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PERFORMANCE OF TSRNTROPIC NOSE INLETS AT 

MACH NUMBER OF 5.6 

SUMMARY 

Performance of inlet. configurations with a forebody designed 
f o r  i s e n t r o p i c  ex terna l  compression w a s  investigated a t  a nominal 
Mach number of 5 .6  and a Reynolds number based on maximum model 
diameter of  1.48X106. 
yielded l a r g e r  t o t a l - p r e s s u r e  recoveries  than had previously been 
obtained w i t h  a single-conical-shock i n l e t .  In addi t ion,  t h e  i n t e r -  
n a l  thrust c o e f f i c i e n t s  were l a rge r  f o r  some of the  i s e n t r o p i c  
i n l e t s  than f o r  t h e  conical i n l e t .  performance comparable with 
t h a t  a t  zero angle of a t t a c k  wag obtained a t  a 3 O  angle of a t t ack .  

A t  zero angle o f  a t tack  a l l  t he  configurat ions 

For a configurat ion having an in te rna l  passage with a constant-  
a r e a  sec t ion  of 2.72 hydraulic diameters, s t a b i l i t y  w a s  achieved t o  
mass-flow r a t i o s  as low as 0.62. With the same configurat ion,  
s t a b i l i t y  w a s  maintained t o  mass-flow ratios as low as G.11 by 
bleeding a i r  through o r i f i c e s  i n  the  forebody near  t h e  i n l e t  entrance.  

I INTRODUCTION 

An i n l e t  which e f f i c i e n t l y  decelerates t he  a i r  supply i s  a 
prime requirement f o r  high-speed f l i g h t  with an a i r -brea th ing  
engine. 
mass-flow r a t i o  cha rac t e r i s t i c s ,  and hence t h e  e f f i c i e n c i e s ,  of 
nose i n l e t s  a t  a Mach number near  5.5 are reported i n  re ferences  1 
and 2 .  These t e s t s  yielded performance cha rac t e r i s t i c s  of a s ingle-  
conical-shock i n l e t  and of separat ion i n l e t s ,  respec t ive ly .  Because 
of reduct ion i n  shock losses ,  d i f f u s e r s  with forebodies having 
i n i t i a l l y  s m a l l  cone angles and followed by a contour designed t o  
produce i s e n t r o p i c  ex terna l  compression should yield l a r g e r  pressure 
recover ies  than conical i n l e t s .  Experimental r e s u l t s  have con- 
firmed t h i s  expectation f o r  the  Mach number range from 2 t o  4 
( r e f .  3 ) .  

Preliminary t e s t s  t o  determine the pressure-recovery and 
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In  addi t ion t o  t he  requirement of d i f fus ion  e f f ic iency ,  t he re  
ex is t s  t he  necess i ty  of avoiding d i f f u s e r  i n s t a b i l i t y  during 
reduced mass-flow operation. Several  authors  have attempted t o  
determine the  cause, o r  t r i g g e r i n g  ac t ion ,  of d i f f u s e r  i n s t a b i l i t y .  
In reference 4 it is proposed t h a t  t he  i n s t a b i l i t y  i s  caused by 
disturbances propagating upstream i n  the  dece lera t ing  flow and 
becoming trapped in  the  region of sonic  ve loc i ty ,  thus  causing a 
change i n  the  shock s t ruc tu re .  The author  of reference 5 points  
out t h a t  t he  vortex sheet or ig ina t ing  a t  t h e  i n t e r s e c t i o n  of t he  
in l e t  shock waves may cause flow o s c i l l a t i o n s  when it en te r s  t he  in-  
l e t .  On the basis of these ideas ,  the ana lys i s  of reference 6, and 
t h e  experimental r e s u l t s  of references 7 and 8, t he  au thor  o f  r e f -  
erence 9 concludes, and shows experimentally, t h a t  t h e  incorporation 
of a constant-area sec t ion  downstream of t he  i n l e t  entrance helps  
t o  maintain d i f f d s e r  s t a b i l i t y .  
w i t h  conical-nose i n l e t s  having such constant-area sec t ions ,  sta- 
b i l i t y  w a s  achieved t o  mass-flow r a t i o s  as low as 0.12 a t  a Mach 
number of 1 . 9 1  ( r e f .  10). 

During more recent  experiments 

The t e s t s  reported herein were undertaken t o  determine i f  an 
isentropic  i n l e t  would y ie ld  l a rge r  t o t a l - p r e s s u r e  recoveries  
and in t e rna l - th rus t  c o e f f i c i e n t s  than a conical  i n l e t  a t  
a Mach number near  5.5. The e f f e c t s  on d i f f u s e r  s t a b i l i t y  
of a constant-area sec t ion  i n  the  d i f f u s e r  passages and m a s s - f l o w  
bleed through o r i f i c e s  in the  forebody were a l s o  inves t iga ted .  The 
t e s t s  were conducted a t  the  NACA Lewis laboratory.  
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SYMBOLS 

The following symbols are used i n  t h i s  r epor t :  

a rea  

Mach number 

mass-flow r a t e  

t o t a l  pressure 

r a t i o  of spec i f i c  heats ,  1 .4  f o r  a i r  

kinetic-energy ef f ic iency ,  

k ine t i c  energy of a i r  expanded i s e n t r o p i c a l l y  f r o m  d i f f u s e r  
e x i t  t o  free-stream s t a t i c  pressure 

f r e e  stream k i n e t i c  energy 
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Subscr ipts  : 

0 free-stream tube having a diameter equal t o  t h e  cowl diameter 
a t  t h e  cowl leading edge 

1 combuation-chamber conditions 

APPARATUS 

Wind tunnel .  - The tests were conducted in t h e  Lewis 6- by 6-  
inch coni i r iuoua- f l~v  hyparsnnlc tunnel  a t  a nominal Mach number of 
5.6.  The small increase i n  Mach number above the  values in  ref- 
erences 1 and 2 w a s  believed caused by changes i n  the  boundary- 
l aye r  growth and other  f a c t o r s  associated with t h e  increased 
pressure l e v e l  a t  which t h e  tunnel  was operated during t h e  present  
tests. The t e s t - s e c t i o n  t o t a l  pressure was maintained between 
322 and 353 pounds per  square inch absolute, with a var ia t ion of less 
than k2.0 pounds per square inch during any one run. The stagna- 
t i o n  tempemture was 2670 &60 F. 
based on an average t o t a l  pressure of 335 pounds per square inch 
absolute  and on maximum model diameter, was 1 . 4 8 ~ 1 0 ~ .  

The tes t - sec t ion  Reynolds number, 

Some indica t ions  of p a r t i a l  condensation of t h e  a i r  components 
were obtained through use of t he  l i gh t - sca t t e r ing  technique described 
i n  reference 11. The appearance of condensation (not observed a t  
t h e  t e s t  conditions of refs. 1 and 2 )  w a s  a t t r i b u t e d  t o  operat ion 
a t  la rge  t o t a l  pressures ,  such t h a t  t he  sa tura t ion  temperature of 
t h e  a i r  components w a s  g r e a t e r  than the  t e s t - s e c t i o n  s t a t i c  
temperature (ref. 11). 

The a n a l y s i s  of reference 12 indicates  t h a t  t h e  free-s t ream 
Mach number f o r  t he  p a r t i a l l y  condensed flow can be determined with 
an accuracy s u f f i c i e n t  f o r  t he  present t e s t s  if p i t o t  and s t a t i c  
pressures  a r e  measured and the  Mach number is computed from t h e  
Rayleigh equation. The pressure recovery and mass-flow r a t i o  of 
t h e  i n l e t  a r e  based on t h e  free-stream t o t a l  pressure computed 
f o r  the  Rayleigh Mach number and a r e  believed, therefore ,  t o  be 
n e g l i g i b l y  a f fec ted  by the  condensation. 

The p i t o t -  and s t a t i c - p r e s s u r e  probes described i n  reference 
13 were used i n  t h e  ca l ib ra t ion  of t h e  tunnel. The pressures  
were measured with mercury and buty l  phthalate manometers, 
respec t ive ly .  

Schl ieren photographs of t he  flow about t h e  model were obtained 
with an exposure time of approximately 2 microseconds. 
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Model. - The b a s i c  i n l e t  configuration i s  shown i n  f i p e s  
1 and 2 .  The i sen t ropic  forebody, designed for a Mach number of 
5.5, had an i n i t i a l  cone half-angle  of 9.9' and w a s  designed t o  
compress t h e  flow t o  Mach number 2.4 a t  t he  i n l e t  entrance.  N o  
correction was made f o r  boundary-layer growth on t h e  e x t e r n a l -  
compression surface;  t he  r e s u l t s  herein should t h e r e f o r e  not  be 
construed t o  be those of an optimum design. The e x t e r n a l  cowl 
contour had an in i t ia l  l i p  angle of 39O, which i s  less than  t h e  
shock detachment angle f o r  a Mach number of 5.6 (42.0'). 
design, t he  t h e o r e t i c a l  to ta l -pressure  recovery i s  0.48, based on 
losses through the  forebody t i p  shock and t h e  d i f f u s e r  terminal  
shock (a t  Mach number of 2.4) and on an estimated 5-percent l o s s  
through t h e  subsonic d i f f u s e r .  

For t h i s  

During the  course of t h e  Fnvestigation, it was observed t h a t  
fac tors  such as boundary-layer growth, boundary-layer separat ion,  
and machining inaccuracies acted t o  change the  flow configurat ion 
f rom t h a t  assumed i n  the  design of t h e  i n l e t .  In  an e f f o r t  t o  
of fse t  these  e f f e c t s  and capture a complete free-stream tube,  
small changes i n  the  geometry of t h e  i n l e t  were made and t h e  
e f f ec t s  of  these invest igated.  Two cowls and two forebodies  
were employed which d i f f e r e d  only i n  t h e i r  d i s t r i b u t i o n  of i n t e r -  
n a l  passage area ( f i g .  3 ( a ) ) .  Additional geometry changes were 
effected by varying t h e  pos i t ion  of t he  forebody r e l a t i v e  t o  t h e  
cowl. The forebody coordinates a r e  presented in t a b l e  I, and the  
cowl coordinates a r e  given i n  t a b l e  11. Translat ion of t h e  fore-  
body from the  reference pos i t ion  ( f i g .  2 )  w a s  accomplished by 
in se r t ing  o r  removing shims between the  forebody and the  center-  
body. The e f f e c t  of t h i s  t r a n s l a t i o n  upon i n l e t  geometry w a s  
t h a t  t h e  i n l e t  entrance a r e a  decreased as t h e  forebody w a s  moved 
forward ( f i g .  3 ( b ) ) .  Forebody t r a n s l a t i o n  had no e f f e c t  on t h e  
in t e rna l  a reas  a t  s t a t i o n s  more than 0.5 inch from t h e  i n l e t  
entrance.  (For t he  remainder o f  t h e  repor t ,  forward t r a n s l a t i o n s  
of the forebody w i l l  be indicated by a p lus  (+) s ign  and backward 
t r ans l a t ions  by a minus ( - )  s ign . )  Only two of t h e  configurat ions 
tes ted had i n t e r n a l  contract ion : 

(1) Cowl A ;  forebody A;  zero t r a n s l a t i o n ;  in te rna l -cont rac t ion  
r a t i o ,  1.243. 

( 2 )  Cowl B; forebody A;  t r a n s l a t i o n  of -0.01 inch; i n t e rna l -  
contract ion r a t i o ,  1.032. 

Inlet c h a r a c t e r i s t i c s  were also obtained with roughness 
(number 80 s i l i c o n  carbide grit) on the  forebody t i p  t o  induce 
t r a n s i t  ion of  t he  boundary l aye r .  
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For s e v e r a l  tes ts ,  two rows of 36 o r i f i c e s  w i t h  1/8-inch 
diameters w e r e  d r i l l e d  i n  forebody B immediately downstream of 
t h e  i n l e t  entrance ( f ig .  4) in order  t o  bleed a i r  from the  sur- 
face of the forebody and thus delay separation of the boundary 
l aye r .  This a i r  w a s  exhausted through the center of t h e  model 
t o  t h e  wind tunnel. 

The model instrumentation, described i n  r e fe rence  2, i s  
I v i s i b l e  i n  f i g u r e  l ( b ) .  The pressure6 were measured w i t h  a d i f f e r -  
1 e n t i a 1  mercury manometer. 
I 

i32DUCTlON OF DATA 

The r e s u l t s  of a Mach number survey a t  an axial  s t a t i o n  3a 
4 

inches downstream of t h e  tunnel t h r o a t  are presented i n  f i g u r e  
5. The model was located wi th  t h e  t i p  of i t s  forebody a t  a sta- 
t i o n  331 inches from t h e  tunnel t h r o a t .  

8 
mined by use of t h e  Rayleigh equation f r o m  p i t o t -  and s t a t i c -  
pressure measurements, were reproducible within 3 percent .  
asmuch as t h e  v a r i a t i o n s  from a Mach number of 5.6, i nd ica t ed  i n  
f i g u r e  5, are gene ra l ly  wi th in  t h e  reproducibi l i ty ,  a nominal Mach 
number of 5.6 w a s  chosen f o r  computations of i n l e t  performance. 

The Mach numbers, d e t e r -  

In- 

The t e s t - s e c t i o n  p i t o t  pressure was  measured a t  l o c a t i o n s  
approximately 3/4-inch ahead of the cowl leading edge af ter  each 
model t m t ,  The free-stream % o t s l  prnsnure wag rnmpntad frm 
t h e s e  measurements and from the normal-shock r e l a t i o n s  f o r  a Mach 
number of 5 . 6 .  

The method of computation of d i f fuse r  pressure recovery and 
mass-flow r a t i o  w a s  t h e  same as t h a t  described in  r e fe rence  2 .  
The pressure recoveries  and mass-flow r a t i o s  reported f o r  s t a b l e  
operat ion are estimated t o  be accurate  t o  wi th in  1 percent  of t h e i r  
values.  The da ta  f o r  unstable  operation represent  time-average 
values;  t h e  pressures  appeared constant on t h e  manometers because 
of i n e r t i a  of t h e  manometer system. 
accuracy has  been made f o r  t h e s e  da ta ,  which should be used only 
as a q u a l i t a t i v e  ind ica t ion  of performance. 

Therefore, no estimate of 

I DISCUSSION OF KESULTS 

~ Flow about Forebody 

A n  enlarged sch l i e ren  photograph of t h e  f l o w  over t h e  f o r e -  
There is body ( d i f f u s e r  cowl removed) i s  presented i n  f i g u r e  6 .  
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no evidence of boundary-layer separat ion along t h e  ex terna l -  
compression surface.  
downstream end ind ica t e s  t h a t  t he  compression waves generated 
by the  forebody d i d  not meet a t  a poin t .  
t o  design and machining inaccuracies  and t o  the  boundary layer ,  
a l l  o f  which change the  forebody contour from an i s e n t r o p i c  
compression surface.  

The curvature of t h e  t i p  shock a t  i t s  

This i s  a t t r i b u t e d  

l n l e t  Performance 

The v a r i a t i o n s  of t o t a l - p r e s s u r e  recovery 5 with mass- 
PO 

flow r a t i o  3 
m n  

a t  zero and 3' angles  of a t t a c k  a r e  shown i n  
u 

f igures  7 t o  13 for t he  various configurat ions t e s t e d .  
14 t o  19  present t y p i c a l  sch l ie ren  photographs of t he  flow 
configurations.  

Figures 

A summary char t  of t he  performances i s  given in  t a b l e  111. 
The values of t he  kinetic-energy e f f i c i e n c y  were cDmputed for t he  
operating Mach number of 5 .6  f rom the  equation 

Also included in  the  t a b l e  f o r  comparison a r e  t h e  performance 
f igu res  f o r  a single-conical-shock i n l e t  t e s t e d  during t h e  
present inves t iga t ion .  
same model discussed i n  reference 1, w a s  operated wi th  t h e  cone 
re t rac ted  0.01 inch from i t s  o r i g i n a l  design loca t ion  and with 
roughness on t h e  cone t i p .  This w a s  t h e  optimum configurat ion,  
as indicated i n  reference 1. I t a  peak recovery i s  2 . 9  percent 
lower than t h a t  given in reference 1. 
caused by t h e  higher Mach number a t  which t h e  present  tes ts  were 
conducted. 

The conical  i n l e t ,  which w a s  t he  

This decrease w a s  believed 

Effect  of  roughness. - From the  summary char t  it i s  seen t h a t  
a t  z e r o  angle of a t t a c k  t h e  use of roughness on the  forebody t i p  
caused an increase i n  the  mass-flow r a t i o  a t  peak recovery, although 
t h e r e  was a decrease i n  t h e  maximum pressure recovery.  
angle of a t t ack ,  t he  presence of roughness had e s s e n t i a l l y  no 
e f f e c t  on the  mass-flow r a t i o  a t  peak recovery, but  t h e  t o t a l -  
pressure recovery increased s l i g h t l y .  

A t  a 3' 

M 
0 
rl 
M 
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With no roughness, boundary-layer separation within t h e  i n l e t  
w a s  indicated by t h e  decreasing mass-flow r a t i o  i n  t h e  s t a b l e  
operat ing range as maximum recovery w a s  approached ( f i g s  . 7 and 
9 ( a ) ) .  
t h i s  separat ion ( f i g .  7 )  except f o r  operation c lose  t o  maximum 
recovery ( f i g .  9 ( b ) ) .  

The use of roughness w a s  a su f f i c i en t  means f o r  prevent ing 

During unstable operation, when no roughness w a s  used, sepa- 
l m t i o n  of t h e  boijndary l aye r  a t  t h e  forebody t i p  occurred as 

as t h e  o u t l e t  a rea  was decreased beyond 
soon 

I 
I i ts value at i m x h i a  

recovery ( f i g s .  15(a) and 17 (a ) ) .  The appl icat ion of roughness t o  
t h e  forebody t i p  r e su l t ed  In f z t e m i t t e n t  separat ion and r e a t t a c h -  
ment of t h e  forebody boundary l a y e r  when th6 o u t l e t  area was only 
s l i g h t l y  below i t s  value a t  maximum recovery. Hence, operat ion a t  
intermediate values of pressure recovery and mass-flow r a t i o  w a s  
permitted, i n  cont rad is t inc t ion  t o  operation without roughness (e  .g. ,  
c f .  f i g .  1O(a) with f i g .  10(b)). F o r  unstable operat ion with 
roughness, t h e  terminal  shock osc i l l a t ed  over t h e  forebody ahead of 
t h e  i n l e t  entrance ( f i g s .  15(b)  and 17 (b ) ) ,  except for t h e  i n t e r -  
mi t ten t  periods durlng which separat ion occurred a t  t h e  forebody 
t i p .  

E f f e c t - o f  cowl and forebody contour. - The e f f e c t s  of cowl 
and forebody changes are considered f o r  a forebody t r a n s l a t i o n  
of zero. 
a change from cowl A t o  cowl B, while still using forebody A, 
resu l ted  i n  reduction of both t h e  peak pressure recovery and t h e  
mass-flow r a t i o .  The reduction i n  mass flow w a s  believed t o  be 
caused by a forward movement of t h e  boundary-layer separa t ion  
point  w i th in  t h e  inlet ,  r e s u l t i n g  i n  a smaller e f f e c t i v e  t h r o a t  
area. Figure 3 shows t h a t  between axial s t a t i o n s  0.12 a n d  0.66 
t h e  i n t e r n a l  a rea  decreases less for cowl B than f o r  cowl A. 
Hence, t h e  pressure gradient  i n  t h e  region (subsonic flow) w a s  
l e s s  favorable f o r  cowl B, which may account for t h e  forward move- 
ment of t h e  separat ion point .  The reduction i n  t o t a l - p r e s s u r e  
recovery w a s  caused by t h e  increased f l o w  sp i l l age  which r e s u l t e d  
i n  a forward movement ( i n t o  a higher Mach number region)  of t h e  
terminal  shock. 

With no roughness, a t  both zero and 3' angles  of a t t ack ,  

With roughness, a t  zero angle of a t tack,  t h e  change t o  cowl B 
resu l ted  i n  an increase i n  t h e  total-pressure recovery and a decrease 
i n  the  mass-flow r a t i o  a t  peak recovery. A comparison of f i g u r e s  7 
and 9 ( b )  shows t h a t  these  changes a r e  caused by t h e  increased sta- 
b i l i t y  range of t he  cowl B and forebody A combination. 
i n  i n t e r n a l  passage a reas  a l s o  resul ted i n  a l a r g e r  m a x i m u m  m a s s -  
flow r a t i o .  

The increase 
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The cowl B and forebody B combination, a t  zero angle  of a t t a c k  

This combination had an i n t e r -  
( f ig .  11) , showed s t a b i l i t y  over a considerable mass-flow r a t i o  
range ( t o  r a t i o s  as small as 0 .62) .  
n a l  passage which incorporated a constant-area sec t ion  of 2.72 
hydraulic diameters, located as shown i n  f i g u r e  3. The r e s u l t s  
f o r  a forebody t r a n s l a t i o n  of -0.010 inch ( f ig .  l l ( b ) )  are  unusual 
i n  t h a t  a d i p  i n  t h e  recovery occurred as t h e  mass-flow r a t i o  w a s  
decreased from 0.87 t o  0.62.  The flow was unstahle;  t h a t  is, t h e  
terminal shock o s c i l l a t e d  over t h e  forebody ahead of t h e  i n l e t  
entrance when t h e  s lope of t h e  pressure-recovery mass-flow r a t i o  
curve w a s  p o s i t i v e ,  as predicted i n  reference 6 .  In general ,  t h i s  
combination yielded lower maximum to ta l -p re s su re  r ecove r i e s  and 
mass-flow r a t i o s  than t h e  two previous combinations. The mass-flow 
r a t i o  a t  maximum recovery wi th  no roughness w a s  larger, however, 
than both of t h e  o the r  cowl and forebody combinations a t  zero angle 
of a t t ack .  

E f f e c t  of bleed through forebody. - The performance curves of 
f igure  13 show t h e  l a r g e  ranges of mass-flow r a t i o  i n  which s t a b l e  
operation occurred a f te r  o r i f i c e s  were d r i l l e d  i n  forebody B f o r  
bleeding a i r  out of t h e  entrance annulus ( t o  r a t i o s  as small as 0 .11) .  
With no bleed through t h e s e  o r i f i c e s ,  t h e  performance f o r  a zero 
forebody t r a n s l a t i o n  w a s  e s s e n t i a l l y  t h e  same as w a s  obtained 
before t h e  o r i f i c e s  w e r e  d r i l l e d  ( f i g .  l l ( b ) ) .  Hence, t h e  increased 
range of s t a b i l i t y  can be a t t r i b u t e d  s o l e l y  t o  t h e  bleeding 
r a the r  t han  t o  surface roughness caused by t h e  presence of t h e  o r i -  
f i c e s .  There w a s ,  however, a decrease i n  t h e  maximum mass-flow 
r a t i o  because some of t h e  flow was bypassed through t h e  o r i f i c e s .  
The i n l e t ,  of course, could be designed t o  bleed only when s t a b l e  
flow a t  low mass-flow r a t i o s  i s  required.  

In c e r t a i n  intermediate ranges of mass-flow r a t i o ,  s c h l i e r e n  
observations indicated o s c i l l a t i o n s  of t h e  d i f f u s e r  te rmina l  shock. 
Data taken i n  t h i s  range of operat ion are indicated by t a i l e d  
symbols. The reasons f o r  t h i s  i n s t a b i l i t y  have n o t  been determined. 

Figure 19 is a s c h l i e r e n  photograph of t h e  i n l e t  w i t h  bleed 
through t h e  forebody operat ing a t  a mass-flow r a t i o  of 0.18. 
muchas t h e  t e rmina l  shock i s  a t  about t h e  same loca t ion  r e l a t i v e  
t o  the cowl as in  previous photographs pe r t a in ing  t o  operat ion with- 
out bleed a t  s u b s t a n t i a l l y  larger mass-flow r a t i o s  ( f ig .  18(a) ,  e . g . ) ,  
apparentlymuch of t h e  flow i s  being discharged through t h e  bleed 
system. I n  fac t ,  t h e  forebody o r i f i c e s  provide a bypass of varying 
mass-flow capaci ty  because t h e  entrance s t a t i c  pressure ( a t  o r i f i c e )  
increases wi th  a decrease i n  mass-flow r a t i o  (forward movement of 
t h e  terminal shock) as shown i n  f i g u r e  20. 
therefore ,  need no t  move as far forward of t h e  i n l e t  entrance as  

Inas- 

The t e rmina l  shock, 

it would i f  t h e  same amount of mass flow w e r e  s p i l l e d  e n t i r e l y  
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ahead of the i n l e t .  The present bypass arrangement thus m a i n -  
t a i n s  t h e  a d d i t i v e  drag of t he  inlet n e a r  a m i n i m u m  throughout a 
l a rge  range of mass flows without requir ing changes in bypass 
area and, a t  t h e  same time, provides diff 'user s t a b i l i t y .  

Effect  of forebody t r ans l a t ion .  - The e f f e c t s  of forebody 
t r a n s l a t i o n  were e s s e n t i a l l y  the  same f o r  each of t h e  configura- 
t i o n s  f o r  which t r a n s l a t i o n  w a s  investigated.  The e f f e c t s  w i l l  
thui.Gfor:: be rlimxssed f o r  the cowlB and forebody A combination 
operat ing a t  zero angle of attack. 

With no roug-hneus, iiicreaeea in t h e  forebody t r a n s l a t i o n  up t o  
+0.020 inch r e s u l t e d  in increases  in t h e  peak t o t a l - p r e s s u r e  recovery, 
while no change occurred in  the  mass-flow r a t i o  a t  peak recovery 
o r  i n  t h e  maximum mass-flow r a t i o .  For a +0.020-inch t r a n s l a t i o n  
(fig.  9 ( a ) ) ,  t h e  mass-flow r a t i o s  w e r e  higher over most of t h e  
s t a b l e  range. 

i With roughness on the  forebody t i p ,  the maximum mass-flow 
r a t i o  was t h e  same f o r  both the  zero and tO.O1O-inchtranslations. 
F a i l u r e  of t h e  mass-flow r a t i o  t o  change with t h e  forebody transla- 
t i o n  and the concurrent entrance a rea  change i n d i c a t e s  t h e  presence 
of an effect.ive minimum-area sec t ion  w i t h i n  t h e  d i f f u s e r  caused 
by the  boundary layer. A +0.020-inch t r ans l a t ion  r e s u l t e d  i n  a 
decrease i n  the  maximum mass-flow r a t i o  because of the  reduction 
i n  t h e  e f f e c t i v e  minimum passage a rea  (now located a t  t h e  i n l e t  
entrance). The decrease i n  maximum mass-flow r a t i o  obtained 
with a -0.010-inch t r a n s l a t i o n  w a s  caused by the r e l o c a t i o n  of 
t h e  bow wave i n  a region of higher Mach number. The r e s u l t i n g  
increased to ta l -pressure  losses  require ,  f o r  t he  same minimum 
passage a rea ,  a decrease i n  the  mass f l o w .  Peak performance 
w a s  e s s e n t i a l l y  independent of forebody t r ans l a t ion ,  except 
f o r  a +0.020-inch t r a n s l a t i o n  f o r  which the  maximum recovery 
w a s  increased b u t  t h e  mass-flow r a t i o  reduced. 

I 

E f f e c t  of angle of a t t ack .  - With no roughness, t h e  change 
from zero t o  a 30 angle of a t t a c k  generally caused a decrease i n  the  
peak pressure recovery. The mass-flow r a t i o ,  however, w a s  increased 
throughout t h e  s t a b l e  range ( for  a given recovery) f o r  almost a l l  
t h e  configurat ions tested. 

With roughness, operation a t  a 3 O  angle of a t t a c k  genera l ly  
had l i t t l e  e f f ec t  on the  maximum to ta l -pressure  recovery but  
produced a decrease i n  t h e  mass-flow r a t i o  a t  peak recovery. For 
operat ion w i t h  cowl B and forebody B, s t a b i l i t y  w a s  achieved, as f o r  
zero-angle-of-at tack operation, over a range of mass-flow r a t i o s ,  
except f o r  +0.02-inch forebody t r ans l a t ion  ( f i g .  12(b)). 
-0.01-inch t r ans l a t ion ,  the  s t a b i l i t y w a s  obtained only a t  a 

For a 

I 
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negative angle of a t t a c k .  
c i t y  of t h e  cowl and forebody o r  by tunnel  flaw i r r e g u l a r i t i e s .  
For t h e  cowl B and foreb3,dy B configurat ion wi th  bleed ( f i g .  1 3 ( b ) ) ,  
the recovery was maintained t o  mass-flow r a t i o s  as low as 0.14, 
although i n  an intermediate range of mass-flow r a t i o s  t h e  t e rmina l  
shock w a s  unsteady. 

This e f f e c t  may be caused by e c c e n t r i -  

d Performance Comparisons 
r A comparison of t h e  performances of t h e  conical  and i s e n t r o p i c  nose N 

i n l e t s  shows t h a t ,  a t  both zero and 3' angles  of a t t a c k ,  t o t a l -  
pressure recoveries ,  and hence kinetic-energy e f f i c i e n c i e s ,  s i g -  
n i f i c a n t l y  greater than those of t h e  conical-nose i n l e t  were 
obtained with t h e  models of t h e  present i nves t iga t ion .  The mass- 
f l o w  r a t i o s  of t h e  i s en t rop ic  configurat ions were, i n . a l l  Cases, 
less than t h a t  of t h e  conical  i n l e t .  

AO) Some t y p i c a l  i n t e r n a l  t h r u s t  coe f f i c i en t s  (based upon 
f o r  zero-angle-of-attack operation have been calculated f o r  
engines with t h e  conical  and i s e n t r o p i c  i n l e t s .  The i n t e r n a l  
t h rus t  fo rce  i s  t h a t  caused by t h e  change of momentum of t h e  a i r  
flowing through t h e  engine. In these  ca l cu la t ions ,  t h e  following 
f ac to r s  were assumed : 

(1) F l i g h t  a t  43,000 f e e t  (This would make t h e  f l i g h t  and 
test Reynolds numbers equal.  ) 

( 2 )  Completely expanded exi t  

(3)  Heating value of f u e l  of 18,000 Btu p e r  pound 

(4) Fue l -a i r  r a t i o  of 0.03; combustion e f f i c i e n c y  of 0 .9  

(5) Mach number a t  entrance t o  combustion chamber of 0.15 

The r e s u l t s  of t h e  in t e rna l - th rus t - coe f f i c i en t  computations are 
given in t a b l e  IV. 

As shown in t h i s  t a b l e ,  internal t h r u s t  c o e f f i c i e n t s  somewhat 
l a rge r  than those of t h e  conical  i n l e t  are obtainable  w i t h  sev- 
e ra l  o f  t h e  i s en t rop ic  configurat ions.  For some of t h e  
configurations,  l a r g e r  values of i n t e r n a l  t h r u s t  could b e  obtained 
f o r  operation with less than maximum recovery b u t  with a 
l a r g e r  mass-flow r a t i o .  
eff ic iency does not  change much wi th  pressure recovery i n  t h e  
present range of recovery and Mach number. 
t o  find t h e  optimum operating point  for a configurat ion.  

This r e s u l t s  because t h e  kinetic-energy 

No attempt w a s  made 
T h r u s t  
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c o e f f i c i e n t s  f o r  3 O  angle-of-attack operation have approximately 
t h e  same magnitude as those f o r  zero-angle-of-attack operat ion,  
s ince  t h e r e  w a s ,  i n  general ,  l i t t l e  change i n  pressure recovery 
and mass-flow r a t i o  with angle of a t t a c k .  

Because t h e  i s en t rop ic  i n l e t s  operate a t  mass-flow r a t i o s  
less than 1, t h e  penal ty  of add i t ive  drag associated wi th  t h e  flow 
s p i l l a g e  must be incurred. This  deficiency i n  t h e  performance 
07 i s S i l t r o p i c  i n l e t s  might be avoided by f u r t h e r  developmental 
changes i n  the d i f f u s e r  design. Any modiflcation~ serving t:, 
reduce t h e  a d d i t i v e  drag would a l s o  serve t o  increase t h e  internal 
t h r u s t  because of tne increase ir? captured mass flow. 

It i s  important t o n o t e  t h a t  t h e  higher combustion-chamber 
p r e s s u r e s  obtained with t h e  i s en t rop ic  i n l e t s  might be a neces- 
s i t y  f o r  e f f i c i e n t  combustion during h igh -a l t i t ude  f l i g h t .  
Also, t h e  higher  recoveries  r e s u l t  i n  smaller required combustion- 
chamber areas when a comparison i s  made on a b a s i s  of equal  mass- 
flow rates m and combustion-chamber Mach numbers M1. A s  a 

r e s u l t ,  t h e  high-recovery in l e t  has t h e  advantage of having more 
space (between t h e  combustion chamber and external contour) 
a v a i l a b l e  f o r  a u x i l i a r y  equipment. 

1 

The values  of i n t e r n a l  t h r u s t  calculated f o r  t h e  i n l e t s  wi th  
bleed are s m a l l  because of t h e  s m a l l  maximum mass-flow r a t i o s .  It 
w a s  assumed t h a t  no momentum w a s  recovered from t h e  bypassed a i r .  
Except when off-design performance with small ex i t  mass flow i s  
required,  t h e  i n l e t  could be operated without bleed t o  maintain 
l a r g e  values  of t h r u s t  during flight a t  design condi t ions.  

SUMMARY OF RFSULTS 

Performance of i n l e t s  wi th  a forebody designed f o r  i s en t rop ic  
e x t e r n a l  compression was invest igated in t h e  Lewis 6- by 6-inch 
hypersonic tunnel a t  a nominal Mach number of 5 .6  and a Reynolds 
number based on maximum model diameter of 1 .48X106. 
r a t i o n s  t e s t e d  involved two cowls and two forebodies which 
d i f f e r e d  only i n  t h e i r  d i s t r i b u t i o n  of i n t e r n a l  passage a r e a .  
The e f f e c t s  of roughness on t h e  forebody t i p  t o  induce t r a n s i t i o n  
of t h e  boundary l aye r ,  of varying t h e  posi t ion of t h e  forebody, 
and of bleeding a i r  from t h e  surface of t h e  centerbody were a l so  
inves t iga t ed .  Resul ts  of t hese  t e s t  a r e  as follows: 

The configu- 

1. A t  both zero and 3 O  angles of a t t a c k ,  a l l  the i s en t rop ic  
configurations yielded larger t o t a l -  pressure recoveries  
than had previously been obtained with a single-conical-shock 
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i n l e t .  None of t h e  configurations,  however, w a s  a b l e  t o  capture  
a full free-stream tube .  The i n t e r n a l  t h r u s t  c o e f f i c i e n t s  were 
la rger  f o r  some of t h e  i s e n t r o p i c  i n l e t s  than f o r  t h e  single- 
conical-shock in le t .  

2 .  For t h e  configurations having i n t e r n a l  passages w i t h  a 
constant-area sec t ion  of 2.72 hydraulic diameters,  s t a b l e  flow 
was obtained over a l a rge  range of mass-flow r a t i o s .  
air  from t h e  surface of t h e  forebody immediately downstream of 
the  in le t  entrance,  t h e  range of s t a b l e  flow was extended t o  
mass-flow r a t i o s  as low as 0.11, For configurations without a 
constant-area sec t ion  and without bleed, t h e  flow w a s  unstable  
a t  mass-flow r a t i o s  less than t h a t  a t  peak recovery. 

By bleeding 

3. The use of roughness on t h e  forebody t i p  was s u f f i c i e n t  
measure t o  prevent boundary-layer separat ion wi th in  the in l e t  
during s t a b l e  operation, except i n  t h e  v i c i n i t y  of maximum 
recovery. 
(unstably) a t  intermediate values of t h e  to t a l -p re s su re  recovery 
and mass-flow r a t i o  i n  con t r ad i s t inc t ion  t o  operat ion without 
roughness. 

In add i t ion ,  with roughness t h e  i n l e t  could operate  

This effect  w a s  most pronounced a t  angle  of a t t a c k .  

Lewis F l i g h t  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, March 8, 1954 
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TABLF: I. - FoIiEBODY COORDINATES FOR ISENTROPIC INXZT 

( a )  Forebody A 

S t a t i o n  d i s t a n c e  from 
fore tody  t i p ,  i n .  

.300 

.400 

1.200 
1.300 
1.400 
1.500 
1.600 
1.700 

1.800 
1.900 
2 .ooo 
2.100 
2 .zoo 
i: .300 

2.400 
2.500 
2.600 

Forebody r a d i u s ,  
i n .  

0 
.0175 
.0351 
.0525 
.0700 
.08 75 

.lo49 

.E33 

.1400 
, .15 74 
.1750 
.1924 

.2100 

.2274 

.2449 

.2623 

.2798 

.3010 

.3234 

.3450 

.3695 

.3951 

.4239 

.4554 

.4896 

.5273 

.5701 

s t a t i o n  d i s t a n c e  from 
forebody t i p ,  i n .  

2.700 
2.800 
2.825 
2.850 
2.900 
3 .ooo 

3.100 
3.200 
3.300 
3.400 
3.500 
3.600 

3.700 
3.800 
3.900 
4.000 
4.100 
4.200 

4.300 
4.400 
4.500 
4.600 
4.700 
4.800 

4.900 
5 .OOO 
5.100 

Forebody r a d i u s ,  
i n .  

0.6233 
.6977 
.7160 
.7299 
.753 
.783 

.803 

.815 

.823 

.828 

.830 

.828 

.825 

.818 

.a10 

.801 

.792 

.703 

.775 

.767 

.758 

.750 

.741 

.732 

.724 

.715 

.707 
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TABU IV. - INTERNAL THRUST COEFFICIENTS 

Fore- 
body 

W C A  RM E54B24 

Cowl  Forebody Total- Mass- Internal 
translation, pressure f l o w  t h r u s t  

in. recovery ratio coefficient 

0 
A +o .01 

A I A  I 0 I 0.175 I 0.93 1 0.49 I 

0.184 0.88 0.47 
0.180 0.89 0.47 

0.173 0.94 0.50 

I -0.01 I 0.177 10.88 1 0.47 -1 

B 

I I I I I I 

- 
+o .02 0.199 0.77 0.42 

B -0.01 0.154 0.87 0.44 
+0.01 0.174 

1 0.142 10.97 1 0.48 1 

0.84 0.44 

B 
0.162 0.88 0.45 

B 0 0.142 0.78 0.38 
+0.01 
+0.02 

Single-conical-shock 

with  
bleed 

0.116 0.74 0.34 
0.128 0.78 0.37 
0.108 1.00 0.46 

inlet I 
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c-33395 

(a) Model assembled. 

I Figure 1. - Isentropic inlet mounted in Lewis 6- by 6-inch hypersonic tunnel. 
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(b) C o w l  Bj forebody A; effects of forebody translation. 

Figure 3. - Internal-passage-area distribution. 
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Figure 4. - Forebody B with orifices f o r  bleeding air from surface. 
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Figure 5. - Mach number calibration 333 inches 
downstream of throat of Lewis 6- by 6-inch 
hypersonic tunnel. 
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Figure 6 ,  - Schlieren photograph of flow over isentropic forebody with diffuser cowl removed, 
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Figure 7. - Diffuser performnce a t  zero angle of attack. Cowl A; 
forebody A; zero forebody t rans la t ion .  
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Figure  8. - Diffuser  performance a t  3' angle of a t t ack .  Cowl A; 
forebody A; zero forebody t r ans l a t ion ;  no roughness. 
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CONFIDENTIAL 

Figure 

(a)  No roughness. 

(b) Roughness on forebody t i p .  

- Schlieren photographs of diffuser a t  zero angle of attack. Stab 



Figure 15, - 
f orebody t 

(a) No roughness, 

(b) Roughness. C-35126 

Elimination of flow separation during unstable flow by using 
ip .  Zero angle of attack. 
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(a) No roughness, 

(b) Roughness. 

- Schlieren photomaphs of diffuser at 3' angle of attack. S1 flow. 

CONFIDENT m 



( a )  No roughness. 

(b) Roughness. 

Elimination of flow separation during unstable operation by us 
t i p .  Angle of attack, 3'. 

CONFIDENTIAL 



(a)  Zero angle of attack. 

(b) Angle of attack, 3O. 

Figure 18. - Schlieren photographs of diffuser with cowl B and forebody B showing opera- 
t ion a t  minimum stable mass flow, Forebody translation, -0.010 inch; roughness on 
f orebody t ip ,  

CONFIDENT 
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Figure 19. - Schlieren photograph of diffuser a t  3' angle of attack with bleed through fore- 
body or i f ices  showing operation a t  minimum stable mass flow. Cowl B; forebody B; zero 
forebody translation; roughness on forebody t i p .  
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Figure 20. - Typical v a r i a t i o n  of rneasured s t a t i c  pressure a t  
forebody o r i f  i ces .  
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