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SUMMARY 

S a i l s  having a de l t a  planform with a leading-edge sweep angle of 
55' and a span of about 8 inches were f lu t t e r ed  through a range of angle 
of at tack and dynamic pressure at  subsonic speeds and transonic speeds. 
Larger sails with a span of about 18 inches were tes ted  at  a Mach num- 
ber of 1.9. 
loca l  f l u t t e r  and f i l l - s a i l  f l u t t e r .  
s m a l l  percentage of the  t o t a l  sail area whereas full-sail f l u t t e r  
involved the whole sail. For a given s e t  of aerodynamic and s t ruc tu ra l  
conditions, f l u t t e r  was  found t o  occur when the angle of a t tack was  
reduced t o  a su f f i c i en t ly  low, posi t ive value. In  general, f l u t t e r  
occurred below an angle of a t tack of about 2O t o  4 O  at  very low dynamic 
pressures (10 lb/sq f t  t o  20 lb/sq f t )  and below about 10' i n  the high 
dynamic-pressure range (120 lb/sq f t  t o  200 lb/sq f t )  . 
at tack a t  f l u t t e r  varied rapidly with dynamic pressure i n  t h e  low 
dynamic-pressure range and approached a constant angle of a t tack i n  
the high dynamic-pressure range. No e f f ec t  of Mach nuniber could be 
determined. 
angle of a t tack at  which f l u t t e r  occurred and obscured the interpreta-  
t i on  of the r e su l t s  of t e s t s  designed t o  determine the  e f fec ts  of sail 
porosity and density. 
from a f l u t t e r  standpoint with a l imitat ion i n  the angle of a t tack.  

Two ty-pes of f l u t t e r  were encountered during the t e s t s ,  
Local f l u t t e r  w a s  confined t o  a 

The angle of 

The var ia t ion of the cauiber of the sails affected the 

This type of l i f t i n g  surface appears t o  be usable 

LNTRODUCTION 

The problem of finding a l igh t ,  controllable configuration for  
returning rocket booster stages and personnel capsules through the ea r th ' s  

* Ti t l e ,  Unclassified. 
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atmosphere has resul ted i n  a var ie ty  of proposals. 
is  the erectable structure;  t ha t  is, the l i f t i n g  surface i s  carr ied away 
from the ear th  i n  a collapsed condition t o  be erected pr ior  t o  reentry. 
One s t ructure  of t h i s  type i s  the sail,  w i t h  a l i f t i n g  surface of a 
woven fabr ic  or a membrane, which i s  characterized by low wing loadings 
and high values of l i f t  and drag per u n i t  weight. 
of reference 1 ( fo r  a two-dimensional sa i l )  indicate tha t  lift-drag 
ra t io s  i n  excess of 1 are possible. 

A suggested method 

The analyt ical  r e su l t s  

The sail, however, i s  sub.ject t o  a membrane type of f l u t t e r  which 
mus t  be considered when the conditions a t  which the  vehicles must operate 
along the  f l i g h t  boundary are determined. A "flag waving" or  "luffing" 
motion would be expected t o  occur when the loading on the sail  i s  not 
suff ic ient  t o  hold the  sa i l  i n  a t au t  a t t i tude .  This implies that, fo r  
a given s e t  of aerodynamic and s t ruc tura l  conditions, there would ex i s t  
an angle of a t tack below which a possibly dangerous f l u t t e r  condition 
m i g h t  occur. 
l o w  wing loading vehicle such as the  sail  indicates t ha t  operation a t  
very high angles of a t tack would be required a t  o rb i t a l  and hypersonic 
speeds but at low supersonic and transonic speeds operation a t  moderate 
angles of a t tack of the order of 10' would be required. 
required angles of attack occur D t  transonic and low supersonic speeds, 
it w a s  considered desirable t o  investigate the  l imitat ions i n  angle of 
a t tack imposed by the f l u t t e r  condition i n  t h i s  speed range. 

Consideration of t he  optimum reentry t r a j ec to r i e s  of a 

Since the  lowest 

This paper presents the  results of an experimental study of t he  
f l u t t e r  character is t ics  of a series of delta planform sails. Subsonic 
and transonic character is t ics  were studied i n  the  Langley 2-foot tran- 
sonic aeroe las t ic i ty  tunnel and the low supersonic speed range w a s  
investigated a t  a Mach nuniber of 1.9 i n  the  Langley 4- by 4-foot super- 
sonic pressure tunnel. 

a speed of sound, f t / sec  

f f l u t t e r  frequency, cps 

M Mach nuniber 

P t  stagnation pressure, lb/sq f t  

P t  , av 

9 dynamic pressure, lb/sq f t  

average stagnation pressure, lb/sq f t  
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radius, in .  

stagnation temperature, 91 

angle of attack, deg 

air density, slugs/cu f t  

3 

MODELS AND APPARATUS 

Two families of models were tes ted  i n  the Langley 2-foot transonic 
A l l  ae roe las t ic i ty  tunnel and 4- by 4-foot supersonic pressure tunnel. 

the  models had d e l t a  planforms with leading-edge sweep angles of 5 5 O .  
The models tes ted  i n  the transonic tunnel had an area of 21.9 square 
inches; the  models tes ted  i n  the  supersonic tunnel had a 65 percent 
la rger  span and had an area of 59.6 square inches. Because there  were 
differences i n  the  models and t e s t ing  techniques, the adjectives s m a l l  
and large w i l l  be used t o  d i f fe ren t ia te  models and t e s t s  throughout the  
remainder of the  report. Both tunnels i n  which the  models were tes ted  
are continuous-flow tunnels capable of operating at  stagnation pressures 
which are less than atmospheric pressure. The slotted-throat transonic 
tunnel i s  equipped t o  use e i ther  air o r  Freon-12, the  la t te r  being neces- 
sary t o  obtain sonic flow. Eight of the  11 models tes ted  i n  t h i s  tunnel 
were tes ted  i n  air at  Mach numbers ranging from 0.093 t o  0.869; the 
other three were tested i n  Freon-12 at  Mach numbers ranging from 0.239 
t o  1.167. 
set f o r  a Mach number of about 1.9 f o r  all the supersonic t e s t s .  

The adjustable nozzle blocks of the  supersonic tunnel were 

The s t ruc tu ra l  components of t he  models, as shown i n  f igures  1 t o  4, 
consisted of an aluminum fuselage t o  which were attached the tapered 
aluminum trailing-edge spars and the compression spar. The cable which 
supported the  leading edge of t he  sail w a s  threaded through the  t i p s  of 
the fuselage and trailing-edge spars and attached t o  a tension screw on 
the compression spar at the rear of t he  model. 
ures 1 and 3, the  spars were i n i t i a l l y  notched at the  leading edge t o  
obtain a -des i red  s t i f fnes s  dis t r ibut ion.  
were constructed f o r  each family of models t o  give a var ia t ion i n  the 
r a t i o  of normal s t i f fnes s  t o  chordwise s t i f fness .  I n  addition, spar 
frequencies of four models were later reduced by cutt ing in to  the  top 
of t he  spars at the root on one model and by adding weight t o  the  t i p s  
of the spar of three models. 

A s  may be seen i n  f ig -  

Also, two spars (spars A and B) 

I n i t i a l l y ,  all models were tes ted  with balsa  leading- and t r a i l i ng -  
edge spar fa i r ings.  However, the  leading-edge spar fa i r ings  were often 

CONFIDENTIAL 



4 CONEIDENTLAL 

l o s t  after being pushed up in to  the airstream by the billow i n  the sai l  
and l a t e r  models were generally tes ted  with only the trail ing-edge 
fa i r ings .  

Four fabr ics  were used as sails during the t e s t s :  nylon, rubberized 
nylon, Teflon, and f iberglass .  A s  may be seen i n  tab le  I, which l is ts  
the available fabr ic  properties,  these materials offered var ia t ion i n  
porosity and density as well as undesirable variations i n  elongation. 

The sail  w a s  folded over the s t e e l  cable along the leading edge and 
glued t o  the  top and rear of the aluminum spar at  the t r a i l i n g  edge. 
(See f ig s .  2 and 4.)  The models were tes ted  with the sai l  under the 
fuselage. 
i n  the tension screw. 
l imited extent.  
t o  the sail  beyond the point w h e r e  a l l  the  slack had been removed from 
the  cables. Cable tension applied beyond t h i s  point served t o  reduce 
the  sai l  camber when the sai l  w a s  loaded aerodynamically since deflec- 
t i o n  normal t o  a cable i s  reduced by increased cable tension. The pre- 
t e s t  sail  tension w a s ,  therefore, dependent on the  amount of tension i n  
the  fabr ic  when it w a s  attached t o  the  cable and spars; i n  the  case 
where the  model had been previously tes ted,  the pre tes t  sail  tension was 
a l so  dependent on the mount t ha t  the  fabr ic  had stretched during the 
previous tes t .  
the t i gh te s t  sails being those that had a l l  the  slack removed. 

The p re t e s t  tension i n  the  sai l  could be reduced by screwing 
A reverse procedure tightened the sail  t o  a 

Under no aerodynamic loads, tension could not be  applied 

None of the  sails were "drum head t igh t"  before a t e s t ,  

The sa i l  fabr ic ,  cable tension, and spar frequencies are l i s t e d  f o r  
each model i n  t ab le  11. Zero cable tension i n  t h i s  tab le  indicates the 
condition where the tension screw had been backed off t o  the point where 
the slack w a s  removed from the cable. 

Instrumentat ion 

Two sets of two 60-ohm s t r a i n  gages w e r e  mounted on a l l  models, 
each s e t  of gages being comprised of an act ive and a compensating gage. 
One set of gages w a s  mounted a t  the  t r a i l i n g  edge of one sail panel, 
t he  other a t  the  root of one spar. 
be expected, the  s t r a i n  gages on the  sails were often destroyed ear ly  
i n  the  t e s t s .  The output s ignal  w a s  channeled through a 20-kilocycle 
amplifier t o  a recording oscillograph f o r  d i r ec t  observation and 
recording. The s ignal  t o  response r a t i o  of t h i s  system w a s  f l a t  t o  
approximately 5,000 cycles per second. 
mounted on the  transonic-model s t ing  as shown i n  figure 6, w a s  a l so  
recorded on t h i s  system. 
tests are shown i n  figure 5 .  

(See f ig s .  2 (a)  and 4(a) .  ) A s  might 

The s ignal  from an accelerometer, 

Sample records'from the  small sail  f l u t t e r  
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Provisions had been made t o  measure forces and moments on the  large 
models i n  the supersonic tunnel w i t h  a six-component balance; however, 
t h i s  balance w a s  damaged at  the beginning of the  f i rs t  t e s t  before super- 
sonic flow w a s  established. 

The tunnel conditions at  f l u t t e r  (Mach number, density, stagnation 
pressure, and stagnation temperature) were recorded separately and are  
l i s t e d  for  each run i n  tab le  111. 

Motion pictures ,  with a frame speed of 1,000 frames per second, were 
taken of typ ica l  i n s t a b i l i t y  modes fo r  each family of s a i l s .  
graphs ( f i g .  6) were also taken of transonic model number 7 t o  record 
typ ica l  changes i n  safl c d e r  as  angle of a t tack and dynamic pressure 
were varied. 

S t i l l  photo- 

Test Procedure 

Prior  t o  tes t ing ,  the model cables were s e t  t o  a preselected ten- 
sion; then, the  model frequencies l i s t e d  i n  table  I1 were determined. 
The angle of a t tack a t  the start of each t e s t  w a s  usually s e t  above 12' 
unless previous t e s t s  indicated t h a t  a par t icular  s a i l  would not f l u t t e r  
a t  a lower angle. After the tunnel had been evacuated t o  the  lowest 
desired stagnation pressure, the Mach number of the transonic tunnel 
w a s  ra ised t o  the  highest a t ta inable  Mach number and a record taken of 
exis t ing vibrations.  The angle of a t tack w a s  then decreased slowly 
u n t i l  one of the two observers noticed f l u t t e r .  This procedure w a s  
repeated f o r  two or  more lower Mach numbers, a f t e r  which the  whole 
sequence w a s  repeated at  a higher stagnation pressure. A t  the  higher 
stagnation pressures the l imit ing value of Mach number was determined 
by a dynamic pressure of approximately 200 pounds per square foot - a 
l imi ta t ion  based on the s t rength of the models. The procedure i n  the 
supersonic tunnel w a s  the  same except t h a t  the  Mach number w a s  essen- 
t i a l l y  constant at about 1.9. 

There were occasions i n  the transonic tunnel at  the higher Mach 
numbers where the sails and supporting s t ructure  vibrated because of a 
tunnel disturbance. Since the onset of f l u t t e r  w a s  obscured by t h i s  
motion, it w a s  sometimes necessary t o  pass in to  the  f l u t t e r  range more 
than once t o  determine the angle of a t tack at which f l u t t e r  s t a r t ed .  

DISCUSSION OF RESULTS 

Three types of i n s t a b i l i t y  were encountered during the transonic 
t e s t s :  - l o c a l  f l u t t e r ,  full-sail f l u t t e r ,  and s t a t i c  reversal .  Local 

i 
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f l u t t e r  w a s  generally observed along the leading edge of the highly 
cambered portion of the s a i l  and w a s  confined t o  a small percentage of 
the t o t a l  s a i l  area.  (See the following sketch.) A t  a given q, a 

Local 

decrease i n  angle of a t tack below the i n i t i a l  i n s t a b i l i t y  angle increased 
the f l u t t e r  amplitude and area over which it occurred. Fu l l - sa i l  f l u t t e r ,  
which involved the whole s a i l ,  often s t a r t ed  abruptly when a s l igh t  change 
i n  model angle of a t tack precipi ta ted a change from loca l  t o  f u l l - s a i l  
f l u t t e r .  Other models burst  in to  full-sail f l u t t e r  without t h i s  t r ans i -  
t i on  from loca l  f l u t t e r .  S t a t i c  reversal ,  where the sail  went from a 
posi t ive camber t o  a negative camber, occurred only at very low dynamic 
pressures. 
violent f o r  some models whereas f o r  other models the action w a s  mitigated 
by a short  burst  of s a i l  f l u t t e r  preceding the  reversal .  

The change from posi t ive t o  negative c d e r  w a s  sudden and 

Changes i n  dynamic pressure and angle of a t tack were accompanied 
by changes i n  sail  camber as shown i n  figure6 6 and 7. 
small model number 7 a t  two angles of a t tack are  shown i n  f igure 6. 
addition t o  Mach number and dynamic pressure, two values of angle of 
a t tack are  given f o r  each photograph. One angle aflutter gives the 
angle of a t tack a t  which the model f lu t te red .  
%hotograph 
were taken at  the given values of Mach nmiber and dynamic pressure. 
Figure 7 i s  a schematic drawing of the changes i n  camber drawn from the 
motion pictures  taken during the small model t e s t s .  As may be noted i n  
these figures,  the sail  gradually assumed an S-shape, the point of in f lec-  
t i on  and the posi t ive cambered pat tern of the sail  moving rearward toward 

Photographs of 
In  

The other angle 
gives the angle of a t tack of the  model when the photographs 
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the  trail ing-edge spar with decreasing angle of attack. 
amplitude of the positive-canibered portion of the  sail  gradually 
decreased whereas the amplitude of the negative-cambered portion 
gradually increased u n t i l  that portion of the sail  w a s  forced down 
and w a s  no longer i n  contact with the  fuselage. 

The maximum 

No observations on the camber of the large models i n  the supersonic 

This or ientat ion of the  
tunnel could be made since only the planform of the model and not the 
p ro f i l e  was observed from the tunnel side wall. 
large models (spar  normal t o  the  nozzle blocks) was  necessary t o  mini- 
mize the t rans ien t  forces on the  sail due t o  turbulence that existed i n  
the tunnel before the flow became supersonic. 

The r e s u l t s  of the tests a re  presented i n  tab le  I11 f o r  each model. 
Included i n  the  tab les  are  tunnel conditiuns a t  i n s t ab i l i t y ,  angle of 
attack, spar and sail  frequencies, and comments on the type of insta-  
b i l i t y  t h a t  w a s  encountered. Additional comments on the condition of 
the sail  before and a f t e r  the t e s t s  are  also presented i n  footnotes 
pertaining t o  each model. The r e su l t s  obtained from eight of the small 
models and s i x  of the  large models are  plot ted i n  figures 8 t o  11 for  
angle of a t tack as a f'unction of dynamic pressure. 
purposes the  r e su l t s  of three of the small, nylon-covered models are  
p lo t ted  f o r  angle of a t tack as a function of Mach number. 
model data are  coded t o  indicate the test sequence and average stagna- 
t i on  pressure. Local f l u t t e r ,  full-sail f l u t t e r ,  and reversal  are  
designated by open symbols, so l id  symbols, and flagged symbols, respec- 
t ive ly .  The large-model data, f igure 11, are coded by model number only. 

For comparative 

The small- 

The most consistent small-model r e su l t s  were obtained from the 
nylon-covered models (models 1, 2, and 3)  w h i c h  are plot ted with angle 
of a t tack a t  the onset of f l u t t e r  as a function of both dynamic pressure 
and Mach nmiber i n  f igure 8. 
indicates t ha t ,  fo r  the Mach number range i n  which the  models were tes ted,  
the angle of a t tack a t  the  onset of loca l  f l u t t e r  i s  a function of dynamic 
pressure and is  essent ia l ly  independent of Mach number. 
pressures i n  the neighborhood of 10 pounds per square foot,  the  angle of 
a t tack a t  f l u t t e r  w a s  about 4'. 
increasing dynamic pressure t o  about 50 pounds per square foot; above 
t h i s  value the angle of a t tack gradually became asymptotic t o  an angle 
of about 9'. 

A comparison of the two s e t s  of curves 

A t  low dynamic 

The angle of a t tack increased with 

The tension or, conversely, the lack of tension i n  the  sail  appeared 
t o  have a large e f fec t  on the angle of a t tack at the onset of f l u t t e r ,  
but,  since no consistent or  accurate measurements could be taken of the  
amount of slack i n  the  s a i l s ,  no d i r ec t  quantitative assessment of t h i s  
e f f ec t  can be made. However, it is  possible t o  make some general obser- 
vations from the  test r e su l t s .  

CONFIDENTIAL 
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The possible effects  of increasing slack i n  the sails  may be noted 
I i n  f igure 8, where the angle of a t tack a t  f l u t t e r  f o r  the same model and 

dynamic pressure increased with each successive t e s t .  
t o  sai l  and/or cable stretching with increasing exposure t o  aerodynamic 
loading. The influence of sa i l  slack o r  sa i l  billow i s  most discernible  
when the r e su l t s  i n  f igures  9 (a )  and 9 ( b )  and l O ( a )  and 10(b)  which a re  
p lo ts  of resu l t s  for  s m a l l ,  Teflon-covered models without and with cable 
tension and s m a l l ,  rubber-coated-nylon models without and with cable 
tension, respectively, are  compared. In  both se t s  of t e s t s  the  onset 
of f l u t t e r  a t  dynamic pressures above 80 pounds per square foot occurred 
a t  lower angles of a t tack fo r  the model with cable tension. 
the sails with cable tension appeared t o  f l u t t e r  within a band of angles 
of a t tack t h a t  w a s  independent of dynamic pressure. It may a lso  be 
noted tha t ,  a t  the values of dynamic pressure below 80 pounds per square 
foot,  the r e su l t s  f o r  the models with cable tension appear t o  be roughly 
the same as those tes ted  without cable tension. This e f fec t  may be due 
t o  the  f ac t  t ha t  a t  lower dynamic pressures and angles of a t tack the  
normal forces on the cable were not large enough t o  cause s ignif icant ly  
la rger  deflections on the cables tha t  were not preloaded. 

This may be due 

Moreover, 

A s  w a s  discussed i n  a previous section, the amount of bil low i n  the 
sai l  w a s  a lso dependent on the tension i n  the fabr ic  when it w a s  i n i t i a l l y  
attached t o  the  model frame. Some of the sca t t e r  i n  the r e su l t s  from the 
two families of sails may be due t o  a lack of control of the  sa i l  tension 
when the model w a s  covered and also t o  changes i n  the sai l  during the 
tests.  Two of the small Teflon models were ident ical .  Model 7 w a s  
model 6 with tension i n  the cables; the t h i r d  model w a s  one t h a t  had been 
re-covered with Teflon. The t e s t  r e su l t s  from the  three models a re  plot ted 
i n  f igures  9(a) ,  g ( b ) ,  and g(c) .  The r e su l t s  from models 6 and 7 f a l l  
close t o  each other at  low values of 
f a l l  from 1-1/2' t o  3' lower. 

q whereas the r e su l t s  from model 8 

The r e su l t s  of the.two large, nylon models (models 12 and l3), which 
were d i f fe ren t  sails, exhibit  a much la rger  discrepancy than was encoun- 
te red  on any other t e s t s .  This difference i n  angles of a t tack a t  the 
onset of f l u t t e r  w a s  increased as s m a l l  tears developed a t  the  t r a i l i n g  
edge of the sai l  of model number 13; a repeat of the  f i rs t  point i n  the 
sequence f lu t t e r ed  a t  an angle of a t tack t h a t  w a s  2' higher than when 
the  sa i l  w a s  undamaged. 

The e f f ec t s  of m a s s  and porosity a re  d i f f i c u l t  t o  assess primarily 
because of the previously discussed e f f ec t s  of camber. 
b l e  differences i n  the  r e su l t s  are between the  l i gh te r  nylon sails and 
the heavier, l e s s  e l a s t i c  Teflon and rubberized-nylon sails. The nylon 
sails f lu t t e r ed  a t  higher angles of a t tack and the r e su l t s  a re  more con- 
s i s t en t  than those obtained from the heavier sails. The heavier sails 
(except fo r  the f iberglass  sai l ,  model 11, from which very l i t t l e  data 
were obtained) a lso experienced f u l l - s a i l  f l u t t e r  over a much wider range 

The only observa- 
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of dynamic pressures. A t  a given dynamic pressure, loca l  f l u t t e r  on the 
nylon sails w a s  encountered over a range of angles of a t tack before f u l l -  
sail  f l u t t e r  developed, whereas the heavier s a i l s  generally burs t  in to  

I 
I f u l l - s a i l  f l u t t e r  without passing through t h i s  range of loca l  f l u t t e r .  

Only framentary information is presented on the  f l u t t e r  frequencies 
of the sails, since the sail  s t r a i n  gages on the transonic models were 
often l o s t  ear ly  i n  the t e s t s  and all the  sail  s t r a i n  gages on the siper- 
sonic sails were 1ost.before the flow stabi l ized.  In  addition, the 
response from the gages th& did remain were not always periodic but had 
a random response with no predominant frequency. 
f u l l - s a i l  f l u t t e r  and two records taken at loca l  f l u t t e r  are  presented 
i n  f igures  5(a), 5(b) ,  and 5(c).  
quencies of the sails and spars at  f l u t t e r  are  l i s t e d  f o r  each model i n  
tab le  111. There was no apparent change i n  the sail  f l u t t e r  t h a t  could 
be a t t r ibu ted  t o  the var ia t ion i n  the spar frequencies. 

One record taken a t  

The available measurements of the f r e -  

A s  a matter of in te res t ,  the frequencies obtained from s t r a i n  gages 
mounted on the sails of the small models at  loca l  f l u t t e r  a re  p lo t ted  
as a function of dynamic pressure on a log-log basis  i n  f igure 12. 
s t r a igh t  l i n e  f a i r ed  through the  data is based on an estimate determined 
from the least-squares c r i t e r i a .  (See r e f .  2.)  
of the squares of the difference between the logarithm of the experi- 
mental frequencies and t h a t  of the l i n e  a re  a minimum. The f a c t  t h a t  
the least-squares analysis yielded an exponent of dynamic pressure near 
one-half suggests the poss ib i l i t y  t ha t  the frequency may vary d i r ec t ly  
with velocity.  However, similar examination of the var ia t ion of f r e -  
quency with veloci ty  indicates that the data fo r  d i f fe ren t  dens i t ies  
tend 
pressure is  the predominant variable. 

The 

In  f igure 12, the sum 

t o  y ie ld  separate curves and therefore it appears that  the dynamic 

CONCLUSIONS 

An investigation was made of the f l u t t e r  of sails at  subsonic, 
transonic, and supersonic speeds. The investigation indicated the  f o l -  
lowing conclusions: 

1. A t  high angles of attack, the  model sails were s table .  A s  the  
angle of a t tack was  reduced, three types of i n s t a b i l i t y  were encountered: 
l oca l  f l u t t e r ,  full-sail f l u t t e r ,  and s t a t i c  reversal .  

2. The angle of a t tack at  the  onset of loca l  f l u t t e r  and the f l u t t e r  
frequency are  f’unctions of dynamic pressure at  subsonic and transonic 
speeds and are essent ia l ly  independent of Mach number. 
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3. A t  a given dynamic pressure, increasing the tension i n  the sail  
tended t o  increase the f lu t t e r - f r ee  range of angle of attack. 

Langley Research Center, 
National Aeronautics and Space Administration, 

-ley Field, Va., July 29, 1960. 
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tension, Ib Model Material 

Model 

1 

2 

3 
4 

5 

6 

7 
8 

9 

10 

11 

Spar frequencies, cps 

Symmetrical Antisymmetric& 
Spar 

e. e.. e e.. e e.  e. e e e e.. e. e .  e .  e .  e e . .  e . .  e . .  

e. e.. e e e e. e. e e e.. * e  e.. e. 

e .  e . .  e . .  e 
. e  e .  e . .  * * *  

I 

I 

I 
I 

Material 

12 Nylon 0 310 2 

13 Nylon’’ 0 221 
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TABU 11.- MODEIS TESTED 

(a) s m a ~  models 

Cable 
tension, lb 

0 ’  

0 

0 

0 

0 

0 

19.5 

0 

0 

19.5 

0 

Spar frequencies, cps 

Symmetrical 

(b) Large models 

4nt isymme tr i cal 

540 

265 

265 

500 

512 

508 

507 

480 

526 

475 

518 

Test 
medium 

Air 

Air 

Freon 

Air 

Air 

Air 

Air 

Freon 

Air 

Air 

Freon 

A 

A 

A 

A 

B 

A 

A 

A 

A 

A 
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\-.021 diam, 7 strand coble 

Figure 1.- Detail drawing of small model. Dimensions are in inches. 
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Strain gages 

tUa.a• 

(a) Top view of nylon-covered model. 

(b) Bottom view of Teflon-covered model. L-6o-4334 

Figure 2.- Top and bottom views of small models. 

CONFIDENTIAL 



.250- 

27 

\ 

p h l s a  T E. 
I fairing 

I 

spor 

i k . 0 5 5  

a m m  
b b b  
cn c % c %  
- 3 - 0 2  

a 

c 5  
w a w  

I 
Boom IC 

"! n 
1 L.031 diam, 17 strond cable Y, $ t-3375- 

Figure 3.- Detail drawing of 1mge model. Dimensions are in inches. 
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Strain gages 

( a) Top view. 

(b ) Bottom view. L-6o-4335 

Figur e 4.- Top and bottom views of large model . 

CONFIDENTIAL 



I I , i l  ---e---- ,- Accelerometer 
I 

CONFIDENTIAL, 29 

( a )  Ful l -sai l  f l u t t e r ;  model 3, run 146. 

- 1 1 1  l - l l l l l l ~ l l t l l l i  

( D )  mcaL r m t t e r ;  model 2, run ytr. 

' I i I I I I I I I I I I I I I 1 I I t I I I I I HI  I I I i 1lLLLl I 1 I I I I 1.1 I I I i I ~ I 1 1 1 I . 

( c )  Local f lu t t e r ;  model 7, run 67. 

Figure 5.- Sample records taken during large model t e s t s .  
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Accelerometer 

(a) Ophotograph = 9.50
; aflutter 0.81; q 49.23 lb/sq ft. 

L-60-4336 

11. 2 lb/sq ft. 

Figure 6.- Variation in camber with angle of attack a~d dynamic pressure 
for small model 7. 
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Figure 7.- Schematic drawing of changes in camber during s m a l l  model tests. 
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q, Iblsqft 

Test 
sequence 't, av 

0 1  36 I 
0 2  I58 
0 3  807 
A 4  1263 

Open symbol, local flutter 
Solid symbol, full-sail flutter 

(5, 
a, 
U 

U 

Mach number 

(a )  Model 1. 

Figure 8.- Variation of angle of attack, a t  ins tab i l i ty ,  with dynamic 
pressure and Mach number fo r  small nylon-covered models. 
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q, Ib/sq ft 

Mach number 

(b) Model 2 .  

Figure 8. - Continued. 
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q, Ib/sq ft 

't, av 
Test 

sequence 

0 1  1257 
0 2  742 
0 3  358 
A 4  I87 

Open symbol, local flutter 
Solid symbol, full-sail flutter 

0 .2 .4 .6 .8 1.0 I 

Mach number 

( c )  Model 3. 

Figure 8.- Concluded. 
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Open symbol, local flutter 
Solid symbol, full-sail flutter 
Flagged symbol, static reversal 
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IO 

Figure 9.- Variation of angle of attack, at  in s t ab i l i t y ,  with dynamic 
pressure f o r  small Teflon covered models. 
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(a) Model 9, no cable tension, 
0 I I I I 

0 
Q) 
U 

U 

(b) Model IO, cable tension. 
I I I I 

0 40 80 12 

Test p 
sequence t7 av 

0 I I66 
0 2  359 
0 3  779 

Open symbol, local flutter 
Solid symbol, full-sail flutter 
Flagged symbol, static reversal 

Test 
sequence 't, ov 

0 1  I56 
0 2  326 
0 3  760 
A 4  I254 

q, Iblsqft 
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0 

Figure 10.- Variation of ang1.e of attack, a t  ins tab i l i ty ,  with dynamic 
pressure for s m a l l  rubber-coated nylon models. 
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Figure 11.- Variation of angle of attack with dynamic pressure at flutter 
(local) for large models. M = 1.90. Arrow indicates sequence of tests. 
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