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SUMMARY 

The e f f ec t s  of afterburner-inlet t o t a l  temperature, t o t a l  pressure, 
velocity, fue l -a i r  r a t io ,  and afterburner combustion-chamber length on 
afterburner performance and s t a b i l i t y  limits were investigated using a 
25.75-inch-diameter cylindrical  afterburner ins ta l led  i n  a duct t e s t  r i g .  
This afterburner i s  typ ica l  of current high-perf ormance V- gutter-type 
afterburners without internal  cooling l i n e r s .  The range of afterburner- 
i n l e t  conditions investigated was as follows : 
t o  1860' R; t o t a l  pressure, 750 t o  1800 pounds per square foot absolute; 
velocity,  400 t o  650 f e e t  per second; and afterburner fue l -a i r  r a t io ,  
lean blowout t o  higher than stoichiometric. The afterburner combustion- 
chamber length w a s  varied i n  12-inch increments from 30 t o  66 inches. 

t o t a l  temperature, 1260' 

Each of the parameters had a masked effect  on combustion efficiency 
within the range of conditions investigated. For example, changing the 
afterburner combustion-chamber length from 30 t o  66 inches produced large 
increases i n  combustion efficiency (from a min. increase of 22 percentage 
points t o  a max. increase of 42 percentage points}, and changing the 
afterburner-inlet  t o t a l  temperature from 1260' t o  1860' R increased the 
efficiency as l i t t l e  as 4 and as  much as 27 percentage points.  
at ion i n  efficiency produced by changing pressure and velocity was some- 
w h a t  l e s s  than t h a t  f o r  changes i n  temperature and length but s t i l l  
s ignif icant  . 

' 

The var i -  

For most conditions investigated, the lean blowout fue l - a i r  r a t i o  
of the  afterburner w a s  reduced by increasing the afterburner-inlet  t o t a l  
pressure and t o t a l  temperature or by decreasing the afterburner-inlet  
velocity.  

The afterburner total-pressure-loss coefficient was essent ia l ly  un- 
affected by changes i n  the af erburner-inlet t o t a l  temperature and pres- 
sure and only s l igh t ly  affected by velocity. F The total-pressure-loss 
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coefficient increased as the afterburner temperature r a t i o  increased, 
and a minimum value w a s  obtained w i t h  variations i n  afterburner 
combustion-chaniber length. A s  afterburner temperature r a t i o  and veloci ty  
increased, there w a s  a decrease in the length at  which the pressure-loss 
coefficient reached a minimum, the major e f fec t  being that of temper- 
a ture  r a t i o .  

High-frequency combustion i n s t a b i l i t i e s  were encountered more f r e -  
quently as the afterburner combustion-chamber length and afterburner- 
i n l e t  t o t a l  pressure were increased and were absent en t i re ly  f o r  the 
30-inch afterburner combustion chamber. Low-frequency combustion insta- 
bil i t ies occurred more frequently as the afterburner-inlet  t o t a l  pres- 
su re  w a s  increased and the afterburner length was decreased and were 
absent en t i re ly  f o r  an afterburner combust ion-chamber length of 66 
inches. 

INTRODUCTION 

High-performance afterburners and afterburner components have been 
developed and investigated f o r  specif ic  turbo j e t  engines and operating 
conditions f o r  many years. A s  a r e su l t  of these investigations (the re-  
sults of many of which are surmnarized i n  r e f .  11, much data are available 
on the performance of these specif ic  afterburners o r  components f o r  spe- 
c i f i c  s e t s  of opei-ating conditions. 
performance data show the e f fec t  of combustion-chaniber length (refs. 2 
t o  4), pressure and velocity ( re fs .  3 t o  9>, and other variables on 
afterburner performance. However, a systematic evaluation of the indi- 
vidual effects  of afterburner-inlet conditions and length on afterburner 
performance has not been made heretofore on a single afterburner config- 
uration, making it impossible t o  evaluate completely the individual ef-  
fec ts  of i n l e t  conditions and length on afterburner performance. 

In addition t o  these data, other 

This investigation, conducted on a high-performance afterburner 
configuration (representative of current medium- t o  high-fuel-air-ratio 
designs), determines systematically the individual e f fec ts  of 
afterburner-inlet t o t a l  temperature, t o t a l  pressure, and velocity,  and 
combustion-chamber length on afterburner performance and operating limits. 
The investigation was eonducted in  a large-scale afterburner t e s t  r i g  a t  
the NACA Lewis laboratory t o  determine the e f fec t  of these variables on 
combustion efficiency (for three afterburner fue l -a i r  r a t i o s ) ,  combustion- 
chamber pressure-loss coefficient,  lean blowout limits, and combustion 
in s t ab i l i t i e s ,  
vestigated i s  as follows: 
pressure, 750 t o  1800 pounds per square foot absolute; velocity, 400 t o  
650 fee t  per second; afterburner fue l -a i r  r a t io ,  lean blowout t o  higher 
than stoichiometric; and conibustion-chambgr length (defined as the dis- 
tance from the flameholder t r a i l i n g  edge t o  the effect ive nozzle throa t ) ,  
30 to  66 inches. 

The range of each of the afterburner-inlet  variables in- 
t o t a l  temperature, 1260' t o  1860' R; t o t a l  
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APPARATUS 

Ins t a l l a t  ion 

The general arrangement of the afterburner test  r i g  and the  a f te r -  
burner is  shown i n  figure 1. 
a i r  first enters a preheater (consisting of eight 535 combustor cans 
simulating a turbojet-engine primary combustion system), where it is  
heated from approximately 540° R t o  the ciesired afterburner-inlet  temper- 
ature. 
chamber, which provides a uniform temperature prof i le  at the d i f fuser  
i n l e t .  
t o  provide a uniforrll d i f fuser- inlet  velocity prof i le  and a means of meas- 
uring airflow through the afterburner. After passing through the screen, 
the gas enters  the diffuser,  which is  made up of a conical outer s h e l l  
and a formed innerbody supported by four streamlined struts located SOo 
apart .  The flow passage through the diffuser was designed t o  provide a 
l inear  area increase with increasing diffuser length up t o  the discharge 
end of the blunt innerbody. This diffuser  design provides a nearly flat 
pressure and velocity prof i le  at the  afterburner i n l e t  (diffuser  e x i t ) .  
A f t e r  leaving the diffuser,  the gas passes through the afterburner com- 
bustion chamber and the exhaust nozzle and then is  discharged into the 

A s  shown in f igure l ( a )  , the  combustion 

The heated gas then passes fromthe preheater in to  a mixing 

A 44-percent-blockage screen was ins ta l led  a t  t he  d i f fuser  i n l e t  

exhaust system. 

The details of the afterburner are  shown schematically i n  figure 
l (b )  . The afterburner had an inside diameter of 25.75 inches. 
afterburner combustion-chamber length was varied from 30 t o  66 inches 
by inser t ing cyl indrical  spool pieces between the flameholder and the 
exhaust nozzle. 
An external  shroud w a s  provided f o r  cooling the  afterburner shell (no 
in te rna l  cooling liner used). 
was saturated with water sprayed into the a i r  at the shroud cooling-air 
i n l e t .  

The 

The fue l -a i r  mixture was i w i t e d  w i t h  a torch igni tor .  

The cooling air  passing through the shroud 

Details of the fuel-injection system (incorporating some of the de- 

Twenty-four spray bars attached t o  a single manifold 
s i rab le  features of the  fue l  system described in  r e f s .  8 and 10) are 
shown i n  f igure  2.  
and equally spaced circumferentially i n  the diffuser  section of the 
afterburner were located 30.5 inches upstream of the flameholder. Each 
spray bar contained seven fue l  or i f ices ,  four on one side and three  on 
the  other.  
normal t o  the  direction of the airflow. The spray bars were f la t tened  
t o  reduce the  pressure loss ,  and the orifices were positioned rad ia l ly  
t o  produce a uniform radial  fue l -a i r  distribution a t  the d i f fuser  e x i t .  

These or i f ices  were 0.031 inch in diameter and injected f u e l  

The flameholder ( f ig .  3) was  a conventional two-V-gutter-type flame- 
holder (similar t o  those designed f o r  high performance presented i n  
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refs.  4, 5, and 7 ) .  
cated at the  diffuser  e x i t .  
window used f o r  observing blowouts. 

Tne fiamenolder was mounted i n  a spool piece lo- 
This spool piece also eontained a quartz 

'ke variable-area exhaust nozzle ( f ig .  4) consisted of a water- 
cooled but te r f ly  valve, which allowed the effect ive flow area of the 
exhaust-nozzle throat t o  be varied from approximately 1 . 7 7  t o  3.05 
square f e e t .  The variable-area nozzle is  discussed in appendix A .  

Instrumentat ion 

I n s t m n t a t i o n  s ta t ions f o r  the measurement of temperatures and 
pressures throughout the afterburner are  shown in  figure l ( b )  . 
symbols and s ta t ions are  defined i n  appendix B . )  Pressures were meas- 
ured on mercury-filled manometers and recorded photographically. Tem- 
peratures were measured w i t h  thermocouples and recorded on self- 
balancing potentiometers. Fuel flows were measured w i t h  cal ibrated ro- 
tameters. The de ta i l s  of the instrumentation at  each s ta t ion  are  shown 
in figure 5. 

(All 

The locations of the four  probes used t o  measure the t o t a l  pressure 
at s ta t ion 3 are shown in figure 5(a). 
tation used t o  measure s t a t i c  and t o t a l  pressures at  s ta t ion  4 (down- 
stream of t he  airflow measuring screen) are shown in f igure 5 (b ) .  
mocouples located as shown in  f igure 5(c) were used t o  determine the 
afterburner-inlet t o t a l  temperature a t  s ta t ion  5. The instrumentation 
at  station 7 ,  located as shown i n  figure 5(d),  was used t o  calculate 
the afterburner-inlet  t o t a l  pressure and velocity.  
veys a t  s t a t ion  7 were made using an NACA fuel-air-rat io  analyzer and 
a traversing probe as described i n  reference 10. 

The locations of the instrumen- 

Ther- 

Fuel-air-rat  i o  sur- 

Pairs  of d i f fe ren t ia l  pressure or i f ices  (located a t  s ta t ion  8) f o r  
detecting high-frequency codmstion i n s t a b i l i t i e s  (described in  r e f .  11) 
were arranged as shown in figure 5(e). 
these o r i f i ce s  is, br ie f ly ,  as follows: 
eff ic ient  i s  considerably higher when the gas flows in to  rather  than 
out of the chamfered side. Inasmuch as the o r i f i ce s  making up a p a i r  
are oppositely oriented, t h e i r  ins ta l la t ion  i n  a f luctuat ing pressure 
f i e l d  r e su l t s  in a pressure d i f f e ren t i a l  across a U-tube manometer con- 
nected t o  the or i f ices .  
indication of the presence of high-frequency conibustion i n s t a b i l i t i e s  
i n  the afterburner. 

The principle of operation of 
For each or i f ice ,  the flow co- 

T h i s  pressure d i f f e ren t i a l  w a s  used as the 

The very-low-frequency combustion i n s t a b i l i t i e s  were sensed by the 
conventional pressure rakes ins ta l led  i n  the afterburner and resul ted 
in fluctuations i n  the indicated pressures on the manometer boards. 
These i n s t a b i l i t i e s  were a l so  audible t o  the f a c i l i t y  operator. 



The instrumentation located as shown in f igure 5(f)  was used t o  
measure the t o t a l  pressure at the exhaust-nozzle inlet (s ta t ion U) .  
total-pressure probe was used t o  determine the  pressure loss  through 
the exhaust nozzle a t  s ta t ion  1 2  ( f i g .  5(g)).  
shown in th is  figure were used t o  determine the thermal. expansion of 
the nozzle she l l ,  because the f l o w  area a t  t h i s  s ta t ion  w a s  used in the 
computation of the afterburner combust ion temperature. 

A 

The skin thermocouples 

PROCEDURE 

The operating procedure f o r  obtaining data  w a s  as follows: The 
afterburner was  ignited, the afterburner-inlet flow conditions were se t ,  
and then the fue l -a i r  r a t i o  was vmied w h i l e  holding the afterburner- 
in l e t  conditions constant by adjusting the exhaust-nozzle area. Just  
p r ior  t o  taking each data point, the pressure in the external  cooling 
passage was adjusted so as t o  be equal t o  the pressure inside the after- 
burner, thus reducing leakage through the  flanges of the  afterburner 
spool pieces t o  a minimum. A cold point (nonafterburning) w a s  taken f o r  
each combination of conditions t o  evaluate the nonafterburning pressure 
losses in the afterburner. 

Data were obtained for  afterburner lengths of 30, 42, 54, and 66 
inches over the following range of afterburner- inlet conditions : 

Total temperature, % . . . . . . . . . . . . . . . . . .  1260 t o  1860 
Total pressure, lb/sq f t  abs . . . . . . . . . . . . . . .  750 t o  1800 
Velocity, f t /sec . . . . . . . . . . . . . . . . . . . . .  400 t o  650 
Afterburner fue l -a i r  r a t i o  . . . . . . . . . . . . . .  Lean blowout t o  

higher than 
stoichiometric 

S t a b i l i t y  limits were determined by observation of the  flame ex- 
t inc t ion  through the quartz window in the afterburner shel l  and by the 
change i n  afterburner pressure drop a t  the instant  of blowout. Blowouts 
were approached very slowly by gradually changing the fue l  flow and the 
nozzle area, the values of which were recorded at the instant  of blowout. 

Radial fuel-air-rat io  surveys were made at  various circumferential 
positions a t  s ta t ion  7 both a t  the beginning and near the end of t h i s  
investigation. 
from 1/4 inch from the shell  t o  2 inches from the  afterburner center- 
l i n e .  

The s q l i n g  probe radially traversed a path ranging 

These surveys were made during afterburner operation. 

The airflow was  determined from the measured total-pressure drop 
across the diffuser- inlet  screen calibrated against a ser ies  of fixed- 
area exhaust nozzles f o r  each afterburner-inlet  temperature invest i -  
gated. The afterburner-inlet  velocity was determined from the w a l l  
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static-pressure and stream total-pressure measurements at s t a t ion  7 (no 
measurable difference existed between the w a l l  and stream s t a t i c  pres- 
sures  at t h i s  s t a t ion ) .  The exhaust-nozzle-exit t o t a l  pressure w a s  de- 
termined f r o m  pressures measured at s ta t ions ll (exhaust-nozzle i n l e t )  
and 1 2  (exhaust-nozzle exi t )  as described i n  d e t a i l  in appendix A .  The 
afterburner combustion temperature w a s  computed from the e f fec t ive  area 
of the exhaust-nozzle throat ,  the  exhaust-nozzle-exit t o t a l  pressure, 
the afterburner gas flow, and the assumption of a Mach number of 1.0 
across the effect ive area of t he  nozzle throa t .  Combustion efficiency 
was  computed as the r a t i o  of ac tua l  afterburner temperature rise t o  the 
ideal theore t ica l  afterburner temperature r i s e .  Details of these com- 
putat ions a re  given in appendix C . 

The f u e l  used f o r  t h i s  investigation was MIL-F-5624A, grade JP-4, 
which has a heating value of 18,725 Btu per pound and a hydrogen-carbon 
r a t io  of 0.172. 

TYPICAL, AFTERBURNER PROFILFS AND VARIATIONS 

IN AFTERBURNER PARAMETERS 

Data p lo ts  are  presented i n  order t o  show the typ ica l  prof i les  
existing at the  afterburner and nozzle inlets ( f igs  . 6 and 7 )  and t o  
give an indication of the  experimental variations i n  the  afterburner 
parameters ( f i g .  8 ) .  

Typical Afterburner Prof i les  

Inlet gas temperature. - Typical prof i les  of gas temperature a t  
the afterburner i n l e t  (measured at s t a t ion  5) are shown i n  figure 6(a)  
f o r  three different  afterburner-inlet  veloci t ies  at an afterburner-inlet  
t o t a l  temperature of 1660' R and a t o t a l  pressure of 1 2 7 0  pounds per 
square foot absolute. (It was assumed tha t  no change i n  temperature 
occurred between s ta t ion  5 and the afterburner i n l e t .  ) The prof i les  
at  each rake location f o r  each velocity were re la t ive ly  uniform, with a 
s l ight  drop near the  diffuser  innerbody, and f e l l  within a 110' band i n  
temperature. 

Inlet velocity.  - Afterburner-inlet (s ta t ion 7 )  veloci ty  prof i les  
are shown in figure 6(b) f o r  the same conditions as f o r  the gas temper- 
ature prof i les  with the addition of two nonafterburning runs. These 
prof i les  w e r e  obtained f o r  average afterburner-inlet  ve loc i t ies  f r o m  
approximately 400 t o  600 f e e t  per second. 
sprayed ahead of these rakes had no ef fec t  on the  pressures measured by 
the rakes.)  
each velocity l eve l  f o r  both the afterburning and nonafterburning 

(It w a s  assumed that the f u e l  

In  general, the  velocity prof i les  had the  same shape f o r  
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operating conditions. The curves indicate that the  velocity was fairly 
uniform across the afterburner i n l e t  except near the w a l l  and at the 
end of the blunt innerbody. The difference i n  the velocity p ro f i l e  from 
one side t o  the other of the afterburner centerline is believed t o  re- 
sult from a s l igh t  misalinement of the centerlines of the diffuser 
centerbody and outer she l l .  

Out l e t  pres sure . - Exhaust -nozzle- inlet  (afterburner - e x i t  ) t o t  al- 
~tJ1=’3”uIc ~~v111c’3 as iiizas*k-e& ststiGl 11 for --cu---L --u^- .E..̂ -l -2.” 

ai b c ~  u c * I i i c A  I ucA-ai i  
---- ̂_.Y^ --..-.02 -I ̂ ^  

r a t io s  of 0, 0.040, and 0.059 are shown i n  f igures  6(c)  and (d) f o r  the 
extreme afterburner lengths of 30 and 66 inches, respectively. These 
data were obtained a t  an afterburner-inlet t o t a l  temperature of 1660° R, 
t o t a l  pressure of 1270 pounds per square foot absolute, and ve loc i t ies  
of 520 ( f ig .  6 (c) )  and 565 ( f ig .  6 (d ) )  feet per second. The rake used 
f o r  these surveys was located at the  circumferential posi t ion shown in 
f igure 5 ( f ) .  
afterburner lengths investigated and over a range of afterburner fue l -  
air r a t io s  from 0 t o  0.059. 

The pressure prof i le  w a s  relatively f la t  over the range of 

Fuel-air-rat io  dis t r ibut ion.  - A s  previously mentioned i n  the sec- 
t i on  APPARATUS, a fixed-orifice single-manifold f u e l  system was used f o r  
t h i s  investigation. A s  a resu l t ,  the fue l  bars were required t o  operate 
over a fuel-flow range of 1O:l with pressure d i f fe ren t ia l s  as low as 
0.3 pound per  square inch. A check on the flow character is t ics  of t he  
fue l  bars indicated a k10 percent variation i n  the fuel-flow rate from 
the highest t o  the lowest f u e l  or i f ice  (located at  the top and bottom 
of the  afterburner, respectively),  due t o  gravity, at a mean fuel-bar 
pressure d i f f e ren t i a l  of 2.5 pounds per square inch. Higher pressure 
d i f f e ren t i a l s  would reduce th i s  variation in flow from the top t o  the 
bottom of the afterburner, whereas smaller pressure d i f fe ren t ia l s  would 
give larger  flow variat ions.  
afterburner due t o  gravity of l e s s  than k10 percent (average fuel-bar 
pressure d i f fe ren t ia l s  greater than 2 .5  lb/sq in .  ) probably would not 
have a s ignif icant  e f fec t  on afterburner performance, whereas greater  
variations may have an e f fec t .  
tained below a fuel-bar pressure d i f fe ren t ia l  of 2 .5  pounds per square 
inch t o  es tab l i sh  any def ini te  trends.  
the horizontal posit ion of the total-pressure rake located at  the noz- 
z le  i n l e t  ( s ta t ion  11) may have made the rake insensit ive t o  changes in 

top t o  the bottom of the afterburner (at extremely l o w  fuel-bar pressure 
d i f fe ren t ia l s  ) . 

Variations of  f u e l  d i s t r ibu t ion  w i t h i n  the 

I 

However, there were not enough data ob- 

It should be pointed out that 

I p e r f o m c e  resul t ing from variations i n  the fue l -a i r  r a t i o  from the 

Typical fue l -a i r - ra t io  prof i les  a t  the afterburner i n l e t  f o r  an 
afterburner fue l -a i r  r a t i o  of 0.050 are presented in f igure  7 f o r  two 
circumferential probe positions (see f i g .  5(d)) around the afterburner 
f o r  a fuel-bar pressure d i f f e ren t i a l  of about 2.7 pounds per square 
inch. The Curves indicate that the radial  fue l - a i r  d i s t r ibu t ion  was 



. . . - -  e m  o o  m e .  m m m  e e m m  me mom e e mo ma .em em em. e m  

8 NACA RM E57C07 

nearly uniform fo r  both positions. Similar fue l -a i r - ra t io  surveys made 
at the end of the  investigation indicated that there was essent ia l ly  no 
change i n  the fue l -a i r - ra t io  dis t r ibut ion.  

Typical Vasiations i n  Afterburner Parameters 

In order t o  show the variations of the afterburner parameters w i t h  
fuel-air  r a t i o  and t o  give an indication of the experimental accuracy of 
the data, typical  data p lo ts  are presented in figure 8 f o r  several  
afterburner-inlet veloci t ies  at an afterburner-inlet  t o t a l  temperature 
of 1660' R and a t o t a l  pressure of 1270 pounds per square foot absolute 
f o r  an afterburner length of 42 inches. 

The plo ts  of the afterburner variables show the accuracy w i t h  which 
afterburner conditions were maintained during a series of runs. 
particular combination of afterburner- i n l e t  conditions, the pressure 
and temperature were established within k1 percent of the desired nominal 
values, whereas the velocity could not be established closer than +6 per- 
cent. For t h i s  reason, cross p lo t t ing  the afterburner conbustion- 
efficiency data against velocity was necessary in order t o  obtain data 
at  comparable veloci t ies .  Afterburner combustion efficiency was corn- 
puted as described in  appendix C, and the estimated accuracy of the  corn- 
putation (considering the accuracy of the measurement of t o t a l  pressure, 
gas flow, and the effect ive flow area of the exhaust-nozzle throa t )  is  
;t5 percent. 

For a 

when the desired afterburner conditions became established, data 
were obtained over the range of afterburner fue l -a i r  r a t io s  shown i n  
figure 8. The sol id  symbols i n  f igure 8(c) represent the  lean blowout 
points for  these afterburner-inlet  conditions. Figure 8(d) indicates 
the  variation of the exhaust-nozzle flow area required t o  maintain the  
afterburner-inlet velocity constant as the  afterburner fue l -a i r  r a t i o  
w a s  varied. 
l i n e )  i s  the  largest  area f o r  which the effect ive nozzle throat  remained 
positioned in the plane of the axis of the exhaust-nozzle but te r f ly  
valve (see appendix A ) .  
exhaust-nozzle areas greater than th i s  l imit ing area. 

The l imiting nozzle flow area (shown by the long-dashed 

Thus, no performance data are presented f o r  

RESULTS AND DISCUSSION 

The performance data obtained i n  t h i s  investigation are presented 
f i r s t  as typica l  basic data p lo ts  and then i n  the form of summ~try f ig -  
ures and cross p lo ts .  
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Typical Performance Data 

The basic pe r fomnce  data obtained fo r  t he  same conditions pre- 
sented i n  figure 8 are shown i n  figure 9. 
sented in the remainder of the report  are cross p lo ts  of data plots  sim- 
ilar t o  those presented here. 

The performance figures pre- 

A typ ica l  p lo t  of the e f fec t  of fuel-air  r a t i o  on combustion e f f i -  
ciency i s  presented i n  figme 9(a).  
a rapid rise i n  combustion efficiency as the fue l - a i r  r a t i o  is increased, 
a leveling off from (f/a) 
f ina l ly ,  another sharp rise at  higher-than-stoichiometric fue l -a i r  ra- 
t i o s .  In general, the e f fec t  of increasing the afterburner fue l -a i r  
r a t i o  from 0.045 t o  0.067 caused a change of 5 percentage points in com- 
bustion efficiency. These trends were essentially the same f o r  the other 
conditions investigated. 

I n  general, these curves h d i c a t e  

of about 0.045 t o  about 0.067, and, m , u  

The sharp r i s e  i n  these curves a t  higher-than-stoichiometric fuel-  
air  r a t io s  i s  a character is t ic  resul t ing from the def ini t ion of combus- 
t i o n  efficiency used i n  th i s  report  (see appendix C ) .  For th i s  reason, 
no additional data at fue l -a i r  r a t io s  above stoichiometric are presented. 
The decrease in  combustion-efficiency level as the afterburner-inlet  ve- 
l oc i ty  increased ( f ig .  9(a>) is  typical for all the conditions 
investigated. 

The e f f ec t  of afterburner fue l -a i r  r a t io  on combustion temperature 
The dashed curve indicates the ideal com- i s  presented i n  f igure 9(b).  

bustion temperature which would be attained if the combustion efficiency 
were 100 percent. 

The combustor total-pressure-loss cceff ic ient  data are presented 
i n  figure 9(c) over a range of afterburner fue l -a i r  r a t io s  f o r  several  
afterburner- i n l e t  veloci t ies .  Nonafterburning or  zero-fuel-air-rat i o  
data are  included fo r  each velocity where possible. The afterburner 
pressure-loss coefficient increased almost l inear ly  with fue l - a i r  r a t i o  
(increasing combustion teqerature) up t o  stoichiometric. The var ia t ion 
in pressure loss  r e f l ec t s  the variation in  the afterburner momentum pres- 
sure drop w i t h  increased combustor temperature. Variations i n  the pres- 
sure loss  w i t h  the  primary variables a re  presented in the section Effect 
of Afterburner-Inlet Variables and Afterburner Length on Afterburner 
Total-Pressure-Loss Coefficient. 

Effect of Afterburner-Inlet Variables and Afterburner 

Length on Combustion Efficiency 

In  figure 10 constant-velocity surfaces were developed by cross 
p lo t t ing  data ( s b i l a r  t o  that presented in f i g .  9(a)> a t  an afterburner 
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fue l -a i r  r a t i o  of 0.055. These surfaces summarize the data and i l l u s -  
t r a t e  the individual and interrelated qual i ta t ive e f fec ts  of afterburner- 
in le t  t o t a l  temperature, t o t a l  pressure, and velocity on combustion 
efficiency. 
f o r  succeeding figures . ) 
by the l imi t s  of the test program o r  the combustion limits of the a f te r -  
burner. 
changing the fue l -a i r  r a t i o  from 0.045 t o  0.067 had l i t t l e  e f fec t  on 
combustion efficiency; thus, only the data for  a fue l -a i r  r a t i o  of 0.055 
a re  presented in t h i s  manner. 

(A discussion of the quantitative e f fec ts  w i l l  be given 
The boundaries of t he  surfaces were defined 

A s  was previously mentioned in  the discussion of f igure 9(a), 

In general, figure 10 indicates tha t ,  for  the range of variables 
covered and f o r  a par t icu lar  afterburner combustion-chamber length and 
fue l -a i r  ra t io ,  a change i n  any one of the afterburner-inlet  variables 
produced changes i n  combustion efficiency, such that increases i n  t e m -  
perature and pressure and decreases i n  velocity resulted i n  increases in 
efficiency. The slopes of these curves decreased as the afterburner-inlet  
conditions became more conducive t o  e f f ic ien t  combustion, that is, as 
temperature and pressure increased and velocity decreased. One excep- 
t ion  w a s  the  e f fec t  of afterburner-inlet  velocity on combustion e f f i -  
ciency for the  30-inch afterburner ( f ig .  l O ( a ) ) .  
change i n  efficiency for a change in  velocity was essent ia l ly  constant 
regardless of temperature or  pressure. 

I n  t h i s  case, the 

Increasing the afterburner length generally had a twofold e f fec t  on 
combustion efficiency: The over-all  l eve l  of efficiency increased, and 
the slope of the efficiency curves ( for  changes in temperature or pres- 
sure) decreased. 
increasing the  length from 30 t o  54 inches. 
burner length produced smaller increases in efficiency. 

The largest  increases i n  efficiency w e r e  obtained by 
Further increases i n  a f t e r -  

In l e t  t o t a l  temperature. - A s  previously s ta ted,  the magnitude of 
the  change in  combustion efficiency produced by a change i n  afterburner- 
in le t  temperature is dependent on both the in l e t  pressure and the a f te r -  
burner length fo r  a par t icu lar  velocity.  
these trends i s  presented in figure 11. 

A typ ica l  cross plot showing 

For example, changing the afterburner-inlet  t o t a l  temperature from 
1260' t o  1860' R w i t h  a constant i n l e t  velocity of 400 f e e t  per second 
increased the efficiency 27 -and 23  percentage points when operating the  
30-inch afterburner a t  t o t a l  pressures of 750 and 1800 pounds per square 
foot absolute, respectively. When the afterburner length was increased 
t o  66 inches, the same change i n  i n l e t  temperature a t  the same value of 
in le t  velocity increased the efficiency 17 and 4 percentage points at 
pressures of 750 and 1800 pounds per square foot absolute, respectively. 

In l e t  t o t a l  pressure. - Similar t o  the e f fec t  with temperature, the 
magnitude of the c-ge i n  combustion efficiency w i t h  a change i n  
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afterburner-inlet  t o t a l  pressure w a s  a l s o  found t o  depend on the level  
of the afterburner-inlet  temperature and the afterburner length fo r  a 
par t icu lar  i n l e t  velocity. A typical  cross plot  showing these trends 
is  presented i n  figure 1 2 .  For example, a t  an afterburner length of 30 
inches and velocity of 400 f ee t  per second, changing the afterburner- 
i n l e t  t o t a l  pressure from 750 t o  1800 pounds per square foot absolute 
increased the conibustion efficiency 1 9  and 15 percentage points a t  t o t a l  
temperatures of 1260° and 1860' R,  respectively. 

same change i n  pressure increased the efficiency 15 percentage points at 
a t o t a l  temperature of 1260° R and 4 percentage points at  a t o t a l  t e m -  
perature of l86Oo R .  

When the afterburner 
1 -.- -2-L --^- 2 -^-^^-^ 2 +-  cc :-,.LA- 
S t . l S ~ b 1 1  W U b  I I ILLC'ai3CU u u  uu L l i b L L C D  (at 8 vzlczi ty  cf 4c)o f t k e c ) ,  the  

Velocity. - The improvement i n  afterburner performance ( f ig .  13) 
with a decrease i n  afterburner-inlet velocity from 600 t o  400 f e e t  per 
second at  an afterburner-inlet  t o t a l  temperature of 1860° R was approx- 
imately c o n s t a t  f o r  the 30-inch afterburner. The combustion efficiency 
increased about 5 percentage points.  For the  66-inch afterburner the  
improvement depended on whether o r  not the other i n l e t  conditions were 
conducive t o  high combustion efficiency. Thus, f o r  a t o t a l  pressure of 
750 pounds per square foot absolute and a t o t a l  temperature of 1860' R, 
decreasing the velocity from 600 t o  400 f ee t  per second increased the 
efficiency about 9 percentage points; whereas with more favorable condi- 
t ions  ( t o t a l  temperature, 1860° R; t o t a l  pressure, 1800 lb/sq f t  abs), 
the same change in velocity increased the efficiency by only about 5 
percentage points. 

Afterburner length. - The qualitative e f fec ts  of afterburner length 
(defined as the axial distance from the t r a i l i n g  edge of the  flameholder 
t o  the effect ive nozzle throat (see appendix A ) )  on couhustion efficiency 
can be seen by comparing the various pasts of f igure 10. 
t i v e  e f f ec t s  of length on efficiency are i l l u s t r a t e d  in figure 14, which 
presents cross p lo ts  showing these effects f o r  par t icu lar  combinations 
of i n l e t  conditions f o r  afterburner fuel-air  r a t io s  of 0.045, 0.055, and 
0.0676. 
f igure 14  were determined by e i the r  the limits of the  test program o r  the 
combustion limits of the afterburner, which are discussed i n  the  section 
Effect of Afterburner-Inlet Variables and Afterburner Length on Lean 
Blowout L i m i t s .  
ciency, the  e f fec ts  of afterburner-inlet temperature, pressure, and ve- 
l oc i ty  a re  a l s o  shown. 
efficiency at fue l -a i r  r a t io s  of 0.045 and 0.0676 were essent ia l ly  the 
same as the effects  previously presented f o r  a fue l -a i r  r a t i o  of 0.055 
( f igs  . 11 t o  13). 

The quantita- 

A s  pointed out previously, the limits of the data presented i n  

I n  addition t o  the effect  of afterburner length on e f f i -  

The e f fec ts  of the parameters on codus t ion  

I n  general, it i s  evident from figure 14 that, as afterburner length 
increases, the r a t e  of increase in  combustion efficiency decreases. Fur- 
ther ,  it i s  evident from figure 10 that, as length increases, the e f fec t  
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of changing temperature and pressure on efficiency decreases, and the  
level  of efficiency increases. For example, increasing the pressure 
and temperature from the lowest t o  the highest values investigated a t  
a velocity of 400 fee t  per second and a fue l - a i r  r a t i o  of 0.055 ( f ig s .  
14(d) t o  ( f ) )  increased the efficiency of the  30-inch afterburner 39 
percentage points (from 38 t o  77 percent), whereas a similar change i n  
conditions increased the efficiency of the 66-inch afterburner only 2 1  
percentage points (from 78 t o  99 percent).  Increasing the afterburner 
combustion-chamber length from 30 t o  66 inches produced large increases 
i n  combustion efficiency (from a min. increase of 22 percentage points 
t o  a max. increase of 42 percentage poin ts ) .  Regardless of afterburner- 
i n l e t  conditions, increasing the afterburner length from 30 t o  54 inches 
produced the  largest  par t  of th i s  increase in  combustion efficiency ( 2 1  
t o  37 percentage points) .  Further increases in afterburner length pro- 
duced increases i n  efficiency which, i n  addition t o  being somewhat l e s s  
than those f o r  lengths below 54 inches, were a l so  dependent upon the 
afterburner-inlet conditions. This e f fec t  i s  i l l u s t r a t ed  by the f a c t  
that, a t  a constant velocity of 400 f ee t  per second and a fue l -a i r  r a t i o  
of 0.055, an increase in  afterburner length from 54 t o  66 inches in- 
creased the conibustion efficiency about 11 percentage points at an i n l e t  
t o t a l  pressure and t o t a l  temperature of 750 pounds per square foot and 
1260° R ,  respectively ( f ig .  14(d)) ;  whereas the same change i n  a f t e r -  
burner length increased the efficiency only 1 percentage point at an in- 
le t  t o t a l  pressure and t o t a l  temperature of 1800 pounds per square foot 
and 1860' R ,  respectively ( f ig .  1 4 ( f ) ) .  

Effect of Afterburner-Inlet Variables and Afterburner 

Length on Afterburner Total-Pressure-Loss Coefficient 

Cross plo ts  of the e f fec t  of afterburner length on afterburner 

f o r  afterburner temperature p7 - p12 
p7 - p7 

total-pressure-loss coefficient 

ratios up t o  2 . 8  are shown i n  figure 15 f o r  afterburner-inlet  ve loc i t ies  
of 400, 500, 550, and 600 f ee t  per second. 
pressure and t o t a l  temperature had no measurable e f fec t  on the a f t e r -  
burner pressure-loss coefficient.  
data are presented s o  that comparisons can be made at  the same a f t e r -  
burner temperature ra t ios  . 

Afterburner-inlet t o t a l  

Cross p lo ts  ra ther  than the or iginal  

The cold (nonafterburning) pressure loss  a t  a temperature r a t i o  of 
1.0 is probably largely due t o  the flameholder ra ther  than t o  the w a l l  
f r ic t ion  drag, inasmuch as the l o s s  remained independent of afterburner 
length over the range of lengths from 30 t o  66 inches. T h i s  cold pres- 
sure loss  was a l so  unaffected by changes i n  velocity from 400 t o  600 
f ee t  per second. 
data from which these curves were obtained w a s  about 2~0.3 unit  of 
pressure-loss coefficient.  

It should be noted, however, that the sca t t e r  i n  the 
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With afterburning, the total-pressure-loss coeff ic ient  changed con- 
siderably with changes i n  afterburner length and temperature r a t i o  but 
only s l i gh t ly  w i t h  changes i n  velocity.  A s  would be expected, the loss 
coefficient increased as the velocity or the temperature r a t i o  was in- 
creased because of the accompanying increase in  momentum pressure drop. 
Afterburner length, on the other hand, had an unusual e f fec t  such tha t  
the pressure-drop coefficient a t ta ined a minimum value at an intermedi- 
a te  value of afterburner length. In  every case at a temperature r a t i o  

length of 55 inches. A s  the temperature r a t i o  and the  veloci ty  w e r e  i n -  
creased, however, there w a s  a decrease i n  the length at  which the 
pressure-loss coefficient reached a minimum,  the major e f f ec t  being t h a t  
of temperature r a t i o .  

. .  nf 1.6, t h e  Lees csefficient reached =. %XlLTi;r;L v*;2 Gt m after%mer 

The measured total-pressure loss  in the exhaust nozzle Pll - P12 
indicated that the  increases in pressure-loss coeff ic ient ,  as afterbur- 
ner length i s  e i ther  increased or  decreased from the length f o r  minimum- 
l o s s  coefficient,  occurred i n  the exhaust nozzle. Th i s  could possibly 
mean that burning is occurring i n  the exhaust nozzle as w e l l  as i n  the 
combustion chardber. For the shorter afterburners, burning could occur 
in the exhaust nozzle because there is not suf f ic ien t  time f o r  complete 
corcibustion within the combustion chamber. For t he  longer afterburners, 
where the greatest increases i n  pressure-loss coeff ic ient  occur at  high 
temperature r a t io s  (high afterburner fue l -a i r  r a t i o s ) ,  there  may be re- 
0- oinns ---- ic the gas mixture which axe too r ich t o  burn i n  the combustion 
chamber. In  longer afterburners, however, these over-rich regions may 
become suff ic ient ly  m i x e d  with air t o  permit burning of the mixture as 
it passes through the exhaust nozzle. Since the ve loc i t ies  i n  the ex- 
haust nozzle are quite high (up t o  a mch number of 1 at the throa t ) ,  
any afterburning occurring i n  the nozzle would r e su l t  i n  a higher-than- 
normal momentum pressure drop. 

Computat ions indicated tha t  the increases i n  afterburner pressure 
lo s s  resu l t ing  from increases i n  temperature r a t i o  can be accounted f o r  
i n  terms of increased momentum pressure drop. The symbols i n  f igure 15 
at the points of minimum-loss coefficient represent an attempt t o  check 
the data w i t h  the theory. 
the momentum pressure drop (ref. 1 2 )  f o r  each temperature r a t i o  and add- 
ing it t o  the measured cold (nonafterburning) pressure loss. The com- 
parison was made at  approximately the minimum-loss-coeff i c i en t  length, 
because the method of calculation ( r e f .  12)  does not account f o r  a f te r -  
burning through the nozzle. However, a reasonably good check between 
the theory and the data w a s  obtained. 

These points were determined by computing 
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Effect of Afterburner-Inlet Variables and Afterburner 

Length on Lean Blowout Limits 

Regions of afterburner operation are  presented in  figure 1 6  i n  
terms of afterburner-inlet  velocity and afterburner fue l - a i r  r a t i o  f o r  
afterburner lengths of 30, 42, 54, and 66 inches over a range of 
afterburner-inlet t o t a l  temperatures and t o t a l  pressures. The so l id  
symbols represent the lean blowout limits of operation; and the  t a i l e d  
symbols indicate the conditions l imited by the maximum exhaust-nozzle 
area, whish was reached before r i c h  blowout occurred. The conditions 
limited by minimum-exhaust-nozzle-area limits and r i ch  blowout points 
are  labeled on t h i s  figure. 
maximum-nozzle-area l imi t s  were not encountered, data were obtained up 
t o  an afterburner fue l -a i r  r a t i o  of 0.08. This fue l -a i r - ra t io  l i m i t  i s  
marked by open symbols. 

For conditions where r i c h  blowout o r  

Total temperature. - In  general, higher afterburner-inlet  temper- 
atures reduced the lean blowout fue l - a i r  r a t io ,  with the greatest  reduc- 
t i o n  occurring at l o w  afterburner-inlet  pressures. For instance, in -  
creasing the afterburner-inlet  temperature from 1260° t o  1860° R reduced 
the lean blowout fue l - a i r  r a t i o  as much as 0.017 (from 0.051 t o  0.034) 
for  a low afterburner-inlet pressure (750 lb/sq f t  abs) and an a f t e r -  
burner length of 42 inches at  a velocity of 500 f e e t  per second ( f ig .  
1 6 ( b ) ) .  
blowout fue l -a i r  r a t i o  changed as l i t t l e  as 0.008 (from 0.035 t o  0.027) 
at  a high pressure (1800 lb/sq f t  abs) and an afterburner length of 42 
inches ( f i g .  16(b) ) .  
burner conditions investigated. 

For the same velocity and increase in  temperature, the lean 

These trends are s imi laz  f o r  a l l  lengths and af te r -  

Total  pressure. - Similar t o  the e f fec t  of increasing the temper- 
ature, increasing the afterburner-inlet  pressure f o r  the  conditions in- 
vestigated tended t o  decrease t h e  lean blowout fue l - a i r  r a t i o .  (One ex- 
ception occurred at  a t o t a l  temperature of 1860° R f o r  the 66-in. a f t e r -  
burner.) A typical  change i n  lean blowout fue l - a i r  r a t i o  (from 0.033 t o  
0.026) occurred f o r  the  30-inch afterburner when the  pressure was  
changed from 750 t o  1270 pounds per square foot  absolute at  an 
afterburner-inlet t o t a l  temperature of l86Oo R and a velocity of 500 f ee t  
per second ( f ig .  16 (a ) ) .  
1270 t o  1800 pounds per square foot  absolute had prac t ica l ly  no e f fec t  
on lean blowout fue l -a i r  r a t i o  f o r  these conditions. 

A fur ther  increase jn t o t a l  pressure from 

Velocity. - The e f f ec t  of changing the inlet velocity on the  lean 
blowout fue l -a i r  r a t i o  was found t o  be dependent on the  i n i t i a l  l eve l  
of velocity for  most afterburner-inlet  conditions. For example, chang- 
i n g  the velocity from 400 t o  500 f e e t  per  second increased the lean blow- 
out fue l - a i r  r a t i o  as l i t t l e  as 0,002 (from 0.031 t o  0.033) f o r  a typical  
condition ( f i g .  16(d) ) .  Further increases i n  velocity (from 500 t o  600 
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f t / s ec ) ,  however, increased the lean blowout fue l -a i r  r a t i o  as much as 
0.004 (from 0.033 t o  0.037) a t  the same afterburner-inlet pressure and 
temperature. 
afterburner-inlet  velocity on lean blowout fue l - a i r  r a t i o  w a s  greater  
than i n  the example j u s t  given, while f o r  o the r  conditions +,he e f fec t  
was negligible. 

For some afterburner-inlet  conditions, t he  e f f ec t  of 

Afterburner length. - The lean blowout data presented i n  f igure 16 
are  cross-plotted i n  figure 1 7  t o  show the e f f ec t  of &ft,eThi.rner leogth 
on lean blowout limits. For most cases, the lean blowout fue l -a i r  r a t i o  
tended t o  increase as the afterburner length was increased; t h i s  e f fec t  is  
greatest  a t  a temperature of 1260" H and a pressure of 1270 pounds per 
square foot  absolute. For the  other i n l e t  conditions investigated, only 
small increases i n  lean blowout fue l -a i r  r a t io  occurred as the  a f t e r -  
burner length was increased. 

Ef fec t  of Afterburner-Inlet Variables and Afterburner 

Length on Combustion Ins t ab i l i t i e s  

Regions of combustion i n s t a b i l i t i e s  are presented i n  figure 18 i n  
terms of afterburner-inlet  velocity and afterburner fue l -a i r  r a t i o  f o r  
afterburner lengths of 30, 42, 54, and 66 inches over a range of 
afterburner-inlet  t o t a l  temperatures and t o t a l  pressures. 

Two types of combustion in s t ab i l i t i e s  were encountered: (1) low- 
frequency combustion in s t ab i l i t i e s  (defined as frequencies from 10 t o  
300 cps), and ( 2 )  high-frequency corribustion i n s t a b i l i t i e s  (defined as 
frequencies from 800 t o  3000 cps) .  
b i l i t  ies  (commonly cal led screech) were characterized by high-f requency 
pressure osc i l la t ions  in  the  combustion zone and were detected by the 
special  instrumentation described i n  the section APPARATUS [ f ig .  5 (e ) ) .  
As  mentioned previously, the very-low-f requency combust ion i n s t a b i l i t i e s  
(including buzz and rumble were detected v i s u a l l y  by the f luctuat ions 
i n  the afterburner combustion-chamber pressures as evidenced on the 
manometer boards and audibly by the f a c i l i t y  operator. 

The high-frequency combustion insta-  

Inasmuch as no inner l i n e r  or screech suppressor was used i n  th i s  
program, combustion instabilities were encountered more frequently w i t h  
th i s  afterburner than w i t h  an afterburner having a screech-suppressing 
l i n e r .  

The open symbols in figure 18 represent low-frequency combustion 
i n s t a b i l i t i e s ,  while the so l id  symbols indicate high-frequency combus- 
t i on  i n s t a b i l i t i e s .  The tailed symbols indicate lean blowout. Horizon- 
t a l  l i nes  connecting the data points indicate tha t  the i n s t a b i l i t y  was  
encountered over the range of fue l -a i r  ra t ios  covered by the l ine.  
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Low-frequency corabustion i n s t a b i l i t i e s  occurred more frequently as 
the  afterburner-inlet  t o t a l  pressure was increased and the afterburner 
length was decreased; no low-frequency i n s t a b i l i t i e s  were encountered 
w i t h  the  66-inch afterburner. Generally, the regions of low-frequency 
in s t ab i l i t i e s  occurred a t  extremely r i ch  fue l - a i r  r a t io s  and a t  fue l -a i r  
ratios near lean blowout. 

For high afterburner-inlet  t o t a l  pressures a t rans i t ion  occurred 
from low-frequency t o  high-frequency combustion i n s t a b i l i t i e s  as the 
afterburner length w a s  increased. High-frequency combustion ins tab i l -  
i t i e s  were encountered more frequently as the  afterburner combustion- 
chamber length and afterburner-inlet  pressure were increased and were 
absent en t i re ly  w i t h  an afterburner conibustion-chamber length of 30 
inches. As previously noted fo r  low-frequency i n s t a b i l i t i e s ,  the high- 
frequency i n s t a b i l i t i e s  a l so  were encountered at high afterburner fuel-  
air ra t ios  and a t  fue l -a i r  r a t i o s  near lean blowout. The t rans i t ion  
from stable  t o  unstable combustion was very gradual inasmuch as the 
afterburner fuel-flow r a t e  was usually changed quite slowly. The gen- 
eral observation wits made tha t ,  i n  unstable regions and at high a f te r -  
burner fue l -a i r  r a t io s ,  the  severi ty  of the in s t ab i l i t y  increased as 
the fue l -a i r  r a t i o  increased. 

High-frequency i n s t a b i l i t i e s ,  i n  general, did not greatly a f fec t  
efficiency. 
t ions ( i . e . ,  afterburner lengths above 42 i n .  and afterburner-inlet  
t o t a l  pressures above 1270 lb/sq f t  abs) where these high-frequency 
in s t ab i l i t i e s  were encountered, the afterburner was already operating 
at a high efficiency level .  
bustion i n s t a b i l i t i e s  on efficiency is a l so  observed in reference 11. 

This w a s  probably due t o  the f a c t  t h a t ,  under most condi- 

~ 

I 

A negligible e f fec t  of high-frequency com- 

SUMMARY OF RESULTS 

A typ ica l  present-day fu l l - sca le  high-performance afterburner was 
investigated i n  a duct test  r i g  t o  determine the e f fec ts  of afterburner- 
in le t  t o t a l  temperature, t o t a l  pressure, velocity,  and fue l - a i r  r a t io ,  
and afterburner combustion-chamber length on conibustion efficiency, aft- 
erburner total-pressure-loss coefficient,  combustion i n s t a b i l i t i e s ,  and 
lean blowout limits. 

In general, f o r  a given afterburner combustion-chamber length, fuel-  
air ra t io ,  and f o r  the range of variables covered, a change i n  any one 
of the afterburner- inlet parameters produced a corresponding change i n  
combustion efficiency. 
creased as the afterburner-inlet  conditions became more favorable t o  
eff ic ient  combustion ( i . e . ,  high temperature, high pressure, and low 

velocity on the  performance of the  30-inch-long combustion chaniber. 

The magnitude of the change i n  efficiency de- 

I velocity).  One exception t o  t h i s  w a s  the  e f fec t  of afterburner-inlet  
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For t h i s  case, the change i n  aonibustion efficiency f o r  a change i n  
afterburner-inlet velocity w a s  essentially the same regardless of t em-  
perature o r  pressure. 

Changing the afterburner-inlet t o t a l  temperature from 1260' t o  
1860' R increased the efficiency as l i t t l e  as 4 and as much as 27 per- 
centage points.  
sure and velocity was somewhat l e s s  than that f o r  changes in temperature 

The variation i n  efficiency produced 'by changing pres- 

hilt. s t i l l  S i F - L f  i _ r _ . n t .  fsr the r n g e  nf cazd;+inzs i,n,srestigated. 

Increasing the afterburner combustion-chamber length had a twofold 
e f fec t  on combustion efficiency: (1) The over-all  l eve l  of combustion 
efficiency increased, and (2)  the slopes of the efficiency curves ( for  
changes i n  temperature or pressure) decreased. 
burner combustion-chamber length from 3 0 t o  66 inches produced large in- 
creases i n  conibustion efficiency (from a m i n .  increase of 22 percentage 
points t o  a max. increase of 42 percentage points) .  
of this increase w a s  obtained by increasing the combustion-chamber length 
from 30 t o  54 inches; further increases produced re la t ive ly  small in- 
creases in efficiency. 

Increasing the  a f t e r -  

The greatest  par t  

A t  the higher fue l -a i r  r a t io s ,  performance w a s  re la t ive ly  insensi- 
t i v e  t o  fue l - a i r  r a t i o .  
burner fue l -a i r  r a t i o  from 0.045 t o  0.067 caused a change of 5 percent- 
age points in combustion efficiency. 

In general, the e f fec t  of increasing the a f te r -  

A t  an afterburner temperature r a t i o  of 1.6, the afterburner t o t a l -  
pressure-loss coefficient reached a m i n i m u m  a t  an afterburner combustion- 
chamber length of 55 inches. A s  the temperature r a t i o  and velocity were 
increased, there  w a s  a decrease in the length at which the pressure-loss 
coefficient reached a minimum, the major effect  being that of temperature 
r a t i o .  Afterburner-inlet t o t a l  temperature and t o t a l  pressure had no 
measurable effect  on the pressure-loss coefficient.  Good agreement be- 
tween experimental minimum-loss coefficient and calculated momentum pres- 
sure losses was obtained. 

Increasing the afterburner-inlet to ta l  temperature from 1260' t o  
1860' R reduced the lean blowout fuel-air r a t i o  0.017 (from 0.051 
t o  0.034) at  a t o t a l  pressure of 750 pounds per square foot absolute. 
On the other hand, at  a t o t a l  pressure of 1800 pounds per square foot 
absolute, t h i s  change i n  temperature changed the lean blowout fue l -a i r  
r a t i o  only about 0.008 (from 0.037 t o  0.027). 

Similar t o  the e f fec t  of increasing the  temperature, increasing the 
afterburner-inlet  t o t a l  pressure tended to decrease the lean blowout 
fue l -a i r  r a t i o .  
1860' R f o r  an afterburner combustion-chamber length of 66 in.) In- 
creasing the  afterburner-inlet  velocity o r  the afterburner length in- 
creased the  lean blowout fue l -a i r  r a t i o  f o r  most conditions investigated. 

(One exception occurred a t  a t o t a l  temperature of 
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High-frequency combustion in s t ab i l i t i e s  w e r e  encountered more fre- 
quently as the  afterburner combustion-chamber length and afterburner- 
inlet  pressure were increased and were absent en t i re ly  w i t h  an a f te r -  
burner combustion-chamber length of 30 inches. Low-frequency combustion 
ins tab i l i t i es  occurred more frequently as afterburner-inlet  total pres- 
sure was increased and the  length was decreased and w e r e  absent en t i re ly  
w i t h  an afterburner conibustion-chamber length of 66 inches. 

Lewis Fl ight  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, March 12,  1957 
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I VARIABLE-AREA EXHAUST NOZW;E 

The variable-area nozzle used in th i s  investigation w a s  a water- 
cooled but te r f ly  valve instal led in  the end of a cyl indrical  afterburner. 
By rotat ing the valve, the flow area of the exhaust-nozzle throat  could 

nozzle effect ive flow area w a s  obtained from the measured t o t a l  temper- 
ature,  t o t a l  pressure, and gas flow over a range of nozzle pressure ra- 
t i o s  up t o  3.5 and gas t o t a l  temperatures from 1260" t o  1860" R. 
the range of temperatures covered, there was no change in the effect ive 
flow area of the exhaust-nozzle throat w i t h  temperature. 
atures above 1860' R, it w a s  assumed that the  flow area was independent 
of temperature. 
the afterburning combustion temperature. 

he ymied f r n m  g,-p-prQx<rn&ely 1-77 tl.0 3-52 sqijare feet.; A cg,lib-g,t.inn of 

For 

For temper- 

This flow cal ibrat ion wits used i n  the computation of 

The posit ion of the nozzle throat ,  determined from measurements of 
wall s t a t i c  pressures along the nozzle spool piece, varied w i t h  increas- 
ing nozzle area from the positions shown successively in figure 19.  The 
condition shown in figure 19(a)  existed for  the fully closed but te r f ly  
valve t o  an intermediate open posit ion.  
caused the effect ive nozzle throat  t o  assume the posit ion indicated in  
figure 19(b).  Fu l l  opening caused the effective nozzle throat  t o  move 
t o  the downstream posit ion shown in figure 19(c) .  

Further opening of the  valve 

I n  order t o  maintain the  condition shown i n  f igure 19 (a ) ,  it was  
necessary t o  l imit  the effect ive exhaust-nozzle-throat area t o  about 
3.05 square f e e t .  Data are presented herein only f o r  the case i n  which 
the e f fec t ive  throat area i s  located as shown i n  f igure 19(a)  . For th i s  
condition, the average posit ion of the throat w a s  assumed t o  be at  the 
shaf t .  For cases where burning occurred between s ta t ions 11 and 12,  the 
pressure lo s s  due t o  the burning was determined by the difference i n  
pressure between the single water-cooled total-pressure probe installed 
a t  s t a t ion  1 2  and a probe on the rake at s t a t ion  ll at the same immersion 
depth: 

'12 (single probe) 

11 (single probe) 
- 

'12,av - '11,av 

When there was no burning in the nozzle, there was  no measurable pres- 
sure difference between the individual pressure probes at s ta t ions  11 
and 1 2 .  
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SYMBOLS 

exhaust-nozzle-throat mea,  sq f t  

fue l -a i r  r a t i o  

acceleration due t o  gravity, 32.17 ft/sec2 

mass flow, slugs/sec 

t o t a l  pressure, lb/sq f t  abs 

s t a t i c  pressure, lb/sq f t  abs 

gas constant, 53.35 f t - lb/( lb)(%) 

total  temperature, 91 

velocity, f t /sec 

weight flow, lb/sea 

combust ion efficiency 

Subscripts : 

AB 

a 

av 

eff  

f 

Q 

i d  

0 

P 

st 

afterburner 

a i r  

average 

effective 

f u e l  

gas 

ideal 

over a l l  

preheat e r  

stoichiometric 

NACA RM E57C07 
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U 

3 

4 

5 

6 

7 

8 

11 

12 

ma . . .  am- a. a a a a a a  am 

available air  

upstream of airflow measuring screen, mixing-chamber out le t  

diffuser  in le t  

spray-bar i n l e t  

flfP1 in?liesti^C 

afterburner inlet, diffuser  ex i t  

downstream of flameholder 

exhaust-nozzle in l e t ,  afterburner exit 

effective exhaust-nozzle ex i t  

21 
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APPENDIX c 

METHODS OF CALCULATION 

A i r  Flow 

The a i r  flow w a s  determined from the measured pressure drop across 
the  diffuser- inlet  screen calibrated against a se r ies  of fixed-area ex- 
haust nozzles of known flow coeff ic ient .  

G a s  Flow 

"he afterburner gas flow is the  sum of the measured air  and f u e l  
flows : 

Afterburner-Inlet Velocity 

The velocity at the diffuser  e x i t  (afterburner i n l e t )  w a s  computed 
from measured t o t a l  and s t a t i c  pressures and the  t o t a l  temperature by 
use of the one-dimensional-flow parameters, which are  a function of 
total-  t o  static-pressure r a t io ,  of reference 13: 

For t h i s  calculation it was assumed that T5 = T7. 

Fuel-Air Ratio 

The method employed f o r  computing fue l -a i r  r a t i o  i s  similar t o  the 
method of reference 5. The fue l -a i r  r a t io s  used are defined as follows: 

W 
-f,p Preheater fue l - a i r  r a t i o  (f/a) - 

P wa 

wf ,AB 
wa 

Afterburner t o t a l  fue l - a i r  r a t i o  (f/aIAB = 
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W f , p  + wf,h 
Over-all fue l -a i r  r a t i o  (f/a)o = 

wa 

‘Iota1 unburned fue l  t o  afterburner 
Total available air 

- - Afterburner available air  (f/a) m,u 

) is  the fue l  not burned i n  the preheater and 
YP - Wf,P,id 

where (wf 

charged t o  the  afterburner, and 

heater.  
by wa gives 

wfJp  id i s  the a i r  reacted i n  the pre- 

Dividing the numerator and denominator of the previous equation 
o,, 

where 0.0676 i s  the stoichiometric fuel-air  r a t i o  for the  f u e l  used. 
But, since 

then 

is obtained from P, id  The ideal  preheater fue l -a i r  r a t i o  (f/a) 
reference 14. 

Combust ion Temperature 

The t o t a l  temperature of the exhaust gas w a s  computed from the  ef- 
fect ive area of the exhaust-nozzle throat,  measured nozzle-exit t o t a l  
pressure, measured gas flow, and the f a c t  t ha t  the exhaust nozzle w a s  
choked: 
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eT is the dimensionless total-pressure parameter f o r  c r i t -  where ( PA )12 

i ca l  flow at the  exhaust nozzle (ref. 13). 

Afterburner Combust ion Efficiency 

The afterburner corribust ion efficiency w a s  defined as the r a t i o  of 
the actual afterburner temperature rise t o  the theore t ica l  afterburner 
temperature r i s e  : 

- T12 - Ts 
‘AB - i d  - TS 

Values of T12, id were obtained by the method of reference 14. For 
afterburner fue l - a i r  r a t io s  below stoichiometric, the efficiency com- 
puted using t h i s  def ini t ion agrees favorably with the efficiency com- 
puted us ing other def hit ions of combust ion efficiency currently i n  use. 
For afterburner fue l -a i r  r a t io s  higher than stoichiometric, t h i s  def i n i -  
t i o n  may give eff ic iencies  approaching 100 percent o r  greater,  because 
the ideal temperature decreases f o r  afterburner fue l -a i r  r a t i o s  higher 
than stoichiometric while t he  actual  afterburner temperature may con- 
tinue t o  increase (see f i g .  9(b)) .  
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(b) Photograph looking downstream. 

F igure  4. - Concluded. Variable-area exhaust nozzle.  
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0 Total-pressure probe 
goo 

(a) Station 3. 

Figure 5. - Schematic diagrams of instrumentation stations viewed looking 
downstream. (All dimensions in inches except where noted.) 
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0 Total-pressure probe 
8 Stream static-pressure probe 

Wall static-pressure tap 
n -0 

(b) Station 4. 

Figure 5. - Continued. 
looking downstream. 

Schematic diagrams of instrumentation stations viewed 
(All dimensions in inches except where noted.) 
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(c) Station 5. 

.@re 5. - Continued. 
stations viewed looking downstream. 
inches except where noted.) 

Schematic diagrams of instrumentation 
( A l l  dimensions in 
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0 Total-pressure probe 
8 Stream static-pressure probe 

Wall static-pressure tap 

P Fuei-air-ratio probe 

c 
I s  

(d) Station 7. 

Figure 5. - Continued. Schematic diagrams of instrumentation 
stations viewed looking downstream. 
inches except where noted .) 

( A l l  dimensions in 
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Circumferential loca t ions  of o r i f i c e  p a i r s  

Cross sec t ion  showing one p a i r  of 
d i f f e r e n t i a 1  pressure o r i f  i c e s .  

( e )  S t a t i o n  8. 

Figure 5.  - Continued. Schematic diagrams of instrumentation 
s t a t i o n s  viewed looking downstream. 
inches except where noted.) 

( A l l  dimensions in 
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0 Total-pressure probe 
Wa.11 static-pressure tap 

(f) Station 11. 

Figure 5. - Continued. Schematic diagrams of instrumentation 
stations viewed looking downstream. 
inches except where noted .) 

(All dimensions in 
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0 Total-pressure probe 
Wall static-pressure tap 

)( Wall thermocouple 

Variable -ar ea 
exhaust nozzle 

-- O0 
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43 

(g) Station 12. 

Figure 5. - Concluded. Schematic diagrams of instrumentation stations 
viewed looking downstream. 
noted. ) 

( A l l  dimensions in inches except where 
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I v7 408 k/sec 

1400 1 I 

(a) Gas temperature at station 5 for several afterburner-inlet 
velocities; V7, afterburner-inlet velocity. 

Figure 6. - Typical profiles for nominal afterburner-inlet pressure of 
1270 pounds per square foot absolute and temperature of 1660° R. 

I .  
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(b) Combustion temperature. 

Figure 9. - Continued. 
long afterburner. 
afterburner-inlet total pressure, 1270 pounds per square foot absolute. 

Typical performance characteristics of 42-inch- 
Afterburner-inlet total temperature, 1660’ R; 
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(a) Afterburner combustion-chamber length, 30 inches. 

I I I I 
1200 1600 2 000 1200 1600 2000 

Afterburner-inlet total temperature, T5, OR 

(b) Afterburner combustion-chamber length, 66 inches. 

Figure 11. - Effect of afterburner-inlet total tempera- 
ture on combustion efficiency for extreme values of 
afterburner-inlet total pressure, afterburner-inlet 
velocity, and afterburner length. Afterburner fuel- 
air ratio, 0.055; P7, afterburner-inlet total pressure. 
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60 

40 

P7 = 750 lb/sq ft abs 
20 

(a) Afterburner combustion-chamber length, 30 inches. 

(b) Afterburner combustion-chamber length, 66 inches. 

Figure 13. - Effect of afterburner-inlet velocity on combustion 
efficiency for extreme values of afterburner-inlet total temper- 
ature, afterburner-inlet total pressure, and afterburner length. 
Afterburner fuel-air ratio, 0.055; P7, afterburner-inlet total 
pressure. 
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Afterburner cambustion-chamber length, in. 

(a) Afterburner fuel-air ratio, 0.045; afterburner-inlet total pressure, 750 
pounds per square foot absolute. 

Figure 14. - Effect of afterburner cambustion-chamber length on combustion effi- 
ciency for several afterburner-inlet velocities. 
temperature. 

T5, afterburner-inlet total 
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.. 

Afterburner combustion-chamber length, in. 

(b) Afterburner fuel-air ratio, 0.045; afterburner-inlet total pressure, I270 
pounds per square foot absolute. 

Figure 14. - Continued. Effect of afterburner cambustion-chamber length on c m -  
bustion efficiency for several afterburner-inlet velocities. T5, af'terburner- 
inlet total temperature. 
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Afterburner combustion-chamber length, in. 

(c) Afterburner fuel-air ratio, 0.045; afterburner-inlet total pressure, 1800 

Figure 14. - Continued. 
pounds per square foot absolute. 

Effect of afterburner cambustion-chamber length on com- 
Ts, afterburner- bustion efficiency for several afterburner-inlet velocities. 

inlet total temperature. 
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Afterburner combustion-chamber length, in. 

(d) Afterburner fuel-air ratio, 0.055; afterburner-inlet total pressure, 750 
pounds per square foot absolute. 

Figure 14. - Continued. Effect of afterburner combustion-chamber length on cam- 
T5, afterburner- bustion efficiency for several afterburner-inlet velocities. 

inlet total temperature. 
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Afterburner combustion-chamber length, in. 

(e) Afterburner fuel-air ratio, 0.055; afterburner-inlet total pressure, 1270 
pounds per square foot absolute. 

Figure 14. - Continued. Effect of afterburner combustion-chamber length on cam- 
T5, afterburner- bustion efficiency for several afterburner-inlet velocities. 

inlet total temperature. 



62 

............... ....... . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  ................. 1- NACA RM E57C07 

-- 
Afterburner combustion-chamber length, in. 

(f) Afterburner f’uel-alr ratio, 0.055; afterburner-inlet total pressure, 1800 
pounds per square foot absolute. 

Figure 14. - Continued. Effect of afterburner canbustion-chamber length on can- 
Ts, afterburner- bustion efficiency for several afterburner-inlet velocities. 

inlet total temperature. 
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Afterburner combusti .on -chamber length, in. bU 80 

(g) Afterburner fuel-air ratio, 0.0676; afterburner-inlet total presswe, 750 
pounds per square foot absolute. 

Figure 14. - Continued. Effect of afterburner combustion-chamber length on corn- 
bustion efficiency for several afterburner-inlet velocities. T5, afterburner- 
inlet total temperature. 
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Afterburner combust ion .-chamber length , in. 
(h) Afterburner fuel-air ratio, 0.0676; afterburner-inlet total pressure, 1270 
pounds per square foot absolute. 

Figure 14. - Continued. Effect of afterburner combustion-chamber length on com- 
Tg, afterburner- bustion efficiency for several afterburner-inlet velocities. 

inlet total teameratwe. 
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Afterburner combustion-chamber length, in. 

(i) Afterburner fuel-air ratio, 0.0676; afterburner-inlet total pressure, 1800 

Figure 14. - Concluded. 

pounds per square foot absolute. 

Effect of afterburner combustion-chamber length on com- 
T5, afterburner- bustion efficiency for several afterburner-inlet velocities. 

inlet total temperature. 
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velocity, 400 feet 
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(b ) Afterburner - inlet 
velocity, 500 feet 

Afterburner combustion-chamber length, in. 

(c) Afterburner-inlet (a) Afterburner-inlet 
velocity, 550 feet 
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velocity, 600 feet 

Figure 15. - Effect of afterburner combustion-chamber 
length on afterburner pressure-loss coefficient for 
several values of afterburner-inlet velocity and 
temperature ratio. 
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(a) Afterburner combustion-chamber length, 30 inches. 

Figure 16. - Regions of afterburner operation at several afterburner-inlet 
total temperatures and total pressures for afterburners of various 
lengths. P7, afterburner-inlet total pressure. 
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(b) Afterburner combustion-chamber length, 42 inches. 

Figure 16. - Continued. Regions of afterburner operation at several afterburner- 
inlet total temperatures and total pressures for afterburners of various 
lengths. P7, afterburner-inlet total pressure. 
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(c) Afterburner combustion-chamber length, 54 inches. 

Figure 16. - Continued. Regions of afterburner operation at several afterburner- 
inlet total temperatures and total pressures for afterburners of various 
lengths. P7, afterburner-inlet total pressure. 
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(d )  Afterburner combustion-chamber length, 66 inches. 

Figure 16. - Concluded. Regions of afterburner operation at several afterburner- 
inlet total temperatures and total pressures for afterburners Of various 
lengths. P7, afterburner-inlet total pressure. 
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Afterburner combustion-chamber length, in. 

(a) Afterburner-inlet total pressure, 750 pounds per square 
foot absolute. 

Figure 17. - Effect of afterburner combustion-chamber length 
on lean blowout limits. 
temperature. 

T5, afterburner-inlet total 
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(b) Afterburner-inlet t o t a l  pressure, 1270 pounds per square 
foot absolute. 

Figure 1 7 .  - Continued. Effect of  afterburner combustion- 
T5, afterburner- chamber length on lean blowout l imi t s .  

i n l e t  t o t a l  temperature. 
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JU JU I U  

Afterburner combustion-chamber length, in. 

(c) Afterburner-inlet total pressure, 1800 pounds per square 
foot absolute. 

Figure 17. - Concluded. Effect of afterburner combustion- 
T5, afterburner- chamber length on lean blowout limits. 

inlet total temperature. 
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(a) Afterburner combustion-.chamber length, 30 inches. 

Figure 18. - Regions of combustion instabilities at several 
afterburner-inlet total temperatures and pressures. 
afterburner-inlet total pressure. 

P7, 
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(b) Afterburner combustion-chamber length, 42 inches. 

Figure 18. - Continued. Regions of combustion instabilities at several 
P7, afterburner- afterburner-inlet total temperatures and pressures. 

inlet total pressure. 
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(c) Afterburner combustion-chamber length, 54 inches. 

Figure 18. - Continued. Regions of combustion instabilities 
at several afterburner-inlet total temperatures and pres- 
sures. P7, afterburner-inlet total pressure. 
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(d) Afterburner combustion-chamber length, 66 inches. 

Figure 18. - Concluded. Regions of combustion instabilities at 
several afterburner-inlet total temperatures and pressures. 
P,, afterburner-inlet total pressure. 
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(a) N l y  closed butterfly valve 
to intermediate open position. 'm Nozzle 

I 

(b) Further opening of butterfly 
valve. 

Nozzle - throat- 
( e )  > Fully opened butterfly valve. 

Figure 19. - Approximate position 
of nozzle throat for various 
positions of variable-area nozzle. 

NACA - Langley Field, Vd. 


