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SUMMARY

The singlet S-wave phase shifts for the scattering of electrons

by atomic hydrogen just below the inelastic threshold (10.2 ev)

are calculated by using a recently developed nonadiabatic theory.

Previous calculations of Burke and Schey based on the nmch more

restricted close-coupling approximation yielded a resonance

characterized by the phase shift going through _, radians. In view

of a theorem of Wigner and a calculation of Hol¢ien this result is

indicative of a bound state of the compound system near the energy

9.4 ev. It is argued on the basis of a previous calculation thatthis

resonance must be distinct from another resonance near 10.1 ev.

And on this basis it is concluded that this partial cross-section

must exhibit two resonances below threshold.
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INTRODUCTION

Burke and Schey (Reference 1) have recently calculated a resonance in the elastic scattering of

electrons by atomic hydrogen just below the threshold for inelastic scattering (10.203 ev). The basis

of their calculation was the close-coupling approximation with ls-2s-2p states. The nomenclature

refers to hydrogenic states, each of which is multiplied by an initially undetermined function. For

S-wave _ scattering, their wave function can be written:

r 1 r 2 _[fcc -- [t,(rl) RI_ (r2] + v(rl] R2_ (r2) + (1=21] Po (cos _'J12)

(1)

where".°;(r! is r times the n l radial wave function of hydrogen. It is clear from Equation 1 that

this function is approximate in two ways. First, it contains only 2 of an infinite number of relali_e

angular momenta P: (cos _2)" Second, the "coefficients" of the included P_ have a comparatively re-

stricted form (which, however, is manifestly symmetric with respect to the interchange of 1 and2

corresponding to the necessary symmetry of singlet scattering, with which we shall here be concerned).

Clearly the most general function containing Po and P_ can be written:

rx r2,tJ : ,0 (r, r2)Po (cOSUl2) ++]_,bt (r, r2)P_, (cos !:,2)
(2)

where the two-dimensional functions c_o and ,_ are required to have the correct symmetry. Substitu-

tion of Equation 2 into the variational principle, _ ; ,p*(tl -F,) ,I_,tT : 0, yields the following coupled set

tLetters referring to angular momentum states are capitalized when the total angular momentum state (parti,d wave) is being con_,idcred.

Lo_er case _ refers to the relative angular momentum within a given total angular momentum state.



of partial differential equations* in the region r 1 _> r_with appropriate boundary conditions (Refer-

ences 2 and 3):

A 2 ) 2r2+-- + E _o = _ c_l , (3a)
12 r 2 _ rl

-- - + E q_o
+ + r 2 5r12 (hi _ r12 •

(3b)

It is the object of the present nonadiabatic theory (References 2 and 3) to identify and directly

attack these partial differential equations, and thus avoid the second category of approximation im-

plicit in the close-coupling method. The purpose of this note is to reporton resultsof calculations on

the lowest order approximation of the equations and to give some speculations concerning the next

higher correction.

The lowest order approximation is the so-called zeroth order problem and is given by the equation:

( 2) (4)A12 + _-2 + E ePo(°) = 0 .

For future reference note that this basic relation can be derived:

fO _ _0 rl r2sin (b(l)-5o) k_3 drl dr2 qb°(°)-_12 r}l ' (5)

where 6 o is the phase shift of Equation 4, and _(1) is the phase shift of Equations 3.

In practice, Equation 4 has been solved by expanding in exact separable solutions (Reference 3),

the program for which has been extended to double precision arithmetic (16 significant figures). For this

discussion the resultant values for C}o_°) and _0 can be considered correct to the significance given in

Table 1. A close- coupling approximation of Equation 4 gives results in good accord with _ o (Reference 4).

CONJECTURESON THE SOLUTION OF EQUATIONS3*

An obvious first step in an iterative attempt to solve Equations 3 would be to use the ¢po(°> inthe

right-hand side of Equation 3b to get an approximate _1 which we can call rpL(0) •

E IAI2 + -- ÷ + _pl( o ) : CPo(O)
12 r_ r_ 5r13 }/_ r12

(6)

*Energy is in rydbergs (1 ryd = 13.605 ev) and length is in Bohr radii.

tThe quantitative speculations of this section are quite different from what was calculated in Reference 5. The author is particularly

indebted to Dr. T. F. O'Malley for pointing out the usual increase of 7r of phase shifts at resonances and the analytical derivation of

this behavior for some simple nonloeal potentials. This discussion led, directly, to a re-examination of 60 (Reference 5) and the dis-

covery that it does indeed go through 7r. Dr. O'Malley also brought Reference 6 to the author's attention.



This neglects the coupling of _o to ,_, (but

not the reverse). Figure 1 gives the close-

coupling results, labeled _cc, as well as the

results for 00. A possible explanation for

the shift in energy at which the resonance

in Occ occurs as compared with _0 is that

it is due to the coupling of _o to '_i, which

is included in some approximate way in the

close-coupling approximation. However,

the previous calculation (Reference 5) was

based on the assumption that all resonances

arise directly from the resonance in _o(°).

The calculated results give absolutely no

indication of such a shift. The reason for

taking the close coupling seriously is ex-

plained below. If it is assumed that there

must be a resonance at or below the energy

corresponding to the close-coupling reso-

nance, a more plausible explanation of the

lower resonance would seem to be that it

is due to a resonance (change in sign) of '_1

in Equation 3b which is fairly independent

of the right-hand side.* If this is so then

a resonance very close to k=0.84 should

also come from Equation 6. Hopefully, so-

lutions of this equation will be obtained by

using a noniterative numerical technique

for solving partial differential equations

(Reference 7). As another test of this hy-

pothesis a close-coupling expansion with

only ls-2p states would also be expectedto

show a resonance near the lower energy, t

Mathematically a resonance in

manifests itself in (o)
I

01(o)

Table 1

Zeroth Order Phases Shifts Below Threshold.

k(ryd ''2)

O. 85
O.855

0.860

0.861

O.862
O.863

0.864

O.8645

0.865

O.8656

0.866

]<2

(impacting

energy in ev)

9.830
9.944

10.061

t O.085

10.108

10.132

10.155
10.169

10.180

10.194

10. 203

S 0 (radians)

0.721

0.729

0.7545

0.768
0.793

0.853

1.25

3.14
3.628

3.738

3.781
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Figure 1--1-he ls-2s-2p close-coupling phase shift (6c¢) and

S0 as a function of k.

, the first approximation of _ (,), whereby in the expression

-2fo_ _o _' r2

*Mr..John Cooper pointed out the importance of the energy shift of the lower resonance.

*Schey anJ i_urke are now examining this point.



a change in sign of _o) would mean a change in sign of the integral, since ¢o_o) is varying very

slowly at the lower energy. This could (see below) mean an increase of 0_o) by _ which wouldbe the

mathematical statement of the resonance.

Along this mathematical line, it might be expected that as the energy increases toward k = 0.8645,

%(o) would undergo a change of sign and that there the integral would again change sign, corresponding

to an increase of 50 into the same quadrant as 5(0) . This would be in accord with olc0> exhibiting

only one increase of _ corresponding precisely to what Burke and Schey calculated. Howe_,er, here

Equation 6 must be considered more carefully; it has been presumed to have a resonance due to the

structure of the left-hand side at the lower energy. At the higher energy, however, the right-hand

side has been shown here to exhibit a resonance and this could cause a second resonance in _p(o).

Mathematically, this would mean that at the same energy at which %(0) undergoes a change of sign

¢,co) undergoes a second change in sign. Thus, the integral on the right-hand side of Equation 7 under-

goes no change of sign because of the simultaneous changes in sign of ¢0(°) and _o) . This could

correspond to a second increase of _0) bye. It is problematical whether or notthis second phenom-

enon will correspond, in fact, to a second increase of the phase shift by _ (see below). However, it is

quite likely that the phase shift will have a sufficiently uneven behavior to appear in the cross-section
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Figure 2--Conjecture of the first order (Equat;ons3) phase shifts
according to the arguments in the text.

as a resonance. (It is only a matter of

definition whether a resonance is called

a sudden increase of the phase shift by

or a sudden up and down behavior in the

cross- section. )

In Figure 2 the conjectured behavior

of _(0) showingtwo increases of 77 is given.

The actual values were gotten by super-

posing the _0 resonance (modulo 77)on _

at the second resonant energy. In Figure 2

it has been assumed that resonances cor-

respond to increases of the phase shifts

by 77 (in the case of _0 this has been cal-

culated to be the case). This is based on

a theorem of Wigner and Eisenbud (Ref-

erence 6) which says

d8
d-k _ - R .

This statement is derived from the fact

that 2(d:_/'dk) is the delay time of a particle

striking a target. Although there is no upper

limit on this quantity, its negative value,

which is the time advancement of the

scattered wave, is optimal if there is a

4



hard core in the region of interaction. Thus, under any reasonable process of the formation of the

compound state corresponding to a sticking of the incoming particle to the atom, the phase shift must

exhibit a sharp rise. A calculation by Hol6ien gives an upper limit of E = 9.4 ev on such a state of

the compound H- ion (Reference 8). A more direct argument that there must be a resonance at or

below the close-coupling resonance is afforded by theorems on bounds for phase shifts which have

recently been proved (Reference 9).* As it applies in the present case it says that ?, > '_0uP to the

inelastic threshold. +

Figure 3 shows the plot of the cross-section corresponding to the phase shift curve in Figure 2.

This is meant to apply only to the S-wave part of the singlet scattering. In view of the fact that the

cross-section contains two resonances, it is felt that the physical reasons for such a behavior which

were included in Reference 5 still apply. That argument assumes a correspondence of each state of

the target with a state of the compound system (with possible shifts in energy). The main reason for

thinking that this correspondence does hold in this case is the large energy difference of the lower

resonance from the upper one. The previous calculation (Reference 5) indicates that otherwise this

energy shift would be much smaller.

¢,1oo
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I
9.6 9.7 9.8 9.9 10 10.1 10.2

Figure 3--STnglet S-wave cross-section corresponding to the phase shifts Tn Figure 2. The
value a c is the Bohr radius.

*Burke and Schey have obtaLned very narrow resonances (private communication) at low energies (:_ 1 ev), whereas careful calculations by

Schwartz (private communication)show no resonances. This is not necessarily a contradiction to the theorem of Hahn, O'Malley, and

Spruch (Reference 9), since the numerical method of l]urke and .q,chey may occasionally show some aberrations, llov, ever, other logical

possibilities, including a contradiction to the theorem in Reference 3, cannot be dismissed at this point.

tl'rivate communication from "1". F. O'Malley.



However, the present heuristic considerations give a more explicit indication of what the physical

argument means in terms of the nonadiabatic formalism. The ¢0<°_ equation (4) is the two-dimensional

analogue of the one-particle 2s equation. To say that the one-particle 2s equation corresponds to a

resonance in the compound system means that the ¢o (°) inherently contains zero resonance near the

2s energy. The present calculation for 30 explicitly yields this resonance. By the same token the

left-hand side of Equation 3b or Equation 6 is a two-particle analogue of the single particle 2p equa-

tion; therefore, by the same kind of correspondence, this left-hand side is expected also to contain a

spontaneous resonance. It should be emphasized that this latter resonance has not as yet been found

in the author's calculations. However, the author believes that Burke and Schey have found it (Refer-

ence 1), but that they misinterpreted it to be the shifted _0_°) resonance. The author further believes

that if the ls-2s-2p close-coupling calculation is extended even closer to the 2s threshold, it will re-

veal the second resonance. In this context it should be noted that Hol_6ien's calculation gives evidence

of two compound states. (Reference 8).

It may be inquired whether or not the higher L equations, of which Equations 3 are the first two,

might also reveal spontaneous resonances. They probably do; however, the one-particle target state

energies to which they correspond are higher than o states. Therefore, their principal quantum num-

ber is n? 3 and, thus, their energies should be significantly above the n: 2 threshold.

,
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