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FORMULATION AND DIGITAL CODING OF APPROXIMATE HYDROGEN
PROPERTIES FOR APPLICATION TO HEAT-TRANSFER
AND FLUID-FLOW COMPUTATIONS

By David P. Harry, IIL

SUMMARY /éé’]‘?[‘

A digital computer program coded in FORTRAN language is described that per-
mits calculation of real fluid state relations, thermodynamic properties, and
transport properties of molecular hydrogen in any fixed ortho-para combination.
The program is oriented toward application in numerical integration of heat-
transfer and fluid-flow calculations, and results cover the temperature range
from melting to dissociation for pressures up to 340 atmospheres (approx. 5000
1b/sq in. abs).

Properties are obtained by combinations of analytical and empirical formula-
tions with tabulations of published data. No unpublished data are used or pre-
sented; however, unsubstantiated extrapolations are used to maintain the contin-
uous range of results. Typical maximum errors with respect to published proper-
ties are about 1 percent in density, the larger of 1 percent or 3 calories per
gram in enthalpy, and 5 percent in specific heats.

Any two state verisbles (p,T,v), or enthalpy and either pressure or specific
volume may be specified as independent variables. Iterative solutions are used
in calculating variables normally formulated as independent variables. Computa-
tion speed increased with accuracy in the trial value of the dependent variable.
Results, however, sre independent of the trial values since only single-valued
continuous formulations are used.

The FORTRAN coding results in a total storage requirement of about 2100
words and uses subroutines for the calculation of logarithms, exponentials, and
square roots. Included in the total are 50 erasable words, 31 words used in re-
turning results, and a table of constants using 215 words. The list of constants
contains data that specify the dimensional set and the para-ortho composition,
which can be prepared conveniently by an additional subroutine.

INTRODUCTION

Many analyses have indicated that molecular hydrogen has characteristics
that make it attractive as a working fluid for nuclear-rocket propulsion applica-



tions. Hydrogen used in such systems will probably be carried as a liquid in the
paramodification because of boil-off problems typical of normal or ortho-hydrogen.
Commercially available liquid hydrogen, however, may contain up to 5 or 10 per-
cent unconverted ortho-hydrogen, and, in addition, many ground tests of systems
or system components may utilize pressurized hydrogen in the normal composition.

Many design and analysis problems in the field of nuclear-rocket propulsion,
many of which are conveniently solved with the aid of electronic digital comput-
ers, involve the flow and heat transfer of the working fluid. 1In this regard, a
"library" of hydrogen properties that can be prepared to approximate any fixed
para-ortho composition has been developed at the Lewis Research Center and is de-
scribed herein. Where possible, the resulting properties are compared with the
published experimental data.

In anticipation of heat-transfer and fluid-flow computations (by techniques
that may be numerical), a series of useful parameters has been selected and is
described in detail.

For fluid in the vapor state, saturation conditions intended for use with
two-phase heat-transfer correlations of the Martinelli form (refs. 1 and 2) are
also included.

A digital computer program for achieving this end may have many criteria of
"efficiency" including storage requirements, execution speed, accuracy of re-
sults, and versatility. Versatility could include such factors as the ease of
preparation, loading, calling, and updating. For use in numerical integration,
an additional requirement is imposed, namely, that results must be unique, pre-
cise, single-valued, and continuous over the range of interest. Thus, computed
properties must have a precision that is unjustified by the accuracy of the re-
sulting data.

In order to attain the desired continuity and versatility with a minimal
storage requirement, the accuracy of the computed properties has been compro-
mised. The errors with respect to published hydrogen properties are presented
herein to illustrate the validity of the techniques used, specifically, a series
of analytical and empirical data fits that are differentiated, integrated, and
combined with tabulations of data.

The mechanics of the program are presented in detail, and estimations of ex-
ecution speed and storage requirements are shown.

No original data are presented herein, inasmuch as most of the source mate-
rial originated at the National Bureau of Standards Cryogenic Engineering Labora-
tory. Properties in the cryogenic range, temperatures below 100° K, have been
compared with those shown by Roder and Goodwin (ref. 3), Goodwin, Roder, and
Younglove (ref. 4), Goodwin, et al. (refs. 5 and 6), two progress reports (refs.
7 and 8), and a compendium edited by Johnson (ref. 9). Transport properties are
computed as recommended by Rogers, Zeigler, and McWilliams (ref. 10). At higher
temperatures, the techniques of Woolley, Scott, and Brickwedde (ref. 11) are
used.



ANALYSIS

The analytical techniques used herein to formulate properties of various
combinations of para- and ortho-hydrogen are presented in two parts: (1) the
general relations used over the range of the library are shown, and (2) the vari-
ous state equations used within the temperature range of interest are shown and
discussed briefly. The definitions of symbols and the detailed algebra are dele-
gated to appendixes A and B, respectively. The external characteristics of the
computer program and an error analysis of the computed properties are considered
in the RESULTS section, while the FORTRAN language coding is shown in appendixes
C and D.

General Relations
Equations of state for a real fluid are commonly expressed with pressure p

as the dependent variable and thus with temperature T and specific volume v
as the independent variables. Two forms are

p = o(v,T) (1a)
p = &L - ozmr (1b)

where the compressibility factor Z 1s generally a dimensionless function of v
and T. Naturally, the variables must have a dimensionally consistent set of
units, but herein units will be specified only as constants are shown.

Partial derivatives of the state parameters are used in computation of ther-
modynamic and transport properties of the fluid and also are useful in solving
the state equation for the normally independent temperature or specific volume by
iterative procedures such as Newton's method. Successive trial values are then

v=v+ Y (to solve for v) (2)
(Sp/ov)p
Ap

T =T + TSp/o00 (to solve for T) (3)
v

where Ap 1is the difference between the desired and computed pressures. The
partial derivatives are obtained by differentiation of the state equation, or, if
given in terms of the compressibility factor Z,

()~ (), - ), 2
@%)v - p[% + (_a_z_/;T_)VJ (4b)
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Equations (4b) and (5b) are obtained by substitution of equation (1b).

The state equations used herein are fitted to para-hydrogen properties at
low temperatures and are largely independent of the composition at higher temper-
atures. The difference between para- and ortho-hydrogen state relations is as-
sumed herein to be small, g0 that errors in computation of pvir relaticns for
ortho-hydrogen compositions up to 15 percent are insignificnct to errors
in the para-hydrogen state equation itself. 'The composition ant to the
thermodynamic properties, however, and is considered.

Enthalpy Hy and specific heat at constant pressure -~ ¢ bo: para-
and ortho-hydrogen in the ideal state (pv = RT or Z = 1) are o...latca as a
function of tempersture by Woolley, et al. (ref. 11). The tables (ref. 11) are
used directly in computation and are interpolated semilogarithmically for inter-
mediate temperatures. Specific heat at constant volume v,0 for gas in the
ideal state is

C C
VZO ZO
R I;a -1 (6)

The enthalpy and specific heat at constant volume for the real fluid can be
determined by integration of the equation of state along a constant temperature
path from the ideal to the real state. ZEnthalpy, from reference 12 or from most
thermodynamics texts, is given as

dH = cy AT + [T(g%)v - p}dv

which is expressed in reference 11 as

Hp - Hop P
“T,p ~ 1,0 o 0 _ / %(%)p do - (Z - 1) (7)
0

The change in specific heat at constant volume at constant temperature can also
be determined from (refs. 11 and 12):

dc 2
<5"—V>T ) T<%I‘-%>v ®



and

The equations of state used herein can be integrated in closed form, so that no
numerical or stepwise computations are required in solution of equations (7)
and (9).

The real fluid specific heat at constant pressure ¢ can also be obtained
by similar techniques. A substantial reduction in algebra is attained, however,
through the use of c¢,, and the partial derivatives, as shown in most thermody-

namic texts:

0
Il

p= %7 T@% v(%'%>p

ey - T@%)Z(gg ) (10)

v

It

The transport properties, absolute viscosity Hos and thermal conductivity
ko are computed from empirical equations shown in references 10 and 11. Again,

the ideal-state values are given as functions of temperature, and the real fluid
effects are determined from the state equation by using the partial derivatives
(dp/dT), or the density and a correlation given by Rodgers, et al. (ref. 10).
These equations are shown in appendix B.

Relations for sonic velocity, or the speed of sound in the fluid, are de-

rived in appendix B:
C
p(op
v 4/-g = (11)
Y cvz'a‘;jT

Note that equation (11) is simply a generalization of the familiar form for the
scnic veloclty of an ideal gas:
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YeRT (for pv = RT)
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For a wet vapor, the sonic velocity is
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The Clapeyron equation (ref. 12) is a key step in the derivation, as shown in ap-
pendix B.

Equations of State

Representation of hydrogen state relations from the melting point st 14° XK
t0 the onset of appreclable dissociation for any pressure up to 340 atmospheres
is desired. In order to attain reasonable accuracy, three state equations are
used, each for a "region" of the range of interest shown schematically in fig-
ure 1 in terms of temperature-entropy coordinates. These three regions and the
vapor region are assigned code numbers for use in program logic and are referred
to herein for convenience.

For all pressures at temperatures above 2000° K (3600° R), hydrogen is con-
sidered to be in the ideal state without regard to dissociation, that is, pv = RT
or Z=1. In this region, coded O, the thermodynamic and transport properties
are functions of temperature only.

The state equation given by Woolley, et al. (ref. 11) is used for all pres-
sures in the temperature range from 230° to 2000° K (414° to 3600° R). Thus, in
region 2, the compressibility factor is of the form

2
7. = ¢BPCP (B17)

The coefficients B and C are temperature dependent. For lack of a satisfac-
tory substitute, the state equation is used over a larger temperature range than
that recommended, namely, 273° to 600° K.

Numerical consistency needed for digital computations is forced at the re-
glonal boundaries through the use of smoothing (averaging) results within 10° K
of the boundary. Minor changes 1n the properties themselves are discussed in the
section RESULTS.

State relations for temperatures below 230° K are obtained from an empirical
equation developed by the present author from the para-hydrogen dats of refer-
ence 5. Where the coefficients A, B, C, and D are density dependent, the pres-
sure is fitted as

p=A+Bl+Cr% + 2 (B23)
T

Unfortunately, the algebraic forms of the coefficlents are cumbersome, and util-
ity of the state equation may be limited to high-speed digital computer applica-
tion.

Unsaturated vapor is designated region -1 in figure 1. Vapor pressure and
tempersture are relasted by the equation for para-hydrogen from reference 7:

6



B

1oy o= LT T o

+ DT (B37)

Saturation densities at a given temperature are determined from the inter-
section of the vapor pressure and the liquid or gas isobars. That is, the
pressure-temperature relation is found from the vapor-pressure equation (B37),
and the liquid-gas state equation (B23) is then solved for the saturation densi-
ties as functions of p and T. Subsequently, saturation enthalpies are evalu-
ated at saturation density by using the liquid and gas relations.

Some reduction in accuracy potential results from this technique, since sat-
uration density and enthalpy are directly available in more accurate forms than
those that result from gas or liquid computations herein. The compromise is ac-
cepted because saturation conditions are uniquely continuous with conditions in
the adjoining gas or liquid, so that smoothing is not required. A numerical
evaluation of errors with respect to published data is included in the next sec-
tion.

RESULTS

Three factors related to the utility of the hydrogen property program are
discussed in this section: (l) specification of input data and output results,
(2) estimates of storage requirements and execution speed, and (3) an analysis of
the errors in computed results. The detail of the SUBROUTINE, in terms of the
FORTRAN code are shown in appendix C. Also, a subroutine for conversion of units
and preparation of constants is shown in appendix D.

External Characteristics of SUBROUTINE STATE

Consider first two factors that may influence the external programs which
use the results of SUBROUTINE STATE: First, if trial values are needed, it is
assumed that the external program supplies them. Second, the subroutine makes no
provision for rejecting spurious input or checking the validity of results.

Thus, spurious input may cause the return of incorrect output without warning.

CALLING sequence. - The logic of the hydrogen property subroutine is pre-
pared to allow for solution with any two of the state parameters (p, T, or v)
known or with enthalpy and either p or v known. The particular pair of
knowns is specified by the code number J in the FORTRAN language calling com-
mand (refs. 13 and 14):

CALI, STATE (J)

Roughly, this command means go to SUBROUTINE STATE, supply it with the value J,
and on completion return to the next instruction. Of interest here, is the in-




terpretation of the call number J, as itemized in table I and summarized as fol-~
lows:

CALL number, Interpretation (known values)
J
1 Temperature and specific volume
-1 Enthalpy and specific volume
2z Pressure and specific volume
3 Temperature and pressure
-3 Enthalpy and pressure
4 Pressure and an arbitrary temperature

The final combination is introduced in order to simplify the logic of calling

Programs in heat-transfer calculations. There is no change in the calculation of

properties or restriction on the value of the temperature specified, but results

are returned without modifying the storage occupied by so-called "bulk" proper-
T. + T

ties (e.g., Teiqy = —Eéié————)

next.

The specification of this storage is considered

Common data list. - Input data and output results of the subroutine are com-
municated to and from other programs by specifying a list of "common" locations.
The particular list assigned for SUBROUTINE STATE is shown in table I. The sym-
bol D represents the data assumed as an independent variable for the particular
call, T indicates that trial values are required, X that results are returned,
and, finally, -1 indicates that results are returned from vapor region calcula-
tions.* Open blocks signify that the storage is neither modified nor inspected.
The fluid region code number N FLUID is always used to initiate calculations ang,
except for J = 4 calls, is returned to indicate the region in which results are
computed. Where smoothing is used internally, the region of lower temperature
will be indicated. Trial values of the dependent state variable are not re-
quired if J > O and N FLUID = 0, but all trial values must be supplied if
J < 0. Trial values for saturation specific volumes ve and Vg are always

mandatory whenever vapor calculations may be used either intentionally or inad-
vertantly. (The computations will accept input within the limits Vg > Vopit
and V... > Ve > Vcrit/4‘)

Storage and speed estimates. - The following estimates of storage require-
ments and execution speed are based on FORTRAN II (ref. 14) and an IBM 7090 com-
puter (ref. 13). 1In making the estimates, no provision for loading, writing,
printing, and punching results is included.

*Results are returned by "updating," that is, by overwriting into storage.
Thus, any previous values will be altered if results are returned. Conversely,
if results are not returned (no X or -1), the previous values in storage will
remain.



The core storage requirements of SUBROUTINE STATE are summarized in decimal
numbers as follows:

Requirement Number of

words

FORTRAN program 72
Data list shown in table T G
Temporary (erasable) storage 50
Constant list 215
Convergence specification 1
Unit type code i
Total 2070

The total of about 2100 words does not include the required logarithmic, ex-
ponential, or square-root subroutines, which may require a total of about 300
words. Also not included in the storage requirement is the subroutine shown in
appendix D for preparing the "constant" list.

Estimates of execution speed have been obtained by setting up a calling rou-
tine that sequences the subroutine through many entries and clocks the execution
time required. The estimates shown in table II are grouped according to fluid
region numbers, as shown in figure 1, and within each group, the independent var-
iables used are indicated by the call letter J. Trial values are determined in-
ternally by using N FLUID = O before the call or are supplied externally from a
nonsystematic table as noted. Tterative solutions are converged to six signifi-
cant figures.

Execution times vary from 0.3 to 13 minutes for 10,000 cases, or from 0.002
to 0.1 second per entry. As expected, the perfect gas computations are much
faster than those in other regions and are independent of the dependent state
variable. The longer times reflect more complicated formulations and iterative
solutions; for example, with temperatures in the range of region 1end g calll *of
J = 3, additional calculations are required to determine the phase (liquid or
gas) of the fluid. Similarly, for vapor (region -1) calculations, the state
equations must be solved iteratively for both saturation boundaries; conse-
quently, the time is about 0.08 second per entry.

Where enthalpy is used as an independent variable, the execution speed is
further reduced because of the additional iterative loop that is activated, but
the execution times have not been evaluated.

Errors in Computed Results

In the following paragraphs, the deviations in computed parameters from pub-
lished properties are discussed. Also, the properties unsupported by published




data are enumerated. The discussion proceeds as shown in figure 2 and covers the
range from dissociation to melting temperatures.

Two areas are not treated graphically as are the others, namely:

(1) At high temperatures, a perfect gas in the ideal state is assumed. A
figure is used only to define the temperatures above which dissociation is appre-
ciable.

(2) From 300° to 600° K, results are obtained from the formulations of
Woolley, et al. (ref. 1l1) which were used to Prepare the reference tabulations.
Deviations are less than 0.1 percent and therefore are not shown.

Dissociation limits. - SUBROUTINE STATE will return results, based on a per-
fect gas without dissociation, for temperatures up to 5000° X (9000° R). Conse-
quently, the program should be limited by other means to within the range of
valld properties. The area in question, which is indicated in figure 3, has been
prepared from the calculations of reference 15 and shows the temperature at which
given deviations occur in specific heat at constant pressure as a function of
pressure. A Z-percent deviation is assumed as a criterion, perfect-gas results
are valid to 1800° K (3240° R) at atmospheric pressure, or to 2200° K (3960° R)
at a pressure level of 100 atmospheres.

The state equation of Woolley, et al. (ref. 11) is used for temperatures up
to 2000° K, but properties above 600° K are unsubstantiated, since the equation
is recommended for use only to 600° K. The resulting properties are compared
with 1deal state results for lines of constant pressure as a function of tempera-
ture (fig. 4). Compressibility factor Z, enthalpy H, specific heat at constant
pressure cp, and viscosity p are shown in figures 4(a), (b), (c), and (d), re-
spectively.” At 2000° K, deviations of up to 3 percent in compressibility factor
are artificially smoothed, rather than up to 11 percent, as would be needed at
600° K. For a pressure level of 340 atmospheres, the differences at 2000° and
600° K are 1 and 3 percent in enthalpy, O and 1 percent in specific heat at con-
stant pressure, and 0.5 and 3 percent in viscosity. For pressures less than the
maximum considered herein, the effects and potential deviations are reduced, and,
naturally, at low pressures the percentage differences between the real fluid and
the ideal fluid are small. To reiterate, the state equation is extrapolated
without substantiation as a means to avoid the alternative of completely artifi-
cial smoothing.

Transition of real fluld to cryogenic fluid. - The state equation of
Woolley, et al. (ref. 11) 18 also used to lower recommended temperatures, namely,
to 230° K (414° R). The state relation developed by the present author is used
forOboth gaseous and liquid phases in the temperature range of region 1, 14° to
230 K.

The deviations of various propertiles from the tabulations of reference 11
are shown in figure 5 for the temperature range from 100° to 300° K. The com-
puted properties are from regions 1 and 2 and include the effects of smoothing
where applicable (fig. 1). Deviations in percent are shown for lines of constant
density, so that the tabulations of the reference can be used without interpola-
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tion. The figures are shown for para-hydrogen only, but normal (25 percent pars,
75 percent ortho) hydrogen deviations are similar in trend and magnitude.

Pressure calculations agree with the reference data within 3/4 percent for
densities up to 100 amagats* (about one-third of critical) and within l% percent

to high density (the curves are terminated at 340 atm). Enthalpy deviations are
less than 1 percent for all densities up to 500 amagats, and specific heat at

constant pressure agrees with the data of reference 11 to within 2% percent.

Specific heat at constant volume is also accurate to about 2%-percent for the
same range.

The remainder of the properties, namely, sonic velocity, viscosity, thermal
conductivity, and the partial derivative (dp/oT), ere unsubstentiated in the
temperature range of 100° to 300° K.

Cryogenic temperature range. - Deviations in the pressure calculations of
SUBROUTTNE STATE from the data of reference 7 are shown in figure 6(a) as a func-
tion of temperature. The comparison, of which only the envelope of maximum error
is shown, is based on integral values of density from 1 to 44 moles per cublc
centimeter. The maximum positive deviation of 1.7 percent occurs at 229 to 24° K
and pressures of more than 300 atmospheres (4500 lb/sq in.), whereas the maximum
negative deviation of 0.8 percent occurs at 24° K near the saturated-liquid

boundary. A deviation of l% percent occurs near the saturated-liquid line at

17° K (30.6° R) but represents an error of 0.06 atmosphere or 1 pound per square
inch.

Liquid-phase calculations are not constrained by the melting pressure bound-
ary (ref. 7), so that properties will be incorrect for pressures higher than or
temperatures lower than the melting boundary.

Deviations in computed enthalpy from the data of reference 3 are shown in
figure 6(b). Since the enthalpy passes through zero within the range of inter-
est, the difference is shown in calories per gram or Btu per pound. Generally,
the data fall within the shaded region that has a maximum deviation of about

2% calories per gram, whereas the full-scale range of the figure 1is more than

330 calories per gram. Somewhat larger deviations for the 15-atmosphere isobar
near the critical temperature are not shown. These deviations are about -0.9,
-2.7, 9, and 3.1 calories per gram at 36°, 350, 340, and 33° K, respectively.
Otherwise, the deviations for the l5-atmosphere isobar fall within the shaded
area.

The deviations of specific heat at constant pressure (fig. 6(c)) show com-
parison with data from references 7 and 12. For the most part, deviations fall
within 4 percent. Deviations up to about 6 percent occur in the 15- and 20-
atmosphere isobars near critical temperature. The value of specific heat at con-
stant pressure in this range varies up to 35 Btu per pound per degree Rankine (or

*1 amagat ~ 0.0056 1b/cu ft.



cal/(g)(°K)). Results on the gas side of the vapor dome, not included in the
reference data, should not be in error by nearly as large an amount as those on
the liquid side.

Deviations in specific heat at constant volume in the cryogenic range are
shown in figure 6(d). The comparison is made along lines of nearly constant den-
sity to match the raw data of reference 7. At low temperatures, the liquid spe-
cific heat at constant volume is as much as 5 percent high. The large negative
deviations reflect the failure of the calculated values 4o increase rapidly near
the critical point as the experimental values do.

Deviations in specific heat at constant volume with respect to computed re-
sults from reference 8 are shown in figure 6(e) with envelopes of maximum error
for gaseous and liquid para-hydrogen. The value computed by SUBROUTINE STATE is
higher than the reference data of the National Bureau of Standards by as much as
S percent in the ligquid phase. In the gas phase, results are within 3 percent
except near the critical point.

Results of all parameters near the critical point have been inspected in de-
tail to verify that no zero or infinite values occur. Specific heat at constant
pressure should be infinite at the critical point (ref. 16), but herein it in-
creases to a large finite value. The author considers this a desirable compro-
mise where results may be converged to several significant figures and only
rarely to a mathematical identity.

Other parameters in the cryogenic temperature range have not been directly
checked against experimental data; however, the viscosity and thermal conductiv-
ity calculations are as recommended by Rogers, et al. (ref. 10).

Several computed properties in the vapor region reflect directly the corre-
lation and fitting done by the National Bureau of Standards (e.g., Vapor pressure
and saturation specific heats). Saturation density and enthalpy reflect the ac-
curacy of the liquid or gas calculations shown in figure 6. For example, en-
thalpy deviations of 1 and 2 calories ber gram are shown in figure 6(b); there-
fore, the heat of vaporization should be evaluasted within #1 calorie per gram, or
about 1 percent.

CONCLUDING REMARKS

A computational technique is described that permits calculation of the prop-
erties of various combinations of Para- and ortho-hydrogen for use primarily in
heat-transfer and fiuid-flow problems. Loglc is prepared to permit the use of
British or metric units and several combinations of enthalpy, pressure, tempera-
ture, or specific volume as the two independent variables. Properties are re-
turned from a single entry to the computation routine, which operates at speed
characterized by "several" entries per second. The various thermodynamic, state,
and transport properties are computed from approximate analytical expresslons and
data tabulations to cover the range from melting temperatures to limits imposed
by appreciable dissociation for bressures up to 340 atmospheres.

12



percent in state relations, about z cal-

Accuracy can be characterized by L%
Near

ories per gram or 1 percent in enthalpy, and 5 percent In specific heats.
the critical point, however, deviations of up to 6 percent in specific heat at
constant pressure and 20 percent in specific heat at constant volume are ex-

pected.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, Ohio, February 12, 1963
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Cp specific heat at
constant pressure

Cy specific heat at
constant volume

g standard accelera-~
tion due to
gravity

H enthalpy

k thermal conduc-
tivity

P pressure

R gas constant

T temperature

v specific volume

X vapor quality

VA compressibility
factor, pv/RT

o) density

0 viscosity

Subscripts:

crit critical

f saturated liquid

fg saturated vapor minus

g saturated vapor

14

sonic velocity

APPENDIX A

SYMBOLS

British British
ft/sec ft /sec
£t /°R Btu/(1b)(°R)
£t /°R Btu/(1b)(°R)
ft/sec2 ft/sec2
ft Btu/1b
1b/(sec)(®R) Btu/(ft)(sec)(°R)
1b/eq ft 1b/sq in.
ft/°R cu ft/(sq in.)(°R)
°R °R
cu £t/1b cu ft/1b
1b/cu ft 1b/cu ft
1b/(ft)(sec) 1b/(ft)(sec)

saturated liquid

Metric
m/sec

cal/(g)(°K)
cal/(g)(°K)

m/sec?

cal/g

cal/(cm)(sec)(°K)

atm

(cc)(atm)/(g) (°R)

Ok

- - —— -~

g/cc

poises



ref

sat

constant pressure
reference

constant entropy
saturation conditions
temperature

constant volume

wet vapor

density

ideal state

15



APPENDIX B

DETATLS OF NUMERICAI, METHOD

The analytical and empirical equations shown in this section are generally
given in the form and dimensional system of the reference source. The conversion
of units to a consistent set 1s shown in appendix D.

Viscosity and Thermal Conductivity

Viscosity for hydrogen in the 1deal state is assumed independent of para-
ortho composition and is computed for sll temperatures from empirical equations
given by Woolley, Scott, and Brickwedde (ref. 11).

ar3/2(7 4+ B)

Ho =TT ¥ C)(T + D) (B1)

where

Ho absolute viscosity in the ideal state, poises

T temperature, °x

and

A = 85.558x107° poises/OKl/2
B = 650.39° K

C =1175.9° K

D = 19.55° K

Thermal conductivity in the 1deal state for temperatures below 700° K (1260° R)
is computed from empirical equations given by reference 11, where the effect of
para-ortho composition is introduced through the use of p,0°

. nolA + BT + CP,O(C + DT) ]
Y m(1l + E/T)

(B2)

where
ko thermal conductivity in the ideal state, cal/(cm)(sec)(°K)
T temperature, °g

Ho absolute viscosity in the ideal state, poises (eq. (B1))

16



specific heat at constant pressure 1n the 1deal state, cal/(mole)(°K)

p,0
m molecular weight, g/mole
and
A = 1.8341 cal/(mole)(°K)
B = -0.004458 cal/(mole)(CK?)
C = 1.1308
D = 8.973x107%, 1/°k
E=32°K

Tdeal state thermal conductivity for temperatures above 1500° K 1s computed
from correlations given by Rogers (ref. 10). The coefflicients are those for a
presgsure level of 100 atmospheres.

2
A 2\ A
L 2/ s a, +agT|2077

where

k  thermal conductivity, cal/(cm)(sec)(°K)
T temperature, ok

and

A = 3.6789x108 (k) (cal)/(cm)(sec)(°K)

A, = 1013.91° K

= 5268° K

o)}
)

4117 cal/(cm)(sec)(°K)

6.982 cal/(cm)(sec)(oKz)

&
il

Thermal conductivity for the temperature range from 700° to 1500° K is obtained
by linear interpolation. The values for temperatures above about 500° K have
been checked against those of reference 17 and agree within "a few percent.'
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The real-fluld viscosity and thermal conductivity for reglon 2 are obtained

from the 1deal-state values by Enskog-type corrections. According to refer-

ence 11,

b= o[l + A(BoX) + B(Box)2 + c(BpX)3]
where
N absolute viscosity, poilses

KO absolute viscosity in the ideal state, polses
and
A =0.175

B = 0.7557

Q
il

-0.405

k = ko[l + A(BoX) + B(BpX)?2 + c(Bpx)%], cal/(cm)(sec)(°K)
where
k thermal conductivity, cal/(cm)(sec)(%K)

kg  thermal conductivity in the ideal state, cal/(cm)(sec)(°K)

and

A = 0.575
B = 0.5017
C = -0.204

The term (BpX) in equations (B3) and (B4) is given as

(BoX) = T(%%)V(Z 1)

and an equivalent form is used in computation, namely,

(50 = H&) -2

v

(B3)

(B4)

(B5)

(B6)

For cryogenic temperatures, the real-fluid corrections are computed from equa-

tions given by Rogers, et al. (ref. 10):

Ap
ho=ug v A+ Age S 4 A + Agp? + At

18
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where

v absolute viscosity, centipolses
ug absolute viscosity in the 1deal state (eq. (Bl))
o} density, g/cc

and

= -2.515x10"6 centipoise

=3
'_.-l
I

A, = 3.5546x10-18 centipoise

™
3¢
I

= 400 cc/g

4.6237x10~% (centipoise)(cc/g)

k=3
=
i

Ac = -2.6833x10-3 (centipoise)(cc/g)?

I

4.0719 (centipoises)(cc/g)4c

k thermal conductivity, cal/(cm)(sec)(°K)

thermal conductivity in the ideal state, from eq. (A2)

A =1.84 cal/(cm)(sec)(°K)
Ay, = 1102.6 [cal/(cm)(sec)(oK)][(cc/g)]
A = 1.22648x105 [cal/(cm)(sec)(%K)1[(cc/g)?]

A, = -1.15024x10° [cal/(cm)(sec)(oK)][(cc/g)s]

Ag = 4.95228x10° [cal/(cm)(sec)(oK)][(cc/g)4]

Ag = 1.16927x101 [cal/(cm)(sec)(%K)1{(cc/g)®]
A, = 1.56766x1012 [cal/(cm)(sec)(9K)] [(cc/g)®]
Ay = -1.12433x1013 [cal/(cm)(sec)(%K)1[(cc/g)7]
Ag = 3.36150x10-° [cal/(cm)(sec) (%K) ] [(ce/g)®]

(B8)
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Sonic Velocity

The speed of sound in the general fluld, pv = ZRT, can be derived from the
definition of the propagation rate of infinitesimal disturbance from refer-

ence 12:
o(32),

-=r(SR). (29)

Q
il

[

where g 1is the standard acceleration due to gravity in consistent units. The
partial derivative can be wriltten as

8p) _ (Bp T\ _ /op) (oT
(& = (FExF) - (FT)S(EL (B10)
The ratlo of specific heats can be expressed (from ref. 12) as
oT ap>
_°p (y‘f)s(Bﬁ 5
Cyr 1)
=),

Substituting the relations (B10) and (Bll) into the definition (B9) and extract-

ing the square root yields
c=vv-g€;§;T (B12)

This relation is general for a fluld of the form pv = ZRT and reduces to
the familiar form for the ideal state:

¢ = +/7vgRT

The sonic velocity for a fluid in the vapor state where P = @(T) may be de-
rived as follows. Making the substitution of (B10) into (B9) yields

- o) (),

B
Assuming here that entropy 1s a function of temperature and specific volume
gives

20



Bs) (88)
ds = ( dv + aT
v/ 37),
g§_<as> .\ as> ar
dv‘ g;T B_'I‘-vdv
For an 1lsentroplc process,
0 = (83) N <Bs> 5T>
Sv/p - \IT/, v /g
Substituting gilves
gvz(as> <Bs>
. 5v) 5/
C =
()
oT v
From the Clapeyron equation for the vapor,

@), - ), -6, -5

and
<as> _ %
or), T
The sonic veloclty in the vapor can then be expressed as elther

o g [
T
Vfg Cv

or

(]
It

v@%)v ‘/% (B13)

The partial derivative is the total derivative of the vapor pressure relation
(eq. (15)) or (dp/dT)Vap. This result has been derived by Hirschfelder, Curtiss,

end Bird (ref. 16) for sonic velocity at the critical point.
Equation of State, Region O
The hydrogen properties in reglon O (fig. 1) are computed with the assump-
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tion of a (calorically) perfect gas with an equation of state as
pv = RT (B14)

Equation (Bl4) is solved for any dependent variable in closed form and therefore
no trial values or partial derivatives are used. It is convenient to use the
general form of the equations for specific heat at constant pressure and sonic
velocity, however, and the derivatives are used as

(%TE)v -2 (BL6)

Since Z =1, all derivatives of Z are zero, and specific heats, enthalpy,
sonic velocity, viscosity, and thermal conductivity are functions of temperature
only.

Equation of State, Region 2
For the intermediate tempersture range (fig. 1) the equation of state given
by Woolley, Scott, and Brickwedde (ref. 11) is used. The correlating equation

and a five-term series expansion are shown in the reference, but the Dy . . . Dy
notation is introduced here for convenience:

RT
~1+Dp+ szz + D3p3 + D4p4 (B17)

where
Dl =B
=E s
Dz = Bé—s + BC

4 2
Dy = 35 * ‘B;C‘ * 92‘
and

B = BlT'l/4 + BZT‘3/4 + BST'5/4

where

22



By = 0.0055478 (degrees Kelvin)l/%/amagat
B, = -0.036877 (degrees Kelvin)3/%/£magat
By = -0.22004 (degrees Kelvin)5/4/amagat
¢ = ¢,;13/2 4+ ¢, 172
Cy = 0.004788 (degrees Kelvin)s/z/amagat2
Cz = -0.04053 (degrees Kelvin)%/amagat?
The derivatives are readily obtained from either the exponential form or its
series expansion. Because of the simpler algebra, the program computes partial

derivatives from the exponential form, and because the derivatives of the expo-~
nential form cannot be integrated, the series form is used in deriving AH/RT

and Ac_/R:
),

i

a d
pB+p~C
e (B + 2pC) 5%

= -Zp2(B + 20C) (B18)
1
oZ B+p2C( m1 4 ~2
= ePPTP™V(pB! + paCt)
(%),

- 1 2A1
= Z(DB + P c ) r (Blg)
or
9Z) L bl + Dip? + Dip° + Dlp%
3T/, = “1°P 2P 3P 4
J
where
Di = B!
Dé = DlB’ + C1
— 1
Dé = DZB‘ + DlC
Di = DsB' + DzC'
3B 5B
voo AL p-1/a 202 pe3/a 0P8 5/
B' = W T + T T + 7 T
3C
c' = - £<T§£ m=3/2 4 20 T'2>
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The difference between the real and ideal-state enthalpy is obtained from

P
Hn . - H
T,p T,0 T(éZ
v D2 = == - -

- /‘ L pT>p do - (2 - 1) (R202)

0
D! D! vy
=T<¢>Di+—22- 2+—33-o5+—f—p4>-(z-1) (B20D)

Then the second partial derivative of 7. with respect to temperature at

constant specific volume is

2
(—-—;rg) ~ Dlp + DEp? + D§p° + Djp? (B21)
v

where

1
Dy
D"

1
Dz

11"
Dy

Cl!

BH
D B" + DB + C
D,B" + D4B' + DyC" + C'Df

DgB" + DEB' + DC" + C'D}

L[S i/ BL g ge5/s 4 55 p g5/

1 {15 -3/2 -2
—T—é-(—Z ClT / + 6CZT >

The second integral term of equation (9) for determining AQV/R is

It

P afN2
[,
; o2/

p
/ 12(D? + DY + Dip? + Djp%)ap
0

DII D" D"
2{pn Y2 2,3 3,4 4
T (Dlp + 5 + z P + T P (B22)

The remainder of the properties are computed as shown previously.

24



Equation of State, Region 1

Computations in region 1 are pased on an empirical equation of state pre-
pared from the para-hydrogen data of reference 5 or 7. The equation is formed by
fitting isochores with the form

p=A+ BT +C% + = (B23)

TZ

The coefficients A, B, C, and D are shown in figures 7(a) to (&), respec-
tively, as a function of density. The data points show the computed coefficients
and the curves show the functions used to fit the data. The functions of density
are fitted within two limitations for use in computing thermodynamic properties,
namely, (1) that it should be possible to integrate in closed form and to differ-
entiate them all, and (2) that a minimum number of terms should be used to in-
crease the confidence in the slopes. The equations used are

4
2
1.970 7.256 &P
A= Ap + Ap + i (B24)
[b + (py, - 0)2]
n n
n=1
where
Ay = -0.24337 atm/(mole/cc)l'97o

A, = 5.591x10710 atm/(mole/cc)7-256
a. = -10.67251, -0.08286125, -0.226, 0.0754 (atm)(ce) /mole
b = 89.507, 5.654, 25.00, 20.00 (cc/mole)?

o, = 16.822, 35.65, 20.00, 18.00 cc /mole

B = pR{l + p[Bl + pleO(B, + BX)]} (B25)
where
B, = Bzp(34.5 - 0)3 (p < 34.5 mole/cc)
B, = Bylp - 34.5)1-4 (p > 34.5)
B, = 0.027 919 58 cc/mole
B, = 0.000 166 83 (cc/mole)?:®
6.5

1108 /(30x4.5°) (cc/mole)

td
W
i
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B, = 64.5x1075/7.51+40 (cc fno1e)3- 90

C = 0104[1 - Cépl/z(p - Cp)|e - 34.5]] (B26)
where
C; = -1x106/124 atm/(%K)2 (cc/mole)?
C, = 25.5 ce/mole
Cz = 34.5 cc/mole
Cy = 1/(17.8 x +/23.T x 8.6) (cc/mole)?-S
5
D = pzz °n 373 (B27)
— [bn + (py - 0) ]
where
ap = -8917.152, 10296.158, -371.072, 8.623, 91.596 (atm)(cc)/(mole) (°K?)
by = 63.604, 76.803, 39.310, 3.684, 16.827 (cc/mole)?
p, = 5.40, 18.00, 31.30, 35.70, 39.87 ce /mole

The partial derivative of pressure with respect to temperature is

(g%) =B + 2TC - E% (B28)
v T
and the derivative with respect to specific volume becomes
d ) dA | OB 3C .2 , D 1
oA 1.970 7.256
57 = P X 1.970 Ayp + 7.256 Aop
4 4
5 8y 3 ap(ey - p)
+ 2p - 3p (B30)
213/2 215/2
[bn + (pn - p) ] bn + (pn - p)
n=1 n=1
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g% _ _sz(} + p{l + p[ggl + pl+°(3.5 B, + By)]}> (B31)

where
B, = Bg[34.5 (52.5 - 0)3 - 3p (34.5 - 0)?] (b < 34.5 cc/mole)
By = 34[5.5 (30 - 36.5)% + 1.4 (p - 34.5)0'4] (o > 34.5)

el —o{%c - 0401(0401/2)(0 - Cyl[e - 34.5] + 0 T pl/Z}

ov (p - 34.5)

p - Co o - 34.5]

(p - 34.5)

(B32)

[ 5
3D 5 a (o, - P)
= -p<2D - 3p E (B33)
" 1\ =1 [bn - (pn - 9)5]5/2

Enthalpy and specific heat at constant volume are found from the ideal state
values and the following real-gas corrections:

Z_H.—_.P —_.__A +_]1.+§E+__.D
RT poRT pRT oR cR pRT3

(5Z> o2, L _ 3D
3T \2 pR‘I‘2 PR pR’I‘4

ofz\ __=a 12D

12/ eRT® ORI
Substituting these corrections into equation (7), which was

HEQEL:;EEQQ._ ’ 2(8Z> ap - (2 - 1)
RT - o) ST o °
0

yields
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" - o ) P
T,0 - 9T 0 1 [-A T/C 3 z/D
—_l oY - el Bakey =1 - =
RT L-2 +/ RT(Z)dp * R(B)do * 5T ( z)dp
s o FR p
0 0
p 0 0
_ -A o C 3 -D
HT,p - HT,O = RT - pv + / (p2>dp + T / (p—2>dp + &E/ (;é-)dp
0

0

Then, substituting into equation (9) results in

The integrated terms, two of which are common, are obtained in closed form from
equations (B24), (B268), and (B27) as

e
1.970 7.256
A A1p Agp an P = Pn
) R 0.970 ' TB.756 b, 211/2
[bn = (p - pn) J
0 =
4
&n Py
+ T ~17z (B34)
<bn + pn>
n=1
Y] N
C,C. C,+C 2
/ —5 dp=p C1_3+C4< i p+—6—)J (b < 34.5)
P L
0
I C.Cx Co+C 2 C, ©
v 2tz o tlm 0 2 U3
=p%c; 3'%( I "% p*?)]‘clczlcg(fd'ﬁ) (p > 30.5)
(B35)

p
D &n Pn = P Pn
— dp = + (B36)
2 § b { 2]1/2 o\1/2
[ P " [Dn + (pn - o) ] (bn + an)
0 n=1
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Terms in the preceding integrals and differentials are grouped to illustrate
the similarity of the calculations in that the additional computations required
to yield enthalpy and specific heats are less than might be expected.

Wet Vapor Properties, Region -1

The vapor-pressure relation given in reference 7 is

]_ogp:(A-i—TEC-FDT) (B37)

where
D pressure, atm

T temperature, °K

and

A = 2.000 620

B = -5.009 708x10T °K
C = 1.004 4 °K

D = 1.748 495x107% 1/°K

Solution of the vapor-pressure equation for unknown temperature is accom~
plished by an iterative procedure using the slope

%% - p[ﬂfff%;fg + ﬁ} (B38)

A trial value of temperature must be supplied.

When the vapor pressure and temperature are known, the fluid properties at
the saturation conditions are found by computation in region 1 on the liquid and
then on the gas side of the vapor dome. These calculations are performed with p
and T as independent variables and v as the dependent variable. Again, trial
values of Ve and Vg are mandatory.

Vapor quality x 1s then found from

vV -V v -V
T £
(859)
g f fg

and the following properties are assumed to vary linearly with quality as
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H = Hp + xip,
o= e+ Xppy (B40)

Specific heat at constant volume cy for the wet vapor is derived from con-
ditions at the saturated liquid boundary (see sketch).

Temperature

Liquid /
)
aq (Bﬁ)v T
Vapor
o9
(yf' )T dv

Saturation boundary

‘The energy change dQ is then

aq =

Entropy

(),

aT + (g%)T dv

Dividing by dT and evaluating at saturation conditions yields

()
dT sat

By definition of specific heats,

c

sat

- (39), - (9%,

_ 5Q> dVeat
‘CV+(FvT aT

By virtue of the Clapeyron relations,

e

) _(M) _pdp
T Av T aT

Substituting and changing the variable from v to p yields the specific heat
at constant volume for the vapor at saturated liquid density:
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_ ofap\{Psat
¢y = Cgat * TP (5%)( = (B41)

where cg ¢ is computed from relations given in reference 7. The saturation-
density equation of the same reference is differentiated with respect to tempera-
ture; however, the correction terms recommended are omitted. From reference 7,
then

Copt = AT(T, - T)=O1 +B +CT +DT2 +ET® + FT* +0T° cal/(g)(mole)(°K)
(B42)
where
T temperature, g
T critical temperature, 9K

A = 1.881 574 2 cal/(g)(mole) (%K) /°kC-?

B = -3.280 278 9 x101 cal/(g)(mole)(°K)

¢ = 6.816 987 1 cal/(g)(mole)(°K) /%K

D = -7.319 434 1 x10~L cal/(g)(mole)(°K)/°K®
E = 3.357 435 7 x1072 cal/(g)(mole)(°K) /K>
F = -7.682 974 x10™% cal/(g)(mole)(°K) /%K *
G = 6.902 922 4 x10~6 cal/(g)(mole)(°K) /K>

The saturation density, used only for the slope dpsat/dT in equation (B41) is
also obtained from reference 7:

Pagr = Po * AT, - 7)0-58 + B(T, - T) + (T, - p)4/3
#D(1, - T)®/3 + B(T, - T)? mole/cc (B43)
where
po = 0.01553£0.00005 cc/mole (ref. 7)
T, = 32.976+0.015 °K (ref. 7)

C

A = 0.732 346 03 x10™% mole/(cc)(Ck)0: 8
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B = -0.440 742 61 x10™° mole/(ce)(%K)
C = 0.862 079 46 x10™3 mole/(ce)(Ok)4/3
D = 0.292 263 63 x10~3 mole/(cc)(%k)5/3
E = 0.400 849 07 x10~% mole/(cc)(%K)2

Specific heat at constant volume for the vapor at densities less than saturated
liquid are obtained from the relation

de 52
(sv—v) = T<a—§>
T T v

Isothermal integration within the vapor where the partial derivative becomes the
total second derivative of the vapor pressure relation, a constant, yields

2
- d”p
Cv,v = CV;V=VSat * T(éT2>(V - vsat) (B44)

Specific heat at constant pressure ¢ is undefined for a wet vapor, but

the storage allocated is filled with ¢ of the gas at saturated vapor-density
to avoid possible logical problems in exXternal programs.
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APPENDIX C

DETATLS OF SUBROUTINE STATE

The FORTRAN coding of SUBROUTINE STATE is shown in table III. The assign-
ment of common storage is in some instances unique to the external programs used
by the author, and it is anticipated that some changes would be made in applying
the subroutine in other programs. The portions of these assigmments that influ-
ence the internal subroutine are summarized by comments in the program and are
shown in tabular form on page 9.

The assigned storage totals almost 300 words, and the subroutine requires
1772 words plus that needed for subroutines for computing logarithms, square

roots, and exponentials.

Two parts of the subroutine should be given special attention 1f internal
changes are made:

(1) Convergence logic for J # 1 (see table I) includes artificial con-
straint terms.

(2) Storage assigmments in JUNK are overlapping and may be conflicting if
the order of computation is modified.

The location of specific data tables within the major group €S is fully
stated in the loading and unit conversion SUBROUTINE STATE S in appendix D.
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APPENDIX D

DETATLS OF LOADING SUBROUTINE STATE S

The preparation of tables and constants, Including the conversion of units
from those of the references to a consistent set, and the "initlalization" of
some 1Indexes is collected into a FORTRAN SUBROUTINE STATE S shown in table IV.

Three alternate techniques are suggested for preparing and initializing the
list of constants:

(1) Load the 1list as "data" from previously prepared cards or magnetic tape.

(2) Load subroutine STATE S as an additional subroutine 1f core storage is
available. About 1430 storage locations are required.

(3) Load the subroutine in a different core load. (This will require SUB-
ROUTINE CHAIN for the IBM 7090 computer (ref. 13), and about 200 storage loca-
tions and a tape drive unit are needed.)

Three sets of units are considered, namely a British set 1n pounds, feet,
seconds, and degrees Rankine; a second British set in pounds per square inch and
British thermal units; and a metric set in atmospheres, grams, centimeters, sec-
onds, and degrees Kelvin. The conversions of these combinatlons into the desired
system are shown in the coding. The first British set 1s requested by giving
UNITS = O, the second by UNITS < O, and the metric set by UNITS > O.

The contact with the computing subroutine is established by the assigmnments
within CS, which also Includes some index initialization. The ortho-hydrogen
composition is speclified by the word COMP in a common locatilon.

SUBRCUTINE STATE S is prepared without regard to execution speed or storage
requirements and is not intended for repetitious executlon.
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TABLE II. - ESTIMATES OF EXECUTION SPEED ON IBM 70390 CCMPUTER.

CONVERGENCE TO SIX SIGNIFICANT FIGURES

Resulting | Independent | Trial values used Total time Average
fluid variables 10,000 entries, | execution
region CALL(J) min time,
(N FLUID) sec
0 V,T (1) | None required 0.3+0.2 0.002
P,V (2)
P,T (3)
2 V,T (1) | None required 1.0%0.2 0.006
P,T (3) |NFLUID = O 1.8%0.2 .01
(none required)
Previous result 1.840.2 .01
(ordered sequence
with steps of 10
percent or more)
1 V,T (1) | None required® 2.2%0.2 0.015
P,T (3) |N FLUID = O 11.9%0.2 .07
(none required)®
Previous result 11.8+0,2 .07
(ordered sequence
wlth steps of 10
percent or more)®
-1 vV, (1) | Random 3.0%2.0 0.02
temperatures®
V,P (2) |Random 13.0£2.0 .08
pressures®

8Previous results are used as trial velues for saturation specific

volumes VL and VG.
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TABLE ITZI. - SUROUTINE STATE

SUBROUTINE STATE (J)
FLUID PROPERTY LIBRARY -—— PARA-ORTHU HYODROGEN COMBINATIONS

APPLICATION MUST BE CXTERNALLY LIMITED TO PKEVINT USE WHERL
WHERE DISCOCIATION DR FREEZING OCCURS CR ABGVE 5(0C PSI WHERE DATA
WILL BE EXTKAPOLATED WITHOUT WARNING

THE FOLLOWING ASSIGNMENTS ORIENT -STATE- TOQ THE CALLING PROGRAMS

-CS-y ~STORE-, =—CONV-, AND -UNITS- REQUIRE 215, 31, 1, AND 1 WORD
RESPECTIVELY, AND ALL FOUR SHOULD HE IN -COMMON-

-COMP-, REQUIRED IN -COMMON- BY —STATES—, [S NOT USED BY —-STATE-

—JUNK- IS EREASABLE AND NEED NOT Bt IN -COMMON-

-COM- AND -CORF- ARE INTERMEDIATE ASSIGNMENTS AND ARE NOT REQUIRED

CCMMON CCM

DIMENSION COM(20825), CORE(25,13), CS(400), STORE(50),

1 JUNK(50)

EQUIVALENCE (CORE.COM(100)), (CS,COM{20425)), {STORE,CORE(51)]),
1 (JUNK,CORE(276))y (UNITS,COM(24)), {CONV,L0M(40))

ASSIGNMENT OF INPUT — QUTPUT DATA STOURAGE [NTU -STORE-
IMPLICIT ASSIGNMENTS ARE C(9), CP(13), CVI(11l), (DP/DTIVI(13)}
DIMENSIONAL SETS ARE NCTED IN THE LOADING ROUTINE -STATES-

EQUIVALENCE (N FLUID,STORE(S)), (P,STORE(O]), {TS,STORE(T) ),
(V,STORE(8)), (H,STORE(12)), {(XQ,STUORE(14)), {VL,STORE(15)),
(VG,STORE(16)), (HL,STOREt17)), (HG,STORE(LR)),

(V FILMySTORF(19)), (T FILM,STORE(26)), {(VISCOS,STORE(27) ),
(VIS L,STORE(28)), (VIS G,STORE(29)), (THERM Ky STORE(30) ),
(CP FILM,STURE(31))

U N

CROUPINGS OF CONSTANTS —-— CONTACT WITH LOAD PRUGRAM ~STATES-

EQUIVALENCE (GRAV,CS)y (RGsR GAS,CS(2)), (WB1,LS(3)),
(WB2,CS14)), (WB3,CS(5)), (WCL,CS(6)), (WCZ2,CS(T)),
(WVS1,CSt8)), (WVS2,CS(9))y (WVS3,C5(10)), (WVS4,CS(11)),
(WK1,CS{12)), (WK2,CS(13)), (WK3,CS(14)), (WK&,CS(15)),
[WKS5,CST16))y (EKG1,CSCLT)Y, (EKG2,L5(18)), (EKG3,CS(19)),
{EKG4,CS(20)), (LKGS,CS(21))y (EKGO,CS(22)1),

(VPA,CS(23)), (VPB,CS(24)), (VPC,CS(25)1), {vPD,CS5(26)),
(T CR,CS(27))y (V CR,CS(28)), (LT FIT,CS(29)), (TFITL,CS(30)),
(TFIT2,CS(31)), (TFIT3,CS(32)), (TFIT4,CS(33)), {INDX,LS(34))

DIMENSION HAR DA(1), HAR DB(1l), HAR DR(1), HAR DAB(1)},

1 D LIST(31)

EQUIVALENCE (HAR A1,CS(35)), (HAR A2,CS{36)), (HAR AZQO,CS(3T)),

(HAR B1,CS(38)), (HAR B2,CS(39)), (HAR B3,CS(40)),
(HAR B4,CS{41)), (HAR B1A,CS(42)), (HAR B2A,CS(43)),
{VP LN,CS(44)), (VP CON,CS(45)),

(HAR C1,CS(46)), (HAR C2,CS{47)}), (RHO FIT,CS(481)),
(HAR C4,CS(49)), (HAR C5,CS(50)), (HAR C6,CS(51)),
{HAR C7,CS5(52))s (HAR CSM,CS5(53)), (HAR DZO,CS{54)),
(HAR DA,CS(55))y (HAR DR,CS(64)), (HAR DB,LS(T73)),
(HAR DAB,CS(82))

W NN D N
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TABLE ITI. - Continued. SUBROUTINE STATE

EQUIVALENCE (DPDT,CS(91}), (D2P DT2,CS(92)})}, (JJ,CS(93)),
(RHOS A,CS(94)), (RHOS B,CS(95}), (RHOS C+CS(96)),
{(RHOS D,CS({97})), {(RHOS E,CS(98)),
{CSAT A,CS(99)), (CSAT 8,CS{100}), (CSAT C,CS(101}),
{(CSAT D,CS(102)), (CSAT E,CS(103)), (CSAT H,CS(104)),
(C SAT G,CS{105)), (ROD VS1,CS(106)}), (ROD VS2,CS{107)),
{ROD VvS3,CS(108)), (ROD VS4,CS(109)), (ROD VS$5,CS{110)),
{ROD VSé6, CS(111))y (ROD K1,CS(112)),s (ROD K2,CS(113)),
(ROD K3,CS(114)), (ROD K4,CS(115)), [(ROD K5,CS(116)),
(ROD K&6,CS{117})), (ROD K7,CS(118)), (ROD K8,CS(119))

EQUIVALENCE (ROD K9,CS({120)}, (ROD A,CS(121)),

1 (ROD A2,(S(122)), (ROD A3,CS(123)}, (ROD A4,CS(124)),

2 {ROD A5,C5(125)), (D LIST,CS(121)), (T700,C85(151)),

3 (T1500,CS(152)), {TK1500,CS{153)), {(TK INT,CS5{154))

O 00NN e

EQUIVALENCING OF WORKING REGION TO TEMPORARY CORE LOCATIONS

DIMENSION HOLD(1), T COREI(1)

EQUIVALENCE (T CORE,JUNK{26))

EQUIVALENCE (NF,TCORE), (P1,TCORE(2))y (T1,TCORE(3)),

1 (V1,TCORE(4)), (C1,TCORE(5)), (CP1l,TCORE(6)), (CV1,TCORE(T7)),
2 (H1,TCORE(8)), {(PTV1,TCORE(9)), (VIS,TCORE(10)),

3 (ITHKyHOLD, TCORE(11))

OVLRLAPING STORAGE ASSIGNMENTS

EQUIVALENCE (NFN1,TCORE(22)), (NDN,DVX,TCORE(23)}),

2 (RGT,TCORE{24)), (TYC,TCORE(25))

EQUIVALENCE (N NEG»JUNK), (NCN,JUNK(2)), {NFN,JUNK{3)}]),
(J2,JUNK{4)), (J3,JUNK(5))s (RHO,JUNK(6)),
(RHO 5Q,DD2, JUNK(T7)), {(RHO R,JUNK(8)),
{TX1,0P,TERM D1,RHO C2,TERM B, JUNK(9) )},
(TX2,0LV,TERM D2,TERM C,JUNK(10)),
{OV1,VvP,C1TX2,B2TX2,TERM D3,TERM D,CR LIMT,JUNK(11)),
(C2TX1+B837TX1,BSQ2,04+21,0202,DADV,VFG,JUNK(12)),
{(WCyDD3,HFGyHAR A, JUNK(13))}y (X,DWC,A INT,OT1I5,JUNK(14)]},
(DX,D2C+RRTyN, TERM Al ,JUNK(15)),
(Y1, TX4,0D2,S22TV,TERM Bl,HAR B,TVC,JUNK(16]))

EQUIVALENCE (wW8,D2D3,TERM B2+yDBDV,BTVC2,JUNK(17)),
(TERM C1,RHODR,TERM A2,PVT,JUNK(18)), (DD4,SZTV,HAR C,JUNK(19)),
(BTVC,THK L,DCDV,DRS DT,DT,JUNK(20)),
{BRX,DWB,RHO4,RHO4C1,C INT,TTC3,JUNK(21)),
(D3,D2D44RT RHO+DLV RH4C SAT,TSQ,JUNK(22)),
(DHyRHO C3,RHDO RFT,HAR D,JUNK(23)),
{RHO154RHO C4,D INT,DEL VS,D2B,JUNK(24)),
{ABS RC3,ARBS RFT,DDDV,DEL TK,JUNK({25))

O N NP W e

~NOWU N

INITIATE CONTACT WITH CALLING PROGRAM

JJ = 4

IF  (UNITS) 1,3,1
1 DO 2 [I=6,31
2 STORE(I) = STORE(I) = D LIST(I)
3 P1 p

NF N FLUID
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TABLE III. - Continued. SUBROUTINE STATE

N NEG = -5

N OUT = 100

IF {(JJ - 4) 4,5,5
Tl = TS

vl = v

GO 10 9

TL = T FILM

V1 = V FILM

NDN = O

NFN = NF

J2 = XABSF(JJ) ~ 2
43 = J2 - 1

NFN1 = NFN - 1
RGT = R GAS # T1
TTIC = T CR - T1
NCN = 100

If {NFN) 100,11,170
COMPLETE CALCULATIONS FOR REGIONS OF PERFECT STATE

IF (J2) 12,13,14
Pl = RGTY / V1

GO TO 15

Tl = Pl = V1 / RG
GO T0O 15

V1l = RGT 7/ Pl

PTV1I = RG / Vvl

PVT = - P1 / VI
DH = 0.
DCV R = 0.

IF {NDN) 700,16,700
IF (Tl - T FIT 4) 17,700,700
IF (Tl - T FIT 2) 601,602,602

VAPOR REGICON —-——- DETERMINATIUN OF VAPOR PRESSURE

IF (TTC) 601,601,102

TvC = T1 + vP C

BTVC = vP B /7 TVC

VP = 10.%# (VP A + BYVC + T1 # VP D) = VP CON
IF (NFN) 1C4,130,130

BTVC = BTVC / TVC

8TVC2 = vP LN # (VP D - BTVC)

DPDT = vP & BTV(C2

D2P DT2 = VP » (2. = VP LN = BTVC / TVC + BTVC2##2)
If (J2) 109,105,106

IF (JJ) 105,145,145

Dp P - VP

Tl Tl + DP/OPDT

IF (ABSF(DP)/P - CONV) 110,110,102

i
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TABLE III. - Continued. SUBROUTINE STATE

OBTAIN LIQUID-SIDE SPECIFIC VOLUME AND CHECK VALIDITY
RETURN TO LIQUID (+1) IF VOLUME IS LESS THAN SATURATED LIQUILU

P = VP
J2 =2
VI = VL
NF = -2
N NEG = 1
GO TO 611
VL = V1
vl = Vv

IF (DV + CONV) 601,116,116

OBTAIN GAS-SIDE SPECIFIC VOLUME AND CHECK VALIDITY
RETURN TO GAS (+1) IF VOLUME IS MORE THAN SATURATED VAPOR

NF = -1
V1l = VG
C1 = PvT
GO TO 611
VG = V1
V1 =

v
IF (Dv - CONV) 125,125,601
VFG = VG - VL
XQ = (V - VL) / VFG
HL = HOLD(8)
HG = H1
HFG = HG - HL
H1 HL + HFG = XOQ
IF (JJ) 750,780,78C

PRUHIBIT ATTEMPTS TO USE V AS DEPENDENT VARIABLE IN VAPOR REGION
USED IN RE-STARTING NON-VAPOR CALCS BELOW TCR

pp = (vP - P1) / Pl

IF (ABSF(DP) - CONV) 700,700,131
IF (DP = (V1 - V CR)) 140,700,700
IF (J2) 599,599,141

IF  (JJ) 598,145,145

N NEG =1

NON = -1

NF = 1

vl = VG

IF (VP = Pl) 1464757
vl = VL

GO 70 7

BRANCHING TO REGIONS OF GENERAL FLUID P-T-V FORMULATION

RHO = l./V1

RHO SQ = RHO#»2

RHO R = RHO = RG

IF (NFN1) 200,200,300
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TABLE III. - Continued. SUBROUTINE STATE

REGION 1
CRYOGENIC TEMPERATURE RANGES, LIQUID AND GAS
STATE EQUATION OF HARRY

RHO RFT = RHD - RHO FIT

RT RHO = SQRTF (RHO}

ABS RFT = ABSF (RHD RFT)

RHO 4 = RHO SQ #»?

TERM C1 = HAR C7 - RHO # HAR C6 + RHO SQ * HAR CS5
IF {(RHO RFT)} 201,201,202

TERM Bl = HAR B3 * RHO * ABS RFT##2

TERM B2 = TERM 81 # (4.5 # ABS RFT ~ 3. # RHO)

TERM Bl = HAR B4 # ABS RFT##.40
TERM B2 = TERM Bl » (3,5 « ABS RFT + 1.40 # RHO)
= HAR CSM / RHO4 - TERM C1

RHO 15 = RHO # RT RHQ
DBOV = 1. + RHO #(HAR B1A + RHO 15 * (HAR B2A + TERM 82}))

HAR B = 1. + RHO # (HAR Bl + RHO 15 *(HAR B2 + ABS RFT = TERM B1l))}

RHO4C1 = RHO4 = HAR C1
RHO C2 = RHO ~ HAR (2
RHD C3 = RHO - HAR (3

ABS RC3 = ABSF (RHO C3)
RHO C4 = RT RHO * HAR C4
HAR C = RHGO4C1 = (1. - RHO C4 * RHO C2 # ABS RC3)

OCDV = 4. = HAR C - RHO4C1l * RHO C4 # (ABS RC3 # (.5 % RHO C2 +

RHO) + RHO C2 = SIGNF(RHO, RHO C3))
C INT = RHCO4C1 » V1 * (.3333333 + RHO C4 * TERM C1)
HAR A = 0.
DADV = O,
A INT = - HAR AZQO
HAR D = 0.
DDOV = 0.
D INT = - HAR DZ0O
N =9

RHO DR = RHO — HAR DR(N)

TERM D1 = 1. / (HAR DB (N) + RHO DR##2)
TERM D2 = SQRTF (TERM D1)

TERM D3 = HAR DA (N) » TERM Dl # TERM D2
TERM D1 = TERM D1 # RHO DR » TERM D3
TERM D2 = TERM D2 * RHO DR = HAR DAB{N)

IF (N - 5) 205,205,206
HAR D = HAR D + TERM D3
DDDV = DDDV + TERM D1

D INT = D INT + TERM D2
GO 1O 209

HAR A = HAR A + TERM D3
DADV = DADV + TERM D1

A INT = A INT + TERM D2
N=N-1

IF (N} 207,207,204

DDOV = RHO SQ # (2. « HAR D - 3. » RHO = DDDV)
HAR D = HAR D = RHO SQ



TABLE III. - Continued. SUBROUTINE STATE

HAR Al # RHO®=#1,.970
HAR A2 » RHO##7.256

TERM Al
TERM A2

DADV = RHO SQ & (2. % HAR A - 3, # RHO = DADV) + 1.9T70 + TERM Al

1 + 7.256 = TERM A2

HAR A = HAR A = RHO SQ + TERM Al + TERM A2
C 1.03093 = 1. / .970
C .15985 = 1. / 6.256

A INT = A INT / 3. + V1 # (1.03093 » TERM Al + .15985 = TERM A2)

208 RRT = RHO R & T1
TERM B = HAR 8 # RRT
TSQ = T1 « T1
TERM C = HAR C = TSQ
TERM D = HAR D / T5@
Pl = HAR A + TERM B + TERM C + TERM D

PVT = - RHO # (DADV + DBDV # RRT + DCDv = TSQ + DODDV / T5Q)
PTV1 = (TERM B + 2. # (TERM C — TERM D)) /7 T1
GO TO 305
C
210 TERM C C INT = TS50

TERM D D INT /7 T5Q
DH = PL ®# VI — RGT + A INT - TERM C + TERM D
DCV R = — 2. # {TERM D + TERM C) / RGT

DEL VS = ROD VS1 + ROD VS2 « EXPF(RHO = ROD vS3) + RHO = (ROD V5S4

1 + RHO = (ROD VSS + RHO SQ *= ROD VSé6))
DEL TK = ROD KJ + RHO # (ROD K2 + RHO # (ROD K3 + RHO = (ROD K4
1 + RHO # (ROD K5 + RHO * (ROD Ké + RHO # (RODK7 + RHO
2 (ROD K8 + RHO = ROD K9))))11})

225 1F (NDN) 700,226,700

226 IF {(T1 - T FIT 2) 227,227,602

227 1 {TTC) 700,700,102

C
C REGION 3
C MID - TEMPERATURE RANGE - - WOOLLEY-SCOTT-BRICKWEDDE
C NBS RP-1932 COEFFICIENTS -- B AND C
C
300 TX1 1. /7 T1

TX2 SQRTF (TX1l)
301 €C1TX2 = WC1l = TX2
C2TX1 = WC2 = TX1
WC = TX1 = (C1TX2 + C2TX1)
DWC = —-(1.5#C1TX2 + 2.#C2TXx1) # TX1

D2C TX1 # (3.75#C1TX2 + 6.#C2TX1)
C
B2TX2 = wWB2 * TX2
B3TX1l = WB3 = TXxl
TX4 = SQRTF (TX2)
WB = TX4 » (WBL + B2TX2 + B3TX1)
DWB = — TX4 *= .25 »(WB1l + 3.#B2TX2 + 5.#B3TX1)
D2B = TX4 #» (.3125#WB1 + 1.3125#%B2TX2 + 2.8125+83TX1)
BSQ2 = .5 * WB=a?2
c
C Do l. {SUBSTITUTED)
C D1 Wi {SUBSTITUTED]

D2
D3

8502 + WC
WwB # (BSQ2/3. + WC)

44
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TABLE III. - Corntinued. SUBROUTINE STATE

D4 = BSQ2##2/6. + WC ® (BSQ2 + .5#WC)
Il = RHO #(WB + RHO =(D2 + RHO =(D3 + RHO = D41}))
Pl = RHO R # T1 = (Z1 + 1.)

PTV1 = P1 = TX1 # (1. + RHO = (DWB + RHD # DWC))
PVT = - Pl = RHO SQ # (V1 + WB + RHO # (WC + WC))
DPp =P - P1

IF (J42) 525,500,505

DDl = DWB (SUBSTITUTED)
DD2 = WB #* DWB + DWC

DD3 = D2 = DWB + WB « DWC
DD4 = D3 «# DWB + D2 = DWC

SLZTV = RHO #{(DWB + RHO #(,5%#DD2 + RHO #(.3333333#DD3 + RHO =

«25%#D04) ) )
DH = RGT = (Z1 - SZ2TV)

D201 = D28 (SUBSTITUTED)

D202 = WB = D2B + D2C + DWB » DWB

D203 = D2 = D28 + WB # D2C + DWB # (DD2 + DWC)

D204 = D3 » D2B + D2 « D2C + DWB « DD3 + DWC = DD2

SZ2TV = RHO #(D2B + RHO #(.5#D2D2 + RHO #(.3333333«D2D3 +
RHO = ,25%D2D4%)))

DCV R = - 2., = SITV - S12Tv

ENSKOGS PRESSURE CORRECTIONS
BRX = PTV1 /7 RHO R - 1.

DEL VS = 1. + BRX #({EKG1l + BRX #(EKG2 + BRX # EKG3))
DEL TK = 1. + BRX #(EKG4 + BRX #(EKGS5 + BRX * EKG6))

VERIFY CHOICE OF FLUID REGION
IF (NDN) 700,321,700

IF {T1 - T FIT 4) 322,600,600
IF (Tl - T FIT 2} 601,700,700

CHECK CONVERGENCE —-— USE VARIABLE CONVERGENCE FACTOR -CONv- TO

MAKE ADJUSTMENTS TO TRIAL VALUES

Tl = MAX1F (71 + DP / PTV1l, .25 = T1)

RGT = R GAS #= T1
TTC = T CR - T1
GO TO 516

IF  (MINIF (Pl, - PVT)) 506,506,510
P1L = P

V1 = V1 + SIGNF(.25 #* Vvl, V1l - V CR)
N NEG = N NEG + 1

IF (N NEG) 519,599,519

CR LIMT = V1

IF (T1C) 512,512,511

CR LIMT = .25 = ABSF (V1 - V CR)

V1 = V1 - SIGNF (MIN1F (ABSF (DP / PVT), .25 = V1,
IF (ABSF(DP)/P - CONV) 525,525,519
NCN = NCN -1

IF (NCN) 525,525+520

IF (J2) 521,521,170

IF (NFN1) 208,208,530

IF (NFN1) 210,210,310

CR LIMT),

DP)
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TABLE ITII. - Continued. SUBROUTINE STATE

CONSTRAINTS RELATED TO BAD TRIAL VALUES OF TEMPERATURE

IF {TTC) 170,531,531
T1 = T CR

GO TO 601

RESTART SEQUENCING --- FLUID HAS CHANGED REGIONS
vV =Vl

NF = -1

G0 TO 9

NF =0

GO TO 9

NF = 1

Go 10 9

NF = 2

GO 10 9

NFN = O

GO TO 620

NFN = 1

GO TO 620

NFN = 2

DO 621 1=2,11
HOLD{(I) = TCOREI(I)
NDN = 1

GO Y0 10

RETURN FROM SMOOTHING CALCULATIONS

IF (NFNLl) 631,631,633

DX = {HOLD(3) - T FIT 3) / DT FIT
GO TO 635

DX = (HOLD(3) - T FIT 1) / DT FIT
X=l.‘UX

DO 636 I=2411

T CORE(I) = T CORE(I) = DX + HOLD(I) = X
GO TO 735
THERMODYNAMIC PROPERTIES AT IDEAL STATE —-—- SEMI-LOG INTERPOLATION

TABLE LOOK-UP OPERATIONS

X = LOGF(TL1)

INDX = INDX - 1

DX = X - CS(INDX-1)

IF (DXx) 701,705,703

IF (CSCINDX) - X) 704,705,705
INDX = INDX + 1

GO TO 702

DX = DX / (CSUINDX) - CS(INDX-1))
X=1.—0X

Yl
H1 {CSUINDX+39) = X + CS{INDX+40)
CVl = Yl + R GAS # (DCV R - 1.)

IF (J3) 728,728,710

CSUINDX+19) = X + CS(INDX+20) = DX

= DX)

= Tl + DH
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TABLE III. - Continued. SUBROUTINE STATE

TRANSPORT PROPERTIES —-- VISCOSITY AND THERMAL CONDUCTIVITY

710 VIS = WVSL # T1 ® SQRTF(TL) « (Tl + WVS2) / ((T1l + WVS3) = (T1
1 + WVS4))
IF (Tl - T700) 715,715,720
715 THK = VIS # (WK1l + WK2 # T1 + Y1 #(WK3 + WK4 # TL))/(1l.+ WK5 / T1)
GO TO 725
720 DT 15 = T1500 - T1
IF (DT 15) 723,721,721
721 THK = TK1500 - TK INT # DT 15

GO TO 725
723 THK = ROD A # EXPF ((T1 - ROD A3)=«2 # ROD A2) + ROD A4 + ROD AS
1 = T1

725 IF (NFN1l) 728,727,726
726 VIS viS = DEL VS

THK = THK « DEL TK

GO TO 728
727 THK = THK + DEL TK

= VIS + DEL VS

DV = (V = V1) / MAX1F (v, .1)
CVl - T1 = PIvlss2 / PVT
Cl = V1 = SQRTF ( —-CP1/CV1 = PVT & GRAV )
IF (NF + 1) 115,120,730

728

O
©

-
L]

BOUNDRY REGIONS - - — SMDOTHING CHECKS

730 IF (NUN) 735,731,630

731 IF (NF) 735,735,732

732 IF (NFN1l)} 733,733,734

733 IF (Tt - T FIT 1) 735,735,612
734 IF (Tl - T FIT 3) 135,735,610
735 IF  (J3) T364736,740

736 IF  (JJ) 750,750,800

FILL IN RESULTS OF FILM PROPERTIES

740 CP FILM cel
V FILM vl
VISCOS = VIS
THERM K = THK
GO TO 850

W

VERIFICATION OF ENTHALPY SOLUTIONS

750 DH = H - H1

IF  (ABSF(CH) / MAX1F(ABSF{H), CV1) — CONV) 751,751,752
751 IF (NF) 780,800,800
752 N QUT = N QUT - 1

IF (N OUT) 751,755,755

755 IF  (J2) 756,800,760
756 DT = DH / CV1
GO TO 775

760 IF (NF) 761,770,770

a7
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761

162

164

770

1
775

779

780

1

1

800
801

850
851
852
855

TABLE IIT. - Concluded. SUBROUTINE STATE

NF = 1

DH = H - HG

V1 = VG

IF (DH) 762,762,770
DH = H - HL

IF (DH) 764,764,719
vl = VL

CP1l = HOLD{6)
PTV1l = HOLDI(9)
PVT = HOLDI(S)

DT = DH / CP1

DVX = (V1 - V CR) = SIGNF (1., DT)

V = VI + SIGNF {(MINLF (ABSF (DT = PTV1 / PVT), MAXL1F (-TTC, DVX,
~+25 # DVX), .25 % V1), DT)

TS = T1 + DT

GO TO 4

H1 = H

XQ = DH / HFG

VI = VL + XQ = VFG

NF -1

TTC3 = TTC##%,.3333333

C SAT = C SAT A = TTC##(-.1) + C SAT B / Tl + C SAT C + T1 =
(C SAT D + Tl » (C SAT E + T1L # (C SAT H + T1L = C SAT G)))

DRS DT = RHOS A = TTCw##(-.62) + RHOS B + TIC3 = (RHOS C + T7C3 =
RHOS 0) + TTC = RHOS E

CV1 = C SAT - DPDT = DRS DT # VL##2 + D2P D72 + (V1 - VL)

Cl = V1 = DPDT » SQRTF (GRAV / CV1)

Cvl = Cvl = T1

PTV1 = DPDT

VIS L HOLD(10)

VIS G VIS

VISCOS = VIS L + (VIS - VIS L)} # XQ

THK L = HOLD(11l)

THERM K = THK L + (THK - THK L} # XQ

W o

MOVE WCRKING RESULTS TO RETURN DATA AREA

DO 801 1I=1,9
STORE (1+4) = T CORE (1)

RESTORE RETURN DATA TO CALLING DIMENSIONAL SET
IF (UNITS) 851,855,851

DO 852 1=61:31

STORE(I) = STORE(I) /7 D LIST(I)

RETURN

END{1,0504040,04040,4041,0,0,0,0,0)
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TABLE IV. - SUBROUTINE STATE S

SUBROUTINE STATE S

THIS IS THE LOAD ROUTINE FOR THE FLUID LIBRARY —-STATE-
SET-UP ROUTINE FOR PARA-ORTHO COMBINATION AND DIMENSIONAL SET

COMMON CCM
DIMENSION COM{20825), CS(400)
EQUIVALENCE (CS,COM(20425)), (UNITS,COM(24)), (COMP,COM(34))

GROUPINGS CF CONSTANTS

DIMENSION HAR DA(1l), HAR DB(1l), HAR DR(1), HAR DAB(1),

1 D LIST(31)

EQUIVALENCE (GRAV,CS), (RGyR GAS,CS(2)), (WB1,CS(3)),
(WB2,CS(4)), (WB3,CS(5)), (WC1,CS(6)), [(WC2,CS(T)]),
(WVS1,CS(8)), (WVS2,C5(9)), (WVS3,CS(10)), (WVS4,CS(11)),
(WK1,CS(12)), (WK2,CS(13)), {WK3,CS(14)), (WK4,CS{15)),
(WKS,CS(16)), (EKG1,CS(17)), [(EKG2,CS(18)), (EKG3,CS(19)),
(EKG4,CS(20)), (EKGS5,CS(21))s [(EKG6,CS(22)),

(VPA,CS(23)), (VPB,CS(24)), (VPC,CSt25)), (VPD,CS(26)),
(T CR,CS(27)), (V CR,CS(28)), (DT FIT,CS(29)), [(TFIT1,CS{301),
(TFIT2,CS(31)), (TFIT3,CS(32)), (TFIT4,CS(33)), (INDX,CS(34))
EQUIVALENCE (HAR Al,CS(35)), (HAR A2,CS(36)), (HAR AlZ0,CS(37)),
(HAR B1,CS(38)), (HAR B2,CS(39)}, (HAR B3,C5(40)),
(HAR 84,CS(41)), (HAR BLlA,CS(42)), (HAR B2A,CS(43)),
(VP LN,CS(44)), (VP CON,CS(45)),
{HAR C1,CS(46)), [(HAR C2,CS5(47)), (HAR (3,CS5(48)),
(HAR C4,CS5(49)), (HAR C5,CS{50)), (HAR C6,CS(51)),
(HAR C7,CS({52)), (HAR CSM,CS(53)), (HAR D20,CS(54)),
(HAR DA,CS(55)), (HAR DR,CS(64)), (HAR DB,CS(73)),
(HAR DAB,CS(82))

EQUIVALENCE (RHOS A,CS(94)), (RHOS B,CS(95}), (RHOS C,CS5(96)),
(RHOS DyCS(97))s (RHOS ELCS(98) ),
(CSAT A,CS(99)), (CSAT B,CS{(100)), (CSAT C,CS(101)),
(CSAT D,CS1102})), (CSAT E,CS(103)), (CSAT H,CS(104)),
(C SAT G,CS(105)), (ROD VS1,CS5(106)), (ROD VS2,CS(107)),
(ROD VS$S3,CS(108)), (ROD VS4,CS(109)), (ROD VS5,CS(110)),
(ROD VS6, CS(111)), (ROD K1,CS(112)), (ROD K2,CS(113}),
(ROD K3,CS{114)), (ROD K&4,CS{115)), (ROL K5,CS5(116)),
{(ROD K6,CS(117)), (ROD K7,CS(118)), (RCD K8,CS5(119))

EQUIVALENCE (ROD K9,CS(120)), (ROD A,CS5(121)),

1 (ROD A2,CS(122)), (ROD A3,CS(123)}, (ROD A4,CS(124)),

2 (ROD AS5,CS(125)), (D LIST,CS(121)), (T7CC,CS(151)),

3 (T1500,C5(152)), (TK1500,CS(153)), (TK INT,CS(154))

Vo~ wiN O~ N

o~ WUVmbd N

DEFINITIONS OF FLUID PROPERTY TABLE NAMES

DIMENSION T TAB(1), CP TAB(1), H TAB(L),
1 CO TAB(20), HO TAB{20)
EQUIVALENCE (T TAB,CS(155)), (CP TAB,CS(175)}, (H TAB,CS(195))

CLEAR STORAGE AREA —-CS— OF LOADING INFORMATION

DO 1 I=1,4215

1,
1 csS(I) O
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TABLE IV, - Continued., SUBROQUTINE STATE S

GRAV = 32,17
R GAS = 766.677

TO CHANGE THE CALL - RETURN UNIT SETS MODIFY THE CORRESPONDING
CONVERSIONS FACTORS BELOW —-- D LIST AND STORE LOCATIONS MATCH

DO 7 1I=6,31
D LIST(I) = 1.
IF  (UNITS) 2,5,3

ZERO OR QOPEN CODE -—-— UNIT SET POUNDS-FEET-SEC-RANKINE {(LITERALLY)
NEGATIVE CODE --- BRITISH SET WITH PS1, 8TU, FT/SEC, BTU/LB-R
D LIST(6) = 144.

D LIST(10) = 778.26

D LIST(11) = 778.26

D LIST(12) = 778.26

O LIST(13) = 144,

D LIST(17) = 778.26

D LIST(18) = 778.26

D LIST (30) = 778.26

D LIST(31) = 778.26

GO T0 5

POSITIVE CODE --- METRIC UNITS WITH ATM, KELVIN, CC/GR, CAL/GR,
METERS/SEC» POISES

D LIST(6) = 2116.22

O LIST(7) = 1.8

D LIST(8) = 1. / 62.4283

D LIST(9) = 1. / .3048

D LIST(10) = 778.26

D LIST(I1) = 778.26

D LIST(12) = 778.26 = 1.8

D LIST(13) = 2116.22 / 1.8
D LIST(15) = 1. / 62.4283

D LIST(16) = 1. / 62.4283

D LIST(17) = 778.26 = 1.8

O LIST(18) = 778.26 # 1.8

D LIST(19) = 1. / 62.4283

D LIST(26) = 1.8

O LIST(27) = .0672

D LIST(28) = .0672

D LIST(29) = .0672

D LIST(30) = 778.26 # .0672
D LIST(31) = 778.26

IDEAL STATE THERMODYNAMIC FUNCTIONS

TEMPERATURE SCALE --— DEGREES KELVIN
T TAB(1l) = 10.

T TAB(2) = 60.

T TAB{3) = 80.

T TAB(4) = 100.

T TAB(5) = 120.
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TABLE IV. - Continued. SUBROUTINE STATE S

T TAB(6) = 150.

T TAB(7) = 200.

T TAB(8) = 250.

T TAB(9) = 300.

T TAB(10) = 400.

T 1AB(11) = 500.

T TAB(12) = 600.

T TAB(13) = 700.

T TAB(1l4) = 1000.

T TAB(15) = 1500.

T TAB(1l6) = 2000.

T TAB(17) = 3000.

T TAB(18) = 4000.

T TAB(19) = 5000
IDEAL STATE CP --— CAL / MOLE - DEG K
PARA HYDROGEN

CP TAB(1) = 4.968
CP TAB(2) = 5.115
CP TAB({3) = 5.646
CP TAB(4) = 6.455
CP TAB(5) = T7.204
CP TAB(6) = T.807
CP TABI(T7) = T.742
CP TAB(8) = T7.380
CP TAB(9) = T.152
CP TAB(10) = 7.010
CP TAB(1l1l) = 6.998
CP TAB(12) = 7.010
CP TABI(13) = 7.037
CP TAB(14) = T7.219
CP TAB(15) = 7.720
CP TAB{16) = B.195
CP TAB{17) = B.859
CP TAB(18) = 9.342
CP TAB(19) = 9.748
ORTHO HYDRCGEN

CO TAB (1) = 4.968
CO TAB (2} = 4.969
CO TA8 (3) = 5.982
CO TAB (4) = S5.039
CO TAB (5) = 5.170
CO TAB (6) = 5.487
CO TAB (7) = 6.110
CO TAB (8) = 6.565
CO TAB (9) = 6.809
CO TAB (10) = 6.963
Co TAB (11) = 6.992
CO TAB (12) = 7.009
CO TAB (13) = 7.036
CO TAB (14) = 7.219
CO TAB (15) = 7.720
CO TAB (16) = 8.195
CO TAB (17) = 8.859
CO TAB (18) = 9.342
CO TAB (19) = 9.748

51
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TABLE IV. - Continued. SUBROUTINE STATE S

IDEAL STATE ENTHALPY ——-~- CAL / MOLE
PARA HYDROGEN

H TAB{1l) = 49.6785

H TAB(2) = 299.106

H TAB(3) = 406.015

H TAB(4) = 526.837

H TAB{5) = 663.752

H TAB(6) = B90.605

H TAB(7) = 1282.70

H TAB(8) = 1 660.49

H TAB{9) = 2 023.1¢6

H TAB(10) = 2 729.19

H TAB(1ll) = 3 429.24

H TAB(12) = 4 129.48

H TAB(13) = 4 831.65

H TAB(14) = 6 966.23

H TAB(15) = 10 697.20
H TAB{1l6) = 14 679.2

H TAB(17) = 23 230.9

H TAB(18) = 32 345.

H TAB(19) = 41 895.
ORTHO HYDRCGEN

HO TA8 (1) = 388,327
HO TAB (2) = 636.722
HO TAB (3) = 736,179
HO TAB (4) = 836,277
HO TAB (5) = 938.227
HO TAB (6) =1 097.78
HO TAB (7) = 1 387.90
HO TAB (8) = 1 705.80
HO TAB (9) = 2 040.87
HO TAB (10) = 2 731.54
HO TAB (11) = 3 429.53
HO TAB (12) = 4 129.52
HO TAB (13) = 4 831.66
HO TAB (14) = 6 966.23
HO TAB (15) = 10 697.20
HO TAB (16) = 14 679.2
HO TAB (17) = 23 230.9
HO TAB (18) = 32 345.
HO TAB (19) = 41 895.
SET LOOP TO PREPARE EXECUTION TABULATIONS
COMP 1 = 1. = COMP

Do 11 [I=1,19

H TAB(I) = (H TAB{I) = COMP1 + HO TAB(I) # COMP) #778.26 / 2.0157/
1 7T TAB (1)

T

I
CP TABI(I)
}

TAB

(1

11 CONTINUE

RE

AT

GION

M =

1 —--

2116.

(CP TAB(I) » COMP1 + CO TVAB(I) = COMP) # 778.26/2.0157
LOGF (T TAB(I) = 1.8)

LIQUID-GAS LOW TEMPERATURE REGION

22



TABLE IV. - Continued. SUBROUTINE STATE S

T = 1.8

RHO = .125 836 12

RHO SQ = RHO * RHO

HAR Al = — .24337 = ATM / RHO##1.970

HAR A2 = 5.591 E-10 * ATM / RHO#=7,256

HAR 81 = ,027 919 58 / RHO

HAR B2 = .000 166 83 / RHO ##%#2.5

HAR B3 = 1.0 E-6 / (30. & 4.,5%s3) / RHOw#=6.5

HAR B4 = — .000 064 5 / T.5#%#1.,40 / RHO##3.90
HAR BlA = 2. = HAR Bl

HAR B2A = 3.5 = HAR B2

HAR C1 = - 1. / 124.0 / 1 000 000. = ATM / T#22 / RHO®=4
HAR C2 = 25.5 = RHO

HAR C3 = 34.5 = RHO

HAR C4 = 1. / (17.6 = SQRTF(43.1) = 8.6) / RHO=#2.5
HAR €S = 1. / 5.5

HAR C6 = (HAR C2 + HAR C3) / 4.5

HAR C7 = HAR C2 = HAR C3 / 3.5

HAR CSM = HAR C3 =#4.5 » (HAR C2 63. - HAR C3 / 99.) # 8.

~

CZ = ATM = RHO # T»=#2

HAR DA (1) = —-8917.152 LAY

HAR DA (2) = 10296.158 « CZ

HAR DA (3) = =-371.072 = CZ

HAR DA (4) = B8.623 . CZ

HAR DA (5) = 91.596 = CZ

HAR DA (6) = - 10.67251 #= ATM = RHO
HAR DA (7) = - ,06286125 = ATM # RHO
HAR DA (8} = —-.226 & ATM = RHO
HAR DA (9) = .0754 # ATM # RHO
HAR DR (1) = 5.40 # RHO

HAR DR {2) = 18.00 * RHO

HAR DR (3) = 31.30 # RHO

HAR DR (4) = 35.70 += RHO

HAR DR (5) = 39.87 = RHO

HAR DR (6) = 16.822 #= RHO

HAR DR (7) = 35.65 + RHO

HAR DR (8) = 20.00 + RHO

HAR DR (9) = 18.00 * RHO

HAR DB (1) = 63.604 * RHO SQ
HAR DB (2) = 76.803 = RHO SQ
HAR DB (3) = 39.310 = RHO SQ
HAR DB (4) = 3.684 + RHO 5Q
HAR DB (5) = 16.827 # RHO 5@
HAR DB (6) = 89.507 » RHO SQ
HAR DB (T7) = 5.654 # RHO 50Q
HAR DB (8) = 25.00 # RHO SQ
HAR DB (9) = 20.00 * RHO SQ
HAR AZO = O.

HAR DZO = 0O.

DO 55 1=1.9
HAR DAB(I} = 3, # HAR DA(l) / HAR DB(I)
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TABLE IV.

IF (I - 5) 51,51,52

51 HAR DZC = HAR DZO - HAR DAB(I)

1

HAR DR(I)#=%2)

GO TO 5SS
52 HAR AZGC = HAR AZQO - HAR DAB{I) # HAR DR{I) / SQRTF
HAR DR([)==2}

1

55 CONTINUE

- Continued.

SATURATION SPECIFIC HEAT EQUATION

CHT = T78.26 / 2.0157

C SAT A = 1.681 574 2 #= CHT
C SAT 8 = -3.280 278 9 E1 # CHT
CHT T = CHT / T

C SAT C = 6.816 987 1 # CHT
CHT T =CHT T /T

C SAT D = -7.319 434 1 E-1 = CHT
CHT T = CHT T / T

C SAT E = 3.357 435 7 E-2 * CHT
CHT T = CHT T /7 T

C SAT H = -T7.682 974 E-4 « CHT
CHT T = CHT T / T

C SAT G = 6.902 922 4 E-6 & CHT

/

1

T

SUBROUTINE STATE S

Tes,9

« HAR DR(I) / SQRTF (HAR DB(I1) +

{HAR DB(I) +

-- FROM FIFTH PROG REPORT

SATURATION DENSITY EQUATION -~ FROM FIFTH PROGRESS REPORT

PREPARE CONSTANTS FOR USE IN DERIVITIVE

RHOS
RHOS
RHOS
RHOS
RHOS

CONSTANTS FOR NBS RP-1932 VIRIAL EQUATION

A
B
c
D
E

FROM AMAGATS AND KELVIN

Cz =
Wel
WB2
W83
WCl
WC2

1

000. / (62.4283 =

.0055478
—.0368T7
~.22004
.004788
-.04053

«T732 346 03 E-2 =
~+440 742 61 E-3
«662 079 46 E-3
—+292 263 63 E-3 # 5./3.% RHO
<400 849 07 E-4

*

LR B B

«38 = RHO

#+ RHO

* 4,/3.% RHO

.2,

# RHO

.089888)

1.80%,25 &« C7
l.8%2,75 » (7

1.8#%1,25 « CZ
1.8#21.5 = CZan2
(1.8 & CZ )=e?

NN N

T#s_38

T
Ten(4,./3.)
Tee(5,/73.)
Tes2

CONSTANTS FOR THERMAL CONDUCTIVITY COMPUTATION

WK1
WK2
WK3
WK4
WKS

[T A 1]

1.8341
—+004458
1.1308
«0008973
3.2

# 778.26

/ 2.0157

# 778.26/ 1.8 / 2.0157

/
"

1.8
1.8

CONSTANTS FOR IDEAL STATE VISCOSITY COMPUTATION

Wvsl
WvS2
WVS3

=

85.558 »
650.39
19.55

.000000

[ I

1.8
1.8

«0020886/SQRTF(1.8) & GRAV
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TABLE IV. - Continued. SUBROUTINE STATE S

WVS4 = 1175.9 + l.8

COEFFICIENTS FOR ENSKOG PRESSURE CORRECTION OF VISCOSITY AND K

EKGL = .175
EKG2 = .7557
EKG3 = -.405
EKG4 = .575
EKG5 = .5017
EKG6 = —-.204

CRYDGENIC TEMPERATURE RANGE TRANSPORT CORRECTIONS —--LAMS 2527

RHO SQ = RHO # RHO
CK = 778.26 » .0672
C MU = .0672

ROD VS1 = -2.515 E-6 +« C MU

ROD VvS2 = 3,5546 E-18 = C MU

ROD VS3 = 400. *+ RHO

ROD VS4 = 4.6237 £-4 = C MU # RHO

ROD VS5 = -2.6833 £-3 ¢« C MU » RHO SQ
ROD VvS6 = 4.0719 ®= C MU = RHO SQ=#»2
ROD K1 = 1.84 E-6 * CK

CKR = CK = RHO

ROD K2 = 1102.6 E-6 # CKR

CKR = CKR s RHO

ROD K3 = 1.22648 s CKR

CKR = CKR = RHO

ROD K4 = -1.15024 E2 * CKR

CKR = CKR = RHO

ROD K5 = 4.95228 E3 # CKR

CKR = CKR # RHO

ROD K& = -1.16927 ES #= CKR

CKR = CKR = RHO

ROD K7 = 1.56768 E6 + CKR

CKR = CKR = RHO

ROD K8 = -1.12433 E7 = CKR

CKR = CKR # RHO

ROD K9 = 3.36150 E7 + CKR

HIGH TEMPERATURE THERMAL CONDUCTIVITY FIT - — FROM ROGERS
T 700 = 700. s T

T1500 = 1500. e T

ROD A = 3.6789 E1 / 1013.91 / SQRTF(2. = 3,14159) * CK
ROD A2 = = .5 # (l. / 1013.91)%s2 / Tau2
ROD A3 = 5268. = T

ROD A4 = 4117. E-7 * CK

ROD A5 = 6.982 E-7 = CK /T

TK 1500 = ROD A = EXPF {({T1500 -~ ROD A3)=«2 = ROD A2) + ROD A4
1 + ROD A5 = T 1500

VIS 700 = WVS1 # T 700 = SQRTF(T700) & (T700 + wvsS2) /

1 {(T700 + WVS3) = (T700 + WVS4))
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TABLE IV. - Concluded. SUBROUTINE STATE S

TK 700 = VIS 700 »* (WK1l + WK2 # T700 + CP TAB(13) # (WK3 + wWK4 =
1 T700)) /7 (1. + WK5 / T700)
TK INT = (TK 1500 - TK 700) / (T 1500 - T 700)

VAPOR PRESSURE RELATIONSHIPS —— FROM FIFTH PROGRESS REPORT 7246
VP A = 2,000 620

vP B = -5.009 708 = 10. T

VP C = 1.004 4 T

VP D = 1.748 495 E-2 /T

VP LN = LOGF (10.)
VP CON = ATM

CONSTANTS CEFINING THE REGIONAL BOUNDRIES

CR
CR
FIT 1
FIT 2

2.994 » 1.8
5.5 / 125.8
220, = 1.8
240, # 1.8
FIT 3 1990. = 1.8
FIT 4 2010. = 1.8
DT FIT = 2C. #]1.8
INDX = 157

]

3
6

W

- - & -

Cc2 CGMPL = 100.
Cx = COMP = 100.
WRITE QUTPUT TAPE 6, 56, CZ, CX
56 FORMAT (47HO FLUID PROPERTY LIBRARY WITH A COMPOSITION OF F5.1,
1 20H PERCENT PARA-, AND F5.1, 35H PERCENT ORTHO- HYDROGEN, 11/1/
261 )
RETURN

END{1,0,0,0,0,0404040,1,0,06,0,0,0)
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- Range of application of state equations.
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Temperature ———=

Dissociation

limits (fig. 3)

Kelvin // Rankine
2000 3600

;]
/ s

Transition to perfect
gas (fig. 4)

600 / 1080
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Figure 7. - Coefficlents of state equation for region 1. Data of reference 7 fitted
by P = A+ BT + CT2 + L/72,
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Figure 7. - Continued. Coefficients of state e%uation for region 1. Data of
reference 7 fitted by P = A + BT + CT2 + D/T .
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