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TECHNICAL MEMORANDUM X-663 

INVESTIGATION OF THE LOW-SUBSONIC STABILITY AND CONTROL 

CHARACTERISTICS OF A 0.34-SCALE FREE-FLYING MODEL OF 

A MODIFIED HALF'-CONE REENTRY vERICLE:* 

By James L. Hassell, Jr., and George M. Ware 

SUMMARY 

An invest igat ion of the low-subsonic s t a b i l i t y  and cont ro l  charac- 
t e r i s t i c s  of a 0.34-scale f ree-f lying model of a modified half-cone reen- 
t r y  vehicle having a 13' blunted semiapex angle has been made i n  the 
Langley fu l l - sca l e  tunnel. The longi tudinal  s t a b i l i t y  charac te r i s t ics  
were considered t o  be sa t i s f ac to ry  f o r  a l l  except the  highest  angle-of- 
a t tack  f l i g h t  conditions covered i n  the t e s t  program. A t  angles of 
a t tack  between about 27O and 36O,  the  s t a b i l i t y  varied from neut ra l  t o  
s l i g h t l y  unstable. Improved s t a b i l i t y  w a s  obtained a t  these higher angles 
e i t h e r  by increasing the span of the  horizontal  t a i l s  o r  by increasing 
the area of the trimer f laps .  The l a t e r a l  s t a b i l i t y  charac te r i s t ics  were 
generally sa t i s f ac to ry  up t o  an angle of a t tack  of about 24'. A t  higher 
angles of a t tack  there w a s  a l i g h t l y  damped Dutch roll osc i l l a t ion .  
simple r o l l  damper caused the Dutch roll osc i l l a t ion  t o  become very w e l l  
damped a t  a l l  t es t  angles of attack. Sa t i s fac tory  longi tudinal  and 
la teral  control  charac te r i s t ics  were obtained a t  low and moderate angles 
of a t tack  when both the basic  horizontal  ta i ls  and trimmer f l a p s  were 
used together f o r  control  and when the l a t e r a l  control  system included a 
je t - reac t ion  yaw control.  
out  the adverse yawing moments of the roll control  system. A t  higher 
angles of a t tack  increased control  siirface area w a s  required f o r  satis- 
fac tory  cont ro l  charac te r i s t ics .  

A 

The yaw control  w a s  found necessary t o  balance 

DITRODUCTION 

A s  a pa r t  of an overa l l  research program being conducted by the 
National Aeronautics and Space Admin:lstration, invest igat ions have been 
made t o  evaluate by means of f ree-f lying models the dynamic s t a b i l i t y  
and cont ro l  charac te r i s t ics  of var i0 .x  reentry vehicles during the sub- 
sonic portion of the f l i g h t  p r io r  t o  landing. One such invest igat ion 
of a l if t ing-body reentry configuration having low l i f t -d rag - ra t io  char- 
a c t e r i s t i c s  has been reported i n  reference 1, and t h i s  configuration had 

* T i t l e ,  Unclassified. 
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a blunted 30° semiapex angle. 
ac te r i s t . i cs  of t h i s  configuration, i t s  landings must be accomplished w i t h  
the use of a parachute. 
l i f t ing-body configuration, which has a 13' blunted semiapex angle (see 
r e f .  2). 
should permit more o r  l e s s  conventional unpowered landings similar i n  
some respects t o  those of the X-15 research airplane (see re f .  3 ) .  
form of glide-landing capabi l i ty  (see, f o r  example, re f .  4) appears t o  be 
desirable  f o r  the more ref ined p i lo ted  reentry vehicles i n  t h a t  the selec- 
t i on  of a landing s i t e  plays a r a the r  important pa r t  i n  the successful 

Because of the low-lift-drag-ratio char- 

The present invest igat ion deals with another 

This vehicle has a considerably higher l i f t -d rag  r a t i o  which 

Some 

completion of the o r b i t a l  f l ight mission. 

scale  tunnel t o  determine the low-subsonic f l i g h t  charac te r i s t ics  of the 
model over an angle-of-attack range from about 15' t o  3 5 O ,  and force 
t e s t s  t o  determine the s t a t i c  s t a b i l i t y  and control  charac te r i s t ics  over 
an angle-of-attack range from 00 t o  90°. 
t e s t s  t o  evaluate the e f f ec t s  of a r t i f i c i a l  s t ab i l i za t ion  i n  r o l l  On the 
dynamic lateral s t a b i l i t y  charac te r i s t ics .  
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The present invest igat ion included f l i g h t  t e s t s  i n  the Langley f u l l -  

The invest igat ion a l so  included 

A l l  longi tudinal  aerodynamic data are  referred t o  the wind axes, 

Both longi tudinal  and l a t e r a l  data are  referred t o  a moment 
and the :Lateral aerodynamic data are  re fer red  t o  the body axes (see 
f i g .  1). 
center  (corresponding t o  the center  of grav i ty  of the f l i g h t - t e s t  model) 
which i s  located a t  55 percent of the body length af t  of the nose (44 per- 
cent of the mean geometric chord) and 7 percent of the body length below 
the basic-cone center  l i ne .  All measurements are  reduced t o  standard 
coef f ic ien t  form and are  presented i n  terms of the following symbols: 

b wing span ( m a x i m u m  l a t e r a l  dimension of the basic body), f t  

- 
C mean geometric chord, f t  

FD dmg coeff ic ient ,  - 
CD ss 

CL 

MX 
qSb 

rolling-moment coeff ic ient ,  - 

FL 
qs 

l i f t  coeff ic ient ,  - 

pitching-moment coeff ic ient ,  
qsc Cm 
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pitching-moment cont ro l  effect iveness  parameter, per deg of 
cont ro l  def lec t ion  

yawing-moment coeff ic ient ,  'L 
qSb 

side-force coef f ic ien t ,  - FY 
qs 

drag, l b  

l i f t ,  l b  

s ide force,  l b  

moment of i n e r t i a  about X body axis,  s lug- f t  2 

product of i ne r t i a ,  s lug- f t  2 

moment of i n e r t i a  about Y body axis,  s lug- f t  2 

moment of i n e r t i a  about Z body axis,  s lug- f t  2 

radius of gyration about X body axis,  f t  

radius  of gyration about Y body axis, f t  

radius  of gyration about Z body axis, f t  

product-of - i n e r t i a  parameter, f t2 

body length (excluding cont ro l  surfaces) ,  f t  

l i f t - d r a g  r a t io ,  - CL 
CD 

mass, slugs 

r o l l i n g  moment, f t - l b  

pi tching moment, f t - l b  

yawing moment, f t - l b  
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r o l l i n g  angular velocity,  radians/sec 

free-stream dynamic pressure, lb/sq f t  

radius, i n .  

wing area  (body planform area, excluding control  surfaces),  
sq  f t  

f r e e  - s tream velocity,  f t  /sec 

weight, l b  

body reference axes unless otherwise noted 

angle of a t tack,  deg 

angle of s ides l ip ,  deg 

inc l ina t ion  of pr inc ipa l  axis of i ne r t i a ,  deg 

azimuth angle, deg 

angle of bank, deg 

m r e l a t i v e  dens i ty  fac tor ,  - 
PSb 

mass densi ty  

d i f f e r e n t i a l  
a i lerons,  

of air, slugs/cu f t  

def lect ion of horizontal  t a i l s  when used as 
- $L, deg 

def lec t ion  of horizontal  t a i l s  when def lected together f o r  

6hR + 6hL, deg 
2 

p i t ch  control,  

def lec t ion  of e i t h e r  trail ing-edge trimmer f lap,  posi t ive 
f o r  t r a i l i n g  edge down (neu t r a l  posi t ion defined as that 
posi t ion where f l a p  i s  tangent t o  sloped upper surface 
of body), deg 

def lec t ion  of e i t h e r  horizontal  t a i l ,  posi t ive f o r  t r a i l i n g  
edge down (neu t r a l  posi t ion defined as t h a t  posi t ion where 
chord l i n e  of surface i s  p a r a l l e l  t o  basic-cone center  
l i n e ) ,  deg 

L 
1 
a 
3 a 
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d i f f e r e n t i a l  def lec t ion  of trail ing-edge trimmer f l a p s  when 
6fR - 6fL,' deg used f o r  roll control, 

def lec t ion  of trail ing-edge trimmer f l a p s  when def lected 

7 deg 
'fR + 'fL 

2 
together f o r  p i tch  control,  

acY 
aa -9 per deg 

, per radian 

, per radian 

a(%) 
ACy,ACn,ACz incremental values of l a t e r a l  coef f ic ien ts  due t o  -20' 

d i f f e r e n t i a l  def lec t ion  of surfaces used f o r  l a t e r a l  
control 

Subscripts:  

L l e f t  

max maximum 

R right 

MODEL AND APPARATUS 

The 0.34-scale model used i n  t h i s  invest igat ion w a s  constructed by 
f i t t i n g  a t h i n  molded f i b e r  g lass  s h e l l  ( the  conical  underside) t o  a s l ab  
of ba l sa  wood (the f l a t t ened  upper surface) .  This configuration provided 
the r e l a t i v e l y  l ightweight model required f o r  the free-f l i g h t  technique 
employed i n  t h i s  invest igat ion.  Photographs of the model a re  presented 
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i n  f igure 2, and a three-view drawing of the model, which had a blunted 
1 3 O  semiapex angle, i s  presented i n  f igure  3. 
geometric cha rac t e r i s t i c s  of the model a re  compared with the estimated 
values f o r  the fu l l - s ca l e  configuration i n  tab le  I. The model w a s  equipped 
with a p a i r  of f ixed clipped d e l t a  v e r t i c a l  t a i l s  located a t  the outermost 
edges of the top surface and a pa i r  of all-movable clipped d e l t a  horizontal  
ta i ls  (elevons} located outboard of the v e r t i c a l  ta i ls .  
used on the v e r t i c a l  and horizontal  t a i l s  are  shown i n  f igures  4(a) and 
4(b). In  addition, the model w a s  equipped with a pa i r  of trimmer f l a p s  
located a t  the t r a i l i n g  edge of the f l a t t ened  upper surface, which were 
a l so  employed as elevons. 
f laps  are  shown i n  f igures  4(c) and 4(d). 
w a s  l imited t o  t h a t  a rea  which could be folded f l a t  against  the  base of 
the vehicle ( f i g .  4 (d) ) .  The model d id  not have a canopy. 

The scaled-up mass and 

Spanwise extensions 

Various chordwise modifications t o  the trimmer 
The maximum area of these f l a p s  

For the f l ight  tests, the controls  w e r e  operated by the p i l o t s  by 
means of f l icker- type ( f u l l  on o r  o f f )  pneumatic servomechanisms which 
were actuated by e l e c t r i c  solenoids. 
t a i l s  and the trail ing-edge trimmer f l a p s  were def lected d i f f e r e n t i a l l y  
f o r  r o l l  cont ro l  and together f o r  p i tch  control.  Inasmuch as the model 
w a s  not equipped with an aerodynamic rudder control, d i r ec t iona l  con- 
t r o l  w a s  provided by means of a je t - reac t ion  yaw-control system through- 
out  most of the t e s t  program. This system provided a maximum yawing 
moment of k5  foot-pounds f o r  yaw control,  which would correspond t o  
values of ACn from about kO.016 t o  kO.025 f o r  the range of dynamic 
pressures covered i n  the f l i g h t  t e s t s .  
was provided by a simple r a t e  damper. 
w a s  the  sensing element, and the s igna l  w a s  fed in to  a servoactuator 
which def lected e i t h e r  o r  both s e t s  of elevons i n  proportion t o  r o l l i n g  
velocity.  
t i ons  resu l t ing  from the r a t e  s ignal .  

Both the all-movable horizontal  

A r t i f i c i a l  s t ab i l i za t ion  i n  r o l l  
An air-driven r a t e  gyroscope 

The manual cont ro l  w a s  superimposed on the control  deflec- 

Although t h i s  configuration i s  not intended t o  be powered a f t e r  
reentry in to  the atmosphere, it w a s  necessary t o  provide th rus t  f o r  the 
purpose of conducting l e v e l  f l i g h t  t e s t s  i n  the Langley fu l l - sca l e  tun- 
nel .  Thrust w a s  provided by compressed air  supplied through a f l ex ib l e  
hose t o  a nozzle a t  the rear of the model. This nozzle w a s  a l ined with 
the model center  of gravi ty  t o  minimize the e f f e c t s  of t r i m  change due 
t o  t h r u s t  during the f l i g h t  t e s t s .  

S t a t i c  force t e s t s  were conducted i n  a low-speed tunnel with a 
12-foot octagonal t e s t  sect ion a t  the Langley Research Center with the 
use of a sting-type support system and a six-component i n t e rna l  s t r a in -  
gage balance. 
f o r  tunnel blockage e f f ec t s .  In order t o  determine these tunnel  block- 
age corrections,  sample s t a t i c  t e s t s  were made with the same model i n  
the open-throat t e s t  sect ion of the Langley fu l l - sca l e  tunnel with s i m -  
i l a r  equipment. The f l i g h t  invest igat ion w a s  conducted i n  the t es t  

Al l  aerodynamic da ta  obtained i n  t h i s  tunnel  were corrected 
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sect ion of the Langley fu l l - sca l e  tunnel with the t es t  setup i l l u s t r a t e d  
i n  f igure  5 .  The f l i g h t - t e s t  equipment and technique are  described i n  
detai l  i n  reference 5.  

TESTS 

Fl ight  Tests 

F l igh t  t e s t s  were made t o  study the  dynamic s t a b i l i t y  and cont ro l  
cha rac t e r i s t i c s  of t he  model f o r  a center-of-gravity posi t ion of 0.44C 
over an angle-of-attack range from about l5O t o  35'. 
conditions a def lec t ion  of about +loo w a s  used f o r  each surface employed 
f o r  roll cont ro l  (6, or 6fa = +zoo), and a def lec t ion  of +8O w a s  used f o r  

each surface employed f o r  p i t ch  control .  In  the course of the  investiga- 
t ion ,  the e f f e c t s  of various modifications t o  the aerodynamic surfaces 
(see f i g .  4) on the general  f l i g h t  cha rac t e r i s t i c s  were evaluated. Tests 
were a l so  made t o  determine the  e f f e c t s  of a r t i f i c i a l  damping i n  r o l l  
on the l a t e r a l  s t a b i l i t y  and cont ro l  charac te r i s t ics .  The model could 
not be tested a t  scale  weight because of tunnel l imitat ions;  hence the  
mass cha rac t e r i s t i c s  do not represent those estimated f o r  the fu l l - sca l e  
vehicle  (see table I). 

For most f l i g h t  

The model behavior during f l i g h t  w a s  observed by the p i t c h  p i l o t  
located at  the  s ide of the t es t  sect ion and the roll and yaw p i l o t  located 
i n  the +ear of the t e s t  section. The r e s u l t s  obtained i n  the f l i g h t  
tests were pr imari ly  i n  the  form of qua l i ta t ive  ra t ings  of f l i g h t  behav- 
ior based on pilot opinion. Motion-picture records obtained during the 
tests were used t o  ve r i fy  and co r re l a t e  the ra t ings  f o r  the different 
f l i g h t  conditions.  

Force Tests 

In  order  t o  a i d  i n  the  in t e rp re t a t ion  of the f l i g h t - t e s t  resu l t s ,  
force t e s t s  were made t o  determine the s t a t i c  s t a b i l i t y  and cont ro l  
parameters of the  f l i g h t - t e s t  model. All force t e s t s  were made a t  a 
dynamic pressure of 5.2 pounds per square foot ,  which corresponds t o  an 
airspeed of about 66 f e e t  per second a t  the standard sea- level  conditions 

6 and t o  a tes t  Reynolds number of about 2 .1  X 10 based on'the mean geo- 
metric chord of 4.93 f e e t .  

The s t a t i c  longi tudinal  s t a b i l i t y  and control  tests were made over 
an angle-of-attack range from 00 t o  90° f o r  the basic  configuration w i t h  
controls  neutral ,  w i t h  the horizontal  t a i l s  and trimmer f l a p s  removed, 
and with a l l  t a i l s  and cont ro l  surfaces removed (body alone) .  Additional 
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t e s t s  were made t o  determine the t r i m  conditions over an angle-of-attack 
range from 00 t o  a t  l e a s t  40° w i t h  various se t t i ngs  of the all-movable 
horizontal  t a i l s  and trimmer f l aps  and w i t h  various modifications t o  
these control  surfaces.  

The var ia t ions  of the lateral  force and moment coef f ic ien ts  w i t h  
s i d e s l i p  angle were measured over an angle-of-sideslip range from -20' 
t o  200 f o r  various angles of a t tack  from Oo t o  goo f o r  the basic  con- 
f igura t ion  w i t h  controls  neu t r a l  and f o r  the body alone. The l a t e r a l  
control  effect iveness  of the basic  configuration w a s  measured over an 
angle-of-attack range from 0' t o  90' f o r  various se t t i ngs  of the a l l -  
movable horizontal  t a i l s  and trimmer f l a p s  and over an angle-of-attack 
range from 00 t o  40° f o r  the configuration w i t h  modified horizontal  
t a i l s .  

FORCE-TEST RESULTS AND DISCUSSION 

S t a t i c  Longitudinal S t a b i l i t y  and Control 

The s t a t i c  longi tudinal  s t a b i l i t y  and control  cha rac t e r i s t i c s  of 
the model over the angle-of-attack range from Oo t o  90' are  presented 
i n  f igure  6 f o r  the  body alone, the  body with v e r t i c a l  ta i ls ,  and the 
basic configuration w i t h  controls  neutral .  These data indicate  tha t  
the  model, which w a s  general ly  stable up t o  an angle of a t tack  of about 
300, had an unstable break i n  the  pitching-moment curve near m a x h u m  
l i f t .  This break w a s  r e l a t i v e l y  unaffected by the presence of the ver- 
t i c a l  o r  horizontal  ta i ls .  The model w a s  s t a t i c a l l y  s tab le  again above 
angles of a t tack  of 600. The m a x i m u m  L/D value of 5.2 f o r  the basic 
configuration with controls  neu t r a l  occurs a t  the t r i m  angle of a t tack  
of about 30 ( CL 0.33). 

Changes i n  longi tudinal  trim may be obtained e i t h e r  by def lect ing 
the  basic  horizontal  ta i ls  together, by def lec t ing  the basic trimmer 
f l aps  together, o r  by a combination of the  two. 
longi tudinal  aerodynamic cha rac t e r i s t i c s  of def lect ing the horizontal  
t a i l s  and the trimmer f l a p s  a re  shown i n  f igures  7 and 8, respectively.  
A comparison of these two f igures  indicates,  as expected, that  f o r  a 
given def lec t ion  angle the trimmer f l a p s  provided more than twice the 
pi tching moment of the horizontal  tai ls  (as a r e s u l t  of the l a rge r  area 
and moment arm of the trimmer f l a p s ) .  Also, the reduction i n  L/D due 
t o  t r i m  i s  less f o r  the trimmer f l a p s  than f o r  the horizontal  ta i ls .  

The e f f e c t s  on the  

In  order  t o  provide b e t t e r  p i t ch  control, various modifications . 
were made t o  both the horizontal  t a i l s  and the trimmer f l a p s  (see f i g .  4) .  
The e f f e c t s  of these modifications on the longi tudinal  cha rac t e r i s t i c s  
are presented i n  f igures  9 t o  11. The r e s u l t s  of these t e s t s  along w i t h  
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the r e s u l t s  f o r  the basic  cont ro l  surfaces from f igures  7 and 8 are 
summarized i n  t ab le  I1 f o r  t r i m  angles of a t tack  of 200 and 30'. 
general, these r e s u l t s  indicate  that  appreciable improvement i n  the 
pitch-control effect iveness  can be obtained by increasing the  area of 
the trimer f l a p s  with the  use of chordwise extensions, but l i t t l e  o r  
no improvement w a s  obtained with spanwise extensions t o  the hor izonta l  
t a i l s  ( r e f e r  t o  table 11). 
trimmer f l a p s  provided some improvement i n  the longi tudinal  s t a b i l i t y  
cha rac t e r i s t i c s  (see tab le  I1 and f i g s .  9 and l l ( a ) )  whereas the span- 
w i s e  extensions t o  the horizontal  tai ls  caused a loss of s t a b i l i t y  between 
angles of a t t ack  of 5 O  and 10' (see f i g .  10). It should be noted t h a t  
only the base-area trimmer-flap modification could provide s t a t i c  lon- 
g i tud ina l  s t a b i l i t y  a t  the t r im angle of a t tack  of 30° (see f i g .  l l ( a )  
and r e f e r  t o  table 11). 
value of about 6.0 i s  obtainable with the  base-area trimmer f l aps .  
similar value of 
s ion t o  the hor izonta l  tai ls  and chordwise extension t o  the  trimmer f l a p s  
(see f ig .  lo), but the low-angle-of-attack marginal s t a b i l i t y  charac- 
t e r i s t i c s  of t h i s  configuration may preclude the usefulness of t h i s  
modification. 

In  

Also, the chordwise modifications t o  the 

The r e s u l t s  a l s o  indicate  tha t  an (L/D),= 
A 

(L/D)m, w a s  a l so  obtained with the spanwise exten- 

S t a t i c  Lateral S t a b i l i t y  and Control 

The s t a t i c  lateral  s t a b i l i t y  data f o r  the body alone and the basic 
configuration with controls  neu t r a l  are presented i n  f igure  12 as the  
va r i a t ion  of the coef f ic ien ts  CY, Cn, and C z  w i t h  angle of s i d e s l i p  
f o r  various angles of a t t ack  from 0' t o  90°. 
the lateral  force and m o m e n t  coef f ic ien ts  w i t h  j3 w a s  reasonably l i n e a r  
over most of the angle-of-attack range f o r  a s i d e s l i p  range of at  least 

and horizontal-tail modifications only a t  angles of s i d e s l i p  of +5O f o r  
an angle-of-attack range from 00 t o  40°. 
of the coef f ic ien ts  a t  s i d e s l i p  angles of +50) are summarized i n  f i g -  
ure 13 as the var ia t ion  with angle of a t tack  of the side-force parameter 
Cyp, the d i r e c t i o n a l - s t a b i l i t y  parameter Cnp, and the  effect ive-dihedral  

parameter C z p .  

a t  an angle of a t tack  of Oo, but tha t  the  d i r ec t iona l  s t a b i l i t y  increased 
with increasing angle of a t tack  t o  f a i r l y  la rge  pos i t ive  values a t  and 
above the angle corresponding t o  maximum l i f t  (a 
had large values of pos i t ive  e f f ec t ive  dihedral ( -Czp)  over the e n t i r e  

angle-of-attack range, with the minimum value occurring a t  the angle of 
a t tack  of maximum Cnp. The addition of the t a i l s  and cont ro l  surfaces, 

which m a k e  up the basic  configuration, provided d i r ec t iona l  s t a b i l i t y  and 

Since the va r i a t ion  of 

lateral  s t a b i l i t y  data were obtained f o r  the  model with ve r t i ca l -  

A l l  these da t a  (based on values 

These da t a  indicate  t h a t  the  body alone w a s  unstable 

3 5 O ) .  The body alone 
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increased e f f ec t ive  dihedral  i n  the low angle-of-attack range and a l s o  
grea t ly  increased d i r ec t iona l  s t a b i l i t y  i n  the  maximum l i f t  region. 
the intermediate angle-of-attack range (a 
most of t h e i r  s t a b i l i z i n g  e f f ec t ,  probably because they move in to  an 
adverse sidewash flow. The addition of spanwise extensions t o  the ver- 
t i c a l  t a i l s  provided some increase i n  d i r ec t iona l  s t a b i l i t y  a t  the low 
angles of a t tack,  but had a s m a l l  adverse e f f e c t  a t  angles near 20'. 
The addition of spanwise extensions t o  the horizontal  t a i l s  produced an 
even l a rge r  adverse e f f e c t  on d i r ec t iona l  s t a b i l i t y  i n  the  intermediate 
angle-of-attack range. Neither of these t a i l  modifications had an 

I n  
near 20°) these surfaces lose  

appreciable e f f e c t  on c2p'  L 
1 
8 
3 
8 

The lateral  cont ro l  cha rac t e r i s t i c s  a re  presented i n  f igure  14 as 
the var ia t ions  with angle of a t tack  of the incremental l a t e r a l  force and 
moment coef f ic ien ts  due t o  d i f f e r e n t i a l  def lec t ion  of the various basic  
and modified cont ro l  surfaces.  These cont ro l  cha rac t e r i s t i c s  were deter-  
mined f o r  the same cont ro l  def lec t ions  used i n  the f l i g h t  invest igat ion.  
Data are presented i n  most cases for more than one neu t r a l  s e t t i n g  of 
the controls  i n  order t o  determine the e f f e c t  of longi tudinal  t r i m  on 
the l a t e r a l  cont ro l  cha rac t e r i s t i c s .  These r e s u l t s  f o r  the various com- 
binations and modifications of the cont ro l  surfaces are summarized i n  
t ab le  I11 f o r  longi tudinal  t r i m  at angles of a t tack  of 20° and 30'. 

For the angle-of-attack range between 0' and 40' and with zero 
longi tudinal  cont ro l  se t t ings ,  each of the  control-surface arrangements 
shows a reduction i n  ro l l -cont ro l  effect iveness  with increasing angle 
of a t tack .  Also, between angles of a t tack  of loo and 40° any combina- 
t i on  of controls  u t i l i z i n g  the basic hor izonta l  t a i l s  showed very rapidly 
increasing adverse yawing moments with increasing angle of a t tack  
( f i g s .  14(a) and 14(b) ) .  Spanwise extensions t o  the hor izonta l  t a i l s  
caused even more severe adverse yawing moments a t  the  lower angles of 
a t tack  ( f i g .  1 4 ( c ) ) .  The cont ro l  da ta  shown i n  f igure  14(d) f o r  only 
the base-area trimmer f l a p s  def lected indicate  smaller values of adverse 
yawing moment, a f a c t  which would seem t o  indicate  t h a t  the large values 
of adverse yawing moment with the o ther  cont ro l  arrangements were l a rge ly  
due t o  the def lec t ion  of the  horizontal  tai ls .  The roll cont ro l  e f fec-  
t iveness  w a s  generally improved over the angle-of-attack range, and 
favorable yawing moments were obtained a t  the lower angles of a t t ack  
when the various surfaces were i n i t i a l l y  def lected with t r a i l i n g  edges 
upward (6, o r  6fe = -20'). 

FLIGHT-TEST RESULTS AND DISCUSSION 

c 

A motion-picture film supplement covering the f l i g h t  t e s t s  has 
been prepared and i s  avai lable  on loan. A request card form and a 
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descr ipt ion of the film w i l l  be found a t  the back of t h i s  paper, on 
the page immediately preceding the abs t rac t  page. Table I V  provides 
descr ipt ive remarks and numerical data  corresponding t o  each of the 
f l i g h t  t e s t s  shown i n  t h i s  f i lm supplement. This tab le  a l so  serves as 
a convenient summary of r e s u l t s  f o r  the e n t i r e  f l i g h t - t e s t  invest igat ion.  

In t e rp re t a t  ion of Flight-Te s t Results 

The primary purpose of these t e s t s  w a s  t o  evaluate the dynamic 
s t a b i l i t y  and cont ro l  cha rac t e r i s t i c s  of the proposed l i f t ing-body 
reentry configuration f o r  the  subsonic phase of the f l i g h t  p r i o r  t o  
landing. Inasmuch as the scaled-up mass and i n e r t i a  cha rac t e r i s t i c s  
of the tes t  model are  low i n  comparison with the estimated fu l l - sca l e  
values ( t ab le  I), it m i g h t  be expected from the analysis  of reference 1 
tha t  the l a t e r a l  o s c i l l a t i o n  of the  f l i g h t - t e s t  model would be more 
l i g h t l y  damped and i t s  period would be considerably longer i f  it were 
possible t o  simulate the estimated mass and i n e r t i a  cha rac t e r i s t i c s .  
Also, since the radii of gyration of the model are of approximately the 
r igh t  order  of magnitude (although the moments of i n e r t i a  are  too low), 
these f l igh t  t e s t s  represent a case of reduced r e l a t i v e  dens i ty  fac tor .  
It has been demonstrated i n  the r e s u l t s  of reference 6 tha t  f o r  f ixed 
values of the r a d i i  of gyration the moments of i n e r t i a  increase i n  d i r e c t  
proportion t o  the  increase i n  p, while the ro l l i ng  response increases 
i n  d i r e c t  proportion t o  the square root  of the increase i n  p. This 
increase i n  r o l l i n g  response is  caused by the higher ve loc i ty  necessary 
f o r  f ly ing  a t  the  same l i f t  coef f ic ien t  w i t h  the  increased value of p. 
Both the increased moments of i n e r t i a  and the increased r o l l i n g  response 
contribute t o  a tendency t o  overcontrol.  
possible t o  conduct these tests with the proper value of p 
approximately 3.7 times heavier),  the  cont ro l  response cha rac t e r i s t i c s  
would no doubt be much higher than those obtained. 

Therefore, i f  it had been 
(model 

Although the  model used i n  t h i s  inves t iga t ion  w a s  not equipped w i t h  
aerodynamic surfaces f o r  yaw control,  the e f f e c t s  of such a cont ro l  were 
simulated by using a je t - reac t ion  yaw control.  
a c t e r i s t i d s  presented i n  t ab le  I V  and throughout the sect ion e n t i t l e d  
"Flight-Test Results and Discussion" are therefore  representative of a 
system u t i l i z i n g  a rudder cont ro l  as w e l l  as the various elevon arrange- 
ments invest igated.  

The lateral  cont ro l  char- 

Longitudinal S t a b i l i t y  and Control 

The longi tudinal  s t a b i l i t y  cha rac t e r i s t i c s  of the model were con- 
sidered t o  be sa t i s f ac to ry  a t  least up t o  an angle of a t tack  of about 
240 and appeared t o  be general ly  unaffected by the various control-  
surface modifications. (See ra t ings  of longi tudinal  s t a b i l i t y  
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cha rac t e r i s t i c s  i n  t ab le  I V . )  
(condition A-1) varied from neu t r a l  t o  s l i g h t l y  unstable a t  angles of 
a t tack  from 24O t o  27O. 
angles of a t tack  e i t h e r  by increasing the span of the horizontal  t a i l s  
(condition El), by increasing the area of the trimmer f l aps  (condi- 
t i o n  F-l), or by a combination of both (condition E-1). 
longi tudinal  s t a b i l i t y  cha rac t e r i s t i c s  as determined from the f l i g h t  
tests were i n  good agreement with the s t a t i c  cha rac t e r i s t i c s  indicated 
i n  f igures  6 t o  11 f o r  the range of angles of a t tack  covered i n  the 
f l i g h t  invest igat ion.  

The s t a b i l i t y  of the basic  configuration 

Improved s t a b i l i t y  w a s  obtained a t  these higher 

In  general, the 

When the basic horizontal  t a i l s  and basic  trimmer f l aps  w e r e  used 
together f o r  p i t ch  control,  s a t i s f ac to ry  longi tudinal  control  charac- 
t e r i s t i c s  were obtained a t  the lower angles of a t tack  (a = 1 4 O  t o  24O, 
f l igh t  condition A - 1  of tab le  I V )  . 
control- surface area w a s  required for sa t i s f ac to ry  longi tudinal  control .  
This def ic iency of the basic controls  w a s  apparent when the model became 
moderately dis turbed because of gusts, and the basic p i tch  controls  were 
not powerful enough t o  recover from such disturbances. 
t h a t  a 1.9-inch chordwise extension t o  the t r i m e r  f l aps  used i n  con- 
junction w i t h  the basic  horizontal  t a i l s  w a s  a sa t i s f ac to ry  means f o r  
obtaining the  required increase i n  cont ro l  effect iveness .  Even w i t h  
t h i s  modification the  longi tudinal  cont ro l  cha rac t e r i s t i c s  were not 
s a t i s f ac to ry  a t  the  highest  tes t  angles of a t tack  (a = 31° 
f l i g h t  condition C-1). Apparently a much more e f fec t ive  p i tch  cont ro l  
w a s  needed t o  cor rec t  f o r  moderate gust disturbances w i t h  the  neu t r a l  
t o  moderately unstable s t a t i c  longi tudinal  s t a b i l i t y  above an angle of 
a t tack  of about 27O. In  support of t h i s  point, the  comparisons shown 
i n  table I1 indicate  t h a t  
provide adequate longi tudinal  cont ro l  a t  a t r i m  angle of a t tack  of 20' 
where the  model has a s t a t i c  margin of the order of 7 o r  8 percent c, 
whereas 
cont ro l  t o  contend w i t h  moderate disturbances due t o  gusts a t  a t r im 
angle of a t t ack  of yo where the s t a t i c  margin i s  zero. 

A t  higher angles of attack, increased 

It w a s  found 

t o  a = 3 6 O ,  

Cmg values of the order of -0.0025 t o  -0.0033 

- 
Cm6 values of the same order of magnitude do not provide enough 

Several  o ther  control-surface modifications were evaluated: 
ho r i zon ta l - t a i l  spanwise extensions used both with the basic trimmer 
f l aps  (condition El, t ab l e  I V )  and with the  1.9-inch chordwise exten- 
s ion t o  the basic  trimmer f l aps  (condition E-l), and f i n a l l y  the base- 
a rea  trimmer f l a p s  w i t h  the  bas ic  horizontal  t a i l s  inoperative (condi- 
t i o n  F-1) . 
with the base-area trimmer-flap modification (see f i g .  U(a )  and r e f e r  
t o  t ab le  11) w a s  no doubt the main reason for the  sa t i s f ac to ry  longi- 
t ud ina l  f l i g h t  cha rac t e r i s t i c s  at  angles of a t tack  as high as 33O, but  
the  f a c t  tha t  longi tudinal  cont ro l  effect iveness  w a s  maintained through- 
ou t  the angle-of-attack range w a s  a l so  a contr ibut ing fac tor .  

The improved high-angle-of-attack s t a t i c  s t a b i l i t y  obtained 

L 
1 
0 
3 
8 
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Latera l  S t a b i l i t y  and Control 

No r o l l  damping added.- The l a t e r a l  s t a b i l i t y  and cont ro l  char- 
a c t e r i s t i c s  of the basic  configuration with the  je t - reac t ion  yaw cont ro l  
operating were considered t o  be good a t  the lower angles of a t tack  
(a = 14' t o  a = 24O, condition A-1, t ab l e  IV). The model flew smoothly 
and w a s  easy t o  control,  and the IXrtch roll o s c i l l a t i o n  w a s  f a i r l y  wel l  
damped. Sustained flights were not possible w i t h  a i le rons  alone because 
of the la rge  adverse yawing moments due t o  a i le ron  def lec t ion  (see 
f ig .  14). It w a s  therefore  concluded t h a t  some form of rudder cont ro l  
having effect iveness  equal t o  the je t - reac t ion  yaw control  i s  necessary 
f o r  t h i s  vehicle  i n  order  t o  balance out  these adverse yawing moments. 
As the  angle of a t t ack  w a s  increased, lateral  cont ro l  became weaker and 
the o s c i l l a t i o n  became more l i g h t l y  damped. Throughout the t es t  angle- 
of-at tack range the Dutch r o l l  o s c i l l a t i o n  w a s  never unstable, and the  
motion w a s  not the kind which would cause the  p i l o t  much d i f f i c u l t y  i n  
t ha t  a f t e r  a disturbance it could e a s i l y  be damped out when su f f i c i en t  
lateral  cont ro l  w a s  avai lable .  A s  w a s  pointed out i n  the sec t ion  
e n t i t l e d  " In te rpre ta t ion  of Flight-Test Results, " the  e f f e c t s  of the low 
mass and moments of i n e r t i a  of the f l i g h t - t e s t  model are such t h a t  these 
r e s u l t s  probably indicate  b e t t e r  damping cha rac t e r i s t i c s  but worse l a t e r a l  
cont ro l  cha rac t e r i s t i c s  than would be obtained i f  the estimated mass and 
i n e r t i a  values were simulated. Improved lateral  cont ro l  w a s  obtained 
f o r  angles of a t t ack  up t o  about 31° by increasing the area of the trimmer 
f l a p s  (conditions C - 1  and F-l) ,  but no improvement w a s  brought about by 
increasing the span of the  horizontal  ta i ls  (conditions E l  and E-1). 
Improved Dutch roll damping w a s  obtained by increasing the span of the 
v e r t i c a l  ta i ls .  (Compare condition D-1 with condition A-1.  ) 

Roll damping added.- I n  general the addition of r a t e  r o l l  damping 
t o  improve the s t a b i l i t y  of the Dutch roll o s c i l l a t i o n  resu l ted  i n  con- 
s iderable  improvement i n  the lateral  f l i g h t  behavior. The f l i g h t s  were 
smoother and the  model w a s  e a s i e r  t o  cont ro l  than f o r  similar tes t  con- 
d i t i ons  without r o l l  damping added. The addi t ion of r o l l  damping caused 
the Dutch roll o s c i l l a t i o n  t o  become very wel l  damped a t  a l l  test  angles 
of a t tack.  
f o r  similar conditions with and without r o l l  damper.) 
these general ly  improved r e s u l t s  w a s  noted when r a t e  damping w a s  employed 
with the increased-span ho r i zon ta l - t a i l  and increased-chord trimmer-flap 
modification (condition E-2). 
and general  f l i g h t  behavior became worse. 
t h i s  r e s u l t  may be as follows: The roll damper i s  primarily intended t o  
produce a r o l l i n g  moment i n  response t o  r o l l i n g  ve loc i ty  with an alge- 
b ra i c  s ign opposing the d i rec t ion  of motion negative 

the  lateral cont ro l  surfaces produce t h i s  r o l l i n g  moment, a large yawing 
moment i n  response t o  r o l l i n g  ve loc i ty  

maximum f o r  the case with extensions on the horizontal  t a i l s  as indicated 

(Compare ra t ings  of Dutch roll cha rac t e r i s t j c s  i n  table I V  
One exception t o  

For t h i s  condition the lateral  cont ro l  
A possible explanation f o r  

~ 1 ~ ) .  But since ( 

b P >  
i s  a l so  produced and i s  
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by the da ta  of f igure  14(c) .  Large pos i t ive  values of Cnp can cause 

very poor l a t e r a l  f l i g h t  cha rac t e r i s t i c s  because of the onset of an 
aperiodic i n s t a b i l i t y .  (See r e f .  7. ) A s  indicated by the data  of f i g -  
ure 14(d), the  base-area trimmer f l a p s  produce l i t t l e  o r  no adverse 
yawing moments and consequently t h i s  problem should not be encountered 
w i t h  a cont ro l  and s t a b i l i z a t i o n  system u t i l i z i n g  these surfaces alone. 

CONCLUDING REMARKS 

The r e s u l t s  of the invest igat ion of the low-subsonic s t a b i l i t y  and 
control  cha rac t e r i s t i c s  of a 0.34-scale f ree- f ly ing  model of a l i f t i n g -  
body reentry configaration, which had a l 3 O  blunted semiapex angle, may 
be summarized as follows: 

L 
1 

3 
a 
a 

1. The longi tudinal  s t a b i l i t y  cha rac t e r i s t i c s  were considered t o  
be sa t i s f ac to ry  f o r  a l l  except the  highest  angle-of-attack t e s t  f l i g h t  
conditions (angles of a t tack  from 270 t o  so) where the s t a b i l i t y  varied 
from neu t r a l  t o  s l i g h t l y  unstable. Improved s t a b i l i t y  was obtained a t  
these angles e i t h e r  by increasing the span of the  horizontal  tai ls ,  by 
increasing the a rea  of the trimmer f laps ,  o r  by a combination of both. 

2. The lateral  s t a b i l i t y  cha rac t e r i s t i c s  were generally sa t i s f ac to ry  
except i n  the  higher angle-of-attack range (angles between 240 and 360) 
where there  w a s  a l i g h t l y  damped Dutch roll osc i l l a t ion .  A simple roll 
damper caused the Dutch r o l l  o s c i l l a t i o n  t o  become very wel l  damped a t  
a l l  t es t  angles of a t tack.  

3 .  Sat i s fac tory  longi tudinal  and lateral cont ro l  cha rac t e r i s t i c s  
were obtained a t  low and moderate angles of a t tack  (angles from 1 4 O  
t o  240) when both the  basic  horizontal  tai ls  and trimmer f l aps  were used 
together f o r  cont ro l  and when the l a t e r a l  cont ro l  system included a j e t -  
react ion yaw control .  
out the adverse yawing moments of the roll control  system. 
angles of attack, increased control- surface a rea  w a s  required f o r  satis- 
fac tory  longi tudinal  and lateral  cont ro l  charac te r i s t ics .  

The yaw cont ro l  w a s  found necessary t o  balance 
A t  higher 

Langley Research Center, 
National Aeronautics and Space Administration, 

-gley Air Force Base, Va. ,  October 17, 1961. 
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TABU I . . MASS AND GEOMETRIC CHARACTERISTICS OF MODEL 

Scale d-up 
mode 1 

values 

Body length. 2. f t  . . . . . . . . . . . . . . .  18.20 
Body span. b. f t  . . . . . . . . . . . . . . . .  8.98 

Weight. W. l b  . . . . . . . . . . . . . . . . .  1. 566 

19.85 

Planform area (excluding control surfaces). 
s. s q f t  . . . . . . . . . . . . . . . . . . .  114.9 

Wing loading. W/S. lb/sq f t  . . . . . . . . . .  13.63 
Mass. m. slugs . . . . . . . . . . . . . . . . .  48.70 
Relative density factor. p . . . . . . . . . . .  
Moment of inertia:  

Ix. slug-ft2 . . . . . . . . . . . . . . . . .  
Iy. slug-ft2 . . . . . . . . . . . . . . . . .  
Iz. slug-ft2 . . . . . . . . . . . . . . . . .  
Ixz. slug-ft  . . . . . . . . . . . . . . . .  2 

Rad i i  of gyration: +. f t  . . . . . . . . . . . . . . . . . . . .  

kXZ. s q f t  . . . . . . . . . . . . . . . . . .  
ky. f t  . . . . . . . . . . . . . . . . . . . .  
k p f t  . . . . . . . . . . . . . . . . . . . .  

Inc l ina t ion  of pr incipal  axis of iner t ia .  .. deg . . . . . . . . . . . . . . . . . . . .  

207 
1. 688 
1. 791 
. 114 

2.06 
5.89 
6.06 

-2.38 

-4.2 

Estimated 
ful l -scale  

values 

18.20 
8.98 

114.9 
5. 745 
50.00 

179.50 
73.16 

967 
4. 664 
4. 712 
-418 

2.32 
5.09 
5.12 

-2.28 

-6.3 

L 
1 
8 
3 
8 



2N 

= 30' I a t r i m  = 20° ' a t r i m  
L 
1 
8 

-0.130 -0.0031 0 -0.0023 

- 
-0.100 -0.0033 -0.063 -0.0033 

3 
8 

-0.074 

-0.074 

TABLE: 11.- SUMMARY OF LONGITUDINAL STABILITY AND CONTROL 

EFFECTIVENESS FOR TWO TYPICAL TRIM FLIGHT CONDITIONS 

-0.0026 0 -0.0027 

-0.0035 0 -0.0027 

Controls employed together  

Basic hor izonta l  t a i l s  

~~ ~ 

Basic trimmer f l a p s  

Trimmer f l a p s  with 1.9-inch 
chordwise extension 

Basic hor izonta l  t a i l s  i n  
combination with trimmer 
flaps w i t h  1.9-inch 
chordwise extension 

Horizontal t a i l s  w i t h  6-inch 
spanwise extension 

Horizontal  t a i l s  with 6-inch 
spanwise extension com- 
bined with trimmer f l a p s  
with 1.9-inch chordwise 
extension 

Base-area trimmer f l aps  

-0.071 I -0.0018 1 0 I -0.0020 

, 

COPFIDENTIAL 



Y. ...................... .e . 0 .  . 
.e. .e. mo e *  e ...... .......... ....................... s 0 .  . ........ * .  0 .  . e  

. c  * e  . . .  m e  0 .  
0 . . .... 

-~ ~ 

Basic horizontal tails combined 
with trimmer flaps with 1.9- 
inch chordwise extension 

Horizontal tails with 6-inch 
spanwise extension combined 
with trimmer flaps with 1.9- 
inch chordwise extension 
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0.012 -0.004 

TABIX 111.- SUMMARY OF L A W  CONTROL EFFECTIVE2WSS 

FOR TWO TYPICAL TRIM FLIGHT CONDITIONS 

0.01.8 

I 
Controls employed 
differentially 

Basic horizontal tails 3 

Base-area trimmer flaps 

%rim = 20° 

ACl 

0.016 

0.021 

0.014 

-0.013 0.021 1 
0.020 -0.040 

L 
1 
8 
3 
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P r o ~ e c t ~ o n  along tunnel 
vertical axis showing B Tunnet vertical 

projection along X body 0x1s 
showing 4, (4 = o )  Wind direction - 

Y pi 
Projection along 2 body axis 
showing +,( + = O )  

Tunnel vertical 
reference plane X 

Tunnel horizontal reference plane 

Wind direction 

Projection along Y body axis 
showing a ,  ( $I = rl, = 0 )  

Figure 1.- System of axes used. Longitudinal data are referred t o  wind 
axes, and l a t e r a l  da ta  are  referred t o  body axes. 
posi t ive d i rec t ions  of moments, forces, and angles. 

Arrows indicate  
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(a) Model with basic control surfaces. L-60-3l20 

Figure 2.- Photographs of O.34-scale model used in investigation. 
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(b) Model flying in test section of Langley full-scale tunnel. L-60-4166 

Figure 2.- Concluded. 
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Figure 3 .  - Three-view drawing of 0.34-scale model used in investigation. 
A l l  linear dimensions in inches. 
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I n 7  

Horizontal-tail extension 

Basic horizontal tad 

r 6 . 0 0 -  + 

(a) Horizontal-tail modification. (b) Vertical-tail modification. 

Trimmer-f lop 
extension 

< I4Oop 480  
.t ~p 1500 

(e) Trimmer-flap modification. 

- 36 26 

k 9 40 rl 

(d) Base-area trimmer-flap modification. 

Figure 4.- Vertical-tail, horizontal-tail, and trimmer-flap modifica- 
All linear dimensions are in inches. tions used in investigation. 
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Figure 5.- Sketch of test setup in Langley full-scale tunnel. 
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Configuration 

0 Body alone 
0 ~ o d y  plus verticol tails 
0 wy plus yerticol ond horizontol to118 

and trimmer flop (Be=Bte'O') 

6 .O 

4.0 
L 
D 
- 

2.0 

0 

.I 

0 
Cm 

-.I 

-. 2 

I .I 

I .o 

.9 

.E 

Figure 6.- Effect of model components on static longitudinal aerodynamic 
characteristics; P = Oo. 
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B e t  deg 
0 0 
0 - I O  
0 - 2 0  
A -30 

I 

0 
L 
D 
- 

- I  

0 I O  20 30 40 .I 0 -.I 

Figure 7.- Effect on static longitudinal aerodynamic characteristics of 
deflecting all-movable horizontal tails together for pitch control; 
basic configuration; €ife = Oo; p = Oo. 
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" 
0 I O  20 30 40 . I  

Figure 8. - Effect  on s t a t i c  longi tudinal  aerodynamic cha rac t e r i s t i c s  of 
def lec t ing  basic trimmer f l aps  f o r  p i tch  control; basic  configuration; 
6, = oo; p = 00. 
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Cm 

6e,deg 8fe,deg Trimmer-flop 
extension 

0 0 0 Off  
0 0 0 On 
0 0 -20 On 
A - 2 0  -20 On 

. I  

0 
L 
D 
- 

- . I  

3 IO 20 30 40 
a , d w  

0 -.I 0 I O  2 0  30 40 .I 

a ,  deg Crn 

Figure 9.- Effect of 1.9-inch chordwise extension of t r i m e r  f l aps  on 
longi tudinal  aerodynamic cha rac t e r i s t i c s  of model; p = 0'. 
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0 0  0 
0 0 -m 
0 -20 -20 

Figure 10.- Effect of horizontal-tail and trimer-flap deflection on lon- 
gitudinal aerodynamic characteristics of model with 6-inch spanwise 
extension on horizontal - tails and 1.9-inch chordwise extension on 
trimmer flaps; p = 0". 
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Figure 11.- Effec 
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(a) Horizontal ta i ls  on; 6, = 0'. 

t on s t a t i c  longitudinal aerodynamic charac 
ase-area trimmer f l a p s  f o r  p i t ch  control; p 
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(b )  Horizontal t a i l s  o f f .  

Figure 11. - Concluded. 
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CY 

Body alone Complete configuration 

(EL) u = 00 t o  u = 150. 

Figure 12. - S t a t i c  la teral  s t a b i l t t y  cha rac t e r i s t i c s  of the  bas ic  body 
alone and t h e  complete bas ic  configuration with cont ro ls  neutral .  
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b 20 
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0 35 

Body alone Complete configuration 

C Y  

(b) u = 20' to u = 35O. 

Figure 12. - Continued. 
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0 4 5  
v 5 0  
W 60 

Body alone Corn plete configuration 
I O  
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( c )  u = 40' to u = 60'. 

Figure E. - Continued . 
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Body alone 
-- Basic configuration 
- _ _ _ - - - -  Vertical-tail extension on 
--- Horizontal-tail extension an 

Figure 13.- Effec t  of t a i l  modifications on the s t a t i c  l a t e r a l  s t a b i l i t y  
der iva t ives  of mode 1. 
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38 

A CY 

(a) Basic horizontal  t a i l s  def lected d i f f e ren t i a l ly .  

Figure 14.- Incremental l a t e r a l  control  coef f ic ien ts  due t o  d i f f e r e n t i a l  
def lect ion of control  surfaces (10' t r a i l i n g  edge down on l e f t  sur- 
face o r  surfaces and 10' t r a i l i n g  edge up on r i g h t  surface or sur- 
faces);  p = 00. 
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(b) Basic horizontal  t a i l s  and t r i m e r  f laps  with 1.9-inch chordwis? 
extension both deflected d i f fe ren t ia l ly .  

Figure 14. - Continued. 
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Span extension 

Off 
On -- 

(c) Effect of 6-inch spanwise extensions on horizontal tails (trimmer 
flaps with 1.9-inch chordwise extensions and horizontal t a i l s  both 
deflected differentially); 6e = 6fe = 0'. 

Figure 14. - Continued. 
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(d) Base-area trimmer f l aps  deflected d i f f e r e n t i a l l y  with horizontal  
t a i l s  undeflected; Se = 0'. 

Figure 14. - Concluded. 
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