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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-L425

FREE-FLIGHT INVESTIGATION
AT SUPERSONIC SPEEDS OF THE STABILITY AND DRAG OF A
79° CLIPPED DELTA BOOST-GLIDE CONFIGURATION INCLUDING
AN ANALOG STUDY OF COUPLED MOTIONS
DURING THE FLIGHT*

By Sherwood Hoffman and Willard S. Blanchard, Jr.

SUMMARY

A free-flight investigation was conducted at Mach numbers between
1.2 and 3.4 to determine the aerodynamic characteristics and motions
of a rocket-boosted model of a simplified boost-glide hypersonic con-
figuration. The model had a 790 clipped delta planform, sharp leading
edges, a blunt base, and symmetry in two planes. The mass moment of
inertia in roll was about 4 percent of the value in piteh or yaw.

The model was both statically and dynamically stable near Mach
number 3 at small angles of attack and slideslip. A disturbance in
pitch to an angle of attack of about 12° resulted in roll oscillations
and reversals, and coupling of the longitudinal and lateral forces.

An analog study, in which the equations of motion for five degrees of
freedom were used, generally simulated the magnitudes and frequencies
of the angular motions and showed that the rate of change of effective
dihedral derivative with angle of attack was a necessary derivative for
simulating the coupled motions at the altitude and velocity of the test.

Linearized theory gave reasonable predictions of the pressure drag
and of the static and dynamic stability derivatives for oscillations of
small amplitude.

*Title, Unclassified.
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INTRODUCTION

The National Aeronautics and Space Administration is devoting con-
siderable effort to the design of boost-glide vehicles for flight into
space, reentry, and landing. Previous studies, such as references 1
and 2, indicate that the reentry phase of such a mission is feasible
from both aerodynamic-heating and loading aspects with properly designed
lifting configurations. Wind-tunnel tests have been made to determine
the aerodynamic characteristics of promising boost-glide shapes, some
examples of which may be found in references 3 to 5 for lifting bodies,
references 6 to 8 for all-wing vehicles, and reference 9 for wing-body
combinations. The results presented in the references show that low-
aspect-ratio configurations may experience significant rolling moments
due to aerodynamic coupling of their longitudinal and lateral forces
at angles of attack or sideslip. The resulting reolling motions may
become pronounced because the mass is concentrated along the longitudi-
nal axis and therefore the inertia in roll is very small compared with
the inertias in pitch and yaw. Information on the motions and on the
cross-coupling derivatives involved would be valuable to the designers
of boost-glide configurations, especially with regard to controls.

A rocket-boosted model of a simplified hypersonic glider configura-
tion has been flight-tested to determine its aerodynamic characteristics
and motions during free flight at supersonic speeds. The model was
representative of an all-wing boost-glide vehicle in that its leading
edge was highly swept and the maximum thickness was at its blunt base.
The configuration differed from some proposed boost-glide configurations,
since the leading edge was fairly sharp instead of rounded and because
it had symmetry in two planes,

The model was flight-tested at the NASA Wallops Station, through a
range of Mach numbers decelerating from 3.4 to about 1.2 with corre-
sponding Reynolds numbers, based on mean aerodynamic chord, ranging
from 30 x 106 to about 2.5 x 10°. Pulse rockets disturbed the model
in the pitch plane during the flight and a ten-channel telemeter trans-
mitted continuous acceleration and pressure data to ground receiving
stations. The analysis includes the determination of stability deriva-
tives from small-amplitude oscillations, comparisons with predictions
from linearized theory, and an analog simulation study of the coupled
motions during large-amplitude oscillations. A small model also was
tested from a helium gun to determine the transonic drag of the
configuration.
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SYMBOLS

The basic data are presented with respect to the body-axis system
shown in figure 1. The axes originated at the center-of-gravity posi-
tion located at the 53.l-percent longitudinal station on the longitudi-
nal axis of the rocket model, and corresponded to the 31.8-percent
station of the mean aerodynamic chord.

8L, cg

ar,,Hi

longitudinal acceleration of center of gravity, g units

longitudinal accelerometer reading, high range, positive
in positive X direction, g units

longitudinal accelerometer reading, low range, positive
in positive X direction, g units

normal acceleration of center of gravity, g units

normal accelerometer reading in nose section, positive
in negative Z direction, g units

normal accelerometer reading in tail section, positive in
negative Z direction, g units

lateral accelerometer reading, positive in positive Y
direction, g units

lateral acceleration of center of gravity, g units

span, ft
mean aerodynamic chord, ft

Drag

drag coefficient,
.S

base-drag coefficient, based on 8§, (gh—:igﬁ) X %? x 1hlh
q,

00
friction-drag coefficient, based on S

pressure-drag coefficient, based on S
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cp 1ift coefficient, =it
Qe
114
Cy rolling-moment coefficient, Rolling moment
Qb
Cn pitching-moment coefficient, Pltchlng_moment
g,5¢
N
CN normal-force coefficient, ormal force
q.S
Cn yawing-moment ccefficient, Yawing moment
q,.Sb
CX axial-force coefficient, positive in positive X direction,
Axial force
Q.S
c lateral-force coefficient, L=ateral force
Y Q.S
. - . oC, :
CLa lift-force coefficient derivative, o rer radian
. . . . GCL
CZB effective dihedral derivative, SE—, per radian
Cl rate of change of effective dihedral derivative with angle
Be, 3C
of attack, ___B, per square radian
da
. . . . oCy .
Cy damping-in-roll derivative, , per radian
D 3 BB
2v
Czr rate of change of rolling-moment coefficient with yawing
oC
angular velocity factor, , per radian
o 2
2v
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static stability derivative, gsm, per radian

rate of change of pitching-moment coefficient with rate

of change of angle-of-attack factor, , per radian

e
o 5y

rate of change of pitching-moment coefficient with angle

3y,

of sideslip, ——, per radian

oB

rate of change of pitching-moment coefficient with

pitching angular velocity factor, —, per radian

y 4c¢
ov

oC
normal-force coefficient derivative, -S;m, per radian

oC
directional stability derivative, S—E, per radian
B

rate of change of yawing-moment coefficient with rate of
oC .
change of angle-of-sideslip factor, —-EE, per radian
-
rate of change of yawing-moment coefficient with rolling
oC
angular velocity factor, ——%E, per radian

0 —
av

rate of change of yawing-moment coefficient with yawing

O_ per radian
o I
2v

angular velocity factor,
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' C
lateral-force coefficient derivative, 5—1, per radian

C
s
Cy rate of change of side-force coefficient with angular
r
. oCy
velocity factor in yaw, , per radian
3 Ib
2v
g acceleration due to gravity, 32.2 ft/sec2
h altitude, ft
Iy, Iy, Iy moments of inertia in roll, pitch, and yaw about the X,
Y, and Z axes, respectively, slug-ft2
M free-stream Mach number
m mass, W/g, slugs
P period of short-period oscillation, sec
p,q,r angular velocity in roll, pitch, and yaw, radians/sec
ﬁ,é,f angular accelerations in roll, pitch, and yaw,
radians/sec?
Py, base pressure, lb/sq in.
Poo free-stream static pressure, lb/sq in.
Ao free-stream dynamic pressure, 1b/sq ft
R Reynolds number, based on ¢
S planform area, sq ft
Sy, base area (including fins), sq ft
Tl/2 time for a transient oscillation to damp to one-half
amplitude, sec
t time,sec
v free-stream velocity, ft/sec
W weight, 1b
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X,Y,Z body-axis system, ft
X,Y,2 distances from center of gravity, measured along X, Y,
and Z axes, ft
a angle of attack, radians
& rate of change of angle of attack with time, gg,
t
radians/sec
B angle of sideslip, radians, or \/Mz -1
é rate of change of angle of sideslip with time, %E,
t
radians/sec
V4 angle between flight path and horizontal, deg

MODELS AND INSTRUMENTATION

Drawings of the two models tested are presented in figure 2. The
larger model (fig. 2(a)) was designed to be boosted by rockets whereas
the smaller one (fig. 2(b)) was scaled down to permit it to be propelled
from a 6-inch helium gun. Longitudinal distances shown are measured
from the "theoretical" nose tip, which is 0.66 inch ahead of the actual
nose. Photographs of the models are shown in figures 3 and 4. Physical
characteristics of the rocket model are presented in table I. The dimen-
sions of the small helium-gun model were 0.181 of those of the rocket
model. The weight of the small model was 1.128 pounds and the center of
gravity was located at the L42.5-percent station measured from the theo-
retical tip. The thin, pointed nose tip was strengthened with a small
nose sting as is shown in figures 2(b) and k.

The configuration had mirror symmetry in the horizontal and verti-
cal planes, sharp leading edges, and a blunt trailing edge. The planform
was a 78.87° clipped delta wing with streamwise tips, aspect ratio of
0.54, and taper ratio of 0.191. The side view consisted of a 4© half-
angle triangular forebody, a flat afterbody, and a maximum thickness
of 7.65 percent of the total length., All the surfaces were planar. The
resulting body cross sections normal to the longitudinal axis were
diamond-shaped from the nose to about 55 percent of the body length,
hexagonal from the 55-percent station to about the 80-percent station,
and octagonal from the 80-percent station to the trailing edge or base.
The fins, which were located in the vertical plane of symmetry, had a

CONF IDENT IAL



06 Odeooe [ X ¥ ] [ AR X] oo e o090 [ X X ] e [ ] [ X' [ ) ® o *
8 CONFIDENTIAL . =~ = °°

sweepback angle of T76° along the leading edge, a taper ratio of 0.33,
an unswept trailing edge, and 7.670 total-angle wedge airfoil sections.

A ten-channel telemeter was installed in the rocket model and
included the following instruments: high-range and low-range longi-
tudinal accelerometers, normal accelerometers located near the center
of gravity and in the rear of the model, a transverse accelerometer,
angular accelerometers measuring pitching and yawing accelerations, roll-
rate gyro, total pressure pickup and base pressure pickup. The base pres-
sure was averaged over the semispan of the blunt trailing edge with a
manifolded tube as is shown in.figures 2(a) and 3(b). The locations of
the instruments with respect to the center of gravity are given in
table II.

TESTS

A photograph showing the rocket model and booster on the launcher
at the NASA Wallops Station is presented as figure 5. The booster con-
sisted of an Honest John for the first stage and a Nike for the second
stage. A small rocket motor was installed in the base of the model (see
fig. 2(a)) and was programed to separate the model from the second stage
after Nike burnout. The calculated relative deceleration of the burned-
out Nike and separated model, based on drag-to-weight ratios, was very
small and indicated the possibility of collision after separation. Two

5%-inch aircraft rocket motors were therefore employed to increase the

Nike deceleration after the model and booster were separated. These
motors were mounted on the forward end of the Nike (fig. 5) with their
nozzles facing upstream at a 20° cant angle with respect to the booster
center line. The nozzles were plugged to protect the grain and igniters
from aerodynamic heating during the booster phases of flight. The model
was disturbed only in pitch by 27-pound-second pulse rockets (burning
time 0.05 second) approximately 5 seconds and 15 seconds after separation
from the booster. Calculations indicated that each pulse rocket would
pitch the model to an angle of attack of about 12°, The locations of the
pulse rockets are shown in figure 2(a).

Flight-path data were obtained by tracking the model with the
AN/FPS-16 tracking radar, the NASA modified SCR-584 tracking radar, and
the Reeves modified SCR-584 radar. Atmospheric conditions were obtained
from a rawinsonde balloon that was released just prior to the test. Mach
number and dynamic pressure were determined from the total-pressure meas-
urements on the model and the ambient pressures and temperatures at corre-
sponding altitudes along the flight path.

CONFIDENTIAL
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The range of flight for which the data were reduced varied between
Mach number 3.4 at an altitude of 35,000 feet to Mach number 1.2 at an
altitude of about 68,000 feet as shown in figure 6. The uncertainties
in the aerodynamic coefficients were inversely proportional to the free-
stream dynamic pressure g and varied from a small amount at M = 3.4
and q, = 4,000 1b/sq ft to a fairly large percentage of the coefficients
near M =1.2 and g = 100 lb/sq ft. The corresponding Reynolds num-
bers, based on ¢, varied from 30 X 106 to about 2.5 X 106 as shown in
figure 7.

Telemetered data, static pressure, dynamic pressure, and Mach number
for three time intervals of the test are presented in figure 8. The
points were machine plotted from magnetic-tape records and show occasional
scatter points due to noise. The time interval between 29.7 seconds and
30.6 seconds, figure 8(a), shows that the model was disturbed by the
booster at separation (M =~ 3.4) and experienced small-amplitude sinusoidal
oscillations in pitch § and yaw r. The roll rate p was essentially
constant and less than ¢ radians per second. When the first pulse rocket
fired (near M= 2.8), the angle of attack increased rapidly and then
the model motions became coupled. The resulting roll rates initially
exceeded the range (about *30 radians per second) of the gyro. The inter-
vals from 40.8 seconds to 41.7 seconds (M ~ 2.3) and from 42.2 seconds
to 43%.1 seconds (M =~ 2.2) show the on-scale measurements after the first
pulse. (See figs. 8(b) and 8(c).) The accelerations and motions are non-
linear and coupled. The model oscillated in roll to the right and then
experienced two roll reversals in the time interval from 40.8 seconds
to 43.1 seconds. In general, the roll-rate oscillations following both
pulses were unsteady and varied from positive oscillations to roll
reversals and to negative oscillations.

The helium-gun model covered a Mach number range from 1.2 to 0.7
with corresponding Reynolds numbers (based on &) varying from 6 X 10
to about 3.5 X 106 as shown in figure 7. Velocity, trajectory, and
atmospheric data were measured by the CW Doppler velocimeter, the NASA
modified SCR-584 tracking radar, and a rawinsonde balloon, respectively.

ANALYSIS

Total Force and Moment Data

The total force coefficients were determined from the instantaneous
values of translatory acceleration of the center of gravity obtained by
the method described in appendix A. The following relationships were
used to compute the force coefficients:

CONFIDENTIAL
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_CX = -q:g aL,cg (l)
_ W
N T35 "Nce (2)
W
CY = E aY,Cg (3)

00

The helium-gun model was tested at zero 1lift and had no instrumen-
tation. The drag coefficients were determined from the flight-path
angle, free-stream conditions, and decelerations obtained by a differ-
entiation of the velocity-time curve from the CW Doppler velocimeter
by use of the following relationship:

Cp = - _li_.<gz + g sin 7) (4)
ngS dt

The total pitching-moment, yawing-moment, and rolling-moment coef-
ficients for the rocket model were computed from the instantaneous values
of angular acceleration and angular velocity with the following
expressions:

o = L, (- T2) (5)
" g 88 ., S¢C

o _ Igf +(IY—IX)Pq (6)
n q,,SP Q,,Sb

. _Lp +(IZ‘IY)qr (7)
l qub QS

It should be noted that the values of the product-of-inertia terms
were zero because the principal axis coincided with the longitudinal
axis of the model. The values of the gyroscopic reaction terms became
large when the model roll rates were large. Values for q and r were
determined by integrating § and ¥ over small time intervals and
for p by differentiating the time-history records of p. The curves
of q and r were assumed to be centered about zero to determine their
magnitudes and signs through several cycles.
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Small-Disturbance Analysis

The small-disturbance data near M = 3.4, shortly after the model
separated from the bposter, have been analyzed separately in the pitch
plane and in the yaw plane by assuming two degrees of freedom. As was
noted earlier, the roll rate near M = 3.4 was very small and practi-
cally constant. The valuss of Cma at o =0 and Cy at B =

were computed from the average period and time-to-damp to one-half ampli-
tude of the transient oscillations in each plane by the following
relationships:

2
cmOL:_““_EYL+;9_.§9§2 (8)
4x2T 2
- zf1 , 1 <o.695> (9)
n, 2 ) _o\T .
B 45t fp 1/2
and the corresponding values of CN and CY were computed from
a B
Loy
C = [—=|C
Na (Acm> My, (lO)
o0
Cy = Y) n
v, = (o

The rotary damping derivatives were calculated as follows:

_ Ex 1.386V  _ 32,
_ _ _ 2Iz(1.386v 32,0
Cnp - Cng = T2 (quTl /o Ml CYB) (12)

Simulation of Coupled Motions

A simulation study of the coupled motions near Mach number 2 was
made using the equations of motion for five degrees of freedom. The equa-
tion associated with the drag force was omitted since the velocity of the
model was nearly constant through the time intervals studied. The cross-
product inertia terms have been omitted from the equations since the

CONFIDENTIAL 4
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principal axis coincided with the body axis. The equations of motion
were written for the body-axis system and are given in appendix B. A
highly simplified motion study using three degrees of freedom alsc was
made and the equations used are included in appendix B.

RESULTS AND DISCUSSION

The stability derivatives and drag coefficients referred to in the
following sections are for the conditions of zerc angle of attack and
zero angle of sideslip, except where noted.

Tongitudinal Stability

The variations of normal-force coefficient, pitching-moment coeffi-
cient, and axial-force coefficients with time near Mach number 3.4 are
presented in figures 9(a), 9(b), and 9(c). The corresponding variations
of Cp with Cy are given in figure 10. The oscillations are sinusoidal
about a trim normal force of zero (due to model symmetry), damp with time,
and have an averaged period of 0.175 second. The average slope (ACm/ACN>
in figure 10 indicates that the static margin was -0.124 and the center
of pressure was located at the 61.7-percent longitudinal station measured
from the theoretical tip of the configuration.

The time-to-damp to one-half amplitude Tl/2 was obtained by
plotting the peak amplitudes of the transient oscillations of CN
and ¢ against time on semilog paper as is shown in figure 11. The log
decrement of the peak amplitudes was linear and Tl o was 0.62 second.

My,
and 0.837, respectively. The amplitude of the pitching oscillations,

based on these values, varied within +0.4°,

The resulting values of C and Cyi were computed to be -0.104
(o4

The static stability derivatives are compared in figure 12 with
those from linearized theory (refs. 10 and 11) for thin, sweptback,
tapered wings at M = 3.4 and with wind-tunnel data (ref. 9) at M = 2.01
and 1.41. The agreement with linearized theory is good and the variation

of CN and Cm with Mach number is as would be expected for low-
@ o
aspect-ratio wings.

The sum of the rotary damping derivatives in pitch Cmq + Cpy.
o}

at M = 3.4, as determined by equation (11) was -0.077. In comparison,
linearized theory (refs. 11 and 12) predicted a value of about -0.4.
In a free-flight test of a 67.5° sweptback arrow wing (ref. 13) the

. CONFIDENTIAL
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damping in pitch also was lower than the theoretical value at M = 1.8.
It should be noted that these magnitudes are small and that the accuracy
of measuring Cmq + Cmd may be poor because they were obtained from the

difference of two numbers having the same order of magnitude (eq. (11)).

Directional Stability

The variations of side-force ccefficient and yawing-moment coeffi-
cient with time near M = 3.4 are presented in figures 13(a) and 13(b)
and the corresponding variation of C, with Cy 1is given in figure 1h.
The yawing oscillations were sinusoidal, damped with time, and had a
linear variation of the log decrement of the envelope of the transient
oscillations (fig. 15). The rolling moment during this time interval is
shown in figure 13(c) to be practically zero.

The data show an average yawing period of 0.270 second, Tl 5 equal

to 1.16 seconds, static directional stability (Acn/ACY) of -0.65, and a
center of pressure in yaw at the 73.8-percent longitudinal station from
the theoretical nose tip of the configuration. The resulting values

of Cpn, and Cy, were 0.098 and -0.151, respectively, and the amplitude
of the yawing oscillation varied within.*1,2°. The static directional
stability is compared with theory at M = 3.4 and wind-tunnel data

(ref. 9) at M =2.01 and M = 1.41 in figure 16. The same theoretical
methods that were used in pitch were employed with the exception that the
derivatives for the body alone and vertical fins alone were calculated
separately and then summed. The theoretical values of CYB and CnB

are somewhat higher than the test values and this may be due, partly, to
the omission of interference calculations between the fins and body.

The sum of the measured rotary damping derivatives Cnr - Cné from

equation (12) was -0.652 at M = 3.4, The theoretical damping due to the
vertical fins alone was -0.69.

Drag

The variations of total-drag coefficient and base-drag coefficient
with Mach number at approximately zero angle of attack and angle of side-
slip for the rocket model, helium-gun model, and for the geometrically
similar wind-tunnel model (ref. 9) are presented in figure 17. Since a
and B were not measured in flight, the values of Cp for the rocket
model (at a =z B ~ 0) were taken as those values corresponding to

\’CNE + CY2 nearly zero. The drag for the helium-gun model is an

CONFIDENTTIAL
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average drag about the zero-attitude condition since it is probable that
the model was disturbed slightly upon ejection from the gun and oscillated
through small angles.

Good agreement was obtained in Cp and CD p for the rocket model
and wind-tunnel model at supersonic speeds. The agreement shown in fig-
ure 17(a) between data for the rocket model and for the smaller helium-
gun model near M = 1.2 1is poor; and the general level of the drag curve
from the smaller model appears to be lower in comparison. Part of this
difference may be explained by the different test Reynolds numbers and
their effect on the friction drag. Computed CD g curves using average

Reynolds numbers and turbulent-friction coefficients for flat plates
(ref. 14) are presented in figure 17(a). If transiticn is assumed to
occur at the 20-percent longitudinal station of each flight model, the
friction drag curves would be changed only a negligible amount, since
the wetted area affected is small compared with the total wetted area.
The remaining difference in total drag levels appears to be due to the
effect of Reynolds number on the base drags and experimental accuracy.
The test Reynolds number (fig. 7) of all the models below Mach number 2
varied between 6 X 10° and 2 x 10°; and according to reference 15, the
Reynolds numbers were in a critical range for transition. Reference 15
also shows that the base pressures and base drags of blunt-base bodies
may vary significantly at these Reynolds numbers depending on whether
the boundary layer is fully laminar, fully turbulent, or under transition.

The base-drag coefficients obtained from the tests and from the semi-
empirical method of reference 16 for two-dimensional airfoils are compared
in figure lY(b). The semiempirical method is restricted to an all-
turbulent boundary layer at supersonic speeds and requires an analogy
between the base pressures and peak pressure rise associated with sepa-
ration of the boundary layer. The comparison indicates that the base
drag of the model was essentially two dimensional and that the boundary
layer was turbulent for Mach numbers from about 2 to 3.4, At Mach
numbers less than 2 the two-dimensional airfoils have significantly
higher base drags than the rocket model drag. This result suggests that
the boundary layer on the model was not fully turbulent at the lower Mach
numbers and Reynolds numbers.

Figure 18 presents a comparison of the pressure drags from the rocket
models, from linearized wing theory, and from supersonic area-rule theory.
The theoretical pressure drag from wing theory (ref. 17) includes the sum
of the wing drag with tip effects, fin drag, and interference drag between
the wing and fins for subsonic leading-edge conditions. The area-rule
pressure drag was determined in the manner described in reference 18 with
the assumption that a polyhedron (having the same normal cross section as
the base) extended downstream from the base to infinity in order to apply
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the theory. The Fourier series solutions employed for the computations
of the area-rule drag were convergent.

The linearized wing-theory pressure drag was in closer agreement
with the experimental pressure drag than the area-rule drag through most
of the Mach number range. Although the magnitudes are small, the area-
rule drag is significantly lower than that from the wing theory. 1In
comparison, reference 18 shows nearly perfect agreement for the two
theories for relatively blunt cones with large bases.

Coupled Motions

Typical time-history variations of the aercdynamic coefficients and
cross plots of C against CY near Mach numbers of 2.3 and 1.8 are
presented in figures 19 and 20, respectively. The curves defined by the
data points are generally cyclic but not sinusoidal. It is clearly indi-
cated that the motions are coupled, the damping in pitch and yaw is very
poor, and the roll is oscillatory. The cross plots of CN against CY

in figures l9(g) and 20(g) are not representative of the relative motion
in pitch and yaw (as they would be for a body having roll symmetry)

since CN is much higher than CY for the configuration.
(o7

The cross-hatched areas in figure 21 summarize the variations of the
rolling rates of the model through the Mach number range. The large vari-
ations in roll-rate amplitude started near M = 2.8 when the first pulse
rocket disturbed the model. The irregular pattern of positive and nega-
tive roll oscillations was not changed significantly when the second pulse
rocket fired. Also shown in figure 21 are the divergence boundaries for
steady roll, which were determined in the manner described in refer-
ence 19. It appears that the model rolling velocities are oscillating
past the unstable regions.

Simulation of Coupled Motions

The simulation studies were conducted by use of equations of appen-
dix B near Mach number 2 by using static stability derivatives from wind-
tunnel tests and the free-stream conditions of the flight tests. The
moment derivatives from reference 9 were recomputed about the model
center of gravity. The pitch damping derivatives Cpy and . were
initially calculated from linearized theory (refs. 11 and 12), but these
values were lowered when they produced too much demping. The damping
in yaw Cnr and Cp, ) also were calculated, in a manner similar to that

for pitch, with the assumption that all the damping was due to the verti-
cal fins. The derivatives for C; were estimated from reference 10,
P
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and Cy and Cnp were estimated from lifting-line theory. The values
r

used for all the stability derivatives are listed in table III. It should
be noted that two slopes were employed to approximate the nonlinear vari-
ations of CYB and Cp ng with B, and CZB with «o. The initial values

for p, P, and § were obtained from the flight records; the initial
values of p, r, and q were computed from flight data; and, the initial
values of a and B were estimated to satisfy the equations of motion.

Consecutive analog runs showed that the simulated motions would not
repeat exactly for identical initial conditions. The angular velocities
and their frequencies were similar to those from the test and exhibited
the type of oscillatory motions shown in figure 22(a). Small variations
in the stability derivatives and use of other sets of initial conditions
did not provide repeatability. The nonrepeatability appears to be due
to the sensitivity of the equations, with the inputs used, to small com-
puter errors of the analog. These small computer errors may be compared
to spurious disturbances during the flight and, in this case, are partly
responsible for the realistic simulation of the free-flight motions.

The flight variations of p, r, and q with time are shown in
figure 22(a for comparison with three successive analog runs (initial
conditions in table IV) in figures 22(b), 22(c), and 22(d). The first
two runs simulate the roll data in magnltude and in the sequence of
rolling oscillations and reversals. The third run differs mainly over
the latter half of the run where positive roll oscillations follow the
second roll reversal. The peak amplitudes and the frequencies of ¢
and T were predicted by the equations but their variations with time
were somewhat different from those of the test. The analog results also
indicate that the ranges of o and B were less than #0.2 radian
(about 12°) as the rolling velocities oscillated past the divergence
boundaries (fig. 17) for steady roll rates.

Several analog runs were made to determine the effect of CZ
fod
on the rolling motions. Oscillatory roll rates were obtained for all
values between -0.1 and -1.2. Positive values of 0.1 and 0.2 resulted
in damping of the initial roll rates to very small rates. These runs
showed also that the rolling motions of the model could not be simulated
without the Cy term in the equations of motion.

In order to isolate the effect of C, on the motions, a simpli-

o
fied three-degree-of-freedom study was made by using equations (B6),

(B7 and (B8) of appendix B. All stability derivatives, terms involving
q and r, and gyroscopic reaction terms were dropped from equations (B1)
to (B5) except CZB and the angular products fp and ap. The

o
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simplified equations represent a mass. distribution and flight condition
(near M = 2 1in the present case) for which such factors as q S/mV,
[o¢]

‘ 2
quE/&Y, quE//éVIY, and so on, may be considered negligible with regard
to the quQ/IX factor. The angular velocities q and r also were
assumed to be zero to simplify the equations.

Figure 23 shows the typical variations of p, a, B, and P with
time for the simplified equations using the initial conditions of table V
and C3., = -0.82. It can be seen that the rolling oscillations, reversals,

and magn%%udes are similar to those of the test in figure 22(a). As in

the case of the five-degree-of-freedom study, this run also did not repeat
exactly, showing that the simplified equations with the inputs used were
sensitive to the small analog errors. Higher initial roll rates resulted
in repeatable runs with cscillatory roll rates of higher frequency about
the input value and no rcll reversals; lower initial roll rates gave repeat-
able oscillations of lower frequency about zero roll velocity. It appears,
therefore, that the input conditions which simulated the roll reversals of
the test were also the critical input values for the simplified equations
and for the equations used in the five-degree-of-freedom study. Compari-
sons of o and B from the simplified equations (fig. 23) with their
corresponding values from the five-degree-of-freedom study (figs. 22(b)

to 22(c)) show agreement in their peak amplitudes and frequencies. It

is evident that the coupled motions, their frequencies and amplitudes,

were highly dependent on the variation of the effective dihedral deriva-
tive with angle of attack, the relatively low roll inertia compared with
the pitching and yawing inertias, and the altitude and velocity of the test.

CONCLUDING REMARKS

An investigation was conducted to determine the aerodynamic charac-
teristics of a boost-glide type of hypersonic glider configuration at
supersonic speeds. The configuration had a T9° clipped delta planform,
sharp leading edges, a blunt base, and symmetry in two planes. The mass
distribution was concentrated along the longitudinal axis and the inertia
in roll was about 4 percent of the pitch or yawing inertias. The test
covered a free-flight Mach number range from 3.4 to about 1.2.

The model was both statically and dynamieally stable in pitch and
yaw at small angles of attack and sideslip near Mach number 3. When the
model was pitched to an angle of attack of about 12°, the configuration
oscillated in pitch, roll, and yaw, indicating coupling of the longitudinal
and lateral forces. An analog study near Mach number 2 generally simulated
. the magnitudes and frequencies of the angular motions and roll reversals,
and showed that the rate of change of effective dihedral derivative with

CONFIDENTIAL
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angle of attack was a necessary derivative for simulating the coupled
motions at the altitude and velocity of the test.

Linearized theory gave reasonable predictions of the static and
dynamic stability derivatives for small angles of attack and yaw at
Mach number 3.4. The pressure drag determined from linearized wing
theory, including interference effects, was in closer agreement with
the measured pressure drag than the pressure drag from area-rule theory
through most of the Mach number range. The data indicate that the base
drag was approximately two dimensional at the higher Mach numbers and
Reynolds numbers of the test.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., September 9, 1960.
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APPENDIX A
ACCELEROMETER CORRECTIONS

Linear accelerometers which are not mounted on the center of gravity
measure not only the translatory accelerations but also the accelerations
due to angular velocities and angular accelerations. ©Since the linear
accelerometers in the model were off the center of gravity, it was nec-
essary to subtract the rotational accelerations from the measured accel-
erations to obtain the translatory accelerations along the three axes.
The following equations were used:

_ 1 2 2 . _ .
8L,cg = 8L,Lo * g[xaL,Lo(q + 1)+ yaL,Lo(r pq) ZaL,Lo(q + prﬁ

(A1)

8y cg = 8y * é[yaY(r2 + p2) + ZaY(b - ar) - XaY(f + PQ)] (A2)

= il 2+ g2) - S - .
8N,cg = 8N,n * g[ ZaN’n(P + °) XaN’n(q pr) + yaN’n(p + qr)]

(a3)

where the distances x, y, and 2z from the center of gravity to the
individual accelerometers are given in table II and are identified in
these equations with subscripts indicating the accelerations measured.
The corrections for aL,Hi and aN,t were made with expressions similar

to equations (Al) and (A3). The variations of q, r, and p were meas-
ured directly from the angular accelerometers and the roll gyro, and
required no corrections. The variations of q and r were obtained

by integration of q and r over several cycles and by assuming that
they varied symmetrically about zero values. The angular acceleration

in roll P was obtained by differentiating the variations of p with t.

The values of aL,Lo and aN,n were used for determining aL,cg
and a throughout most of the flight. The values of a . were
N,cg L,Hi

used only at the higher Mach numbers where the deceleration was greater
than the range of aL,Lo; and aN,t served only as a check on aN,cg'
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APPENDIX B

EQUATIONS OF MOTION

The equations of motion used for the five-degree-of-freedom analog
study are as follows:

. dS

= - - 2 Bl
@ q pp v (CLGCL ( )
. q S

= = =xfC B2
B r+ocp+mv(YBB> (B2)

X

-1 Sb 2
13=IY___qu+q°° C; B + Cy Bo 4+ 350 C1p+Clr> (B3)
I I B By avl P r

I, - I S8 g2
i (_z__>_<>pr r 2 o) 4 (o + Gmig) ()
a

I, e/ ovry
oL, -1
. (_X__z>pq .
iz

All gravity terms, as well as certain aerodynamic terms such as Ch

qub2 .

and Cy , have been omitted from equations (B1) to (BS). 1In the calcula-
r

tions it was assumed that é = -r in equation (B5); thus a slight simpli-
fication in the last term is possible. All the product-of-inertia terms
were zero since the principal axis was coincident with the longitudinal

axis.

The equations for the simplified analog study with three degrees of
freedom are as follows:

¢ = -Bp (86)
B =ap (B7)
. g,,Sb
p = _(ClBaB ) (B8)
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TABLE T

PHYSICAL CHARACTERISTICS OF ROCKET MODEL

Wing:
Planform area, sSq Tt . « « v ¢« ¢ ¢ ¢ o o v v e 0 e e e e . 5.86
Base area, 5Q ft « o v v ¢ 4 4 o e 4 e e e e e e e e e e e 0.6k
Span, fL o ¢ o v vt i e e e e e e e e e e e e e e e e e e e 1.77
Aspect ratio . . . . e e e e e e 0.54
Root chord (model length to theoretlcal tlp) e e e e e 5.56
Mean aerodynamic chord, ft . . . . .. e e e e e e e 3.83

Sweepback angle of leddlng edge, deg e (B 87
Dihedral, deg . . . . . . . .« . . e e e e e e e e e e e

Thickness ratio .+ v v v & ¢ o o o + o o o s o o o o o o« « o o 0.077
Taper ratio . .« v v v ¢ v v e v e e e e e e e e e e e e e e e 0.191

Vertical tail:
Planform area (2 fins exposed), sq ft . . . . . . . . « « . . 0.36
Base area (2 fins exposed), sq ft . . . . . « ¢ . . .« o . . . 0.05
Span (total), £ ¢ v ¢ ¢ v v v v v e e e e e e e e e e e e 0.85
Aspect ratio (exposed) . e e e e e e e e e e e e e e 0.50
Sweepback angle of leadlng edge deg v v v e e e e e e e e e 76.0
Wedge angle (total), deg . . . « « v ¢ v v v v o v o 00 . . 7.67
Taper ratio (exposed) e e e e e e e e e e e e e e e e e e 0.3%%

Mass characteristics:

Weight, 1b . . . . . e e ... . . 108.0
Center-of-gravity pO:lthn rearward from theoretlcal tlp in
percent of total length . . . . . . e e e s e e e s e e 5%.1

Moment of inertia in pitch, Iy, slug-ft2 e e e e e e 6.9%
Moment of inertia in yaw, I, slug-ft2 e e e e e e e e e T.24
Moment of inertia in roll, IX, slug-ft2 e e e e e e e e e e 0.27
Products of inertia, SIUE-TEZ v v e e e e e e e e e e e 0
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TABLE II
LOCATION OF INSTRUMENTS
Distance from c.g.
Instrument

x, Tt y, ft z, Tt

Longitudinal accelerometer for ar yy

2
Longitudinal accelerometer for ap 1,

b
Normal accelerometer for ay ,

M
Normal accelerometer for
Nt

Transverse accelerometer for ay
Angular accelerometer in pitch for q
Angular accelerometer in yaw for T
Roll-rate gyro for p
Total pressure pickup

Base pressure pickup

0.28 0.0h 0

.28 | -0k | O
075 | 0 0.082
-2.118 | .11k .059

431 ) -.033] 0
-1l | -,064 | O

0751 O -.071
-.406 [ O 0
Nose tip

Manifolded tube on base
center line
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TABLE IV
INITIAL CONDITIONS FOR EQUATIONS FOR FIVE DEGREES OF FREEDOM

M oo e e e e e e e e e e e e e e e e e e e e e e e e e e e e e B2
V, ft/sec .« . o v v v o o e e e e e e e e e e e e e e .. 82,100
Qos 1D/SQ FL v v v e e e e e e e e e e e e e e a570

a, radians . . . . . v e e e e e e e e e e e e e e e e e e e 0.09
B, radians . . . . . . . . . . 0 e e e e e e e e e e e e e 0.15
p, radians/sec . . . . . . . . i 00 e e e e e e e e e e 16.75
a, radians/sec . . . . . v e e e e e e e e e e e e e e e 2.10
r, radians/sec . . . . . . 0 . 0 4 e e e e e e e e e e 0.01
D, radians/sec . . . 4 . 4 e v e e e e e e e e e e e e e -282

q, radians/sec® . . . . . . 4 e v e e e e e e e e e e s .. =382
P, Tadians/sec® . . . v v 4 e e e e e e e e e e e e . =1T702

8average values from 39 seconds to 45 seconds on flight record.

TABLE V
INITIAL CONDITIONS FOR SIMPLIFIED EQUATIONS

M i s e e e et e e e e e e e e e e e e e e e e e e e e e e ap .25
V, T£/8€C +« v v v v v e et e e e e e e e e e e e e e e e ... 82,100
Uoo, 1B/8Q £t v v v v i e e e e e e e e e e e e e e e e e a570

a, radians . . . . 0 e . v e e e e e e e e e e e e e e e e e 0.09
B, radians . . . . . . . o 0 v . o e e e e e e e e e e e e 0.15
P, radians/Sec . . 4 4 v . e e e e e e e e e e e e e e e e 12.2
D, radians/sec? . . . . . v v i e e e e e e e e e e e e -242

8‘!hns-rea,ge values from 39 seconds to 45 seconds on flight record.
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Y, Cy

Relative wind

Figure 1.- Body-axis system. Arrows indicate positive directions.
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(a) Planform view of rocket model.

Figure 5.- Photographs of models.
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Figure 4.- Helium-gun model. L-59-489.1
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(b) Altitude.

Figure 6.- Variations of free-stream dynamic pressure and altitude with
Mach number for the rocket model.
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Figure 8.- Continued.
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Figure 12.- Variations of the static stability derivatives in pitch with

Mach number at zero angle of attack as determined from wind-tunnel
tests, flight test, and linearized theory.

CONFIDENTIAL



[ ] o @ L ] [ X ] [ ] L X J eoee 200 020 00008 000 S000 o8
[ ] e 890 0 O [ N L s @ [ ] L ] L ] [ ] [ ]
* ® & ¢0 €& L ] [ ] L ] [ 2] .0 L] [ X X J L ] [ X ) L ] [ ]
L] * e * @ [ [ XN X ] [ ] . [ [ ] [ ] L ] [}
e e 1 4 o008 P00 O [ I X X ) [ AN} o0 @ P86 0000 090
CONFIDENTIAL 43
E E e
ooz Bt e e "
GY 0 = =i E-
-.002 [ EHiE s e e MR e me B e SR e ) : =
e ST A i
sSaks) i ¥ e ¥ goss “He ppes T jhana ol
- .00l EEE REEEE) i S et
30,0 30,1 30.2 30.3
t, sec
(a) Total side-force coefficient.
J00k -
.002 i
e 6 ot

30,1 30.2 30.3
t, sec
(b) Total yawing-moment coefficient.

30l

o

Cn 0
-.002
- .00k
30,0
0 T
C;
-.0001 EH

Figure 13.- Time histories of Cy,

(c) Total rolling-moment

30,2 30.3
t, sec
coefficient.
Cn, and C;. M=~ 3.k,

CONFIDENTIAL



(X X J
»
.

Lk

[ )
[ 2
.

T

T

!

1

T

.006

inm|

in}

I nEi
T
I
T

1T
117

T

.00l

M= 3.4,

T

11

I
L

.002

1T

Ine;

In

m

with CY .

T

i

s @

2INT

' 6}

Tt
7

-

T
1T

-

7T
1T

1

13

.003 T
001

[ SRSES BRORS DS

-.002

CONFIDENTTIAL

Ina

-.004

Ine

Figure 14%.- Variation of Cj

™T
by

6

-.00

-.002
"‘.003



20

[ ] * @ L] [ ] [ X ] [ X X ] [ X X ) *0® ooece
[ ] ® o0 & © * o L J e © * [ ] L ]
[ ] e o "o 9 [ ] [ ] [ [ X ] L X ) [ ] [ X K ]
[ ) L] [ ) e & o0 * [ ] * [
[ X ] * ® oo 00ee [ ] ® D00 [ X ¥ ] [ X ¥ I ]
CONFIDENTIAL
[T
(@}
N
o
(]
O
<$ A fl =
x o
(g_‘ N\
(39 \
\ \ -
o
N\
(qV]
(o]
N
-
(@]
N
o
[ ]
[w]
N\
N
o
[aV]

Sa (o0] W0 nn =F N qY] ~

opng prdury

CONFIDENTIAL

t, sec

M=~ 3.4,

Figure 15.- Amplitudes of © and Cy as a function of time.
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Figure 16.- Variations of the static stability derivatives in yaw with

Mach number at zero angle of sideslip as determined from wind-tunnel
tests, flight test, and linearized theory.
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coefficients with Mach number at approximately zero angle of
attack.
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Figure 19.- Variations of total-force and total-moment coefficients
with time. M = 2.3.
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Figure 19.- Concluded.
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Figure 20.- Variations of total-force and total-moment coefficients
with time. M = 1.8.
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Figure 21.- Variations of the amplitudes and ranges of roll rates with
Mach number for the rocket model.
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Figure 22.- Comparisons of the angular motions obtained from the flight
tests and from the analog investigation near Mach number 2.
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Figure 22.- Continued.

(¢) Analog motions.
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(d) Analog motions.

Figure 22.- Concluded.
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Figure 23.- Angular motions from the simplified equations of motion.
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