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SUMMARY

Results are presented from the numerical calculations

carried out to produce detailed information on the kinemati_

dyuami_ dissipative, and thel_modynamic characteristics of a

uniform half infinite stream, mixing with a quiescent fluid

of the ssmle composition.

An effective Prandtl number of Prt = I is assumed for the

constant pressure_ non-isoenergetic turbulent mixing process.

The ratio of specific heat becomes absorbed by selecting

Crocco number instead of Mach nt_ber as measure for the com-

pressibility_ thus allowing generalization of the results to

any perfect non-reacting gas having constant specific heat.

After identifying a functional form for the streamwise

component of the velocity profile, a single empirical mixing

parameter becomes well defined and can be absorbed in a rational

presentation of structural details of jet mixing regions_ such

as the vertical velocity component, temperature and density dis-

tribution_ integrals describing flow of mass, momentum, mechan-

ical energy, the transfer of shear work and heat across individ-

ual streamlines_ as well as local and integrated dissipation

rates for mechanical energy.

Information on the empirical param_eter c remains generally

incomplete. Although values for low-speed isoenergetic mixing
are well established and effects of Mach number have been ten-

tatively reported, no such information is presently available for

temperature level and temperature differential influence.
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Subscripts
a

b

J

1

0

Energy transport rate per unit width and per

unit length along the jet mixing region.

refers to conditions in the free stream

adjacent to dissipation regions

refers to wake conditions (near base)

refers to jet boundary streamline

refers to local position

refers to stagnation value

Auxiliary integrals and functions

I [C , _- , , A_ 2¢ d9
l oa -_ a

TbI [C 2 __ _] = _ d_
' A <@

I
s

1
4

E

W
S

_D

-- ' A-C 2_9[C ' Toa - a

-- ' A -C _c_
[Ca ' Toa _ - a

auxiliary dimensionless energy transfer

funct ion

E =- [I (_R) - I (_j)] - [Is(_ R) - I3(_j)]

local shear work

Tt u_
W - s

s PaUa

local dissipation function

8D

_u

_t _ x _d x

PaUa PaUa

shear stress function

Tt
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total rate of dissipation of mechanical

energy per unit length

_t Du
__ _ay x __ _
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Introduction

The interest in flow problems involving separation from solid

boundaries leads to studies of the flow mechanism in the wake, and its

component flow regions.

Significant wake flow components may be identified as:

i)
ii)

iii)

iv)
v)

the flow field near the separation point,

the jet mixing component between the wake and the adjacent

free stream,

the region of reattachment (often recompression) at the end

of the wake,

the flow field within the wake,

the redevelopment of the flow field downstream of the end of

the wake.

Understanding of wake dynamics has benefited greatly from the

analysis of such wake flow components, as evidenced by the treatment of

the classic_l base pressure problem and its ramifications (ref. i).

The jet mixing component is of special importance in its contribution

to wake flow mechanisms, and has, therefore, received wide attention in

the literature.

Mixing between a uniform stream and a quiescent fluid, as well as

mixing involving two streams have been studied extensively both analyti-

cally and experimentally.* Yet, even_ the most fundamental and simplest

information, e.g. concerning the influence of compressibility and

temperature level on the effective turbulent eddy viscosity in turbulent

jet mixing regions is still subject to searching speculations (ref. 4).

While it appears logical to draw such information from an analysis of

experimental data on mixing profiles, in concentrating on the vicinity

of the inflection point tangent, and to observe the close relationships

between the functional presentation of a mixing profile and the result-

ing definition of an empirical mixing parameter, such an approach has,

so far, not been uniformly accepted. After identifying a functional

form for the velocity profile, such a single empirical parameter becomes

well defined and can be utilized in a rational presentation even of de-

tailed information on jet mixing regions. Final identification by

numerical values may still have to depend on further empirical informa-

tion on this mixing parameter. The present communication is concer.led

with the turbulent, compressible constant pressure mixing problem,

*The rapid rate at which contributions are being made to these

fields forces one to look beyond the treatments and references included

in such standard works as by Schlichting (ref. 2) and Pai (ref. 3) and

to survey the current literature.



resulting from interaction between a uniform stream "anda quiescent wake,
both having the samecomposition_ but, in general, different stagnation
temperature and an effective turbulent Prandtl Numberof unity. De-
tailed information is given on the kinematic, d_mamic,dissipative sad
thermodynamic structure of such jet mixing regions. The use of Crocco
Numberas parameter for compressibility effects e!imim_tes the influence
of the specific heat ratio, _nd thus_ permits a wider utilization of
the results (ref. 5). It sh_ll be noted that jet mixing between a
uniform stream and a quiescent fluid serves satisfactorily as a flow com-
ponent in manyproblems concerned with wake dyns_nics. Thermodyn'_-mic
an_Aysis of sepsxated flow regions and a study of the mechanismof energy
tr_asfer to e_d across wmkesrequires however the consideration of finite
entrainment velocities in the jet mixing component (ref. 6). A subsequent
report similo_ in scope to the present one, will present information on
the two-stream jet mixing problem.*

In the study of the flow mechanismand heat transfer in separated
flow problems, it is necessary to study the detailed local properties
within such turbulent jet mixing regions which would be helpful to
underst_nd the basic flow mechs_nismsaad identify the controlling com-
ponents within such separated flow regions.

The present work is essentially a logic extension of previous
investigations conducted at the University of lllinois, which utilized
an integral momentumapproach to obtain theoretical solutions for the
isoenergetic (ref. 5, 7) and non-isoenergetic (ref. 8, 9) compressible
turbulent jet mixing problem. In order to have consistent presentation,
the previous work on which the present an._!ysis is based will be first
summarizedand reviewed.

*A comprehensivecomputation program has been carried out at the
University of Illinois under the NASAGrant NsG-13-59 and samples have
been presented in ref.6.



Theoretical Analysis

The differential equation of motion for a constant pressure

turbulent jet mixing region was highly simplified and solved through

an integral transformation by extending Prandtl's exchange coefficient

concept. The solution was written as functions of the initial dis-

turbed profile as well as the "position parameter _". (Ref. 5). It

was shown that in the case of small initial disturbance or at a location

far downstream, the velocity profile would asymptotically reach one

termed as "fully developed", (_p = O) which is no longer dependent upon

the initial disturbed profile.

For a turbulent Prandtl Number of one (Pr t = i), the Crocco

integral energy relationship will relate the stagnation temperature

profile throughout such a mixing region uniquely to the velocity pro-
file. (Ref. 9).

The solution for the flow field in the mixing region thus obtained

was interpreted to hold in an intrinsic coordinates system (x,y) which

was subsequently localized with respect to the reference coordinate

system(X, Y) by a momentum integral relationship. In the following,

all equations are written for the "fully developed" profiles within

such a constant pressure compressible non-isoenergetic turbulent jet

mixing region.

Jet Mixing Profile

The dimensionless velocity profile is given by

_0 : ½ (i + err _) (1)

whe re £0 -
U

u
a

2 f lq _#2
erf I_ =_ _ 0 e d_

and _ is the similarity parameter for the homogeneous coordinate system.
A discussion of the parameter _ as identified for the error function

velocity distribution is given in Appendix A.
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The stagnation temperature profile is given by

To _b _b ) _ (2)A-_ _ + (l-_--
oa oa oa

The dimensionless shift _ of the "intrinsic system of coordin-

ates" with respect to the reference coordinate system is given by

= " - a _ - a q

d_ (3)

where _ is a large value of _ such that

1 - %o (_R) < t

and I 1 - A (%R) < t'

t and t' being small quantities.

Auxiliary Integrals

The integrals related to this analysis are defined and listed as
follows:

(Ca2 ' Tb _71 _9 dl]--, l]) --- A-C _'m_
Toa a '

(Ca2 _b , _)-__
I2 ' Toa A-Cae_2

mOO

(c_2
oa _-C a%o2

a

d_*

*Note that this integral _ has been defined as 12 in Refs. 1 and 9.



' Toa -_ A- Caeqo2

T,
For fixed values of C 2 and o

a T
oa

ented in short by I1 (_), 12 (_), 13 (_) and 14 (_) respectively.

, these integrals may be repres-

Jet Boundary Streamline

The "jet boundary streamline" which separates the fluid of the

external stream from the fluid entrained within the wake is identified

by _j which satisfies:

ll (_R)- I1 (_j)= 12 (½) (4)

Energy Transfer

The energy transferred across the "jet boundary streamline" is

given by _ which satisfies

Cp%Ua (T- % )
: st × o : (i- Ca2)_/i - %

_oa
(5)

where

E =- [ ii (Ca2

-[ 13 (c__

, _ , _R) -Ii (Ca2_ m ' _J)

Tb Tb°a
• T , _R) 13 (Ca2 ,T--, _j)] - (i Tb_ _ _ ) _2(_j)

O8. oa oa

All the integrals and quantities mentioned above have been

calculated on the Illiac* and have been tabulated and presented in

graphical form (Ref. 7 and 9).

Local Characteristics within the Jet Mixin_ Resion

In view of the fact that the treatment presented above was based on

integral relations, lateral differentiations of the profiles to obtain

*Electronic digital computer, Engineering Research Laboratory,

University of Illinois.



local properties are not recommended. The present analysis is again
based on integral relations whenever possible.

Following a certain streamline at the ordinate y within such a
jet mixing region, one would have from the continuity relationship that

dx YJ
0 udy = 0

which is equivalent to

into

or

(x _ c_ d_) = 0 (6)
A_c2

J

After the differentiation is carried out, the equation (6) goes

I (_1 - I _ ) + _ ( A-C
l 1

&

d9 [I (_) - I (9_)] ( A-C 2_)= _ __.!_ ' 1 a

dx x<o
(7)

which is a basic relation needed in this analysis. It describes the

change of the dimensionless coordinate _ pertaining to a certain stream

filament as it proceeds downstream. It is obvious that the jet boun-

dary streamline has the constant property values within the "fully de-

veloped mixing regions.

Selecting a control volume within such a jet,_ixing region such

that the top control surface coincides with a streamline (see Fig. 1),

the integral momentum relationship

y y x

yj o

_t dx

becomes after being differentiated with respect to x

{ ]d pu2 dy - u pu dy = _t

dx _ a YJ

i0



whic isequivalenttoI  j(l-Ca2)Paua2 d _2

_t = x 2_2 d_-x _ an (8)
_ __ A_Ca _. A-C 2_2

j a

Carrying out the differentiation, the equation (8) goes into

- (l-Ca2) z2(_)_ (T (0)- T_(_j)) + (_2__)Xd__d_ (9)
A -Ca2_2

Defining the shear stress function _ by

2

OaU a

one obtains by substituting equation (7) into the equation (9):

2) [I (_)- _ (T(_.)- T ))] (i0)= (1 - Ca 2 I (_j

It is readily seen from the definition

_u P PaUa (_ d_o
Tt= P ¢ - e

my Pa x d_

one can estimate the eddy diffusity ¢ with the help of equation (lO)
and obtain

C(F2

-C 2%o2) e_vr_ [I (_) - %o (I (_) - I (_j))] (ii)

o,%

(A
¢ - xu a a 2 1 1

which shows that at a location x, c is certainly not constant along the

y direction. Limited experimental results obtained for Ca a = 0 (Ref. i0)

seem to support our analysis, see Figure _. While no experimental veri-

fication of the M_ch Number influence or the temperature ratio effect is

presently available, it is reasonable to assume that our analysis should

again exhibit the correct trends.*

The derivative of the shear stress function is also given as

d--zd_: ayaTtx 2 - -(1-ca2)[T(_) - T_(_j)]d__ (12)
PaUa

By use of the Reynold's Analogy for the case of unity turbulent

Prandtl Number,

*It must be noted that our results are in strong disagreement

with the speculations of Ting and Libby(Ref. 4).

ll



_t Cfl

0 U
a a

and the identity
%

I (?)- _-- I (?)
3 1

oa

%
T
oa

one may interpret equation (i0) as

z (<)-g-- I (_)
3

X 2 ) Oa _

St_ _ = (i - Ca Tb

I - T-_

A direct derivation of equation (13) by applying the energy

balance is sh_n in the Appendix B.

The local shear work and dissipation functions_ Ws, _D can be
evaluated from the following expressions namely

and

Tt u_
W -
S 3

P_a
- (i - Ca 2)<? [I2 (_) -(0,<Ii(_)-II(_O)) ]

@D =
3

o U
'a a

_2

e- (i - C_-[I2 (T) - _?[II (_) - Il (_j)!- ]

%
I ) - -- I ('?:j)3(Uj T I

_j " I = (1- c 2) oa
*For <i: , St ,,_ _j a Tb

i -
T
oa

= (1 - Cam) I2(_j),

oa

which represents the energy transfer across the streams and has

been presented before (equation 2-3, in Ref. 1).

(13)

(14)

(15)

12



The integral _t _ dy represents the total rate of
dissipation up to ordinate y in the mixing region and it is shownin
the Appendix C that

FyT t _U_-_dy
t

= _ - (_)-I ) 1s a 2 2 . (_j -_I4 (_)]
°aua (16)

For y approaches infinity, one would obtain ¢, the total time rate of

dissipation of mechanical energy per unit length along the mixing region

(withunit thickness) which is given by

_ _u dy (l-Ca2)

_= _
a 2

PaUa

where the relationship

I2 (mR) = I1(_R ) - Il(_j)

[i (h)-I (_R)]*
2 4

has been introduced.

(17)

The velocity component v in the y direction can also be obtained

for such a jet mixing region. In Appendix D, it is shown that the v

component measured in the reference system of coordinates (X, Y) is

given by

_' = _ (_-_) - [11(0) - I1(_j)] (18)

where
V

_T -- U

a

*Note that this is essentially the integral mechanical energy

relationship

pu dy - dy = u (_)2 dy

yj -_

which can be derived by integrating along the y direction the equation

of motion for such a constant pressure jet mixing region after being

multiplied by the velocity.

13



Numerical Results

Evaluations of all these functions and integrals introduced
above have been carried out on the llliac for five parametric values

Tb Tb
of _--,(_-- = 0. i_ 0.5, i, 2, 5) at five values of Crocco Number

oa oa
(Ca2: o, o.2, o.4, o.6, o.8).

The distribution of the shear stress function T and the eddy

diffusivity function s are presented in Fig. 2 for three values of

Tb at various Crocco Numbers. In Fig. 2a, experimental results of
T
oa

limited amount for isoenergetic (__b_b_= i) incompressible flow (Ca2 = O)
c_

obtained by hot wire measurements (ref. 6) are also shown. The agree-

ment between the theoretical calculations and the experimental results

are reasonably good.

The distribution of shear work and dissipations functions Ws _D

are presented in Fig. 3. The total time rate of dissipation of mechan-

ical energy in such jet mixing regions is presented in Fig. 4 while the

distribution of vertical component of the velocity (v-component) within

the jet mixing region is presented in Fig. 5-

Department of Mechanical and Industrial Engineering

Engineering Experiment Station

University of Illinois

Urbane, lllinois

July 1962
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Appendix A

Discussion of the Similarity Parameter

in the Turbulent Jet Mixing Region

In a fully-developed jet mixing region with Pr t = i, the Similarity

parameter _ can best be related to the change in slope of the inflection

point tangent of the velocity profile. Selecting the established "erf-

function' profile in such a mixing region, one can obtain by differenti-

ation

___Z= 1 __2
d_ j_= e

so that for the inflection point of the velocity profile, _- O, one

would obtain

_= o ---

Within the x, y system of coordinates one may determine, for the

stations, xI and x 2 the maximum slope of the velocity profile,

and obtain

J'_-(x2- Xl)
=

Iua _u _u

x 2

As xI becomes large, a stationary value is obtained for _ (fully

developed profile )

G_-- x _u I

The value of _ has been well established for the isoenergetic

incompressible flow case to be _ = 12, and the relation of g = 12 +

2.758M has been also suggested by Korst and Tripp (ref. ll) to account

for the effect of compressibility.

15



Appendix B

Energy Transport within the Turbulent Jet Mixing Region

×

Selecting a control volume as sho_m in the Fig. B-1 such that the top
control surface coincides with a streamline considered, the integral
energy relationship

o dy - Cp Toa ,0u dy - Cp
O
_co yj __ ' o

gives

d

dx

As

Y

Y

ouC Tpo

uC T dy =po

Y

CT _ pudy=
p oa

J

Yj

dy - CpToa

Y

pu dy - CpTb

Yj

(l-C 2)

_¢0

x_uaCpWoa (i - Ca2)
(Y

o" T
081,

A _p

2 2
A -Ca

fo
2 2

A -Ca

= _ (_-i)

d_

22
A- C _

a

16



EcD/. (B-I) bee(roles

CiToaPaU a (i - Ca2)

_= (7

A_C 2a %0

which can be reduced to

2'")(II(_)-II(_j)(A-ca2t_2))2 x_ /
A-Ca9 "

- !i (_J)_- I

_q = (i - Ca2)[ _(_) _

CpToaPaU a

A{II(_) - II(_j) }" Tb

With the definition for Stanton Number

st_ - cpp_a(_oa" _o)

and the relation

% %
A -_ +(1-}--)

oa oa
m

which holds for unity Prandtl Number, the equ. (B-2) will change into

stp,_ : (m - ca2)
-%__

T
oa

Tb
1

T
oa

which is exactly the Equ. (13).

17



Appendix C

Derivation of Equation (16)

Starting fr_n the Equ. (i0)

mt
_=

2
Paua

one can see that

Y

_ mt_u dy=
__o 3y

%u2(z - c 2)
a

o

This integral on the right hand side of the equ. (C-l) can be evaluated
as follo_:

tc=o

am

= m " 2 2 d_'m

A -C a _ J

I] "q

-( a-O 2 2 ' [%0
_Ca2__oo a m _co j A

A-C a _ _0=o, _= _oo

22
-_ A-C

a '

= m 12 (_)- cP2_II(_)-_. Ii(_j) } -J" (_ %0
.m J A-C 2 2

a_

18



Also _ (_ _ %0 d_) d_

- _j A C 22• -a_

2 _j A _ca2_2

a_ - 2

_o = o, _ = -= -= A-Ca2q_2

d'O

= %°2 [! (9) - I
2 z i

1

Equation (C-l) can be brought into the form

2) I%o i (0) - <22 {I= (i - Ca 2 I (9) - 1I(Zj)}

(I (9) - I (gj) - [ 14(_)I+2 z I

2) F_ I
= (I -C a , 2

which is equation (16).

i(_) - 2 (Iz (9) - Iz(_j)) - 2" 14

19



Appendix D

The v-Component of the Velocity within the Jet Mixing Region

From the defining relationship of the intrinsic coordinate

system, namely
X=x

Y=Y-Ym

one obtains by following a certain fluid element in the reference

system of coordinates

As

dY dY dy d_mV- (D-l)
dX dx dx dx

d_X= v _ (D-2)
dX u

V

Where _' = - with v the velocity component in the Y-direction
ua

measured in the reference system of coordinates

d__ = d (o _). = _ [ dy_ Z l (D-3)
dx dx x dx x "

and

dYm = --_ (D-4)
dx q

one combines the Equations (D-l) (D-2) (D-3) (D-4) with the

additional relationship given by Equation (7) and obtains

_' : _ (_ - _m) - [I1 (_) - I1 (_j)] (A-Cam_a)* (D-5)

The distributions of the v-component of the velocity are plotted

in Figures 5a,b,c for various values of free stream Crocco Numbers

and stagnation temperature ratios across the mixing region.

* Note that the dimensionless velocity components for the x, y

system and the X, Y system are related by

_(X, Y) = _(x,y)

_' (X,Y) : _' (x,y) - _(x,y) _m

2O
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