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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

FACTORS AFFECTING LOADS AT HYPERSONIC SPEEDS 

By Arthur Henderson, Jr., and Mitchel H. Bertram 

. . . . . .. -. . • SUvlMARY 
/ 6:J- 3-<t 

This paper gives a brief summary of current loads information at 
hypersonic speeds. Several methods which the designer can employ in 
estimating the loads on various aircraft components are discussed. The 
paper deals with the characteristics of both slender and blunt configura
tions and touches upon the effects of boundary-layer and aerodynamic 
interference. 

INrRODUcrION 

The calculation of loads at hypersonic speeds requires the use of 
techniques with which many designers are not very familiar. The methods 
based on linear or second-order theory, which were widely used at super
sonic speeds, are inadequate for slender configurations at hypersonic 
speeds and, of course, are completely inapplicable to configurations 
with blunt noses or leading edges. 

In this paper it is shown that 
allow good design approximations of 
effort exist at hypersonic speeds. 
problems associated with hypersonic 

certain simplifying features which 
loads to be made with a minimum of 
In addition, some of the unsolved 
phenomena are pointed out. 

SYMBOLS 

a speed of sound 

A constant 

c local chord length 

mean aerodynamic chord 

section normal-force coefficient 
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local surface pressure coefficient 

d maximum body diameter 

h height of wedge 

K hypersonic similarity parameter, 

1. length of nose or wedge 

M Mach number 

p pressure 

r radius 

R Reynolds number 

s arc length 

t thickness 

v velocity 

x distance from nose or leading edge in body-axis system 

angle of attack 

ratio of specific heats 

flap deflection angle 

incremental value 

E distance between adjacent streamlines 

9 cone shock angle 

A sweepback angle 

(J cone semi apex angle 

T time 

cp meridian angle 
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Subscripts: 

00 free-stream conditions 

B(W) body in presence of wing 

MAX maximum 

s shoulder 

t based on thickness 

d based on diameter 

DISCUSSION 

There are several methods which the designer can employ in arriving 
at an estimate of the loads on the various aircraft components. Before 
discussing them, however, it is instructive to consider, qualitatively, 
how hypersonic phenomena differ from supersonic. 

Although hypersonic flow introduces many problems which were not 
encountered at supersonic speeds, it also introduces certain simplifying 
features; and aerodynamicists have not been long in taking advantage of 
them. For example, one source of simplification at hypersonic speeds is 
the fact that, in the exact shock equations, the Mach number term is 
usually squared and often appears in the denominator. Thus, as the Mach 
number increases, these terms become insignificant; thus relatively 
simple expressions often yield accurate approximations for certain flow 
properties at hypersonic speeds. 

Slender Configurations 

Characteristics of hypersonic flow.- Some simplifying features of 
hypersonic flow are illustrated in figures 1 and 2. One of the character
istics of hypersonic flow is its tendency toward two-dimensionality when 
in contact with slender bodies or surfaces. (See fig. 1.) The upper 
half of figure 1 depicts a sharp-leading-edge sweptback wing in a low 
and in a high Mach number flow field. There are two streamlines the same 
distance E apart. As shown by the dashed lines, the fields of influence 
from each disturbance point along the leading edge spread across the wing 
in supersonic flow, whereas they are confined to a relatively narrow 
region in hypersonic flow. In addition, the right streamline of each 
pair will strike the leading edge later than the left one, the time lag 

E tan A being 
Ma 

Obviously, as the Mach number increases, the time /:::"T == 
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lag decreases; thus at high Mach numbers the right streamline strikes 
the leading edge at almost the same time as the left one. Consequently, 
as far as the fluid itself is concerned, it feels as though it is practi
cally two dimensional. 

The bottom half of figure 1 depicts the fundamental basis of the 
generalized shock-expansion method as applied to slender three-dimensional 
bodies. As Eggers and Savin (ref. 1) have shown, so long as the diver
gence of streamlines along the body is negligible, the flow on the body 
surface and the associated flow field will be essentially two-dimensional 
in nature; consequently, two-dimenl'jional shock-expansion theory can be 
used to analyze the flow about slender bodies of revolution. 

Hypersonic similarity law.- The designer has another powerful tool 
at his disposal in the form of the hypersonic similarity law (see, for 
example, refs 2 to 4), which states that the pressures at corresponding 
points on similarly shaped bodies are identical if, for the two bodies, 
the product of free-stream Mach number and thickness ratio is a constant. 

The physical concept behind the hypersonic similarity law is illus
trated qualitatively in figure 2. Two marbles are shown, each rolling 
toward its own wedge. The upper marble will rise a height h in the 
length 11 with the velocity Vl' while the lower marble will rise the 

same height h in the longer length 12 = A11 but with the higher veloc

ity V2 = AV1' The ratio of lengths and velocities is such that both 
marbles rise the same height h in the same length of time; that is, 
they both experience the same change of velocity and, consequently, each 
marble will impart the same amount of momentum to its particular wedge. 
If the marbles are thought of as air molecules and the wedges as cor
responding slopes on two similar bodies, a direct analogy with the hyper
sonic similarity law is immediately apparent. 

The approximate region in which the hypersonic similarity law is 
applicable has been determined by Lees (ref. 5) to be about as shown in 
figure 3 for cones. This region is determined by the condition that the 
cone shock angle 8s is less than 240

• Thus, the maximum cone angle 
for good correlation at hypersonic speeds will be about 200 • Bodies of 
revolution such as ogives are essentially conical at the nose and decrease 
in slopes thereafter. Therefore, if the nose of any pointed body is 
about 200 or less, it should correlate well with this law. For ogives, 
this means the fineness ratio should be about 3 or more. 

Figure 4 presents the pressure-ratio distribution on ogives. The 
solid lines are the characteristic solutions of Rossow (ref. 4), each of 
which is for at least two different combinations of Moo and 1/d 
within the range shown at the lower right. Although Moo = 12 was the 
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highest value of Moo used in the calculations, it should be pointed out 
that this value is not meant to be taken as an upper limit. Also shown 
are the tangent-cone approximations of Probstein and Bray (ref. 6). For 
K ? 1, they applied the tangent~~~e approximation to Lees' result which 
is for the case when the shock lies fairly close to the body; and for 
K < 1, that is, when the shock is well removed from the surface of the 
slender bodies, the tangent-cone approximation is applied to K~m~'s 
result in linearized supersonic flow. 

Van Dyke has pointed out in his work on the hypersonic small
disturbance theory (refs. 7 and 8) that the range of applicability of 
the hypersonic similarity law can be extended to the transonic range by 
replacing the Mach number term with the Prandtl-Glauert similarity fac-

tor ~2 -~. The degree to which this correlation is successful is 
illustrated in figure 5 for cones with semiapex angles of 50, 100 , 150 , 

and 200
• In this figure cp/tan2 (J is plotted against VMoo2 - 1 tan (J 

for a Mach number range from 1.15 to hypersonic speeds. Each curve is 
ended when sonic velocity appears on the cone surfaces. The correlation 
is seen to be excellent. 

The correlation for bluff cones as suggested by Newtonian theory 
is presented in figure 6, where Cp !sin2 a is plotted against (J. For 

the ranges of Mach number and (J shown, a good approximation to the 

pressure on the surface of a bluff cone is 
Cp --=- ~ 2.2. 

sin2 (J 

Shock-expansion theory.- The use of two-dimensional shock-expansion 
theory to predict the pressures on slender bodies of revolution at zero 
angle of attack at hypersonic speeds is well known. Eggers and his 
associates (refs. 1 and 9) have shown that, provided conditions at the 
nose are known from either conical theory or experiment, the generalized 
shock-expansion method can be used for slender bodies of revolution at 
angle of attack. 

Figure 7 shows a comparison of the shock-expansion theory with experi
ment for an ogival nose at an angle of attack of 150 and a free-stream 
Mach number of 5.05. The symbols show the experimental pressure coef
ficients along the top, side, and bottom meridians. The theoretical pre
dictions begin with the assumption of conical flow at the nose. The solid 
curves use the theoretical cone approximation of Savin (ref. 10) as the 
starting point for the shock-expansion calculations, and the dashed curve 
uses experimentally determined conditions on the nose cone as the starting 
point for the calculations. Obviously, a reliable theoretical method is 
preferable for design work. It is seen that on the bottom meridian, which 
would be of most interest for loads considerations, the shock-expansion 
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calculations agree with experiment for both the theoretically and the 
experimentally determined starting .condi tions; that is, Savin's theoretical 
cone results combined with shock-expansion theory will give good design 
estimates of maximum loads on sharp noses at angle of attack. 

Effect of Blunting 

In cases where high heat-transfer rates are expected, the use of 
blunt leading edges and noses is dictated. Figures 8 and 9 present 
results for both two-dimensional circular cylinders (ref~. 11 and 12) 
and hemispherical-nose bodies of revolution (ref. 13). The results for 
~ircular cylinders (fig. 8) would be applicable both to bodies of revolu
tion at high angles of attack and to the leading edges of blunt sweptback 
wings. Figure 8 is essentially a double correlation of pressure ratios. 
It shows the manner in which the pressure rOJ.tio varies with meridian angle, 
and it is good for a wide range of sweepback angles. Also note that, as the 
Mach number increases, the band of experimentally determined pressure 
ratios converges toward the theoretical curve of Goodwin (ref. 12) shown 
by the dashed line. Penland (ref. 11) has shown that Pmax can be deter-

mined on yawed circular cylinders for sweepback angles from 00 to about 
750 at ~ = 6.9 by using the normal component of Moo. Thus, the abso
lute pressure distribution on the windward side of yawed circular cylinders 
can be obtained. 

The results for hemispherical noses in figure 9 show excellent agree
ment with Newtonian theory. In this figure the pressure-coefficient ratio 
is plotted against sir, which is the arc angle in radians. As can be 
seen, the pressure-coefficient ratio is independent of Mach number. The 
curve of Cp,MAX against Moo in the upper right of the figure shows 

that, for values of Moo greater than about 4, Cp,MAX is essentially 

a constant on the order of 1.8. Thus, with the aid of Newtonian theory, 
Cp can be closely estimated, and for values of ~~ above about 4, the 

Cp distribution will be essentially invariant with Moo. 

As was mentioned previously, many of the exact flow parameters can 
be closely approximated with simple expressions in the hypersonic-flow 
regiBe. For example, for 7 = 1.4 and Moo» 1, it can be shown that 
the ratio of free-stream static pressure to stagnation pressure on a 
blunt-nose body is approximately 0.777/Moo2. (This ratio is determined 
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in the appendix.) The percentage error in the true value of 

incurred by using the approximation is shown by the sketch. 
the error is only 4 percent and it 
decreases rapidly thereafter with 
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increasing Moo. It can also be 
shown that for Moo» 1, the ratio 
of local pressure to maximum pres
sure is approximately equal to the 
ratio of local pressure coefficient 
to maximum pressure coefficient. 
Consequently, the ratio of the local 
absolute pressure to the free-stream 
static pressure is given by MCI) 

p M002 Cp 
- ~ ; that is, at hyper-
p~ 0·777 Cp,MAX 
sonic speeds, the absolute pressure at any point on a blunt nose is 
directly proportional to the square of the Mach number. In particular, 
for any given altitude, the absolute pressure distribution on a hemi-

M.:.,2 
spherical nose is given by ~ = cos2(s/r) for 0 ~ s/r ~ 1.3 radians. 

p~ 0·777 

The fact that the experimental pressures deviate from the theoretical 
pressures beyond about 1.3 radians is due to a combination of entropy, 
vorticity, and boundary-layer effects, which, of course, Newtonian the
ory does not include. For the Mach numbers considered in figure 9, the 
effects are negligible as far as loads are concerned. As the Mach num
ber is increased, however, these effects become increasingly important. 

Figure 10 shows how, as a result of entropy gain, the surface pres
sure at the shoulder varies with Mach number. The model in figure 10 is 
a two-dimensional flat slab with a sonic-wedge leading edge. The pres
sures were calculated by simple inviscid shock-expansion theory. It can 
be seen that, as Moo increases, the shoulder pressure increases to very 
large values. The pressure on the shoulder of blunt-nose bodies and blunt
leading-edge wings would follow the same trend with Mach number. 

Figure 11 presents theoretically and experimentally (ref. 14) 
determined pressure distributions on a blunt-leading-edge flat plate 
for a free-stream Mach number of about 7. The theoretically deter-
mined pressure distributions were approximated by assuming sonic-wedge 
leading-edge conditions. Also indicated in the figure is the value of 
the pressure ratio for no entropy gain and zero vorticity. The assump
tion that free-stream static pressure exists on the flat plate was accept
able at lower supersonic speeds. At hypersonic speeds, however, the 
large entropy gain through the normal shock and the large entropy and 
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vorticity gradients induced in the flow field by the high shock curva
ture result in the type of pressure distribution shown by the solid 
curve. This curve was calculated for the inviscid flow at a Mach num-
ber of about 7 for the sonic-wedge leading-edge configuration shown at 
the upper left. The dashed curve is the experimental pressure distri
bution for the blunt-leading-edge plate shown on the right at one value 
of Reynolds number. The difference between these two curves is due to 
the presence of the boundary layer. If the Reynolds number had been 
lower, the boundary layer would have been thicker and the separation of 
these two curves would have been greater; the converse being true if the 
Reynolds number had been higher. It should also be pointed out that, as 
the Mach number increases, not only does the level of p/Poo at the shoul
der increase but also the rate of decrease becomes less, so that the 
entropy and vorticity effects are spread over a greater distance at 
higher Mach numbers. 

Effect of Boundary-Layer Separation 

When real fluid effects, including boundary layers, are brought 
into the picture, the consequences of boundary-layer separation must also 
be considered. At hypersonic speeds boundary-layer separation is often 
important, although it can sometimes be neglected. 

Figures 12 and 13 illustrate examples of boundary-layer separation 
which must be considered and boundary-layer separation which may be neg
lected. Both the body with conical flare ("flared Skirt") shown in fig
ure 12 and the body with flapped wing shown in figure 13 were tested at 
Moo ~ 7. (See refs. 15 and 16, respectively.) The manner in which the 
separation point moves rearward along the flared-skirt body with increasing 
ReynoldS number is indicated by the solid line in figure 12. The bOdy
pressure-coefficient distributions for two extreme positions are shown 
above with corresponding symbolS. The importance of knowing whether to 
design for separated or unseparated flows is obvious. For unseparated 
flow the skirt pressure is about what would be expected in the absence 
of Viscosity, while the laminar separation region essentially protects 
the skirt from direct contact with the free stream. 

On the other hand, a large portion of the upper surface of the wing 
with trailing-edge flap (fig. 13) is in a separated-flow region and there 
is essentially no effect on the upper surface pressure coefficient. Fig
ure 13 shows the flap deflected 160 ; however, the same effects would be 
true with a negative flap deflection. The loads on the upper surfaces 
of wings at angle of attack in hypersonic flow are essentially negligible 
whether separation exists or not; the difference between free-stream pres
sure and vacuum is so small in comparison with the pressures on the lower 
surface that, for all practical purposes, the upper surface can be neg
lected in loads calculations. 
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The separated flow on the lower surface is confined to a relatively 
small region. If this separation point were to move forward the lower 
surface loads would be affected more than shown in figure 13. The magni
tude of the loads induced would a~~o ~pE.;Q.g. ,p.n the condition of the bound
ary layer, that is, whether it is laminar or turbulent. 

There is as yet not enough knowledge about separation at hypersonic 
speeds to be able to predict when or where separation will occur for 
either laminar or turbulent flow. 

Aerodynamic Interference 

Another field which is relatively unexplored at hypersonic speeds 
is that of aerodynamic interference and the role that interference plays 
in altering the expected loads on any component. 

One phase of the interference problem was investigated by building 
a scale model of a configuration which had previously been tested at 
Moo = 3.36. (See refs. 17 and 18.) This model was tested at Moo = 6.85 
in the Langley ll-inch hypersonic tunnel. Some preliminary results are 
presented herein. 

Figures 14 and 15 present the span-load distributions on the wing 
alone and on the wing in the presence of the body at an angle of attack 
of 150 for Moo = 3.36 and Moo = 6.85, respectively. The overall trends 
of the results at Moo = 3.36 are about what would be expected. The 
results at Moo = 6.85 show the large localized effect which the thick 
boundary layer plays in interference between adjacent components. The 
indicated position of the boundary layer was taken from schlieren pictures 
at a = 00 on the sharp-nose body. The thickness and condition of the 
boundary layer at the wing-body juncture at a = 150 is not known. Note 
also the effect of nose shape on the lo~ings. The blunt nose decreased 
the wing loadings. Although the decrement was not appreciable at this 
Mach number, it is to be expected that the greater losses incurred by a 
detached shock at higher Mach numbers will more seriously affect the 
loadings not only on the wing but also on all components within the region 
of influence of the highly rotational part of the flow field associated 
with blunt noses. 

The shock-expansion theory predicts the loading on the wing alone 
at Moo = 6.85 fairly well. The results of the Moo = 3.36 tests are 
not a fair test of the adequacy of shock-expansion theory since at 
a = 150 the leading-edge shock is detached at Moo = 3.36. 

Figure 16 presents the interference loading on the body due to the 
presence of the wing at an angle of attack of 150 for Moo = 3.36 on the 

--
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sharp-nose body and Moo = 6.85 on the sharp- and blunt-nose bodies. 
The orientation of the wing and body with respect to the load-distribution 
curve is as indicated. 

Mach number apparently does not play an important role in inter
ference effects in this Mach number range, as evidenced by the fact that 
the general trends of the interference loading curves on the sharp-nose 
body at Moo = 3.36 and Moo = 6.85 do not differ widely. The effect of 
nose shape on body interference loadings is evidenced by the relative 
displacement of the curves with the square and diamond symbols, and, as 
already mentioned, the significance of this type of interference will 
probably increase with increasing Moo. Also of interest is the fact 
that the maximum interference loading for each of the three curves was 
50 to 60 percent of the corresponding body-alone loading. 

CONCLUDING REMARKS 

This paper has summarized briefly current loads information at 
hypersonic speeds. Several methods which the designer can employ in 
estimating the loads on various aircraft components have been discussed. 
The paper has considered the characteristics of both slender and blunt 
configurations and the effects of boundary-layer and aerodynamic inter
ference. Many problems still confront the designer - the effect on tail 
loads of the wing flow field and its associated high-energy wake and the 
effect of the body flow field and its highly rotational flow for blunt
nose bodies. In addition, the effect on loads at hypersonic speeds of 
the inert degrees of freedom of the components of the air (molecular 
vibration, dissociation, and ionization) is essentially unknown. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., March 5, 1957. 
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The ratio of free-stream static pressure to stagnation pressure for 
a blunt-nose body can be calculated approximately from the following exact 
relation (see ref. 19, eq. (100)): '. 

- .. f" ... 

Since 

.. 
1 

rrl1..
2 

r 
- (r - l)J r-1 

Pro + 1 --= 
PMAX 

\ir ~ r +21)Moo r-l 

_.:..7_ = _1_ + 1, equation (1) can be "rri tten: 
r - 1 r - 1 

1 
I 27 (7 - 1) l 7-1 
lr + 1 - (r + l)~~ 

. . 

As ~ becomes large, equation (2) is closely approximated by 

1 

r~r-l 
Pro 1 Lr + iJ 
-- ~ - ..:.:..---=:--

PMAX ~2 ~ ~--Z-{ ; J r- l 

For r = 1.4, equation (3) becomes 

(1) 

(2) 

(4) 
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In addition, since 

and 

C MAX::: _2_(PMAX - l~ 
p, M 2 P 

'1 •. '00 00 

the ratio of local surface pressure coefficient to maximum surface 
pressure coefficient becomes 

p Poo ---
Cp P - Poo PMAX PMAX 

::: 

Cp,MAX PMAX - Poo 1 -~ 
PMAX 

Rearranging the terms of equation (5) yields 

::: Cp Poo ~ -~-- + --- 1 -
C P

MAX p,MAX 

which, with the aid of equation (4), yields for large Moo 

(6) 
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