a r e  representa t ive  of super- 
sonic f l i g h t ,  are discussed subsequently. The performance c r i t e r i a  con- 
sidered include combustion e f f ic iency ,  combustor pressure loss, and 
out le t  -temperature p ro f i l e .  

C ombus t i on E f  f i c  ienc y 

E f fec t  of ve loc i ty .  - The e f f e c t  of combustor reference ve loc i ty  on 
combustion e f f ic iency  is shown in  f i g u r e  8 f o r  each of t he  two combustors 
operating at a constant value of i n l e t - a i r  temperature of 870' F, in le t -  
air  pressure of 18.4 pounds per square inch absolute ,  and an  average 
combustor-outlet temperature of approximately 1800' F.  
f o r  a range of reference ve loc i t i e s  from 1 2 5  t o  225 f e e t  per  second. 
Combustor ve loc i ty ,  as discussed herein,  is  based on t h e  dens i ty  of t he  
combustor-inlet a i r  and on t h e  maximum cross-sec t iona l  area of t he  com- 
bustor.  The combustion e f f i c i ency  of combustor A w a s  e s s e n t i a l l y  100 
percent a t  a l l  v e l o c i t i e s  inves t iga ted  except t h e  lowest v e l o c i t y  (125 
f t / sec)  where t h e  combustion e f f i c i ency  w a s  97 percent.  For combustor 
B without f u e l  s tag ing  t h e  combustion e f f i c i ency  decreased from 100 pe r -  
cent a t  a reference ve loc i ty  of 165 f e e t  per  second t o  88 percent a t  
225 f e e t  per  second ( f i g .  8) .  
formance of combustor B a t  t h e  higher v e l o c i t i e s .  A t  a reference velo- 
c i t y  of 225  f e e t  per second, t h e  combustion e f f ic iency  of combustor B 
w i t h  f u e l  s tag ing  w a s  97 percent.  A s i n g l e  d a t a  point  w a s  obtained fo r  
combustor B with f u e l  s tag ing  a t  a higher combustor-outlet temperature 
(2000' F ) .  This da t a  point  is included i n  f i g u r e  8 and shows t h a t  t he  
combustion e f f ic iency  remained high a t  t h i s  higher o u t l e t  temperature. 

D a t a  a r e  shown 

Fuel s tag ing  served t o  improve t h e  per- 



. .% 

The d a t a  presented i n  f igu re  8 ind ica te  t h a t  high combustion e f -  
f ic iency  can be obtained a t  t h e  high combustor re ference  v e l o c i t i e s  
t h a t  a r e  an t i c ipa t ed  i n  fu tu re  tu rbo je t  engines operat ing a t  high a l -  
t i t u d e s  and supersonic f l i g h t  speeds. Moreover, t h e  high combustion e f -  
f i c i e n c i e s  can be obtained w i t h  a t  l e a s t  two experimental combustors of 
s i g n i f i c a n t l y  d i f f e r e n t  des ign . 

Effec t  of pressure.  - The e f f e c t  of combustor-inlet pressure on 
t h e  combustion e f f i c i enc ie s  of each of t he  two combustors i s  shown i n  

average o u t l e t  temperature of 1800' F, and a re ference  ve loc i ty  of 165 
f e e t  per second. Above 18.4 pounds p e r  s q u a r e  inch absolute ,  t h e  com- 
bus t ion  e f f ic iency  was approximately 100 percent f o r  both combustors; 
however, as t h e  pressure w a s  reduced t o  10 pounds per square inch 
absolute,  t h e  combustion e f f ic iency  of combustor A decreased t o  82.5 
percent and t h a t  of combustor B, t o  62.5 percent. 
low pressure on t h e  cambustion e f f ic iency  of combustor B i s  t h e  r e s u l t  
of t h e  design compromises previously noted (small combustion space and 
rap id  en t ry  of primary a i r ) .  
f i c i ency  of combuetor A is  p a r t l y  due t o  the f a c t  t h a t  t h i s  combustor 
configurat ion w a s  developed ( r e f .  6 )  f o r  use with a f u e l  prevaporizer,  
while i n  t h i s  i nves t iga t ion  l i q u i d  f u e l  was used. Combustor pressures  
below about 1 atmosphere would not  be encountered i n  t h e  tu rbo je t -  
powered a i r c r a f t  capable of f l i g h t  a t  high supersonic Mach numbers which 
were considered i n  ana ly t i ca l  s tud ie s  conducted a t  t h i s  laboratory;  as 
shown i n  f igu re  9, near 100-percent combustion e f f ic iency  w a s  obtained 
with both combustors a t  these  condi t ions.  

fig12rp_ 9 f e r  a c m r l t s p t  cp?l?llJgter--in.let-BiT t e q e y s t u r e  nf e700 F, 

The marked e f f e c t  of 

The e f f e c t  of low pressures  on t h e  ef- 

The ind ica ted  combustion e f f i c i e n c i e s  a t  pressures  of 10 pounds 
per  square inch absolute  may be low by several  percentages because of 
oxygen deple t ion  i n  t h e  i n l e t  air due t o  the gas - f i r ed  preheater .  
deplet ion has been shown t o  have a more severe e f f e c t  at low pressures  
( r e f .  12). 

Oxygen 

C ombus t or -Out l e t  Temperature Prof il e 

Typical combustor-outlet isothermal contour pa t te rns  f o r  combustors 
A and B a r e  shown i n  f i g u r e  10, and the  r a d i a l  out le t - temperature  pro- 
f i l e s  i n  f i g u r e  11. A maximum average temperature devia t ion  from inner 
t o  outer  w a l l  of 220' F w a s  obtained with combustor A and a max imum de-  
v i a t ion  of 70' F vas obtained with combustor B. Preliminary ana lys i s  
has indicated t h a t  uniform temperature d i s t r ibu t ions  such as these  are 
p a r t i c u l a r l y  appl icable  f o r  cooled turb ine  blades t h a t  may be used i n  
engines f o r  high supersonic f l i g h t ,  inasmuch as t h e  prefer red  gas- 
temperature p r o f i l e  f o r  cooled turb ine  blades i s  r a d i a l l y  more uniform 
than f o r  uncooled turb ines .  Previous stcLdies (ref.  13) descr ibe methods 
of con t ro l l i ng  outlet-temperature p ro f i l e s .  It i s  expected t h a t  no 
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s ign i f i can t  s a c r i f i c e  i n  o ther  performance c h a r a c t e r i s t i c s  would be re- 
quired t o  provide temperature p ro f i l e s  d i f f e r e n t  from those shown i n  
f igu re  11. 

Combustor Pressure  Losses 

The percent t o t a l -p re s su re  loss of each of t h e  two combustors is 
The pressure shown BB a func t ion  of reference ve loc i ty  i n  f i g u r e  12. 

loss of combustor A is approximately 20 percent as compared with 15 per- 
cen t  fo r  combustor B a t  a re ference  ve loc i ty  of 204 f e e t  per second 
and a temperature r a t i o  across  t h e  combustor of about 1 .7 .  The lower 
pressure lo s ses  obtained with combustor B a r e  t h e  r e s u l t  of t h e  f ea tu res  
( s m a l l  combustion space and r ap id  en t ry  of primary a i r )  t h a t  were in- 
corporated i n  t h e  design t o  obta in  lower pressure- loss  coe f f i c i en t s .  
The pressure lo s ses  represented by t h e  curves of f i g u r e  12  a r e  not t o  
be  considered t h e  minimum required f o r  high e f f i c i ency  a t  t h e  conditione 
invest igated,  s ince  t h e  des ign  var iab les  were inves t iga ted  t o  a very 
1 i m i  t ed exten t  . 

The spec i f i c - fue l  consumption, as a func t ion  of t h e  to t a l -p re s su re  
losses ,  was ca lcu la ted  by using t h e  method of reference 1 4  f o r  a rep-  
r e sen ta t ive  subsonic and supersonic f l i g h t  condition. The s p e c i f i c -  
f u e l  consumption is p lo t t ed  i n  f i g u r e  13 as t h e  r a t i o  of t h e  a c t u a l  t o  
t h e  idea l  spec i f i c - fue l  consumption with no pressure loss i n  t h e  

combustor assumed. A pressure  loss of about 3 percent,  which is ob- 

ta ined  i n  many cur ren t  combustors f o r  subsonic f l i g h t  conditions,  re- 
s u l t s  i n  an increase  i n  spec i f i c - fue l  consumption of about 2 .3  percent 
i n  the 5:l pressure- ra t io  engine, as shown i n  f i g u r e  13. For t h i s  same 
e f f e c t  on specif  i c - fue l  consumption, pressure lo s ses  of 9.2 percent 
a r e  permitted at  t h e  supersonic f l i g h t  condi t ion i n  a 7 : l  compressor 
pressure engine; therefore ,  it is  evident t h a t  higher pressure lo s ses  
can be to l e ra t ed  i n  t h e  engine f o r  supersonic f l i g h t  t han  i n  cur ren t  
engines for subsonic f l i g h t  while equivalent performance l e v e l s  a r e  
maintained. Pressure loss has a l e s s e r  e f f e c t  on spec i f i c - fue l  con- 
sumption a t  t h e  supersonic f l i g h t  condi t ions mainly because t h e  ram- 
temperature-rise r a t i o s  encountered i n  supersonic f l i g h t  a r e  high ( r e f .  
14) .  
f o r  a minimum value of pressure l o s s .  

1 

I n  any appl icat ion,  however, it is obviously des i r ab le  t o  design 

Carbon and Durabi l i ty  

Dur ing  t h e  inves t iga t ion  which included operat ion a t  pressures as 
high as 30 pounds per square inch absolute ,  no carbon depos i t s  were 
evident; however, with sustained high-temperature operat ion over several 
hours moderate t o  severe  l iner  d e t e r i o r a t i o n  occurred. 
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CONCLUDING RENARKS 

The performance r e s u l t s  presented indicate  t h a t  combustion e f f i c i e n -  
c i e s  over 95 percent and s a t i s f a c t o r y  outlet-temperature p r o f i l e s  can be 
obtained i n  annular combustors operating a t  simulated Supersonic f l i g h t  
conditions with combustor v e l o c i t i e s  a8 high a8 225 feet per second. 
These high e f f i c i enc ie s  were maintained t o  t h e  highest  combustor-mtlet  
temperatures invest igated,  1800° F f o r  one combustor and 2000' F f o r  t h e  
other .  The to ta l -pressure  lo s ses  of t h e  two experimental cambustors 
xere acceptzble by prenent. nt.mda.rc-~ e inw ca lcu la t ions  indicated t h a t  
t h e  increase  i n  engine spec i f i c - fue l  consumption r e s u l t i n g  from combustor 
pressure lo s ses  would not be s ign i f i can t ly  g rea t e r  i n  t h e  engine f o r  
supersonic propulsion than i n  current  tu rboje t  engines. These pressure 
losses ,  therefore ,  appear acceptable f o r  the  supersonic f l i g h t  conditions.  
Further engine performance ga in  could be rea l ized ,  however, i f  t h e  lo s ses  
could be reduced. 
l a r g e s t  problems facing t h e  combustor designer f o r  combustor appl ica t ions  
involving temperature levels  of i n t e r e s t  f o r  high supersonic f l i g h t .  

Liner  d u r a b i l i t y  may well prove t o  be one of t h e  

Lewis F l i g h t  Propulsion Laboratory 
Nat ional  Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, January 18, 1954 
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(a) Cambustor A. 

Figure 1. - Cutaway view d experinental mnular turbojet oambuetors assembled in housing. 
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( a )  Combustor A. 

15 

(b) Combustor B. 

Figure 3 .  - Liner a i r -en t ry  ho le  pat terns  of experimental annular tu rboje t  combustors. 
(Dimensions a r e  i n  inches.) 
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(a) Outlet total-pressure rake. 

(0) Inlet thermocouple. 

U 
(b) Outlet thermocouple rake. 

(d) Static-pressure 
orifice. 

(e) Inlet total-pressure rake. 

(cI)-\ 

Figure 7 .  - Details of Instrumentation in annular t u rbo je t  combustore. 
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Figure 9. - Effect of pressure on combustion efficiency of ex- 
perimental annulax turbojet combustors. Reference velocity, 
165 feet per second; Inlet-air temperature, 870° F; average 
outlet temperature, 1800° F. 
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