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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1870

AN INVESTIGATION OF RESONANT, NONLINEAR, NONPLANAR

FREE SURFACE OSCILLATIONS OF ‘A FLUID*
by R.E. Hutton™ "

SUMMARY

A theoretical investigation was conducted of the motion of fluid in
a tank subjected to lateral harmonic vibration at a frequency in the
neighborhood of the lowest resonant frequency of the mass of fluid. The
investigation indicates that nonplanar fluid motion is due to a nonlinear
coupling between fluid motions parallel and perpendicular to the plane
of excitation, and that this coupling takes place through the free surface
waves. These theoretical conclusions were experimentally confirmed
using a cylindrical tank about 12 inches in diameter and partially filled
with water to a depth of about 9 inches. The tank was translated along
a diameter at selected frequencies in the immediate neighborhood of
the natural frequency of small, free-surface oscillations. Three types
of fluid motion were observed: stable planar, stable nonplanar (rotary),
and unstable (swirling). In stable planar motion, the fluid moved har-
monically with peak wave height and one stationary nodal diameter per-
pendicular to the direction of excitation. In stable nonplanar motion,
the fluid moved harmonically with a constant peak wave height and one

nodal diameter that rotated at constant speed around the tank. In unstable

*
Motion picture supplement L-770 has been prepared and is available on
loan. A request card and a description of the film are included at the
back of this document.

¥*%
The author wishes to express his appreciation to Professor J. Miles,
who acted as a consultant during this study, for his valuable assistance
in guiding this work.



motion the fluid never attained a steady-state harmonic response; peak
wave height and nodal diameter rotation rate and direction changed

constantly.
The frequency regimes of the different types of motion which are
possible in the neighborhood of the lowest natural frequency, fll’ of

smell free-surface waves were as follows:
1) Stable planar motion is possible except in a narrow
frequency band roughly centered about fll'

2) Stable nonplanar motion is possible in a band
bounded below by fll'

3) No stable motion, either planar or nonplanar, is

possible in a finite frequency region just below fll'

INTRODUCTION

It has been widely observed that when a conteiner of fluid having
8 free surface is subjected to a transverse harmonic vibration over some
frequency ranges, the fluid does not necessarily respond with steady-
state harmonic motion in which there is one stationary nodal diameter
perpendicular to the direction of excitation. Rather, a wave may be set
up which rotates around the tank harmonically or nonharmonically, even
though the forcing motion is harmonic. The rotating wave phenomenon
persists over a range of forcing frequencies centered about the natural
frequency of small amplitude free surface waves.

Specifically, the behaviour of a free-surface fluid in a container
undergoing transverse harmonic vibration of increasing frequency is
as follows. When the container is excited at a frequency appreciably
below the lowest natural frequency, fl
lations, the steady-state fluid motion is harmonic with a constant peak
wave height and a single nodal diameter perpendicular to the direction
of excitation. As the excitation frequency is increased, the wave height
, the nodal diameter

12 of small, free-surface oscil-

increases. At a frequency a little less than fll



begins to rotate at a nonsteady rate and with a varying peak wave height.
This unstable swirling motion persists up to a frequency a little above
the natural frequency, where once again the steady-state fluid motion

is harmonic with constant peak wave height and a fixed nodal diameter
perpendicular to the direction of excitation. An additional increase in
excitation frequency from this stable point reduces the wave height

until the cycle begins again as the next resonant frequency is

b3
approached.1

In addition to harmonic planar motion and nonharmonic swirling
motion, there is a third, which in this report is called harmonic non-
planar motion. In the steady state, it is characterized by a constant
peak wave height and a single nodal diameter which rotates at a constant
rate. Harmonic nonplanar motion occurs in a frequency range bounded

below by f1 1

According to the linear approximations usually employed, a free
surface fluid in a container undergoing transverse harmonic vibration
should exhibit a steady-state planar harmonic motion at all frequencies
except resonance. The fact that harmonic nonplanar and unstable
motions occur has lead investigators‘2 to suggest that nonlinear and
viscous effects plan an important role. However, no extensive studies
have been conducted to resolve this problem. The following work shows
that the rotary and swirling motion can be accurately predicted in an

inviscid liquid if the analysis includes the appropriate nonlinear effects.

SYMBOLS

tank radius

)
"

coefficients in kinematic free-surface condition,
Equation (A.5)

coefficients in kinematic free-surface condition,
mn .
Equation (A. 6)

)
1

H

a

%
Superscript numericals refer to references at the end of this report.



= coefficients in dynamic free surface condition,

Equation (A. 8)

. = amplitude perturbation coefficients, Equation (A.42)

1

matrix elements defined in Equation (A. 44)

= first slosh mode generalized amplitude coefficients,
% Equation (A.23)

= natural frequency of the mn'th sloshing mode, cps
= acceleration of gravity = 386 in/sec

= fluid depth

j = unit vectors along x, y axes, Figure 1

= unit vectors along r, 0, z axes, Figure 1

= parameters defined in Equation (A. 36)

= integer subscripts referring to the mn'th mode

= natural frequency of the mn'th sloshing mode,
rad/sec

= fluid velocity vector

= fluid particle radial coordinate

= time

= tank displacement

= tank velocity

= velocity potential generalized coordinate

= velocity potential generalized coordinates,
Equation (A. 30)

= free-surface boundary condition parameter,
Equation (A.12)

= expansion coefficients defined by Equation(A.38a)

= functions defined by Equation (12)



H = function defined by Equation (13)

A
H = parameters defined by Equation (A. 36)
I = integrals defined by Equation (A.36)
n
Igm = integrals defined by Equations (A.32) and (A.36)

Jm = Bessel function of the {irst kind of order m
K = parameter defined by Equation (A. 36)
K = parameters defined by Equation (A. 32)
10’ KZO = parameters defined by Equation (A. 38D)
K,, K, = parameters defined by Equation (A. 38a)
K,, K, = parameters defined by Equation (A.41)
M_ = determinants defined by Equation (A.47) and (A.54)

a = parameter defined in Equation (A. 36)

Yy = velocity potential function steady-state amplitude,
Equations (A.39a) and (A.40a)

¢ = tank velocity amplitude
€ = tank displacement amplitude

{ = velocity potential function steady-state amplitude,
Equation (A.40a)

mn = wave height

0 = cylindrical coordinate system coordinate

N = perturbation parameter in Equation (A.42)

M., A_ = roots of perturbation characteristics equation
/
N =rootsof J (A _a)=0

m ' mn

v = transformed frequency, Equation (A.19)

T = transformed time, Equation (A.19)



¢k = kth derivative of velocity potential function
evaluation on z = 0, Equation (A.4)

w = angular forcing frequency of tank motion
T = function defined in Equation (A.1)
® = total velocity potential function
3 = disturbance velocity potential function
Qon,an = parameters defined by Equation (A. 31])
X _, = disturbance potential functions defined by

n'¥n (A.18), (A.23) and (A.27a,b)

D - _f?_+u_f’_+v(_1_)_?_+w_8_
0 z
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St ‘e(;)‘a‘é“z'a;

g2: 8 +(1)_a_+(1> 0%, 8

or? )BT T [2) % T g2
ANALYSIS

The object of this investigation is to determine the response of a
fluid contained in a cylindrical tank which is undergoing lateral harmonic
vibration in the neighborhood of the lowest natural frequency of small,
free surface waves. In this section the main steps in the analytical
derivation are presented, with the algebraic details relegated to the

appendix.

Figure 1 illustrates the geometry and coordinate system which is
used in the analysis. The tank is assumed to be forced in the fixed
xozo-plane only and this motion is denoted by xl(t). The r, 0, z coor-
dinate system moves with the tank with the plane z = 0 coinciding with

the quiescent free surface.

Throughout the analysis it will be assumed that the fluid is

incompressible, inviscid, initially irrotational and that the only body



force is that of gravity, which is oriented along the negative z-axis.

Under these assumptions the fluid velocity vector § can be written as
'C'i =ve (1)

where the velocity potential function ® is expressed in terms of the
moving coordinates, r, 0, z. If ®is written as the sum of adisturbance

potential function & and a function accounting for the tank motion, i.e.
@(r,0,z,t) =x, r cos® + @ (r,0,z,1) , (2)

then under the above assumptions the boundary value problem to be

considered can be stated as3

O0=<r-<a h
2 .
Vo&(r, 68, z, t) = 0 in 0=0=2mw
ch=z=m ) (3)
'5 = 0 on z = -h
z
<15r=x1cose on r = a )
and
gn+'<i>t+—;-(v'§\f>-v'§!):-.ilrcoseonz=n, (4)
n + &7 +——1—5n =3 onz =1 - (5)
t r'r rZ 0'6 z

The dots above x, represent time derivatives and the subscripts
t, r, 0, and z respectively. The first equation of (3) requires that the
disturbance velocity potential function satisfy Laplace's equation which
is a linear partial differential equation. The dynamic condition, Equation
(4), is Bernoulli's equation with the pressure set equal to zero on the
free surface z = . The kinematic condition, Equation (5), is simply a
statement that a fluid particle on the free surface has the same vertical

velocity as the free surface.



It is to be noted that the only nonlinear character of this boundary
value problem enters through the free-surface boundary conditions on
z = 1. In a linear analysis, the nonlinear terms in Equation (4) and (5)
are neglected under the assumption that the wave height and fluid velocities
are small, and then, these linerized free-surface conditions are satisfied
on the undisturbed free surface z = 0. However, when the tank is driven

at or near the lowest resonant frequency £ the wave height and fluid

11’
velocities are not small, and it is essential that the nonlinear terms in

Equation (4) and (5) be taken into account.

Since the free surface z = n is an unknown in the problem, the
free-surface boundary conditions are combined in the appendix into one
boundary condition in which the wave height n has been eliminated. Thus,

the boundary value problem to be considered can be restated as:

0=r=<=a W

vzg(r’ 8; Z:t) = O in 0:9 EZTT
-h=2z < qn
e
& = 0 on z = -h
zZ
g = 0 r = a
@r on
S
and
B. +B,+B,+0(n?) =0 (7)
1 2 3

where the terms Bl. BZ’ B3, defined in the appendix, depend only upon
the velocity potential function ® and its derivaties, all evaluated on the
undisturbed free-surface z = 0, and also upon the prescribed tank

displacement xl(t). The tank displacement is taken as

xl(t) = € sinwt



with € "small" and w close to or equal to the lowest sloshing natural
frequency Pyr- A steady state harmonic solution to boundary value

problem (6) and (7) is posed in the form

d= ¢ 1/3 [‘le(?, t) cos wt + xl(?' t) sin wt]
4 23 (F) + §,(7) cos 2wt + x_(7) sin 2
€ [Lpo r) q;z(r) cos 2w xz(r sin wt]

- -
+ € [¢3(r) cos 3wt + x3(r) sin 3wt] (8)

where ¢ = we o is the peak tank velocity and the functions X q;n satisfy
(6) identically with only Yy and Xy depending upon time. The notation
T means dependence upon r, 0, and z. A set of normal sloshing modes

which satisfies (6) exactly is

cosh {xmn(z+h>}

}_Amn(t) cosmO +B__ (t) sinm6 J_(\__r1) -
- mn - momn lcosh A h\
i mn |
where the Jm are Bessel functions of the first kind and of order
m=20,1,2, - - -, and )\mn are an infinite set of numbers for each m
1
obtained from the zeros of J__ (A___a). The functions A___(t) and B___(t)
m ' mn mn mn
depend only upon time and are called the generalized coordinates of the
mn'th mode. The natural frequency of small, free-surface oscillations
in the mn'th mode is denoted by Pon’ In this problem, in which the
tank is harmonically translated at a frequency close to or at the lowest
natural frequency associated with the Jl mode, Piy’ the generalized
coordinates A11 and B11 dominate all other generalized coordinates.
For this reason, the first order terms of (8) contain the first Jl mode

only and x, and p, are taken in the appendix as

1
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\

5
cosh [)\“(z+h)']

h [\, h]
cos ‘_11_}

4;1 = {fl(r) cos 06 + f3(r) sin 9] Jl()\llr)

- cosh T’)\“(z+hi
— : ' L S
X, = [fz(t) cos 0 + f4(t) sin GJ Jl()\llr) CO%LXIIBj (9)

where the transformation
€ ot > pyy T wz [l - ve2/3] (10)

has been introduced. The functions v, and X, depend upon the modes

corresponding to JO and JZ only and their definitions are given in the

appendix.
In the appendix the trial solution (8) is introduced into the free-
surface conditon (7) and the terms of which e 1/3, 62/3, and ¢ are the
1/3

coefficients are set equal to zero. The term of which ¢ is the

coefficient depends upon the first Jl mode only and vanishes identically.

The term of which 52/3

is the coefficient depends upon the generalized
coordinate of the first Jl mode and the infinite set of generalized coor-
dinates of the Jo and JZ modes. With Fourier-Bessel techniques, this
equation is satisfied by expressing the generalized coordinates of Jo
and JZ modes in terms of the Jl mode generalized coordinates. The
term of which e is the coefficient depends upon the first Jl mode and

coupling between the J, mode and J and J, modes.
1 o 2

The generalized coordinates of the Jo and JZ modes are eliminated
from the last equation by using the relations (obtained by setting equal

2/3 is the coefficient) between the generalized

to zero, the term of which e
coordinates of the J, mode and the J and J, modes. The resulting
equation depends only upon the first Jl mode generalized coordinates.
Next, the equation is satisfied in a Rayleigh-Ritz sense. That is, the
equation is first multiplied by J1 cos 8 r dr dO and integrated over the
free surface and is then multiplied by Jl sin 8 r dr d0 and again integrated

over the free surface.
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Both of these integrated equations have sinwt and cos wt terms.
Requiring that the coefficients of each of the 8in wt and cos wt terms
vanish in both of these two integrated equations gives the nonlinear
2’ f3n f4,
of the first Jl mode must satisfy. This set of first order differential

differential equations that the generalized coordinates £, f

equations can be written in a compact form using Cartesian tensor

summations and writing:

df.
1 -
e G(fl,z 3,f)» i=1,2,3,4 (11)
where
Glz-H’Z ] G3=-H’4
(12)
G, =H, , Gy =H,,
and
_ 1 2 1 2
H = Flfl +— vfjJ + K, jj -5 K (f,f, - £,1,) (13)

Subscripts following commas imply differentiation with respect to the
corresponding fj and repeated subscripts imply summation. The con-
stants Fl’ Kl’ KZ’ which depend upon tank geometry only, are defined
in the appendix. A steady state harmonic solution of the boundary
value problem expresed in Equations (6) and (7) corresponds to the
zeros of the four equations indicated in (11). In the appendix it is
found that there are two such solutions. The first is called planar

motion and the solution is given by
f1=y v f,=1f_=1f,=0 (14a)

with
(14b)

<
"
)
._"1
<
'
___N
<
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The second is called nonplanar motion and the solution is given by

2 2 2. F1

- - ¢ = - nl 1 -
fl—y , fz-f3-0 .f4 =b =y +KZY (15a)

with

-1 2
v=-Ky  + K4y . (15b)

The constants K3 and K4 are also defined in the appendix. In the
appendix these two solutions are examined to determine whether they

are stable by imposing a slight perturbation from the steady state solution
and investigating the subsequent motion. If the subsequent motion in-
creases with time following the perturbation, the solution is called un-
stable. The analytical investigation of stability is carried out in the

appendix, wherein the perturbation

£() = fi(o) tc o (16)

is imposed. The fi(o) denote the steady state solution given by (14) and
(15) with the disturbance c assumed small. Introducing (16) into the

set (11) leads to an algebraic equation in A. Any root \ of this equation
with a positive real part indicates a motion that grows with time and the
corresponding solution is called unstable. It is found that the solutions
given by (14) and (15) are stable only over certain ranges of transformed
forcing frequency v. Figure 2 summarizes the regions of stable and
unstable planar motion. From the figure it is noted that the theory
predicts that planar motion is not stable over a frequency band centered

about v = 0 {or w = pll)'

NUMERICAL EXAMPLE

The following numerical calculations are based on the theoretical
results for the parameters corresponding to the sloshing tests, which

are
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tank radius 5.938 inches ,

Y
it

8.907 inches .

h

water depth

With the values )\“a= 1.84119 and Jl ()\lla) = 0.581865,

Equations (A.24) and A.38a) are evaluated to be

F, = 8.53992 , @, = 0.99205

and

Py; = 10.897 rad/sec = 1.734 cps .

In the evaluation of the coefficients Kl and K2 the infinite series terms
in Equations (A.35a,b) are approximated by their first five terms. To
indicate what errors this finite series approximation might cause, the
following facts are cited. In the calculations of 81 and 62, which con-
tribute to K, and KZ’ the last three terms were only about 1 percent of

1
the first two terms.

The Bessel function parameters required to sum the finité series
obtained from Reference 4 are presented in Table 1.

The values in Table 1 are used to compute the quantities defined
by Equations (A. 31), (A.32), (A.36), and (A.38a,b). The results are
presented in Table 2.

The amplitude-frequency relation for the planar motion is

1

- -5 2
v = -Fy o - Klvz = -8.5399y "} - 0.48528.x 1075y%,  (17)
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The lower limit boundaries between stable and unstable motions are

computed from Equations (A.49a, b)

(F‘ 1/3
— 1
Y ~ -ZKI)

F, 2/3
Vv = '3Kl Z-R-I

and

= 95.82

= -0.1337 ,

) (18)

The upper limit boundaries are computed from Equation {A.50a, b):

(___)’
KZ

Fl

and

vV =

= -85.41

)2/3

f (19)

= 0.06459 .
v

The amplitude-frequency relation for the nonplanar

motion is

and
F

£? - y7‘+R_1 vl =y%+6.2305x10
2

-1 -
= -3.0235y +4.0010x 10 "y

6 2 (20)

1

5 -
Y L]

(21)

Stability of the steady-state nonplanar solution is determined by

examining the roots of Equation (A.53), namely:
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4 2
N (M MO+ MM = 0, (22)

where the coefficients are obtained from (A.56) and are found to be

2 (3 3Ky - 2K,
3 4 4K2 yviy + ——2—4K Fl
2

S
-+
<

7.5148 x lo‘loy(y3 + 3.5699 x 105) ,

]
K, F

F
2 13, Fi1\ 3
4K, (K, - 2K )FY 6 +T<‘Z)Y YIRIR - ZKI)}

2.5677 x 1077 y" L (y3 4 6.2305x10°%)(y> + 3. 7784 x 107).
(23)

Stability calculations for the nonplanar motion are summarized in

Table 3.

The computed results for this numerical example are presented
in Figures 3 through 8. Figure 3 is a plot of Equation (17) showing the
relation between y and v for the harmonic planar motion and indicating
the corresponding ranges of stable and unstable motion. Figure 4 is
a plot of Equation (20), showing the relation between y and v for the
harmonic nonplanar motion; the ranges of stable and unstable motion
are indicated, as well as the range in which the solution is imaginary.
In Figure 5, the plot of { versus v for this sarme nonplanar motion is
derived from Equations (20) and (21). Figure 6 is a plot of y versus
v, showing only the stable branches of Figures3and4. Figure 7 shows
the unstable regions for both the planar and nonplanar motions as
functions of the peak tank velocity, ¢, and the tank displacement fre-
quency, w/2w. These curves are computed from the transformation

equation
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2/3) (24)

p;° = Wil - ve
for the value of p, | = 10.897 rad/sec = 1.734 cps. An evaluation of
Equation (24) requires the limiting values of v. The limits of v sepa-
rating stable and unstable regions for the planar motion are shown in
Figure 3 and are given in Equations (18) and (19) as v = -0.1337 and
v = 0.06459. The value of v separating stable and unstable regions
for the only stable nonplanar motion, which is for y =0, is shown in
Figure 4 and is tabulated in Table 3 as v = -0.03027. Substituting
these values into Equation (24) and solving for ¢ as a function of w/2w
provides the data used to plot the curves in Figure 7. Figure 8 is a
plot of the approximate planar motion stability boundary as a function
of the dimensionless ratios f/f11 and eo/a. These curves approximate
the stability boundary for a tank in which the fluid depth is greater
than the tank radius, in which case, the stability boundary is nearly
independent of the fluid depth. The expressions used to construct this
figure were developed in the following manner: First by referring to
Equations (A.36), (A.38a,b), (A.49b) and (A.50b) it is noted that the

instability limits are approximately proportional to (ga)—1/3. That is

F.\2/3 2/3
1 -1 -3 -
- ‘3K1(‘2”K—) o« g a (g_f‘—i) = (ga) 1/3

<
t

u 1 -
vy = (Ky - Ky (ZFTII)Z/} o (ga)" /3
or, introducing the proportionality constants cu and Ce gives
Va© cu(ga)'1/3 and v = C]Z(ga)-l/3

For a = 5.938 and g = 386 the upper and lower stability limits are found
tobev = -0.1337 and v, = 0.06459 so that 4 and <, become

c .= 0.852 s c, = -1.764
u 4
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Using Equation (A.19) the ratios of driving frequency to the lowest

natural sloshing frequency can be written

2
(ff> = lzmml+v<2/3
11 1 - ve
for vez/3 ==1. Since
5 1/3 > 1/3
2/3 -1/3(2 2\1/3 _[P11%6 - ‘o
ve / oc (ga) / (w eo)/ R —aa x1(1.84119) ?'

the upper and lower stability limits can be approximated by the

expressions

fu 2 3 2/3

() =1 o1 (@)

; (25)

£ \2 2/3
{ ‘o

f—-— = 1 - Z. 16 (——)
1] a /

These were the equations used to develop Figure 8.

Experimental Results and Comparison with Theoretical Predictions

The sloshing tests for verification of the theoretical work of
this investigation were conducted in the Space Technology Laboratories
slosh test facility, shown in Figure 9. This facility consists of a
rigid, lightweight tank platform supported so as to allow only a single
translation degree of freedom. This is accomplished by long, flexure-
ended positioning struts oriented to eliminate rotation about any axis
and to make negligible any translation other than that along the lateral
drive axis. This design results in a very rigid platform possessing a
high resonant frequency compared with the slosh frequency being
investigated. The drive mechanism and its platform are also very

rigid.
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The sinusoidal lateral oscillation of the slosh-tank platform is
accomplished with a scotch-yoke mechanism connected to a heavy,
variable-speed drive. The amount of eccentricity of the drive stud
can be preset to produce a peak-to-peak stroke length up to 1 inch.
While the drive motor is running, the drive stud can be moved rapidly
from center (no stroke) to preset stroke position to start lateral exci-
tation. Thus, the amount of excitation can be varied at any selected

frequency.

A cylindrical tank about 12 inches in diameter, partially filled
with water to a depth of about 9 inches, was used for the tests. Testing
was conducted in the following manner. The amplitude of tank motion,
€, was set and was left constant for the entire test. Then the tank
was driven at a desired frequency and when steady-state conditions
appeared to be established, the frequency and wave height were read

and the fluid behavior noted.

The driving frequency was measured by sensing the rotational
speed of the scotch-yoke drive and recording this speed on a Berkeley
freqeuncy meter. The tank peak-to-peak amplitude (Zeo) was meas-
ured by placing a dial indicator beside the tank in the plane of tank
motion and observing the extreme positions of the dial indicator needle.
The wave height was measured by reading a 6-inch scale (graduated
in hundredths of an inch) attached to the plexiglas tank in the plane of
the tank motion and zeroed on the quiescent water level. The error
of the three measurements is estimated to be as follows: drive fre-
quency, w/27 = £0.004 cps; tank amplitude, €, = +0.0005 inch; wave
height was more difficult to read and the probable wave height error

was %£0.2 inch.)

Three types of fluid motion were noted: stable planar, stable
nonplanar, and unstable. Stable planar motion is a steady-state fluid
motion with a constant peak wave height and a stationary single nodal
diameter perpendicular to the direction of excitation. Stable nonplanar

motion is a steady-state rotary fluid motion with a constant peak wave
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height and a single nodal diameter that rotates at a constant speed.

This motion has the appearance of a surface wave traveling around

the tank at a constant speed and in a single direction. Unstable motion
is a swirling fluid motion that never attains a steady-state harmonic
response; the peak wave height and nodal diameter rotation rate and
direction continually change with time. The surface wave in unstable
motion may build up and then decay; it may rotate first in one direction,
then stop, and rotate the other way. At times, the wave may slosh

for several cycles in a plane perpendicular to the plane in which the
tank is being driven, then rotate around and slosh in the driven plane

for several cycles.

To locate the limits of the planar motion instability region, the
first test reading was made at a frequency in the stable region well
below the instability region. After the first reading was recorded
the driving frequency was increased. When steady-state motions were
again established, the wave height and fluid behavior were again re-
corded. This process was continued until the frequency was raised to
the point where planar motion became unstable, indicating the lower
limit of the unstable planar region. With this boundary established,
the driving frequency was increased above the natural frequency to a
frequency in the upper stable planar region, and the steady-state wave
height was recorded. This process was repeated, reducing the fre-
quency each time, until the upper limit of the unstable region was

located.

After the planar motion exploration was completed, the stable
nonplanar motion was investigated. This motion occurred primarily
above the natural frequency and overlapped a frequency range in which

stable planar motions had been observed.

To verify further that both planar and nonplanar motions could be
stable within a common frequency range, the following test was carried
out. With the fluid at rest, the tank motion was started. When a

steady-state condition at a selected frequency was reached the fluid
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was observed to assume stable planar motion. While the water main-
tained this stable motion, a paddle was inserted into the tank and the
motion was deliberately perturbed into a random behavior. When the
paddle was removed, the water motion sometimes settled back into the
original planar mode, and at other time became nonplanar. Observa-
tions of the latter cases indicated that this nonplanar mode was indeed
a stable motion which would continue until the driving motion was
changed. This test thus demonstrated that both stable motions were
possible at a single driving frequency. A possible conclusion from
several repetitions of this experiment is that the nonplanar mode re-

quires the addition of energy into the system.

Additional testing verified the existence of a finite region of un-
stable motion below the natural frequency. In this region, no stable

harmonic steady-state motions were found.

The data taken during these tests are summarized in Figures 10,
11, and 12. Figure 10 is a plot of faired curves through the observed
planar motion peak wave height data for various tank driving fre-
quencies. Figure 11 shows a faired curve through the test data of
the nonplanar motion peak wave height for a driving amplitude of 0.032
inches. Figure 12 is a plot of the data of Figure 10 when the frequency

is transformed by the equation

( plll)-2/3
v=(l-—5— |e

w

and the wave height is divided by 51/3. This scaling was suggested by

the theoretical investigation.

In Figure 13, the predicted stable and unstable planar and non-
planar regions of Figure 7 are compared with the test data. Figure 13
indicates that the predicted boundaries of the instability region agree

closely with the experiment for small values of e. Poorer agreement
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for the nonplanar motion stability boundary is not surprising because
of the difficulty of visually detecting the point at which the fluid motion
changes character; as the frequency is decreased, the transition is
gradual from the steady-state harmonic nonplanar motion to the non-

harmonic nonplanar motion existing in the instability region.

CONCLUSIONS

This investigation has attempted to provide an explanation for
the motion of fluid in a partially filled tank when the tank is laterally
vibrated over a frequency range centered at the lowest natural fre-
quency of small free-surface oscillations. The theoretical studies
outlined herein predicted the forcing frequency ranges on which there
were stable steady-state harmonic planar and nonplanar fluid responses
and the range of frequencies in which no harmonic motions are stable.
These studies have shown that the mechanism that causes the swirling
fluid motion in the unstable regime and the rotary harmonic motion
in the nonplanar regime is a nonlinear coupling of fluid motions parallel
with and perpendicular to the excitation plane. It is evident that this
nonlinear coupling takes place through the free-surface waves and the
observed fluid behavior can be predicted only if the higher-order terms
in the 4ree-surface dynamic and kinematic boundary conditions are

included in the analysis.

Space Technology Laboratories, Inc.
Redondo Beach, California, November 1, 1962
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APPENDIX

1. Free Surface Boundary Condition

Since the free-surface height m is an unknown in the problem,
it is desirable to replace the two free-surface conditions (4) and (5) by
one equation that does not contain n. First, it will be convenient to
eliminate the partial derivatives of n occurring in Equation (5) by use

of Equation (4). Now, Equation (4) is of the form

— . > 1 (a2 1 ~2 .
-gn = I|r, 8, y(r, 6, t),t] = <1>t+26pr +7‘I’e +® )+xlrc059 ,(A.1)

so that 1 is no longer an independent variable. Thus, the partial deriva-
tives N Mpr Mg to be obtained from Equation (A.1) must reflect the
fact that I" also depends upon r, 6, and t through the free-surface param-

eter 1. From Equation (A.1l) it is determined that

"gnt = I‘t + I‘nnt ’

“&np < rr +Fn‘r]r ’

-g = I, +C '
ne 8 " “ne
or
FTmin, = T, = B, + B B, +—58,8,,+3 5 _+%,r cos 8 )
(g Tning = Ty = 2yt @ 8 T3P Poe ¥ P, Ppe 1T €00 F

~ o~ 1 ~2,1~

- = = =% . o~ 20 A.2
(B4+Tnkn, = I =8, +8,8,. -8 +7¢9‘1’er+ 3,3, +% cos, (A.2)
~ e~ L~~~

- == - 0,
(g+Tnhng = Fg=&y, + ¢r¢r9+;-2—q>eq>ee+ &, &, ~-%rsin )
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where

Since I is equal to I"Z for z = n,
n

If Equation (5) is multiplied by -(g + I"n) and Equations (A.2) are used,

Equation (5) reduces to

2
r

Py o -~ 2 P~ ~ T e
q’tt + gd>z + Z(I’rqut +r—2‘§9¢9t + 2q:'z'1>zt to

—~ 2~
¢1'1' +$z QZZ
+;I°e Poo _‘?qu’e +“'Z$r r %9 %re *7‘1’r B %y, t 288,83

Y] s 1~ . P~
= -xlrcose+xl(? esme-@rcose) ,

on z= q. (A.3)

Since the potential functions must be evaluated on z = n, Equation
(A.3) depends upon i implicitly and Equation (4) depends upon n both
implicitly and explicitly. Now the wave height n can be eliminated
between Equations (4) and (A.3), if these two equations are first ex-

panded in a Taylor series in n about z = 0. By introducing the notation

¢ = S, (r, 8,2z =0, t), (A.4)
where the subscript k represents any order of partial differentiation,
the Taylor series expansions for Equations (A. 3) and (4) can be written

in the forms
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and

2 3 _
ao+a1n+a2n +a3n + ... =0

2 3 _
b0+b1n+b2n +b3'r] +... = 0,

respectively, where

and

b

b

b

am+1,n+l - (m+1)] 9z '

00

01

12

where

a, = aggtag tag, » Pg = Poo ¥ Poy ¢
a) = ajytaj,ta;g . by = gHby by,
a, = a,;*ta3ta,, . b, = byp tbyg
gt’tt+g¢z+r'x"l cos © [

2
2‘brsbrt + :Z¢6¢6t + 2‘bzq’zt + xl(q)r cos @ - % $g 8in 9) ’

2 1 2 2 1 2
Pr Prr +:Z %o Poo t 92 P2z " :3¢r¢9 +20.9,%2

2 2
+ ? ¢r¢9¢r9 + :Z ¢z‘POSbez !
1
Pitz tet,, » 22277 (¢ttzz + g¢‘zzz) ’

1 1
Z(q’rz«’rt + ¢r¢rzt + ?¢6z¢9t +?¢9¢Ozt + ¢zz¢zt

- 1 .
+ ¢z¢zzt) + xl(tprz cos 0 - T ¢9z sin 6) ,

o _ N
¢+ TX) cos @ , by, = ¢, by, = 3,

¢r¢rz + :2¢9¢9z + ¢z¢zz

1 Bamn 1 abmn

m+l,n+l ~{m + 1)7 0z

(A.5)

(A.6)

(A.7)

$ (A.8)




25

From Equations (A.6) and (A.7), it is evident that the
potential functions are the'same order as the wave height. This is
readily seen by neglecting the products of y and ¢ in Equation(A.6);

then, the first approximation becomes

tgn £ 0
b00 En =
or
.1
nT g ¢, - {A.9)
2 . . . 3
Hence, a term such as bzn in Equation (A.6) is of order 7
Solving Equation (A.6) for n yields

b. b b
2
" = -vlo_sl_zn oL = _ETO+o(n3) , (A.10)

and upon substituting Equation (A.10) into (A.5), the result becomes

b b 2
a0+al[—B—g-+ 0(n3):]+a2[— B—;—)»+ 0(1133 +0(1"|4) = 0 ,

or
albo b02 4
aO-Tl—-+aZF+O(") = 0 . (All)
1

2150 (agy tag, vag)bys + b))

LR
1 g+5) +b),
_ (211P00), [211P01 * 212P00  211PooP)) 4
= + - + 0(n?)
g / g g% n
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and

2 2 2

aby  (ay, ta,y +a, )byg +by)) a,2P00 4

bC +b,, +b ) S\ S
1 (g +by) +by,) g

so that Equation (A.11) becomes

B, + B, + B, + 0(n})

1 2 3 = 0, (A.12)
where
B. = 3
1 - 200 °
B. = 21100
2 T qo g ¢
g (A.13)
2
s - . . 211P01*212%0 , *11%00°11 * 2,200
3 02 g pA .
e J
In summary, the problem statement in terms of disturbance
potential functions with the higher-order approximation for the free-
surface condition becomes
0<r<a )
VZTS(r, 8, z, t) = 0 in{ 0@ =2w
~h<z<n , > (A.14)
® =0o0onz = -h,
z
76‘1_ = 0onr = a,
J
B, +B B 0 4 -
1 Z+ 3+(1~|)-Oon z = 0, (A.15)
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2. Steady-State Harmonic Solution

In this section, a steady-state solution to boundary value problem
[Equations (A.14) and (A. 15)] is derived for the case where the tank

displacement motion is

Xy = €, sin wt (A.16)

and the tank velocity is

X = ecoswt , €= we (A.17)

The solution, which is limited to the case where € is small and the
driving frequency w is close to or equal to the first slosh mode fre-

*
quency p, is posed in the form

r&;= € 1/3 [4; l(?’ T) cos wt + xl(?, T) sin wt]

+ € 1/3 [¢ 0(—1") + q;z(}'-)) cos 2wt + XZ(—I?) sin Zwt]

+e [4,3(?) cos 3wt + x3(—r)) sin 3wt] , (A.18)

*In the preliminary efforts to find a solution that was valid through

third order terms, a solution which included only the J] modes was
first posed. This, of course, is sufficiently general to obtain an exact
solution for the linear problem, but is not adequate for the nonlinear
problem. This work clearly showed that the fluid problem is related

to the Duffing problem, in that two second order differential equations
to be satisfied by the generalized coordinate A]] and B)] were of the
Duffing type and might be described as Duffing's equations generalized -
to two dimensions. However, more importantly, this work demonstrated
that other J;; modes are excited through nonlinear coupling of the free-
surface waves. This coupling involved a coupling between the J|; modes
and the other J;;, modes that started with third-order terms (only Jo and
J2). It was also noted that the J, and J; modes had a steady-state
response that was second harmonic in time. These results were used
as a guide in posing the steady state solution of boundary value problem
[Equations (A.12) and (A. 13)] in the form given in Equation (A.18).
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where ¢ and X satisfy Laplace's equation and only ¥y and x, depend

upon time. The notation ¥ means dependance upon r, 0, and z.

In this development, the arbitrary potential functions, ¢n and X
are chosen to identically satisfy Equation (A.14). The time varying
generalized coordinate associated with each of the potential functions
is selected to approximately satisfy free-surface condition Equa-
tion (A.15). The approximate satisfaction of Equation (A.15) is carried
out by first introducing Equation (A.18) into (A.15) and then requiring

1 3’ e2/3

that the coefficients of ¢ , and ¢ vanish for all time in a

Rayleigh-Ritz sense. In the following work, it is noted that the coeffi-

cient of e 1/3 contains sin wt and cos wt terms; that the coefficient of
2 . . :

€ /3 contains sin 2wt, cos 2wt terms; and terms independent of wt; and

finally, that the coefficient of ¢ contains sin wt and cos wt terms and

also higher harmonic terms. The approximation imposed is that these

1/3 and_52/3

terms all vanish identically for the ¢ terms and the first

harmonic terms for e.

When these steps are carried out, the transformations

2/3 2/3

€ wt pll2 = wz(l - Ve ) (A.19)

o -

T =

are introduced where the lowest natural frequency of small, free

surface oscillations, Py is given by

Py = /\/g)\lltanh()\“h) (A.20)

and where A\ . corresponds to the first zero of Jl’ ()\l 1a). Introducing

11

(A.18) into (A.15), using (A.19), and then setting the coefficient of the
1/3

€ terms equal to zero yields
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2 2 .
(gq“lz-pll d‘l) cos wt+(gxlz—p“xl)smwt = 0 on z = 0 . A.21)

For these first-order terms to vanish for all time, it is

necessary that

2 2
_ Pn p P11
by =g and x, = ——x) (A.22)

Equation (A.21) will be satisfied identically by choosing

cosh [X (z + h) A
(£,(7) cos 8 + £,(7) sin e]Jl(x”r) Coshl()l\“h) ] ,

1

¥y
P (A.23)

— cosh[)\ll(z + h)]
1 sz('r) cos 0 + f4(T) sin O]Jl()\llr) sk ()\“h) ,

J

regardless of the values of the generalized coordinates fi’ providing

»
H

Z - —_—
Py = BM19 1 » 9 = tanh(A;;h) . (A.24)

2/3

For the second-order terms to vanish, the coefficient of e
must vanish. The resulting equation contains second harmonic terms
in wt and constant terms only. Setting the constant term and the

cos (2wt) and sin (2wt) terms equal to zero and using the relations
xllhlz - xlzkpl and *1 lblzz - Xlzijl ’ (A.25)

obtained from Equations (A.22), reduces the three equations to

= (A.26
\DOZ . 2
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4p. % - 2 y 1 +3a”2-1x2
Pip Y- 8Y,, = 2P %, ¥, :2"194’19 —z— M1 ¥4 |

(A.26b)
2 ) 2 2 1 2 1 2
4py) x; - 8%y, = pll[xlr "V +;7"19 ':24’19
2
3a -1
11 27 2 2 A 26c
t—7— M ("1 kgl )] : ( )

The arbitrary functions b Wy and x, are selected to satisfy
Equations (A.26a,b,c). If 4;0 is taken to be a constant, Equation (A.26a)
will be satisfied identically. If b, and x, are taken to be

o N cosh [)\On(z + hj]
"DZ = Z AOnJO( Onr) cosh D\Onh)

n=1
X, a cosh[XZn(z + h‘)J
+ Z (AZn cos 20 + an sin ZB)JZ(inr) —=sh U‘an (A.27a)
n=]
and
i A cosh[)\on(z + hzl
X, = C. J (M, 1)
2 & On 0" On cosh (Xonh)
A N ' cosh[)\zn(z + hﬂ
+ 8 (Czn cos 20 + DZn sin ZO)JZ()\an) cosh (B , (A.27b)
n=] 2n
where
! = J! = A .2
VA (N gp2) Jy(\, a) 0, ( 8)

then Equations (A.26b) and (A.26c) can be satisfied by choosing the

suitable generalized coordinates in |, and x,. These generalized
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coordinates can be expressed in terms of fl' fz, f3, and f4 by intro-

ducing Equations (A.23) and (A.27a,b) into (A.26b, c) and applying the

Fourier-Bessel techniques in which the following orthogonality relations

are used:

a
Jo rJO(XOmr)JO()\Onr)dr =

J.

In this manner, the generalized coordinates of the Jo

can be expressed in terms of the fi. This process yields

A
A
7S
A

A
B

On

2n

2n

Qo (66, + £,f
Q, (f,f, - £,f

3

2, (£,f, + 1,1

rJZ(szr)JZ(Kan)dr =

0 y, m¥n
az 2

F Iy Mou2) » m=nm
0 ,
A Zaz--4

A
4) ' C;On

A
4) ! CZn

A
3) » Dy

1]

2

(A.29a)

(A.29b)

and J., modes

(A.30)
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where

z
¢n 2 2)"2na -4,

and

11
)\“a \
n qn 2 -0 2
Iq3 = qu rl-l—u Jl (u)du sy 9 =Y, ’
0 E
3a 2—1

.

(A.31)

}(A. 32)

The coefficient of ¢ yields the third-order terms. Third-order

terms arise from each of the boundary value terms, Bl’ BZ’ and B3.

For the third-order terms, it is only required that the first harmonic

terms vanish. The first harmonic terms from Bl are
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dx d
2| (%1 v
Py [(—d-r - Yy - rcos 9) cos wt - (_d-rl + vxl) sin wt:] (A.33a)

and the first harmonic terms from Bz are

1 2 (2
Pll[“‘lrxzr‘Xlr"’zr*;‘z(“l‘lexze"‘19“‘29)' "11(“11 - l) (x4 - 4y %;)

)
“A ey, - xgl, Vsl X, - xl\bZzzﬂ cos wt - PllE‘lr"Zr oy,

1 2 ( 2 )
+:Z(x16x29+¢19¢29) t A ey - Gex, H gl - Njag (kg%

1
+¢14’2z+2'("1"2zz+4’14’2zz)]5i“ wt . (A.33Db)

Similarly, there are first harmonic terms from B3 which are
lengthly expressions and are not presented because it is the integrals
of Bl' BZ' and B3 that are required in the Rayleigh-Ritz procedure.
Introducing Equations (A.23) into the expressions for Bl’ BZ’ and B,
and using Equations {(A.30) to evaluate the contribution from B2 results

in the following integrals:

a ramw
J j B1 cos GJl(kllr)r dr d6
o-“0

2 )\llzaz-l 2 df2
3PN Eamvenr S S PR v:C
11

-—):34-2- Jl()‘lla) cos wt

11
2 )\llzaz -1, daf,
- Tp J. (N, a) +vf, {|sin wt ,
11 2 1711 dr 2
2)\11 (A. 34a)
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a 2w
jof B1 sin 6 Jl(kllr)r dr d6

(o]

2 )‘1123‘2‘l 2 dfy
= TPy, _2_):_2_ Jl ()\lla) a5 - vf3 cos wt (A. 34Db)
_ 11
2 "11232 -2 df
11

~a ,‘217

JO . Bz cos GJI()\llr)r dr do

_ 2. .2 .2 2)
- n'p“[fl(fl +E el 4
A
+f4(f2f3 - f1f4)G2 cos wt
2..2,.2.,2)A
+mp 6067 + 6,2+ 6 +17)G)
££, - £,£)G, si
- f3( of3 - f) 4)02]s1n wt ,

2w
]o B2 sin 6 Jl()\llr)r dr do

,

2 2 2 z)"
npll[f3(f1 +1,2 400+ 17)G)
f(ff - £.£)G
_2(23- 14)02 cos wt

2 2 2 z)A
+1rp11[f4(f1 +£7+ 17+ 15)G)

A
+ fl(fzf3 - f1f4)G2] sin wt ,

(A. 34c¢)

(A.34d)
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a r2w
J f B3 cos OJI(Xllr)r dr de
o-o

1 2 2 2 .2 .aA
= -ZP;) [fl(fl ti, + 1, ”4)H1

A 1 2l 2. ,.2,.2

+ (0,1, - f1f4)H2} cos wt - 2P|, Ez(fl +E5+1,
2V - f(0f, - £.6,) | sin wt A. 34e)
o, H) - Gy - i) Hypsin et (A.34e

a gam
f f B3 sin © Jl(kllr)r dr de

0 /0O
= .1 2f(f2+f2+f?“+f2)ﬁ
= -7 P11 (13 2 3 4

1

A
fz(f2f3 - f1f4)HZ] cos wt

1 2 2

- 20e (62 +52 42+ 2
ZP11 | '4\h 2 3 4 ™1

A
+ fl(f2f3 - flf4)H2] sin wt , (A. 34f)

where

QO
A1 1, 2
G, = 32 Z {[“On“u"o:n"u " Z Mn
]

2 2 n n n
A (1 - “11)] Ponlos - Ponlos - Pnlp
do P lla o a a1y 2
2'2n"24 Z|171172n"11%2n T Z%2n

2 2 n A-35
+"11(1 'all)JanIzs} ’ (A-35a)
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A 1
G, = ]{[“on“u"m"n -7 on 1' Gl112)] onlo3.
n:
_Q n,Q n, 1lg n 1},
ontos * Lnlaz t2%004 - Z|%11%0M 1M n
1. 2 2
“Zhm M (1'“ ZnZB}
2
i = 3k +k k-"xllk
1 T 3K , 1 = 7Tk
Kpp)
\
A Cw M
Hy, = 2(k; - ky +ky) , k, = ZRga,; 20
N
— _m 11
“mn " tanh (A ) k3 - ZKgall k30
2. g a kK, = & )\“
Poon © 8%mn®mn 4 - ZKga 40
1
kg = -7II<[(>11-13-214-315+416-217
a, 2(31, + 5L, + 151_) + 3a, I
| 11 31, + 513 5 TR B
| k. = LKa 2[91. + 4L + 121 + 3a Z1)
20 = T Koy 91, +4L 5 11 1)
! 2 2
kyo = 7 Ko (312-4I3+415+011 12) ,
k.. = Ka, (31, +4I, + 4L +a ZIZ)
40 11 (31 + 413 +4lg +ay, ,

(A.35b)

g (A.36)




1]

L

1!

1]

|

37

(A.36)
(Cont.)
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Two ordinary differential equations are obtained by introducing
the potential function Equations (A.18) into (A.15) and then carrying
out the Rayleigh-Ritz procedure by first multiplying by Jl()\l 1r)
cos 6 rdr dO and integrating over 0=r <=a and 0 <9 = 2w, then
multiplying by Jl()\1 1r) sin Or dr dO and integrating throughout the
same region. Then, the first harmonic terms in w are set equal to
zero in both of these equations, producing the following four first-

order nonlinear differential equations:

af
1 2. .2..2, .2 2
— = -, - Klfz(fl IR EA +f4)+KZf3(f2f3 - £5,)
df
2 2. .2..2. .2
= = F| +vf + Klfl(fl +1,5 41, +f4) + K E (- £11,)
a (A.37)
3 2. .2..2 .2
I C "V K1f4(f1 i, 1, +f4) - K (ffy - £11,)
df
4 _ 2 2 2 2
T K1f3(fl et 1) - K0, - 1) .
where
\
K, = K+ 0K,
K, = K,.+AK
2 20 2
> (A.38a)
2a
F =
1 72
(x“ a -1)J1(x11a)
J
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and
\
]
K, = TBKElsxl +30, + 61, + 91, - 121, + 6L,
2 4
+a11(912—713—2115)—3a“1:],
1
K, -FK[:-MI+I3+ZI4+315-416+217
2 4 P(‘A.38b)
+a, B, + 191, - 7L) - o | 12) ,
sk, = - PILpa
1 — KG;
A
11
N P11 A
2 © - —2KG, .
- J

The form of Equations (A.37) is identical with that of the set of
. . . . . 5 .
differential equations derived by Miles™ for the undamped spherical
pendulum. Therefore, the steady-state solutions of Equations (A.37)

are the same as the two obtained by Miles for the spherical pendulum.

These two steady-state harmonic solutions correspond to the zeros
of dfi/d'r fori=1, 2, 3, 4. The {first solution, called planar motion,
is a steady-state fluid motion with a constant peak wave height and a
single, stationary nodal dimeter perpendicular to the direction of ex-
citation. The second solution, called nonplanar motion, is a steady-
state fluid motion with a constant peak wave height and a single nodal
diameter that rotates at a constant rate around the container. For the

planar motion, the solution is

f1=y:f:f=f::0 ) (A. 39a)
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with

v=-Fy - K,y . (A.39b)

For the nonplanar motion, the solution is

F

3 N _ 2 _ 2 2 1 -1
fl =Y fZ = f3 = 0 , f4 = =Y +R_Z Y ’ (A403)
with
-1 K 2 A
v = - K3Y + 4Y ] ( 40b)
where
Kl
= e = - . A.41
K3 X Fl , K4 K‘2 ZKl (A.41)

This solution is real, and hence exists, for A\ = 0 when Y3 + FI/K2> 0

and for y< 0 when Y3 + FI/K2< 0.
4. Stability of Steady-State Harmonic Solutions

Stability of the steady-state harmonic solutions obtained in the
preceding section will now be investigated. A particular steady-state
harmonic solution of Equations (A.37) is denoted by the superscript (o),
and the stability of such solutions is investigated by imposing a small
perturbation from this steady-state solution and examining the subsequent
motion. If the motion following the perturbation decreases with time,
the solution is called stable; if the motion increases with time, the

solution is called unstable. Mathematically, set

f(r) = o)y (A.42)
1
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where fi(o) are constants corresponding to the steady-state amplitudes
of the harmonic solutions of Equations (A.37) and the c, are assumed to
be small. Stable fi(o) solutions correspond to values of A with negative
real part, and unstable solutions correspond to correspond to values

of X\ with positive realpart. Introducing Equation (A.42) into Equations

(A.37) neglecting products of c,, and imposing the condition that the

i

fi(o) are solutions of Equations (A.37) leads to the following set of
homogeneous algebraic equations:
- - (‘ e W
d); +A dy, d13 d14 < FO
- . 0
421 daz - 93 924 €2
< > = { ) (A.43)
431 432 d3z *h dyy ©3 0

d d d d , -\ c oJ
41 42 43 44 4 L
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where

11

12

13

14

21

22

23

24

2K1f1(°’f2(°) + K2f3(°)f'4(°) ,

2 2 2 2 2
v o+ K1[:f1(°) + 3f2(°) + f3(°) + f4(°) ]- K2f3(°) ,

(o), (o) (o). (o) (o), (o)
2K, f f3° +Kz[fl £000 - 21,04 ]

172

(o). (o) (o). (o)
2K, f °f4° +K2f1°f3° ,

172
2 2 2 2 2
(o) (o) (o) (o) (o)
v+K1[3fl +E,7 + 150 + o, - Kyf, ,
4y

(o), (o) (o), (o)
2K 1,776,077 + K, 1,7 0

(o), (o) (o). (o) (o), (o)
2K1f10f4° +K2,:f2°f3° - 2f1°f4°] ,

>(A.44)
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32

33

34

41

42

43

44

dyyg o

djg -

(o), (o) (o). (o)
2K1f3°f4° +K2f1°fzo ,

2 2 2 2 2
v+ Kl[fl(o) + f2‘°) + f3(°) + 3f4(°) ] - K2f1(°) ,

dy3 >

dis >

2 2 2 2 2
v+ Kl[f1(°) + 10 43 (0l 4 g f0) ]- K%,

dyg

5

J

(A.44)
(Cont.)
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Since Equation (A.43) is a homogeneous set of equations in c,,
nontrivial solutions will exist only if the determinant of the coefficients
in zero. Setting this determinant equal to zero yields the allowable

values of \. The question of stability reduces to an examination of the

roots of the resulting equation in A.
a. Planar Motion Solution

The steady-state planar motion solution found in this section

was given as
fr7=h 0 === 0 (A.45a)
where
v -F Y- Ky (A.45b)

Introducing Equations (A.45a) into Equation (A.43), setting the
determinant of the coefficients of c, equal to zero, and expanding

results in

4 2
NH (M M AT+ MM, = 0, (A.46)
where
~
v+ KIYZ 0
M1 = ,
° VIR > (A.47)
v+ KIYZ 0
MZ = )
0 v + (K, - Ky
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The roots of Equation (A.46) are

) _ 2 2y -1 -1 2
NS o= oM, - —(v+ K, )(v+3K1y) - -Fy (Fly - 2Ky )(A-48a)

2 -1 -1 2
N2 = -M, = _(v + Kly2>[/ + (K, - KZ)Y] = -Fv (FIY +K,y ) - (A .48b)

The boundary between stable and unstable planar motion cor-

responds to A, = 0 and A\, = 0. From \ 2 = 0, it is found that:
P 1 2 1

| Fl 1/3
Y = +0 and Y = —Z-K—- . (A.49a)
1

Later, it is seen that Kl > 0, so that from Equation (A.45b) these

values correspond to

F 213
= -3k L A.49b
v = -0 and v = lZKl . (A.49Dh)
From )\2 = 0,
. Fl 1/3
2

are obtained.

When Equation (A.45b) is used with Kl > 0, it is found that

these values correspond to

Fo2/3
V= -0 and v = (K2 - Kl)(Kl) . (A.50b)
2



46

Figure 2 summarizes the regions of stable and unstable planar

motion.
b. Nonplanar Motion Solution

The steady-state nonplanar motion found in this section was

given as
' 2 F
(o) (o) _ (o) _ (o) _ 2 _ 2, 71 -1
£, v, f, = {, =0, f, = 07 = vy +K2y , (A.51a)
where
- oK,y D+ K,y (A.51b)
v = - 3Y 4'Y .

The requirement that { be real demands that C,Z = 0, which, in turn,

indicates that this solution is not valid when y lies in the range

Fi_.3
-K—'<Y <0 ’ (A.SZ)
2 .

Introducing Equations (A.51a) into Equation (A.43), setting
the determinant of the coefficients of c; equal to zero, and expanding
results in

4 2 _
AT+ (M + MO + MM, = 0 (A.53)



where
di4
M, = )
24
d;
M, =
dy,
and
dj, =

13

12

12

13

v+ K (v + L)

di3 = Kv b

le

i

d24 Z(Kl - KZ)Yg ’

d34

2

v + 3K1y + (K1

2
v + 3K1§ + (Kl

2

2

\
dy. 93
24 921 >
24 93
34 94
P4
N

-

/

-

47

(A.54)

(A.55)

Introducing Equation (A.51b) into Equations (A.55) and ex-

panding Equations (A.54) yields

3K2

- ZKl

) 2 [ 3

F
2 -1/1.3 1 3
MSM() = 4K2 (K2 - ZKI)FIY (y +—-—-K ) Y

2

K\Fy

A

+
2K, (K, - 2K|)

>(A. 56)
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Table 1. Bessel Function Parameters
n Kona )‘Zna JO()\Ona) Jz(kzna)
1 0 3.05 1 0.486496
2 3.832 6.71 -0.402759 -0.313528
3 7.016 9.97 0.300116 0.254744
4 10.150 13.2 -0.249636 -0.220787
5 13.324 16.3 0.218359 0.197717
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Table 3.

Domain of Stable and Unstable
Nonplanar Harmonic Motions

51

-0 =<V <-0,03027
0=y <64.47
117.6 < || <= o

-0.03027T=<v=<=mm
64.47<y <o
117.6 <|t| = o0

0.06459 <v=<oo
-0 <y < -85. 41

0<|t|=<ow

oo =v=0,06459
-85,41 =y =<0

)
}
)
j

unstable, since Re(\) is positive

stable, since Re(\) is negative

unstable, since Re(\) is positive

solution does not exist, since §,2< 0



52

swialsAg S3BUIPIOOD T

— % —|

2andr g




53

uotyeray Aouonbax g/epnirdwy UOTION IrBURId T 2andt g

0>4
Z,\
¢ 4
N
T (t5=0%) =a |_..v._ -z A 0y
L |
NZ .
g/z\ ‘A ¢/1I\ 4

NOILOW J18VISNN =e— — = e
NOILOW 318V1S

0< A



A - A ‘uonyerey Aouenboijg/epnirjduiy UOTIONW IBURI ‘¢ 2an8r q

v°0 Z°0 0 ¢'0- v o- 90~

0>4 / \ 0< A

\ 00l
NOILOW \

)
v \ /
118VISNN /

NOILOW \ /

Imavis / '\

N i S . / 002

54




55

9°0

¥°0 Z2°0 0

a - A ‘uoryersy Aousnbai g/opmyrduy uoyjop reuerduoyN p 2anSi g

AN ¥°0- 9°0~

\ OA>

““

NOILOW AYVNIOVW] = = == —
NOILOW J19VISNN =—— - —
NOILOW 318V 1S

| _

001

4]

00¢

00¢



56

A - 9§ ‘uoryeray Ldousnbai g/eopnytjduy UOIOW zeuerduoN ‘¢ 2an3dr g

1
9°0 70 A0 0 Z°0- v*0- o.o.o
]
NOILOW JT1gVLISNN == = ==
\ NOILOW 318V1S
[
| 001
[ |-

\ .,/ , |21

\\\\ // oow

> 00€




57

?°0

PIN[g JO Uu®BJ [eJLIPUI[AD ®B JO SUOTIB[[IOSQO PI010 J I10j sayduerqg 9a[qeis -9 2andi g

v°0 ¢°0 0 ANV v o- ?°0-

0ol

|41

002
m \ \ "NOILOW
¥VNVIINON 3HL SISRHdWOD

I HONV¥8 ANV ‘NOILOW
YVYNVY1d IHL ISRHdWOD
T ANV I STHONWVYSE

00€



¢, PEAK TANK VELOCITY (IN/SEC)

¢ , PEAK TANK VELOCITY (IN/SEC)

1.0, \ /
0.8
UNSTABLE PLANA /

0.6 \ REGION /
0.4
STABLE REGION
FOR y< 0
0.2}— STABLE REGION
FOR y>0 T\/
0 l

-~

] 00 \
0.8 \
0.6
STABLE REGION
FORy>0
0.4
UNSTABLE NONPLANAR
REGION

0.2 \

0

1.62 1.66 1.70 1.74 1.78 1.82

FREQUENCY (CPS)

Figure 7. Unstable Regions for Planar and Nonplanar
Harmonic Motions
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BERKELEY
FREQUENCY
METER

DRIVE FREQUENCY |
' CONTROL 2

Figure 9. Slosh Test Facility With One-Degree-of-Freedom
Tank Platform Laterally Oscillated with Scoth-
Yoke Sinusoidal-Drive Mechanism
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1, WAVE HEIGHT (IN.)

5.0

4.0

3.0

2.0

a=5.938 IN.
h =8.907 IN.
Pyp = 1.734 CPS
€ =0.032 IN.
H
€ sin (2nft) -
|
1.4 1.7 P 1.9

Figure 11.

f, FORCING FREQUENCY (CPS)

Wave Height Test Data for Nonplanar Motion
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e <13

a=5.938 IN.
h =8.907 IN. 2 =wi-ve?/3)
Pyp =1.734 CPS e=we,
~— 20— TEST POINTS
— O €_=0.0065IN.
_,Q% O € =0.0195IN.
h ; T €_=0.032IN.
: . ll €osinwt 0 €_=0.062IN.
= O €,=0.097IN.
2.0
1.8
1.6 v,
1.4 =
O
].2
1.0
0.8
0.6
0.4
*La e\
0.2 Oﬁ Q e
o o o
0

-1.4-1.2 -1.0 0.8 0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
v

Figure 12. Scaled Wave Height Test Data for Planar Motion
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€, PEAK TANK VELOCITY (IN/SEC)

¢, PEAK TANK VELOCITY (IN/SEC)

1.2 , [ ,
. O MEASURED STABLE TEST POINT x O
. X MEASURED UNSTABLE TEST POINT /

0.8
B\ UNSTABLE PLANAR X/’é
0.6 REGION

N
0.4

/

™.

\

0.8
e

0.6

UNSTABLE NONPLANAR \

0.4} REGION

3
0.2 —

1.62 1.66 1.70 1.74
FREQUENCY (CPS)

1.78 1.82

Figure 13. Comparison of Theoretical and Experimental
Planar and Nonplanar Instability Regions
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