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FOREWORD

This report presents the results of a theoretical study of hypervelocity

impact into semi-infinite targets. The work has been sponsored by the Lewis

Research Center of the National Aeronautics and Space Administration under

Contract No. NAS 3-2121, in support of their Research Program to developa

structurally adequate radiator for use on space vehicles. In order to provide

the desired support, diverse aspects of the meteoroid impact problem have

been examined. This report collects all pertinent data obtained under the

contract into one reference work which will be useful, as such, for NASA's

program and also for background for further research on hypervelocity impact

phenomena.

Technical monitoring was provided by Mr. Robert J. Denington and

Mr. James J. Kramer, to whom the authors are very grateful for numerous

helpful suggestions.

The approach on which this study is based was suggested originally by

Dr. Franklin K. Moore of this Laboratory, and was later elaborated by Dr.

Walter E. Gibson. The authors have continued to benefit from frequent dis-

cussions with Drs. Moore and Gibson, and in addition, valuable contributions

have been made by Mr. HowardA. Scheetz and Dr. NormanS. Eiss.

Special thanks are due to Mr. Harold M. Rosenbaum, who very ably

handled the programming of various calculations for an IBM 704, and to

Miss Marcia J. Williams, Miss Sarah J. Gerac[, Mr. GirardA. Simons,

and Mr. John R. Moselle, who prepared the figures and carried out the

associated calculations.

The analyses presented below embrace both fluid-mechanical and solid-

mechanical considerations. The former are the work of the first author, while

the latter are due to the second.
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/_ _ _ $ ABSTRACT

This report presents an analytical treatment of the process of crater

formation in semi-infinite targets as a result of impact by hypervelocity

projectiles. The results are achieved by using blast-wave theory to treat

the fluid-rnechanical phase of the target response, together with a simple

means of accounting for the target strength in the later stages of the cratering

process. The crater-size formula finally deduced is quite simple. To enable

the interested reader to apply it without following a lengthy derivation, the

formula and its application are presented in a separate section.

The theory in its present form is found to agree reasonably well with

relatively low-speed experiments, and the agreement can be expected to

improve at higher impact speeds. The simple crater-size formula reveals

that the kinetic energy of the impacting particle is a controlling parameter

and that the dynamic strength of the target is the factor most effective in

limiting penetration.

Careful attention is paid to energy and momentum conservation, and

the momentum of the incident particle is found to play a relatively minor

role. The attendant physical and mathematical reasons are discussed,

including their implications on experiment.

Requests for copies of this report should be referred to:

National Aeronautics and Space Administration

Office of Scientific and Technical Information

Washington Z5, D. C.
Attn: AFSS-A
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INTRODUCTION

The purpose of this research has been to achieve an analytical

description of the phenomena brought into play when a high-speed projectile

strikes a semi-infinite target. The extremely high pressures generated

under the conditions of high-speed impact suggest a fluid-mechanical

model for describing the motion of the impacted medium. Numerical

solutions of the resulting equations have been published for specific cases.

This report describes analytic results obtained by applying blast-wave

theory to solve these fluid-mechanical equations. The spirit of the approach

is to simplify the analysis wheraver possible by making certain approxima-

tions to the true physical situation. The aim in doing so is to achieve

generality and simplicity of the results, at the expense of some exactness

in describing the details of the solution.

The report is divided, essentially, into two parts. The first of these,

Part I, describes the blast-wave solution for the early, high-pressure phase

of the motion. The second, Part II, discusses the solid-mechanical aspects

of the problem, particularly from the point of view of the target strength.

Part III summarizes the theory, and illustrates the use of the crater-size

formula by working out several examples. To facilitate quick application,

this section is so written that it may be read independently of the remainder

of the report.

In Part I, two types of solution are described. In one, which permits

spatial variations in two directions, it is possible to conserve both the energy

and momentum of the system. The other solution, which allows only for

variations in the radial direction, and conserves only the total energy, is a

RM- 1655-M-4 1



modification of the classical Taylor solution for an instantaneous point

release of energy. Approximate solutions of the former type are found to

be very close to the vastly-simpler Taylor solution in all important respects.

The analytical results that lead to this conclusion are described, and the

physical reasons that underlie this phenomenon are discussed. The

significance of this finding is to indicate why the sirnpler Taylor solution

may be used.

Part II is devoted generally to a study of the limits of the blast-wave

analysis, and describes some of the detailed phenomena that may be expected

during the early stages of the impact process. In addition, particular

attention is paid to the later stages of crater formation, during which the

plastic and elastic response of the target must be considered. An important

part of this work is to identify the material-strength level at which the blast-

wave solution is to be terminated. The meaning of this as a crater-formation

criterion is discussed.

The concluding remarks summarize the advances that have been made,

and indicate the areas where improvements in the theory can be expected.

RM-1655-M-4 2



I. BLAST-WAVE SOLUTION

This portion of the report presents the solutions obtained for the target

response in the fluid regime. Section A, below, describes the fluid-mechanical

model, listing the several approximations that are fundamental to a blast-wave

solution. The second and third sections then present two different types of

solution of the fluid-dynamical equations.

A. Fluid-Mechanical Model

To derive an analytic description of hypervelocity impact, two steps are

taken. The first is to treat the target material as a compressible fluid, while

the second is to simplify the resulting equations in such a manner that a simple

solution is possible. Similarly, below, the basic equations appropriate to the

compressible-fluid approximation are first discussed. Then described are

the key mathematical simplifications used, and the restrictions which they

imply. The last two sub-sections summarize the formulation of the problem.

1. Basic Equations. When a particle strikes a target surface at high

speed, large amounts of energy and momentum are quickly deposited over a

very small portion of the surface. This release drives a strong shock wave

into the target, generating extremely large pressures, typically measured in

megabars. Because these pressures are so large compared with the mate-

rial strength, even at high strain rates, one is led to the approximation

that the impacted medium behaves like an inviscid, compressible fluid. In

actual fact, the justification for such an approximation is not provided by the

magnitude of the pressures themselves, but must come from a consideration

of their gradients. Consider a small mass element

RM-1655-M-4 3



a0- A__+_-

7
(r

The net force acting in the x-direction is proportional to _°_ _-

_. _,_ •
Thus the neglect of resistance to shear deformation requires _ / oo_>_l

_/_ -
To replace this by the simpler statement above is to assume that rates of

change in the two perpendicular directions are of the same order, and that

the proper orders of magnitude to use for 7_and (7" are the impact pressure

and material strength. There appears to be no reason for doubting either of

these assumptions in the early stages of the impact process.

Thus the problem of determining the response of the target material

becomes essentially that of solving the fluid-mechanical equations expressing

the conservation of mass, momentum, and energy, together with the equation

of state of the medium

Conservation of mass

op
Dt

Conservation of momentum

Conservation of Energy

_- ÷_

Equation of State

e

/ (z)
=o

:bs (3)z,.,._ o o,.. =o
Df ])t"

=F (rip) (4)
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$ the entropy, and _ the velocity vector.

Here /9 denotes the density, -_ the pressure,

per unit mass,

D/J_t is the convective derivative

in which t is the time and

the internal energy

The symbol

(5}

V the gradient operator. It should be noted

that the assumption of an inviscid fluid has been made by setting the right-

hand side of Eq. {2} equal to zero. If shearing forces were to affect the motion,

they would have to be added to this equation. Consistent with this approximation,

energy changes arising from viscous dissipation and heat conduction are omitted

from the energy equation. In addition, energy changes due to radiation and

chemical change are also neglected. Thus, the conservation of energy simply

states that, for each element of mass, changes of internal energy, _ , are

balanced by changes in the flow-work term, -_ _ (//_) Alternatively,

this may be expressed by stating that the entropy of a given mass element does

not change, after it has been processed by the shock.

Finally, it should be noted that the use of an equation of state implies

an assumption of thermodynamic equilibrium.

2. Symmetry Assumptions. All of the analyses of this report assume

that the impact occurs at normal incidence, and the ensuing motion is taken

to be symmetric about anaxiswhich is normal to the original target surface,

and passes through the impact point. For such an axisymmetric flow, the

scalar forms of the equations of motion, in spherical coordinates, are

x, yplane is _'0/_
target surface

/

RM-1655-M-4 5



Continuity

@t -'F _0 r _ +--_-" +7- (6)

Radial component of the momentum equation

(7)

Angular component of the momentum equation

(8)

Conservation of Energy

(9)

Equation of State

: F (,o)

Here _X and x_r denote the velocity components in the r- and 8-

directions, respectively. Equations (6) - (I0) are five relations for the quan-

tities _ , /P , b4 , _', and e One can also work with the entropy, rather

than the internal energy, in which case the last two equations are replaced by

_s oqs _ Ds
o_---'t-+ /'(-_r + r _0 - 0 (11)

s = s (iz)

3. Boundary Conditions. The boundary conditions that apply at the shock

wave, i. e. _- at r = /_s_gs_) , state that the discontinuities in velocity, pressure,

density, etc. across the wave are given by the Rankine-Hugoniot relations.

For a shock advancing into a medium at rest, these are



t_t ---_ Uo: 0

_o_ _o;_o

Conservation of mass

Po_s = p, (",-.,) (13)

Cons e rvation of momentum

z 2

= _,÷p,C,,s-_,,) (14)

or, using (13)

Conservation of Energy

- _o -- _o _, _, (14a)

These three equations,

_,- _o = -_ (Po-,-_,) ,,:, (is)

together with the equation of State, are sufficient to

define the four quantitLes b(I ' PI ' _l , and el as functions of ¢X$ , for

given initial values _o ' mo , and e ° This locus of states which may

be reached across a normal shock wave is called the Hugoniot of the medium.

The analysis of this report assumes that the shock wave is always hemi-

spherical in shape as it advances into the target. This assumption is based on

observations of shock shape in Lucite, (1, Z) in metals, (1) and in wax, (3, 4)

all under hypervelocity impact conditions. Further evidence for the assumption

comes from fact that the craters formed are very nearly hemispherical in shape

at high impact speed.

RM-1655-M-4 7



At this point, then, the fluid-mechanical problem that is posed is the

solution of Eqs. (6) - (I0), describing the motion of an inviscid, compressible

fluid behind a hemispherical shock wave that advances into a semi-infinite

target ...B

The motion must be such that the boundary conditions (13) - (15) are satisfied

at the shock, while along the surfaces AB and CD (whose location is unknown)

the pressure and material density must vanish.

The soIution of such a boundary-value problem is an exceedingly for-

midable task; the coupled, nonlinear partial differential equations involve

three independent variables. Approximate numerical solutions of these equations

have been presented by Bjork,(5) for some specific cases. The objective of the

present work is to achieve approximate analytic solutions which display, in a

simpie but realistic way, the influences of the various physical parameters.

4. Similarity Assumption. The most important approximation made,

in order to achieve the goal of an anaIytic solution, is that the flow is self-

similar; i. e., the distributions of the various physical quantities {such as

pressure, density, etc. ) at each instant, are taken to be the same when

viewed on a scale defined by the shock radius at that instant. Thus each

quantity, instead of depending separately on the time and on the distance r

from the impact point, is assumed to be a function of the combination

r/_(t) This reduction of the number of independent variables
/

k
RM- 1655-M-4 8



constitutes a significant simplification in the differential equations that must

be solved.

The mathematical expression of this assumption is to introduce the

similarity variable

r

and to redefine the velocity components,

energy by the dimensionless functions

.¢.v'(r,e,t)= #, _(q, e)

pressure, density,

(16)

and internal

_,(,,-,e,,_._=po,4'_"_q, e)

/o(,-e,_._= p__,(?, e)
(17)

When these relations are substituted into Eqs. (6) - (9), and derivatives with

respect to r and t replaced in terms of derivatives with respect to

one finds that all explicit time dependence disappears from the differential

equations if one chooses

R, = Al_ _

When this is done, the basic equations become

_ = 0 (18)

-0 (19)

(zo)

(2,1)

RM-1655-M-4 9



The parameter N which appears here is, for the moment, unspecified.

Next, the boundary conditions must be examined, to see if they are

compatible with the similarity assumption.

defining _o = 0 , Eqs. (13), (14a), (15),

At the shock =l_ --_-

and (14) become

(22)

_o (z3)
 O,e) = GO, e)+

(24)

(25)

The first three of these are independent of the time if the initial pressure in

the undisturbed medium, ._ , is small compared with _ _s _ , which is

of the order of the pressure being generated at the shock. This condition will

certainly be met whenever the fluid-mechanical model is appropriate. Thus

the question of whether a similarity solution is compatible with the boundary

conditions depends solely on whether the form of the internal energy function

F is such as to permit the time dependence to be eliminated from Eq. (25).

Sedov (6) has pointed out that this can be done wherever the internal energy is

of the form

e = f (z6)

where _ is any function of the density. For such a case, Eq.(25) becomes

RM-1655-M-4 10



(27)

and all explicit time dependence is eliminated. Thus, a self-similar solution

is possible whenever the medium obeys the equation of State (26). In this case,

the boundary values at the shock can be conveniently found by solving Eqs.

(22) - (24) for _(i, 0), _-(I,_) , and _-(1,0) interms of _ (I,e)

I
¢(/,e) = _(i,e) = t _(i,e) (z8)

(I,e) --7 e (_,e (zg)

When these relations are substituted into Eq. (27), the result is a single

expression for the density ratio at the shock

Having found _ (i)8) the other quantities at the shock are found from Eqs.

(28) and (29).

5. Perfect-gas Approximation. The target materials of greatest in-

terestinthe present investigation are metals, for which the equation of State

in the range of pressures appropriate here is the Mie-Gr_neisen relation (7)

e (-p,p) - e_CP) = _- _(F') (31)
pr"(z)

where the subscript c denotes the cohesive contribution, and where

is the Gr_neisen constant, which depends weakly on /o The cohesive

contributions can be found from measured shock-wave data: along the Hugoniot,

RM-1655-M-4 11



Eq. (31) takes the form

e. ('to,) - ec(/O )
_(_)- _c (p)

pr(p)

Subtracting this from Eq. (31) then gives

e -- e_(/m) --
p r(p)

The Mie-GrKneisen equation can be rearranged as

e - A(p) (3z)
p n(r)

whe re

pc(r) _ m nrp) e " (R) (33)

All of the analyses of this report use only the leading term of Eq. (32), which

can be accommodated in a self-similar solution. The present solution will

therefore be valid only when the pressure is sufficiently high that _(R) can be

neglected in comparison with the leading term. In actual fact, most impacts

will span a time interval during which this approximation fails. It is impor-

tant to realize that the pressures at which A(p) is too large to be neglected

are nevertheless sufficiently high that the compressible-fluid approximation is

well justified.

The analyses presented here have made the further approximation of

neglecting the variation of the Gr{_neisen factor _(/9) , replacing it by a

constant, denoted by _'- I Under this approximation, the equation of State

becomes that of a perfect gas of constant specific-heat ratio ;r" , namely

"P" (34)

e - (__ 0p

RM-1655-M-4 12



The use of this state equation amounts to a high-pressure approximation of

the Mie-Gr{ineisen relation, with p (_)) taken as a constant, equal to /-]

and it makes available all the results of the extensive literature dealing with

blast waves in a perfect gas. Because /_(/o) is typically about 2.0 to 3. 0,

9/ will be on the order of 3.0 or greater. It should be borne in mind,

however, that the similarity solution is not limited to the predictions made

with the perfect-gas model; the variation of P could be accounted for, but

is neglected here as a matter of convenience.

When the perfect-gas approximation is made,

((19) or (ll)) becomes

at _r +--6- aO _r r

In terms of the similar functions, this is

the energy equation

/9# _'_ 9_) 0
v,

(35)

(36)

It is interesting to examine the accuracy of the perfect-gas model for

a particular material. The equation of State enters the analysis by way of

Eq. (ll), which states that the entropy of a given particle does not change,

after being processed by the shock. In general, the entropy of a medium is

a function of any two thermodynamic variables, for example the pressure and

density. In making the ideal-gas approximation, the entropy is assumed to

depend on these only in the special combination

To assess the quantitative validity of this assumption, then, it is necessary to

determine how accurately the isentropic states of a given material are

RM-1655-M-4 l 3



approximated by the relation

,_,'_t_ -- 9/ _ _ = constant (37}

An explicit equation of state for iron, developed by a group at the Los Alamos

Scientific Laboratory, has been published by Bjork. (8} This equation has been

used to calculate the pressure as a function of internal energy at various den-

sities. The resulting map of thermodynamic states is shown in Fig. 1. Also

shown is the Hugoniot, i.e. , the locus of states which can exist behind normal

shock waves. This locus is the set of points which satisfy the condition

e - 2po

where Po is the normal density of iron, 7. 86 grams per cubic centimeter.

The experimental Hugoniot curve, recently determined up to pressures of nine

megabars by Altshuler et al (9) is included, and agrees quite well with the the-

oretical curve. In addition to this experimental check, the pressures shown on

Fig. 1 at zero energy agree quite well with the Mie-Gr_neisen values

given by Altshuler et al in an earlier publication. (I0} Thus Fig. I may be con-

sidereda valid representation of the thermodynamic states of compressed iron.

Three isentropes have been added to this map, by a trapezoidal-rule

integration of

e  //po

It should be noted that Eq. {39} provides asimplewayofcalculating the relative
contributions from the two terms in Eq. (32}

RM-1655-M-4 14



which holds for constant entropy. The three isentropes shown may be

thought of as describing the histories of three particles which lie along

the axis of symmetry in a given impact, and which are therefore processed

by successively weaker stages of the same shock wave. Particle 1, for

example, is raised from its normal state to the point shown on the Hugoniot

by a shock wave moving at 2-0.8 km/sec; its subsequent expansion to low

density takes place along the isentrope shown. In similar fashion, par-

ticles 2 and 3 are processed by the shock when it is traveling at 16. 5 and

8.62 km/sec, respectively. The _:_ , p-coordinates of these three isen-

tropes are re-plotted in Fig. 2. Large portions of these curves are accurately

reproduced by a constant value of 7' , i.e._ they have a constant slope.

6. Procedure for finding _ . In applying a constant - _" theory to

any given impact problem, only a single value of 7" may be used. If, in

the example cited above, one chooses the value appropriate to particle 1 at

the shock, the approximation will begin to deteriorate for the lower-density

states of this particle, and will be less accurate for all states of particles

2 and 3. In order to minimize the error, it would appear that 7" should

match the higher-density, higher-pressure portions of the flow. Partly for

this reason, and partly for ease of application, the procedure recommended

here is to choose 7" so as to match conditions at the impact point. For

any impact, one may imagine that there is a small region in the immediate

vicinity of the impact point, where the collision is equivalent to the planar

impact of two semi-infinite bodies.
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We shall see below how to calculate exactly the pressure _/ , internal

energy _/ , density /91 , and particle velocity /41 , behind the shock

wave that starts into the target, as well as the speed of the shock, _$

For a strong shock in an ideal gas, use of the state Equation(34) in the

strong-shock form of the Rankine-Hugoniot relations, Eqs. (27) - (30),

reveals that these quantities would be related by

The procedure suggested here is to choose the value of _" that satisfies

Eq. (41), wherein the quantities _i , _l , 7_i , and P# used are the

actual values that would occur at the impact point in the target material.

For example, if the target is compressed to twice normal density at the

impact point, the "effective _ " for the process would be 3. 0.

It should be noted that

"7"= 2. _--I = 2 /

Fig. 3 shows the effective Z"

This curve was taken from the calculated Hugoniot of Fig.

(41)

can be found from any of Eqs. (41), i.e.,

- _/_ -I - / _7 t (42)

for iron, as a function of shock speed b_$

1, together with

RM=I 655=M-4 16



the experimental data of Altshuler et al (9) and of Walsh et al. (11) Typically

of most materials, the effective 7" is on the ordei of 10 to 20 for weak

shock waves, and is more like 2 to 3 for strong shock waves.

To calculate the actual conditions at the impact point, only the Hugoniot

curves of the projectile and target are needed.

V , of two semi-infinite bodies

Consider the impact, at speed

V
f

Immediately after impact, a shock wave moves into the target at speed V_

and the material behind it, at pressure 7mr , follows the shock at speed v,.

Meanwhile, another shock wave propagates back into the oncoming projectile

A

material, reducing its speed from V to V t. , and raising its pressure to

J_t' Equality of pressure and particle speed across the interface requires

that _ = _ and V_. = V t Consider now the shock propagation

in each medium separately, in each case using a coordinate system such that

the shock moves into a medium at rest

A

A
u.o = V- V.

RM-1655-M-4 17



The problem is to choose, for a given impact speed V , a pair of values

A

V's and V s such that _>o = _. and Ve. = _. Olshaker and

Bjork (12) have described a convenient graphical method of solution. For

the present purpose, where the solution is required over a range of impact

speeds, it is much simpler to turn the problem around, choosing the pressure

at the interface, and asking what impact speed this corresponds to. The

Ik

choice of _d (which equals #d ) determines the particle velocities _t

and _l , from the Hugoniot curves for the two materials. The impact

speed is then determined by the equality of particle speeds in the laboratory

frame of reference, namely

A ,%

V. = u'l =V. = V-a_
( e

or" V = _l + _l

(43)

The value of 9/ can then be found from any of Eqs. (42). This process

is illustrated in Fig. 4; here are shown the "_I ' 641 Hugoniot data for

iron and lead, taken from Altshuler et al. (9) Choosing an interface pressure

of 8 megabars gives _t = 6.6 km/sec and 7. 0 km/sec in lead and iron, re-

spectively. Thus the impact speed required to generate these conditions must

have been 13. 6 km/sec. If lead is the target, the effective / is determined

as follows:

a) The shock speed is determined, either from a graph of _/ vs. U s ,

or _>l vs. _S , or else from Eq. (14a)

&_$ =_ = I0.69 km/sec
Po _ ,

b) 7" is then found from Eqs. (4)

2us
?'- I =2.24

Repeating this process at a succession of values of _t_I determines y'(V) ,
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as shown in Fig. 5.

The determination of

velocity and particle velocity are linearly related

(As = C 4-sun (44)

The measured Hugoniots for many materials are well approximated by this

relation, at least up to pressures around two megabars.

7" (V) takes on a simple form when the shock

Using Eq.of c and S for a number of materials.

Table I lists values

(14a), the particle

(45)

velocity corresponding to a given pressure is

The impact speed can then be found by applying this formula to the projectile

and target materials, and _" is found in the usual way, for example from

2 (C + S U,) (46)X'= -I
U.I

The linear relation between shock velocity and particle velocity ceases to be

valid at extremely high pressures, but our present experience indicates that

it is a satisfactory extrapolation method for impact speeds up to 50 km/sec.

The Gr{ineisen constant, _ , may be as large as 3.0 for the materials of

interest here. Thus, as long as 7' is less than 4.0, the perfect-gas approx-

imation may be interpreted in the sense indicated above, namely that the

leading term of the Mie-Gr_neisen equation dominates, and the choice of

is essentially an approximation to the Gr{lneisen factor. If the "effective

2' " is greater than 4, however, no such interpretation can be made, and the

use of a perfect gas must be viewed as an attempt to match the entire Mie-

Gr[{neisen equation with a single term. Obviously, the approximation will

not be as good in this regime, and the theoretical predictions at low impact
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speed (i. e., high 7' ) must be considered less reliable on this account. An

estimate of the impact conditions for which _z is less than 4. 0 can easily

be derived from the relations above, from which it can be shown that 7" will

be less than 4.0 whenever the impact pressure is greater than

(5- _ 5)=

As S ranges from 1 to 1. 5, this pressure varies from d to _ _c

Thus, the present theory may be expected to agree with experiment at lower

Z

velocities, the lower the value of _oC Reference to Table I, for example,

shows that, at a given velocity, impacts into lead would be better described

than those into, say, copper. We shall see below that this is indeed the case.

7. Conservation of Energy and Momentum. The total energy and

momentum of the system must be conserved, as may be confirmed by forming

the proper volume integral of the vector equations of motion, Eqs. (i) - (3).

The actual integrals, whose values must be constant, may be derived as follows

consider,

The total energy

as the mass element, a ring of volume

_: and momentum P are

,," J.rdO, 2 _'r ._g_u(3

E
(47)

iio (±

2O



(48)

Here we encounter a fundamental difficulty. If we are to have a self-similar

solution, the differential equations require _s = A (N However, a single

value of N will not permit both of the relations above to be independent of

time. Constancy of energy can be achieved only with N = 2/5, while momen-

tum conservation requires _ = I/4, and in either case the parameter A is

used to match the quantity being conserved. Thus it appears at first glance

that a satisfactory solution cannot be achieved under the assumption of sim-

ilarity. The essence of the difficulty is that, having used /_ to make one of

the integrals independent of time, only a single free parameter, _ , is left.

But we still have two quantities to be matched, as well as a second integral to

be made independent of time. We will describe, in Section C of this part, one

method for overcoming these difficulties. The essence of the method is that

is determined by a totally different consideration, and a second free

parameter is introduced in such a way that both conservation conditions may

be satisfied simultaneously.

8. Final Form of the Problem Posed.

equations that must be solved consists of Eqs.

ject to the boundary conditions at the shock

The final set of differential

(18), (19), (20), and (36), sub-

+
2

¢ CI,e) = # (i, e) = >

The value of _" is to be found,

method outlined in Section A-6.

_)(#) 0)'=-0 ; _('], _))- _'+1 (49)
Z-I

for each specific impact case, from the

The specification of N will be described in
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detail below.

As a final note on the mathematical nature of the problem, it should

be pointed out that two pairs of characteristics of Eqs. (18), (19), (20), and

(36) can be found by standard methods. One pair corresponds to the particle

paths of the original unsteady flow, while the other pair, related to the Mach

lines of the original flow, reveals that the equations have elliptic or hyperbolic

character, according to whether

- +ca _ < 0
(50)

The line in the _ D plane along which this quantity vanishes is referred to

below as the "sonic" line, because of its relation to the Mach lines of the

original flow.
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B. Spherically Symmetric (Constant-Energy) Solution

This section describes a solution in which the shock propagation

into the target is represented by one half of a spherically-symmetric

disturbance: Iz_'_-I__

r _--'!& t

Such a solution allows variations only in the radial direction, and does not

describe the pattern of mass ejection from the expanding crater. Moreover,

we shall see below that only the .total energy may be conserved, but not the

total momentum. The justification for the use of such an apparently defective

model is that it closely approximates the results found from a more accept-

able (asymmetric) model. In this section, we present the symmetric solution

without apoIogy, deferring its justification until after the asymmetric solution

has been treated in Section C.

1. Solution for R_(t)

all derivatives with respect to

come ordinary differential equations.

respect to q by a prime, these are

When the flow is spherically symmetric,

@ vanish, and the similarity equations be-

Denoting the ordinary derivative with

I-N _ ¢,N ¢+(¢ q}

-2.--

(51)

(5Z)

(53)
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These may be solved explicitly for the derivatives _l , _i , and _Pin

the form

I

I

w

_; _ _-N ¢

,-N 2v+]N fl N

)z 7"-£

The boundary conditions at the shock are

2 r+ /

Equations (54) - (56) (with N = Z/5) were first presented by G. I. Taylor,(l 3)

who worked out a few numerical and approximate analytic solutions, for

ranging from l.Z to 1.67, the range appropriate for gases. Subsequently,

an analytic solution of these equations (also with t4 = 2/5) was published by

(i 5) (1 6)
J. L. Taylor,(14)Latter, and Sakurai. Simultaneously with Taylor's

work, SedoJ6)had also found this analytic solution. He worked in a different

coordinate system, where

'_ =___._ = Nz 7'_
'

In these coordinates, the basic equations may be combined to yield a single

differential equation involving only ? and _ (see Appendix A for details of

the derivation):

(54)

(55)

(56)

(57)

(58)
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_'P_ -7

Having

integrating

as a function of
, the quantities q and _ are found by

!

(c-N) q d_ ,_¢
,_q - q dq 3 ¢

The boundary conditions at the shock are

The parameter b_ must be specifiecl, before solutions of these

equations can be found. It appears that physically acceptable solutions of

these equations exist only when b_ = 2/5, a value which conserves the total

energy, according to SectionA-7 above. When N is taken to be different

from 2/5, the solution exhibits infinite slopes. In fact, by working in the

, _ coordinates, the solution can be shown to become double-valued.

Figure 6 shows results typical of those found in the range0.25 __N -_ 0.4

when a solution of this sort is attempted. This nonexistence of symmetric

solutions apparently explains the difficulty encountered by Davids, Huang,

17.
and Juanzemis in attempting to find a spherically-symmetric solution for

constant momentum ( N = 1/4).

In what follows, b_ is chosen as 2/5, and the terms "constant-energy"

and "spherically-symmetric" are used interchangeably in referring to the

solution.

(59)

(60)

(61)

(62)
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The closed-form solution found by Sedov (or equivalently, with

independent variable, by Latter, J.

(T-I)

L. Taylor, and Sakura_is

- 215

[_ as

and expressions for the remaining details of the solution can be found, for

example in Sedov_6)or in Hayes and Probstein. (18) Detailed numerical results

are given only for 7s in the range appropriate to gases. Calculations have

been done for 7 = 2,3,4,5,6,8,10,12,16, and 20, and the distributions of

velocity, density, and pressure are shown in Figs. 7a-j. These figures dis-

play the usual feature, that in all cases the density drops off rather sharply

behind the shock, indicating that most of the mass processed is

concentrated near the shock. As 7 approaches seven, the distributions

approach the exact solution, for 7' = _6)

_= _ l I 3

For 7' greater than seven, a cavity begins to form at small values of _ ,

as pointed out inSedov, {6)'and the particle velocities show a marked increase

near the edge of this cavity.

Having these distributions, an explicit description of the shock prop-

agation can now be given, if the total energy E of the system is specified.

The sum of the internal and kinetic energy of the fluid that has been set into

motion is given by the integral

o

(63)

(641
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where,

is shown in Fig.

I',(_')= I) T _ _ #_z_q (66)

This integral has been evaluated for the values of 7' mentioned above, and

8. The values obtained by G. I. Taylor( 1 _at lower values

of _ are also shown here, together with the result reported by Davids and

Huan_l--9) at 7" = 16, about which more will be said below. A further check

is the value :r I = 1/72 when 7" = 7, which can be found by a simple

integration.

If the total energy E is now specified, a simple differential equation

for lids(t) results

(67)

The term 2f_g: is three times the target mass processed up to the time t •

Thus, 3Il(;' ) may be thought of as a dimensionless coefficient giving the ratio

of the mass-averaged value of e+_ to the quantity /_s , i.e.

E _p,,,%3 (_ .--/. u
3 I,(7) =

6sz - _: (68)

Thus

is proportional to the energy at the shock

. ).= e ÷ I a,.* (69)
gs 4 )-

4 (e+ _ _t z)Av_

I _)sMx'O') - 30"+0" (e + -_
(70)
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Because most of the mass is concentrated near the shock, the mass-

averaged value of any quantity is very nearly its value at the shock. Thus

the factor 4/3(_'÷I) z is a good approximation to Zl(_ ) , as shown in Fig. 8.

This factor originates from Eq. (69}, which states that the larger the value of

the larger must be the shock speed, if a given energy is to be achieved behind

the shock. We may attach the same significance to 10(_" ) : if a given energy

is to be distributed in two materials for which the _'S differ, the shock speed

will have to be greater in the material having the larger

The solution of Eq.

wave

(67) is simply the Taylor solution for a strong blast

'/5

Here the influence of _ is shown more clearly. For given E and _:_o ,

the shock radius will grow more rapidly for large values of F' :

Y= 20

f

To apply Eq. (71) to a given case, the total energy E must be specified.

In alI the applications made below, this energy is taken to be the kinetic

energy of the impacting particle.

Figures 9a and 9b present a comparison of the Taylor solution with

experiment. Eichelberger and Gehrin_ 1) have published time histories of

the shock and crater radius, for a Lucite block struck by an iron pellet at

4.6 krn/sec. These time histories are compared with the prediction of
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Eq. (71) in Fig. 9a. The agreement is reasonable, although the measured

rate of advance of the shock is faster than that of the constant-energy solution,

corresponding to a value of N around 0.67. It is important, in this connec-

tion, to recall that any constant-energy, self-similar solution will have

b_ = 0.4. Changing the value of 9/ will change only the amplitude. In

addition, any equation of state that permits a similarity solution will also

leave b_ unchanged in a constant-energy solution. Furthermore, in a solu-

tion which conserves both energy and momentum, the evidence advanced in

Section C below suggests that, if anything, hJ will be less than 0.4. On the

other hand, it is true in general that the shock speed will decelerate from

the blast-wave behavior (_5 _tz/$)at early time to the acoustic limit t)

at late time. The data of Fig. 9a apparently lie in a transitional regime

between these two limits. Thus it appears that the only way to achieve a

better comparison with the data of Fig. 9a is to include the nonsimilar effect,

associated with the term A_) in the equation of state. The present report

does not treat this effect, but it is encouraging to note how well the blast-

wave theory does in spite of this deficiency. Moreover, the blast-wave

theory can be expected to improve at higher impact speeds.

Figure 9b presents a different type of experimental check on the blast-

wave theory. Here we show the wave speed versus shock position, measured

in a very ingenious series of experiments by Frasier and Karpov. (2) The data

pertain to a wax target, struck by an Ethocell pellet at 4 km/sec, and

apparently lie in a range where the shock strength is too low to justify the

strong-shock assumptions. However, the data do not appear to be incon-

sistent with a transition from a high shock speed down to the stress-wave
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velocity.

velocity,

range.

The constant-energy solution is not extrapolated beyond this

since the blast-wave approximation is clearly inadequate in that

In general, then, the blast-wave solution may be considered a rea-

sonable approximation to this very limited amount of experiment, and, if

used with caution, may be expected to serve as a suitable basis for crater

prediction.

Z. Crater formation criterion. The blast-wave solution given in

Eq. (71) may be considered a valid description of the shock propagation in

the target so long as the pressures being generated are large enough to

justify an inviscid-fluid model_ These pressures decay rapidly, however,

and to provide a valid solution at later time, a transition is needed from the

blast-wave model to one which properly describes the plastic flow, and

ultimately the elastic response of the target. Such a solution would predict

the configuration in which the target material finally comes to rest, and

the definition of the final crater dimensions v_uld be unequivocal. A solu-

tion of this sort is not presently available, however. In its absence, the

best that can be done is to identify the point at which the transition from

blast-wave theory ought to occur, and to make an estimate, based on con-

ditions at that instant, of what the final crater dimensions will be.

The method for predicting crater size that is adopted in the present

report is that the shock radius at the instant at which the blast-wave solution

is to be cut off is the radius of the crater that will ultimately develop. The

use of such a procedure is equivalent to the statement that all of the material

processed by the high-pressure phases of the shock wave will ultimately be
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ejected from the target.

The cutoff point must be the point at which the shock-wave intensity

has decayed to some preassigned level. If we require that the pressure

behind the shock shall have fallen to the level _ (to be identified below

with the material strength), then, since the pressure behind the shock is

given in general by

_'_- _+1 _

we would identify the crater radius as the value of

2
If the solution for the shock radius is written as

_825 E _1'/5e,-At , A=

(72)

_s at the instant when

(73)

then the time can be replaced in favor of the shock radius, according to

The shock speed is therefore

= 3-A k_--J

Equating this to Eq. (73), and replacing

have

or

(74)

(75)

(76)

_'s by the crater radius _c , we

P
(77)
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Taking

and diameter _ then gives

__a_ 2

This solution is shown in Fig.

projectile-target combination,

to be the kinetic energy of a spherical projectile of density pp

I, Iv) JP
(78)

i0 for various values of ;_ For a given

7' is large at low impact speeds, and de-

creases as _/ increases. Thus the crater radius is predicted to grow with

a power of _/ somewhat less than 2/3. In most cases, the power is approx-

imately 1/3. The influence of _ displayed in Fig. 10 is the same as that

mentioned earlier: at a given kinetic energy, the higher values of _ produce

faster shock waves, which will penetrate more deeply before they decay to the

prescribed pressure _D Stated another way: if a given energy is to be

added to the target by a shock wave across which the energy change per unit

shock speed is relatively small, then the shock speed itself must be relatively

large. We will return to a discussion of this point below.

The value of _P must be chosen, in order to predict actual crater

dimenions. It was pointed out above that the inviscid-fluid approximations

are valid only so long as the pressures being generated at the shock are

large compared with the target's resistance to shear deformation. Thus,

the pressure at which the blast-wave solution is to be cut off must be a

measure of the shear strength of the material. Part II, below, points out

that the proper value to use for this property is the intrinsic shear strength,

which lies between the limits G/30 and C_/_, C__ being the dynamic shear

modulus, as measured, for example, by ultrasonic techniques. Using

these values for the intrinsic shear strength, the predictions of Eq. (71)
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are compared with experiment in Figs. 11-13. In preparing the theoreti-

cal curve for iron striking lead (Fig. ll), the variation of 7" and V

was taken from Fig. 5, and the material properties used were found from

Table 4- The lower strength leads to a deeper crater prediction, since

the shock wave must penetrate more deeply in decaying to a lower pressure.

The experimental data, taken from the compilation by Herrmann and Jones (g0)

are seen to agree quite wellwith the higher-strength prediction. Figure IZ

gives results for iron striking iron. In addition to low-speed experimental

data, this figure also shows Bjork's machine solution. Again the agreement

is reasonable. Figure 13 shows the results found for aluminum striking

copper. Here the agreement with experiment is somewhat poorer. The

Hugoniot data for iron, lead, and copper were taken from Altshuler et al,(9)

while for aluminum the low-pressure data of Walsh et al(I_ were used, together

with the high-pressure estimate made by Lake and Todd. _21)

On the basis of this evidence, it would appear that the best agreement

with experiment is achieved by using the value C_/2fr for the intrinsic shear

strength. Part If, below, presents a discussion of why such a conclusion

might be expected.

The approximations on which this theory is based will improve at

higher impact speeds. Thus it is not surprising to find such good agreement

for the case of lead targets, in which hypervelocity conditions are achieved

at relatively low speed. The fact that the slope of these data and of Bjork's

results are well matched lends substance to the belief that crater radius will

grow somewhat more slowly with impact speed in the very high-speed range,

compared with its growth rate at lower speed.
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3. Scaling Laws. The only target properties that appear in the

crater-size formula are the strength _ and the equation of state, as

represented by ][a(7'). For the materials considered, however, the latter

influence is of secondary importance, since Y(V) is approximately the same

for a variety of projectile-target combinations. This point is illustrated in

Figs. 14a, b, and c, which show the functions _'_V) for targets of Aluminum,

Beryllium, Iron, Molybdenum, Columbium (Niobium), Vanadium, Tantalum,

Tungsten, and Lead, being struck by projectiles of Fused Quartz, Aluminum,

and Iron. These calculations used the data of Table I and the equations of

SectionA6, Part I. Crater-size predictions for these projectile-target com-

binations can now be made by using these results for _'(V) in conjunction with

Fig. i0. Thus an important scaling law is that the crater radii produced in

two targets, by a given projectile impacting at a given speed, will have the

ratio

(79)

The fact that _'(V)is not greatly different for various materials also permits

a simple scaling with respect to projectile density. For impact into a given

target at given speed, the craters made by different projectiles are related by

N =

Finally, it should be noted that the scaling shown here differs from

that recommended by Olshaker and Bjork. (IZ) Their scaling is based on the

observation that craters produced in a given target by projectiles of various

materials, all having the same mass and velocity (and thus different diameter
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are proportional to the particle velocity generated in the target at the impact

point. Thus, for 8 striking A ,

(81)
Re) = const _ Ix,)

B--_A in A , at the impact point

The experimental data which provide the basis for this scaling are all taken

at relatively low impact speeds. Because the particle speed at the impact

point is one half the impact speed for like-on-like impacts, the scaling law

can be written as

_C) B.__A = bli )8.__ A

vlz

If .the shock driven into /_ by B

(82)

is stronger than that driven into A by A

this scaling would predict a larger crater for B striking _ than for

striking A The present theory gives a different scaling law; for given

kinetic energy of the projectile, and given _ ,

: t I'r,(,>-] (83)

It can be seen from Eq. (46) that _r" decreases as b_ I increases. Thus,

for the case mentioned above, where _')B'-">A > V/2 , it follows, that

___^ < /____^ , SO the prediction of the present theory would be P,c)__._< I_c)^.___._

just the reverse of that predicted by the Olshaker-Bjork formula. The reason

for the difference is simply due to the influence of 7" that has been discussed

above. Although the present theory uses the shock strength at the impact point

to determine 7' , nevertheless the solution does not match the shock speed at

that point. Rather, the role of 7" is to characterize the strength of the shock
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throughout its entire subsequent history. The stronger the shock, the

less rapidly it must travel, on the average, in order to transfer a given

energy to the target.

Unfortunately, the data required to resolve this difference are not

presently available. In actual fact, of course, the speed of the shock as

it advances into the target will remain close to the one-dimensional, impact-

point value until the time when the projectile has been destroyed. Thereafter,

its speed will be governed by the requirement that the total energy and momen-

tum be conserved. One must certainly expect that the Olshaker-Bjork type

of scaling will be correct when the entire cratering process is controlled by

conditions during the time when the projectile is being destroyed. This

condition has been shown to exist at low impact speed. Whether it will con-

tinue to hold at higher impact speeds is presently open to question. On the

other hand, the blast-wave theory in its present form is valid only at impact

speeds such that the collision time is a small fraction of the time required

for the crater to form, and so its predictions are relatively insensitive to the

details of the impact process. The fact that it leads to a scaling law differ-

ent from that observed at low speed is therefore not surprising, but must

be regarded as tentative, pending the availability of a less approximate

theory, and of definitive experiments.

It would appear that these qualitative conclusions would remain un-

changed even if more realistic Gr[{neisen coefficients were employed in a

blast-wave solution. The extent by which they might be modified by the re-

sults of a non-similar solution will form an interesting area for further

research.
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4. Comparison with Other Theories. It is of interest to compare

the present analysis w;th a similar theory given by Davids et al. (17)'09

These authors also use a spherically symmetric model, and represent the

equation of state by a gas of constant _" , which they determine by fitting

the Hugoniot (not the isentropes) by an equation of the form 9_ _' They

work out a numerical solution for 7" = 16, and h/ = 2/5, but apparently

do not take advantage of the closed-form solution. The value which they

find numerically for the cavity radius differs slightly from that given by

the exact result, and this small discrepancy may explain why their value

of T,(_¢), plotted in Fig. 8, is somewhat below the present results• As noted

earlier, they have also attempted a solution for constant momentum ( h/ = 1/4).

The principal difference between their theQry and the one described here lies

in the criterion used for crater formation. Like Bjork, these authors do not

incorporate the material strength. Rather,they define the crater as the cavity

radius at the point where a certain graph of shock radius versus time is judged

to have reached an essentially constant value. They infer from this that

crater radius will vary as the 2/5 power of the impact speed.

The present formula for crater size is very similar to that derived

empirically by Eichelberger and Gehring.(1) Their result states that the crater

volume varies directly with the kinetic energy of the projectile, and inversely

with the Brinell hardness of the target,

2 _ -g E

where E and _c are taken in c.xj5 units, and B in the customary units of

kilograms force per square millimeter. The present result is
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2 _ 2 E

which differs from Eichelberger and Gehring's formula by the influence

of _" , and by the use of C,/;Z_. There appears to be no simple relation

between the dynamic shear modulus and the Brinell hardness, so that no

general comparison can be made. For the case of copper, G/2._is about

ten times the Brinell hardness, and the two crater-size predictions are equal

at Z = 4.6, a representative value. In general, both predictions yield the

same order of magnitude, and differ principally in that the present one in-

dicates a lower growth rate of crater size with impact speed.
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C. Asymmetric Solutions "_

In this section we present a blast-wave solution which explicitly des-

cribes the pattern of mass ejection from the target. Because of the lack of

spherical symmetry, two independent variables enter, and the solution of

the problem is considerably more difficult to find. Certain approximations

are resorted to, in order to obtain partial solutions. From these, a very

important result is found, namely that this more difficult, but more physically

realistic solution is for practical purposes the same as the vastly-simpler

constant-energy solution described above.

In addition, this section returns to the question of the simultaneous

conservation of energy and momentum, and describes one method by which

this can be achieved. The method is illustrated by applying it to the case of

a one-dimensional impact, such as might occur when a thin disk strikes a

target.

The first six of the subsections below describe the axisymmetric case,

while the last three present the one-dimensional solution.

1. Two-Dimensional Solution. The model which allows for spatial

variations in two directions behind a hemispherical shock wave was intro-

duced in Section A, above. The similarity equations, Eqs. (18) - (20), and

Eq. (36), are partial differential equations, containing both q and

The term "asymmetric" as used here refers to symmetry with respect to

the target surface, while the term "axisymmetric" refers to symmetry about
the axis along which the projectile impacts. All of the solutions of this

report are taken to be axisymmetri9, but may be either symmetric or asym-
metric with respect to the target surface.
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as independent variables. They are of mixed cha r acte r , containing both 

elliptic and hyperbolic regions , and, furthermore, they must meet a zero

pressure boundary cond i tion a l ong a line who s e lo c ation is unknown in 

advance. To make matters worse, the differential equ a t i ons contain a para

meter N whose value is unspecified. No attempt h as b een m ade to solve 

the se equations. Instead, partial solutions are sou ght b y re stricting 

attention to conditions along the axis of symmet r y. In thi s w ay , we can 

learn a great deal about the s olution, with relative l y littl e e ffort. The 

most important item uncovered is the criterion fo r choo s ing N for each 

7' ' N must be chosen so as to permit a smooth t ransition f rom the el

liptic to the hyperbolic region . 

In the similarity coordinates, the flow fie l d ha s the ap p e arance 

In the undisturbed region, it is as though fluid particle s were a ll c onverging 

radially toward the origin. They pass through the shock, and a re ult imately 

ejected toward the low-pressure region outside. O n the ba s is of the sphericall 

symmetric solution , we may expect that most of the mas s p r oc essed at any 

instant is heavily concentrated near the shock. Thus the p rob l e m bears a 

marked resemblance to the steady, hypersonic fl ow over a b lun t body 
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and we may expect that analytical methods which are successful in treating

that problem may also be used to good advantage in the present case. One

such method is to investigate the solution along the axis of symmetry:

@=0 : 0 L_ _ _-- I _ O= fr', 0 _- rl z-- oo (84)

Along this line, the axial symmetry of the problem requires that all first

derivatives with respect to (9 be zero, except for the derivative of the tan-

gential velocity component. This component is antisymmetric in @ ;

for example, in the case where material _s flowing outward from the region

near the axis

L denotes resultant

velocity:

--_ tA +_

the distribution of GO at a given radius has the appearance

e

I
Thus aoO (q,O) _: 0 Denoting this quantity by -_ _ :

The similarity equations, along the axis of symmetry, become

+-E * 2 =0

(85)

(86)
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_ _, =O (88)

where primes indicate ordinary differentiation with respect to _ These

equations are referred to in what follows as the "centerline" equations.

Except for the presence of _' in (86), these are identical with the Taylor

equations for a spherically-symmetric disturbance, discussed in Section B.

The function T'(q) represents the influence of off-axis conditions, as must

be expected whenever a partial differential equation is specialized to a single

line in the plane of its independent variables.

Equations (86) - (88) may be solved explicitly for the derivatives in the

form

12,_ -_I 2 (I-N) _ I-N
_=

)2 r_ }(¢-'I){{*- q _,
(89)

T1 4:
(___I_ ,'_:

(90)

(91)

The boundary conditions at the shock are

2 _'+l _(0 0
¢>0)= -;0)= r+l "; _(I)-- _'-/ ; ' =

These equations contain two unspecified quantities, b4 and _' {'1_)

(92)

The
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next two subsections discuss the determination of these.

2. Criterion for Choosing N The centerline equations obviously

have a singularity at the point where the denominator (___)z 7"_2 vanishes.

This quantity is the special case, for _o = 0, of the function discussed in

Section A'8, whose sign determines whether the partial differential equations

have elliptic or hyperbolic character. Thus the point on the axis of symmetry

where this denominator changes sign corresponds to the intersection of the

"sonic line" with the axis. In order that the solution may pass smoothly

through this singular point, the numerators of Eqs. (89) - (91) must also vanish

at this point. A little algebra shows that this condition may be achieved simul-

taneously in all three numerators if

-- N (93)

where the asterisk denotes conditions at the sonic point. The function "F(_)

cannot be chosen arbitrarily; thus the only parameter that can be used to guar-

antee a smooth crossing of the sonic point is b_ , and this consideration forms

the criterion for the choice of N For each 9" , and a specification of

Q* , N is chosen so as to provide a continuous transition through the sin-

gularity. Thus b_ will in general be a function of 7' It should be noted in

passing that this problem never came up in the spherically-symmetric, constant-

energy case. There the vanishing of the denominator always coincides with

either the origin _= 0 (for _r z_ 7 ) or with the edge of the cavity (for _'>7),

so the entire flow field is elliptic in a constant-energy solution.

3. Approximations for _'(q) In order to actually carry out a smooth

crossing of the sonic point, Eqs. (89) - (91) must be solved for various values
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of N (and given _/ ) until such a crossing is found. Before such an inte-

gration can be done, however, _(_) must be specified. In actual fact, no

rigorous determination of 7"(4 ) , and with it NI(;/) , can be made with-

out solving the full partial differential equations. Approximations to _q

may be found, however, by approximating 7' , and then integrating Eqs. (89)-

(91). Rather than approximating 7" itself, one may instead relate q" to

other physical quantities which may be approximated more easily. In par-

ticular, by differentiating Eq. (g0), the _ -component of the momentum

equation, with respect to _ , and by then specializing to the axis of symmetry,

one finds

, I 0)=0 (94)
2 N

from which it is seen that approximations to the pressure distribution':' can

be used to generate corresponding approximations to 3J(_). This process

can be continued, of course, by taking higher-order derivatives, with

respect to 0 , of any of the equations of motion. Each of the resulting

expressions will contain at least one unknown function, so the utility of the

procedure is dictated by one's ability to approximate the unknown function.

For this purpose, Eq. (94) is especially useful. At the shock, the pressure

is uniform, while behind the shock it begins to decrease. The rate of decrease

is faster near O = _ q_'
2 , as the influence of the vacuum outside the develop-

ing crater makes itself felt. Qualitatively, the pressure distribution would

Approximations to the pressure distribution are what make possible center-

line solutions of the blunt-body problem.
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be expected to have the appearance

e

The quantity _0), which is essentially the curvature of these lines at

0 = 0 , will be zero at the shock,

ing magnitude as _ falls below one.

approximation

and will become negative with increas-

Such considerations suggest the

a_+" ),,._e _. (q, O) = - _ O-q ¢ (,?,0) (95)

where K: and _L are constants. Crudely, one may think of this approx-

imation as fitting a cosine variation to the curves above, with a multiplicative

function of _ introduced in such a way as to guarantee zero curvature at

the shock.

The constants b( and O. must be chosen so as to yield values of

1" which are at most of unit order. This consideration is derived from the

fact that, near the axis, the velocity vectors are expected, on physical grounds,

not to diverge very rapidly from the axis

The angle which the velocity vector makes with the radius is of order

a,o (q,o) e
a-'-_ -_- But both e and _ are of order one or less. Thus the

order of Da)/D0 must be the same, if the velocity vectors are to diverge

from the axis at a moderate rate.

4. Results for a, = 1, K = l, 10. A limited number of solutions
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have been calculated, using the values a. = 1, K = 1. ° and 10. For a 

given value of 7' , and selected values of N , Eqs. (89), (90), (91) and 

(94) are integrated by a Runge-Kutta procedure, starting from the shock 

values given by Eq. (92). The results found with C{. = 1, K = 10, 7' = 3, 

and N =0,374,0.375, andO.376, are shown in Fig . 15a. The first graph on 

this figure displays the denominator, whose vanishing identifies the "sonic" 

point. The second plot shows the function H(q) , defined as 

/, ) (Z /- N Z ¢ 1"'} /-N 
H(~) =l4Y-Q r1~ - -~- - Yf -~ cp (96 ) 

which, according to Eq ... (93), must also vanish at the sonic point if an accept-

able solution is to be achieved. This does occur at N = 0.375, and the cor-

responding distributions of 'f , ¢ +- , and 1"' are shown in the remaining 

four graphs of Fig. 15a. Figure s 15b - e give similar re sults for 'd" = 2, 

2.5 , 4, and 6. To illustrate the effect of I< , another calculation was done, 

at 7' = 4, with I( = 1. 0 , and a.. = 1. The results, given in Fig. 16, differ 

from those found for K = 10 chiefly by the fact that 1" is somewhat smaller, 

and N is closer to 2/ S. This trend is qualitatively what would be expected; 

a large r value of 1\ strengthens the influence of the pres sure gradient in 

drawing material laterally away from the axis of symmetry. The fact that 

more fluid is being extracted in this direction acts to retard the shock motion, 

i. e. , N is decreased. 

5. Comparison with the Symmetric Solution . The values of N found i 

the above calculations were in all cases quite close to the value 2/5 that applie 

for the symmetric, constant-energy solution . Furthermore, the quantity 'I 

does not attain an appreciable value until some distance away from rt = 1, 

whe re the density has fallen to a low value. Thus we might expect that, near 
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the shock at least, the asymmetric solutions will not differ greatly from the

constant-energy solution. This is indeed the case. Figure 17, which compares

the symmetric and centerline solutions for _' = 3, shows that, along the center-

line at least, the motion of most of the mass involved is well approximated by

the solution for _ = 2/5. One may expect this trend to persist even for _)

greater than zero, suggesting that the Taylor solution will in general be an

excellent approximation to the considerably-more-complicated asymmetric

solution. The comparison shown in this figure is typical of the results found

at other values of 7' This close similarity between the two solutions

forms the justification for our use of the simpler constant-energy solution in

making crater predictions.

Furthermore, this close similarity appears to be a general feature.

Admittedly, the evidence for this conclusion comes from a limited number of

cases, in which a special pressure variation was used. Nonetheless, it is

difficult to imagine how the true distribution of 9" (q) could be radically dif-

ferent from that used here. The function _" (_) must always be zero at the

shock, and must rise to a value comparable to the value of _ near the sonic

point, i.e. , it must be of unit order. Future research in this area should

examine other approximations for "F , but it is considered highly unlikely

that any contrary evidence will be found.

So far as blast-wave theory is concerned, then, the energy of the pro-

jectile plays the dominant role, its momentum being only of secondary impor-

tance. One plausible physical explanation _" is based on the experimental

This explanation was suggested to the authors by Mr.
Laboratory

Robert J. Vidal of this
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observation (22) that targets struck by hypervelocity projectiles often acquire

momenta many times that of the projectile, implying that the material ejected

from the target must also carry several times the projectile momentum. Thus

it appears that the momentum of the projectile itself makes only a minor con-

tribution to the over-all conservation process.

A corollary of this conclusion is that the conditions of hypervelocity

impact can be simulated _:_by any experiment which duplicates the energy of

the incident particle, irrespective of whether its momentum is correctly

matched. In particular, any intense source of short-pulse electromagnetic

radiation, such as the output of some currently available lasers, should be

capable of providing such a simulation. Such an experimental technique

appears to hold promise, and Appendix B discusses the basis for it in some

detail.

A final point must be made concerning the importance of energy versus

momentum. One must not infer, from our use of a constant-energy solution,

that "energy scaling" will hold, in the sense that crater volume is proportional

to the projectile's kinetic energy over a range of impact speeds. The fact is

V 113, duethat this theory predicts a result more nearly of the form ;_¢

to the fact that _ is allowed to vary with impact speed in an effort to fit

the equation of state over the whole range. And equally important, the pen-

etration law _c _ V'I_' sometimes described as "momentum scaling", does

The fact that such a simulation is possible was first pointed out to the

authors by Dr. Franklin K. Moore.
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not imply that the projectile momentum is a controlling parameter. The

theory presented here is derived from an analysis in which energy and

momentum can both be conserved. Because the shock wave is such a strong

agent in affecting the motion of the fluid particles, and because the low pres-

sure region is, by comparison, so weak in this regard, the flow of the greater

portion of the mass involved takes place as though it were caused by a

spherically- symmetric disturbance.

need be considered.

6. Isolation of the Sonic Point.

Given this fact, only the total energy

This subsection describes the analytic

means that are used to determine the exact location of the sonic point and to

provide a valid solution at that point.

the variables

N$ N _ _

9 q,'

In terms of these variables, Eqs. (80),

In doing so, it is useful to work with

bgq"
_ =_ (97)

q

Appendix A for details of the derivation)

(87), (88), and (94) become (see

- (r-,)+
- z N]) (_-NX_-O71]-

(98)

(99)

I 2 2N = d=-g

¢-N

(lOO)
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(101) 

I 

The vanishing of the denominator is now given by 

2.-

(4 - N J' - "I" ~ 2 ~ 1> ~ 1 t - ~f ] = 0 (102 ) 

When this occurs, inspection of Eq. (99) shows that the solution will be single-

valued only if 

l' (3/'c- + c. - ; [- NJ) ~ ',t; (t - N) (i - /) == 0 ( 103) 

at the same point. If (102) and (103) are both true at the same point, then 

(103) may be simplified to read 

( ", - N) {3 4 H- ; [ - N]} - '" (,'" -!) ; 0 (104) 

which a little algebra will show to be equivalent to the condition that the functio 

H (0) ,defined in Eq. (96), be zero . At the sonic point, where (102) and 

(103) are both true , the derivatives in Eqs . (98), (99), and (101) become 

indeterminate. The manipulations required to resolve this indeterminacy are 

given i n Appendix C. There it is shown that the slopes at the sonic point 

(designated by an asterisk) are given by 

where .,k., is a solution of the quadratic 

2. 
A.k., + B..k / + C=-O 

and where 
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The functions A, B, and C appearing here are defined in Appendix C. They

depend on the sonic-point values of % , _ , _ , Q , _/J , j2, ¢ , and

9" , in addition to their dependence on N and 7' Having found _l and

_'2 , the formulas presented in Appendix C permit one to find _//_Q)_',
-f

, , and jO i ) , and with these, the solution can be continued

smoothly through the sonic point. All that is required is the list of sonic-

point values referred to above. These can be found by extrapolating from a

set of solutions, at various values of _ , which approach more and more

closely to the sonic point.

shown, in the _ _ plane,

case F" = 3, with _< = I0,

locus of points at which Eq.

The procedure is illustrated in Fig. 18; here are

some of the numerical solutions obtained for the

_. = 1. The line marked "numerator = 0" is the

(I03) is satisfied, while that marked "denominator

= 0" is the locus of points satisfying (lOi). By extrapolating these two loci,

one may isolate the values _ and _* at which these two conditions are ful-

filled simultaneously. Similar extrapolations permit a determination of ___,

Q* , _" , 42 _, _ , and T _ These, in turn, fix the values of all the slopes,

so that the solution in the neighborhood of the singularity is complete. The

pair of separatrices shown in Fig. 18 was found by just this method.

Even with the solution determined in this fashion, there still remains

some question as to the precise value of N to be identified with it. For

practical application, there seems to be no point in specifying _q to five-or

six-figure accuracy. Thus, in carrying over results from the very fine scale

of Fig. 18 to the "practical" scale of Fig. 15a, the whole solution is tagged

with the number N = 0. 375. In actual fact, the solution shown in Fig. 1 con-

sists of the solution common to©.37500 and 0.37501 for _ _ 0.055, plus the
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extrapolation through the sonic point.

7. One-Dimensional Solution. The remainder of this section presents

a treatment of the disturbance field behind a strong planar blast wave. Becaus,

only one spatial dimension is present, a complete solution can be worked out.

This solution illustrates a method for simultaneous energy and momentum con-

servation in a self-similar solution. In addition, the formulas which are deriw

can be used to predict the craters that will be formed by the planar impact of

slab-or disk-shaped projectiles.

We make the perfect-gas approximation from the outset, choosing the

value of 7' in each case according to the method outlined above. The problem

is to determine the motion of a half-space of material resulting from the impul

sire application of a large pressure to its free surface, which is then exposed

to a perfect vacuum. The large impulsive pressure may be imagined to arise

in various ways, for example by the detonation of an explosive at the free sur-

face, or by the face-on impact of a disk-or slab-shaped projectile:

In the_ensuing motion, a strong shock wave propagates into the target, while

the free surface expands rapidly into the vacuum on the left

FREE
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We may expect that a blast-wave solution will correctly describe the motion

when the time after impact is large compared to the time during which the

impulsive pressure was applied. Thus the free surface will lie, effectively,

at 4_ = -oo . The blast-wave solution of this problem has been discussed

by a large number of authors. (2_/'/7) An excellent review of these is given

by Mirels. (28)

The equations of motion are

+ (I08)

--+ _ ÷ -- = 0 (109)

In a self-similar solution, the dependent variables are assumed to depend only

on the similarity coordinate

?6

r__ _, (_.) (ill)

and are made dimensionless by the definitions

_- '_s _('r_) tO.-(,_Q _b(,q) "_-'/:)o _s rr('_) (I12)

As before, all time dependence is eliminated from the differential equations if

the shock advances as a power of the time

4_s = At" (I13)

Thus the similarity equations become

(C-q) ,+ _ _ =0 (I14)
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(¢ -1) ~' -

- z /-N 
N 

- --- ----

/- N 
N 

f' if; + - - 0 r 

Solve d for the d erivatives, these become 

tjJ' /-N 
N 

/-N .f 
tT 

¥- - ¢(¢-~) 
2-

(p-?) -

(.¢-ry){(~-0)2- '1'/1 
" ¢ - 2 (tP-Q2 

with the usual boundary conditions at the shock 

¢(I) = f(l)::: 
2 

7'+-1 
. 
) 

t (I):=. 7+ I 
7- 1 

( 115) 

(116 ) 

(11 7) 

( 118) 

(119) 

( 120) 

8. Determination of N Before Eqs. (117) - (119) can be integrated, 

the parameter N must be specified. Just as in the axisymmetric case, the 

criterion that determines N is that the solution pass smoothly through the 

sonic point. The values of N that accomplish this feat ha ve been reported 

in the literature for several values of -; , and a few more were calculated in 

the present effort. These results are summarized in Table II, and are plotted 

in F ig. 19 for 7 between 1. 0 and 10 . The distributions of pressure, density 

and velocity that are obtained in this type of solution are shown in Fig. 20 for 

the case t = 7/5, which has the exact solution(23), (27) 

-* 5-~ 
tf = 0 (5 - 41 ) , ¢ = ~ (21- 1) , ~ = 7; (5 - 4 q ) (121 ) 

In further analogy to the axisymmetric case, the values of N which 
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permit a smooth crossing of the sonic point are different from those cor-

responding to conservation of the total energy or momentum (per unit area

in the plane of the target surface). Denoting these respectively by _ and

, the appropriate integrals are

Because _ _-__ _ , the energy integral will be independent of time only if

N = 2/3, while the momentum integral requires N = I/2. Neither of these

values, however, leads to a physically acceptable solution. Instead, the

solution for N = 2/3 is symmetric about ,_= 0, while that for N = I/2 becomes

double-valued. The solution passing through the sonic point is the only one

that starts at the shock, and yields a velocity distribution like that of Fig. 20,

in which material moves rapidly to the left at large negative values of

The values of N corresponding to constant energy and constant

momentum are compared with the curve of N¿ _' } in Fig. 19. It should be

noted that for _' in the range from 2.0 to 10, N(?') is relatively constant, at

a value not much different from the value that holds for constant energy. _As

a corollary of this, we find once again that the constant-energy distributions

of pressure, density and velocity are very nearly the same as those having

the smooth sonic-line crossing. Figure 20 illustrates this point for the

case 7' = 1.4. {The constant-energy solution used here is described in

detail below. ) The close identity between these two types of solution is
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exactly the same behavior as found above in our approximate treatment of 

the centerline equations. The fact that the one-dimensional results are 

found without approximation (there is no term analogous to ~ ) may be 

taken as evidence for the generality of the conclusions reached in the axisym-

metric case. 

9. Simultaneous Conservation of Energy and Momentum. There can 

hardly be any question about the fact that the solutions which cross the sonic 

line smoothly are the only acceptable ones. Having chosen N so as to 

achieve such a smooth crossing, however, it is now impossible to satisfy 

either of the conservation conditions, in the form given by Eqs. (122) and 

(123). One means of resolving this difficulty is pointed out by Zeldovich. 25 

He sugge sts that a small portion of the mas s be ignored in calculating the 

total energy and momentum. This small mass, which originally lies at the 

free surface and is strongly compressed during the initial stages of the 

impact, acquires an entropy during the impact phase which is different from 

that predicted by the similarity solution. This entropy depends only on con-

ditions at the shock, through integration of the differential equations, and 

has nothing to do with the details of how the shock was formed. The entropy 

of each particle remains constant , once it has been processed by the shock. 

Thus the small portion of mass processed during the impact phase always 

bears the imprint , so to speak, of this phase , and its motion is never cor-

rectly given by the similarity solution. Zeldovich I s argument is that in 

seeking a self-similar solution, one should consider only that mass whose 

motion is expected to be properly described by such a solution . His argument 

derives considerable support from the fact that non-similar numerical 
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solutions (27) of the partial differential equations in _ and t fair

smoothly into his similarity solution when the time is large compared to

the duration of the impulsive pressure.

Mathematically speaking, the exclusion of this mass corresponds to

the replacement of the infinite lower limit in Eqs. (122) and (123) by a

finite number --_o (t) The introduction of a second free parameter per-

mits two conservation conditions to be satisfied. In the remainder of this

section, we work out in detail the relations that follow from neglecting this

small amount of mass.

The point --_o(_') (4_o > 0) , which forms the boundary of the neglected

mass, will be far to the left of the origin, since the mass neglected is small.

As a prelude to modifying the conservation integrals, then, we must first

determine the asymptotic formofthe solutionatlargenegative_vatlues.of _ ..

The key to finding such an asymptotic solution is to neglect the pressure-

gradient terms in the momentum equation, Eq. (ll5). We have seen before

that in these solutions the particle velocity is large at large negative _ ,

with a slope of order one. The pressure, on the other hand, is approaching

zero, signifying that its derivative is also becoming extremely small. Neg-

lecting this term yields the simple solution

q (124)

With _ known, the density

Finally, use of

i

can now be found from Eq. (114) as

I

I'I
and _ in (116) gives the asymptotic pressure formula

¢
I-N 1126)
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Substituting back into Eqs. (i14)-(i16) shows that these approximations

are internally consistent.

The constants A 1and A 2 are not independent. Lees and Kubota! 29)

among others, have shown that the similarity equations in general have the

solution

where, from conditions at = i, K, is found to be

(7+1)
K, = 2(7_i) (IZ8)

Equation (127) is derived by dividing (114) by _-q)//-_ , and by sub-

tracting from this the result of dividing (116) by 4(_-9)" The relationship

between A 1 andA 2 is found by substituting the asymptotic pressure and density

solutions into the general integral, Eq. (127). One finds that

A,
A2=

K, {A(/_N )_ (129)

The quantity A 1 is found by integrating the similarity equations out to a large

negative value of _ , where the asymptotic behavior is reached. For

example, in the case _' - 1.4, the exact solution given in Eq. (121) shows

that A! = 3/16. In general, A! depends on 7' •

If we now neglect a small amount of mass To (mass per unit area), we

have

_-,_oe:) j,,_,_o
(130)
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The integral here can be evaluated directly.

equation in the form

and integrating by parts, we find in general that

Thus

By writing the continuity

(131)

(13z)

!

tP_"t: - -'I) _-N-. _=,- N A,Ig.I (133)

and

I
I-T_-

m o = _ A JCN I-N. A, Ir/ol (1 34)

In order to make _/o independent of time, we must choose

I-N

rlo =-K_ t K:z >0

which give s

N

I-N /-N too
"Z_° = A A' K"z hi

(135)

(136)

The parameter K 2 is the second free parameter which, with A, will permit

two conservation conditions to be satisifed.

If we neglect the mass 7_o in the energy-conservation integral, we have

,= 4- T _ _) dq (137)

%
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This integral, evaluated at the upper limit, yields a constant. At the

lower limit, we may use the asymptotic solution. Doing so reveals that

the internal energy contribution is negligible compared with the kinetic

energy term, and we have

=poAt"ZN** I + cons_.+O qoJ (13s)

The second term in the curly brackets comes from the upper limit,

term from the internal energy.

A' -_'-_")(. l_°l"'--a-

3" t-N

Carrying out the integration gives

+ const. + 0 rioj '-"

the third

as

A_ -(2-_.) ( I- N 3-__-._-__-_N

Tt _A, 2-_ K2 t ÷ const.+ 0 _ s-"_"))

(139)

_: becomes large (this is the limit at which we expect the blast-wave

solution to hold), the second and third terms here become negligible, since

N is less than 2/3, and 7, greater than one.

Neglecting the same amount of mass in the momentum integral gives

'1o

This integral can be evaluated exactly. Re-writing Eq. (115) as

_(¢_q)_, _-N V'¢+*'---o (141)N
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and integrating, we have

_ I-N _, ¢_q.
N

Consider onIy the last term.

d
(¢-r 7) _' =-r

dq

An integration by parts gives

Substituting this in (142) gives the desired result

+ _'('¢ q) d9 =o

We've already seen in Eq. (1 32) that

(14Z)

(143)

(144)

- ") - [41Iz N, = _-
qo

The right-hand side is found to be zero at the upper limit,

(145)

and at the lower

limit, the pressure contribution is small compared with the second term.

Thus

As Iqol_ , the integral vanishes. Thus, if we were to include all the mass,

and describe its motion by the self-similar solution, we would find zero net

momentum. In fact, Zeldovich takes this point of view, and apparently con-

siders the solution valid only for such a momentum condition. However, it

would appear to be more consistent to neglect mass in the momentum integral

as well. Doing so, we have

, I-N

= PoAA' a_-I K_.

(147)
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This relation, together with (1 39), enables us to find A and K 2 in terms of

and _ Note that the velocity of the impacting slab is related to these

parameters by

- 2 -3N
A_'z (148)

while the neglected mass is of the same order as that of the projectile

N
?. 0-N)(2-3N) N (2-_)
2g. = #% AA, (z_-I)" _ ,-N _ (ZN-J)" _0 (149)

Solving for A and K z in terms of _ and

t<,_=f4A'(I-N)(2-3N)z(2N l)3 _?° I'-N_:>3

give s

(150)

A -- GO') _ ,_ (151)

where

f _ I-H
c.-(_,)= _.(2-3N) (_-N-,)_

2w-I +A l('l-N)l'2-3N)" " (15_-)

The actual solutions of the similarity equations have never been reported,

except for 3' = 1.4. Thus the variation of A with 3_ is not presently known.

When this information becomes available, it will be possible to compare the

final formula for the shock propagation

L
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?_ f e S
(153)

with the one-dimensional constant-energy result

cs (_.) = _-_,) _ /

Figure 21

(154)

shows the function :_0(_), found by a hand computation using the

exact solution which is given, for example, in Ref. 6. The constant-energy

distributions of pressure, velocity, and density are compared with the

asymmetric result in Fig. 20 for _/ = 1.4.

The "craters" corresponding to these shock-wave time-histories may

be found as the shock depth at the instant when the pressure behind the shock

has decayed to the level /P Denoting this quantity by _cl , a little

algebra gives, for the asymmetric solution

N

= (155)

and for the one-dimensional, constant-energy solution

'_ _ (156)
_c = (7*0 Zo(_)

The method described above can be applied, with analogous results,

to the axisymmetric case. Far from the impact point, we may imagine that

the flow is confined within a cone for which _ _ 17"
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Within this cone, all quantities have a negligible variation with _ , and

the velocity component eO is small compared with _ . The problem is

then essentially the same as that treated above, and the same series of steps

can be taken. The only new term present in the axisymmetric case is the term

_/9 in the continuity equation, which merely has the effect of2 changing cer-

tain exponents. The conclusion remains the same, namely that simultaneous

conservation of energy and momentum can be achieved by neglecting a small

amount of mass.
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II. BOUNDARIES FOR APPLICATION OF

THE BLAST WAVE ANALYSIS

A. The Space Vehicle Environment

The probability of collisions between space vehicles and meteoroids

of sufficient size to cause serious damage is too small and too variable to

allow convenient verification of ernpirical relationships by satellite experi-

ments. Therefore, it is necessary to improve prediction methods as much

as possible. Diverse sources of evidence can be used. Among these

sources are theoretical analyses, hypervelocity impact experiments, studies

of meteors, meteorites, meteor craters, and impacts of smaller meteoroids

on satellites, etc. A survey of information pertinent to this problem has

been published by Davison and Winslow. (31)

There is little agreement concerning the properties of the impacting

particles. Density estimates and assumptions range from 0.05 gm/cm 3 (32,33)

to 7.8 gm/cm 3.(34) Dense meteoroids are assumed to be of asteroidal origin

and low density meteoroids are assumed to come from comets. Whipple (35)

indicates that in space about 10% of sporadic meteoroids and not more than

20% of all meteoroids are of asteroidal origin. Of the meteoroids observed

in the vicinity of the earth about 50% are sporadic and 50_0 are in streams.

Relative velocities range up to 80 kilometers per second (assuming a par-

ticle in a closed orbit about the sun moving at 42 kilometers per second

approaching the earth in a direction opposite to the earth's motion at 30

kilometers per second, and colliding with a satellite moving at approximately

8 kilometers per second around the earth).

Whipple (32) states that the average velocity of photographic meteoroids
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(36)
is 28 krn/sec. The average velocity of smaller meteoroids is less.

Whipple (32) chooses a velocity of 15 km/sec for the smallest meteoro,ids

and assumes an arbitrary variation of velocity with magnitude. The fainter

meteoroids and those detected by radar observations tend to be more spora-

dic than the brighter meteoroids.(35) The mass of individual meteoroids

has been determined from brightness measurements on the Harvard Photo-

graphic Meteor Program. Meteors of visual magnitude zero were found to

have masses of the order of 25 grams. Based upon previous rough esti-

mates (32) of the penetration of meteoroids through structural materials,

the mass range of interest is from about 10 -2 to 10 -4 grams. Conversion

of visual magnitude to estimated mass is accomplished by the following

formula(34)
_0

M--zs
in which _¢_ is the magnitude

_?o is the mass of a zero magnitude meteor

and 7ff is the mass of the meteor

Photographic techniques are used for meteoroids down to the 5th magnitude.

The use of radio echo techniques may be extended to the 12th magnitude. (32)

A comparison with these mass estimates indicates that the most direct

evidence of interest for this penetration problem will come from radio

echo measurements.

In a study of photographic meteor wakes and trains McCrosky (37)

found that the particles which break off to cause the wake, have masses

of 10 -5 or 10 -6 grams. This evidence of the mode of fragmentation and the

size of fragments making up the larger meteoroids lends additional weight

to Whipple's suggestion that most of the meteoroids are low density bodies.
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The original estimates of the density of photographic meteoroids have been

revised upward recently.(38) On the basis of new estimates of luminous

efficiency a one gram meteoroid having a velocity of 30 km/sec, has a density

of 0.44 gm/cm 3. These estimates result from experiments in which par-

ticles of known properties were projected down through the atmosphere and

simultaneously photographed from the earth.

B. Energy Transformation During Impact

An attempt has been made to present the hypervelocity impact pro-

blem as a chronological sequence of events involving realistic solids. This

approach leads to consequences that are difficult to unify in mathematical

terms but which, it is hoped, will give some insight into the nature of im-

pact processes.

During the brief period of meteoroid impact there are several stages

of energy transformation. It is important to consider the time history of

these stages because target characteristics will partially determine which

stage predominates in the production of damage to the space vehicle. Both

the meteoroid and the target may undergo polymorphic phase changes, how-

ever, the time occurrence of such phase transitions will not be simultaneous

unless the materials involved are identical. It is extremely unlikely that the

meteoroid will be identical in mechanical properties with the satellite target

mate rials.

Table 3 lists the stages of energy transformation undergone by the

meteoroid-target interface under hypervelocity impact conditions. Every

impact will not necessarily involve each of the listed steps since the impact

kinetic energy varies over a very wide range.
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The temperatures attained in satellite materials during impact are

important for several reasons. The temperature attained is a measure of

the energy absorbed into thermal motion. It also affects the assumption

of fluid properties in the blast wave analysis and the ejection of material

from the cavity in the final stages of the impact process during which one

would expect that fluids would be lost from the cavity but solids would be

retained.

Solids may be heated or cooled by impact. The dominant factor

affecting the sign of the temperature change is the Gr_neisen factor (p_.)

The Gr_neisen factor for the #th mode of a particular lattice vibration is

so that _ is a measure of the change in lattice vibration frequency for

a given change in volume. The role of the GrUneisen factor in the equation

of state of solids is indicated by Slater (39) in a derivation based upon the

statistical mechanics of a system of oscillators. The equation for the

pressure is

in which the first term on the right is the pressure at absolute zero and the

summation is the so-called thermal pressure. -_ is Planck's constant

and k is the Boltzmann constant.

The role of the Gr{ineisen factor has also been indicated by

Eastabrook (40) starting with an equation derived using the Euler reciprocity

relation
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in which T

rewritten using Maxwell's relations

- -t. <:gv/7-
so that

is the absolute temperature and S is the entropy. This may be

(157)

_V

C v

in which o¢ v is the volume coefficient of thermal expansion = (-_

_. is the isothermal bulk modulus = - V(_-v).,.v.,

and Cv is the heat capacity at constant volume = "T _'-'T)v

(= D(_-_)s) an average P_[11 -_ is the Gr_neisen "constant" which is of the 's

taken in a way so that the equation is satisfied. Since the various _'5 may be

either positive or negative, wide variations in the values of P necessary to

satisfy Eq. (157) are observed. The factors Cv , V and _7" are positive

quantities, so that P will be negative when the volume thermal expansion co-

efficient is negative. Some materials have negative values of thermal expansion

coefficient, at least over part of the temperature range for which these measure-

ments have been made. Among these materials are vitreous silica (SiO2), silicon,

germanium, diamond (C), indium antimonide (InSb), several lithium aluminum

silicates and uranium pyrophosphate (UP207). The thermal expansion coefficient

of uranium pyrophosphate is of special interest because it is negative at high

temperatur e s.

Temperatures during impact have been calculated by several investiga-

tors. Wide variations in temperature are found depending upon material

properties. The calculations by Walsh et al (11) of temperature rise along an

adiabat are obtained by integrating the equation
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T

v_

I" ( v ) ,_ v
v

This calculation depends upon knowledge of the process and an estimate of

the volume dependence of P

Benedek' s(41) temperature calculations depend upon knowledge of

(42)
the volume dependence of the cohesive energy. The equation used is

v(_)-v (0)= e (_)- _(0)- _ (_)- i_(0)

in which

and

E(,,.)- E (o) = o-s_) _-

_4 = volume compression

V = vibrational energy

E = total internal energy

= cohesive energy

and C and 5 are the constants in the equation

_ = C + 5 _I for the shock and particle velocities

Knowing the vibrational energy, the temperature is calculated by use of the

Debye approximation for the specific heat.

Wackerle's (43) calculations are based upon the following formula:

P e- °_' _qP - P-_

in which _o is p evaluated from the STP values of od v , Cp and

adiabatic bulk sound speed_a_nd T o and T_ are the initial and final temper-

atures along the Hugoniot. The results of the calculations described above

indicate roughly the expected dependence upon thermal expansion coefficient
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and [' ; that is, the low expansion materials show, initially at least,

smaller temperature changes than high expansion materials. The calculated

temperature rise of vitreous silica is only 5°C at impact pressures up to

262 kilobar s.

It is evident that the space vehicle designer can have a degree of

control over the temperatures attained during impact. In regions in which

it is desirable to absorb the maximum amount of energy in thermal vibra-

tions, the choice of materials with high p is indicated. In regions in

which it is desirable to prevent melting in order to keep material in the

crater after impact one would choose materials with low values of F'

Therefore, one expected feature of these configurations is a sandwich struc-

ture with the high p material on the outside and low P material on the

inside.

C. Stress Wave Velocities in Solids

1. Elastic Stress Waves. At low velocities the impact of a small particle

upon the outer (extended) surface of a satellite will introduce a stress wave

in the target which involves the dilatational wave velocity given by

I_ W ('- _)) ] '/z`l.__)(,- 2,p)_(:,= (lS8)

where ¥

P

= Young's modulus

= Poisson's ratio

Note that the bulk compressional wave velocity (Eq. (158)) is significantly

different from the compressional wave velocity found in a long thin bar (44)
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(i.e., where the bar cross section is small compared with a wave length).

The change in velocity which occurs as the wavelength approaches the cross-

sectional dimension is due to the increase in lateral restraints. For the

high frequencies associated with short duration meteoroid impact, the higher

dilatational wave velocity is more appropriate. In isotropic solids, Poisson's

ratio is always less than one-half and greater than zero, hence Cl _ C o

(the velocity in a long thin bar).

For isotropic solids, the fastest elastic wave travels with the bulk

dilatational wave velocity. Hence, meteoroid impact will be in the hyper-

velocity region if the impact velocity is greater than the fastest elastic wave

velocity in the target material given by Eq. (158).

In Table 4, the bulk dilatational wave velocity is tabulated for several

plastics, metals_ ceramics and glasses. Beryllium has the highest stress

wave velocity among the metallic elements. Corundum ( oc - alumina) and

silicon carbide are among the highest for ceramic bodies. Therefore, im-

pact velocities above 13 kilometers per second are probably in the hyper-

velocity region for elastic wave propagation in all materials.

The transition region between subsonic and supersonic velocities is

defined here as the velocity range lying above the lowest elastic wave

velocity (Rayleigh waves for short duration impact) and below the highest

elastic wave velocity (bulk dilatational wave velocity). The transition

region will become broader as Poisson's ratio increases towards 0.5 so

that different target materials will have both different critical impact velo-

cities (i.e., where V-- C l ) and different transition velocity ranges.

In compression, most materials exhibit an increasing Young's modulus
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with increasing strain, i.e. ,

Similarly, the bulk modulus ( _ ) usually increases under isostatic compres-

sion. In isotropic materials, the relationship between the shear modulus

( _ ), Young's modulus and bulk modulus is given by

G- (16o)

Since both y and _ increase under isostatic compression, the shear

modulus of isotropic solids will also increase under the same conditions.

In some solids the elastic moduli increase with temperature. In these cases

isostatic compression will cause a decrease in the elastic moduli. Negative

pressure coefficients of elastic constants have been measured at room temper-

ature for fused silica and Pyrex glass both of which have positive temperature

coefficients of the elastic constants below 500°C.

The behavior of the elastic constants of single crystals under isostatic

(45)
pressure is more complex. The shear stiffness coefficient (_+¢) de-

creases with pressure in certain cubic crystals, notably KCI and RBC1.(46)

In the less symmetric crystals, several of the elastic constants may have

negative pressure coefficients. Alpha-quartz, for example, has at least two

negative pressure coefficients as shown in Table 5. In alpha-quartz, the

shear stiffness along the optic axis { _ ) decreases with pressure while

the shear stiffness along the K and _ axes ( C_ ) increases with pressure.

Clearly, generalizations about the effects of pressure upon the shear modu-

lus based upon atomic force-constant considerations must include more than

the nearest neighbor interactions if negative pressure coefficients are to be
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predicted.

2. Plastic Stress Waves. The elastic wave velocity relations given

in the previous section are valid for small amplitude stress waves. With

increasing stress-wave intensities, the velocity relations become nonlinear

functions. These nonlinearities arise from two different factors. The first

is the nonlinearity caused by higher order terms in the stress-strain relations

for finite deformations. (47) The theory for finite amplitude stress waves is

a complete subject in itself and will not be treated here. The second is the

nonlinearity associated with plastic deformation where the tangent modulus

(_0_/_ associated with infinitesimal stress
)

of elasticity 6 ,_,
amplitude

waves is dependent upon the strain. High-intensity stress waves whose

stress amplitude exceeds the elastic limit are known as plastic waves. In

general, the plastic-wave velocity is dependent upon both the strain and the

strain rate. (48)

Strain-rate effects in metals have received extensive experimental

study. Each class of metals or alloys appears to behave in a different

manner. Dislocation theory (49) provides a theoretical explanation of strain-

rate effects. The evidence suggests that for crystalline materials, strain

rate dependence is associated with motions of dislocations. Dislocations

are arrays of lattice-point defects which may take several different forms,

e.g., a line, a loop, a helix, a screw or combinations thereof. Each type

of dislocation has a characteristic velocity which is dependent upon the host

lattice structure and the absolute temperature. Hence a general discussion

of strain-rate dependence becomes quite complex. The possibility of dis-

location motion at velocities above the highest elastic stress wave velocity
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is the subject of considerable controversy. If the velocity of any disloca-

tion motion may not exceed the fastest stress wave velocity ( _! ), under

hypervelocity impact conditions, dislocations ahead of the penetrating pro-

jectile are not free to move and the intrinsic strength or dynamic yield

point is determined by the interatomic forces alone.

Plastic waves have been studied extensively under tension impact

conditions. Because of the decreasing slope of _O'_/_E with increasing
g

strain for most metals, the plastic wave portion of a tension impact distur-

bance travels with a lower velocity than the elastic wave portion causing the

stress pulse to become elongated at positions remote from the point of dis-

turbance. (44)

3. Shock Waves in Solids. Since the elastic moduli for isotropic solids

usually increase under compressive stress, the several stress wave velocities

will also increase with compressive stress. Thus, attempts to propagate in-

tense stress waves will result in the generation of a discontinuous wavefront.

Stress waves which require discontinuous functions to describe the wavefront

are known as shock waves. The shock wave velocity will usually be greater

than the corresponding elastic wave velocity in a given isotropic solid.

In a gaseous medium, the thickness ( Ss ) of an intense shock front is

equal in length to a few mean free paths of the gas molecules.(50) By

analogy, the shock front thickness in a solid medium is on the order of a

few phonon mean free paths. In gases, thermodynamic equilibrium is reached

The term shock wave as used in the literature generally refers to an intense

bulk-dilatational wave. However, in the broader context used here, shear-

mode shock waves are also possible.
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only at finite distances behind the shock front. Similarly, thermodynamic

equilibrium in solids behind an intense shock front requires distances

equivalent to several phonon mean free paths. The lack of thermodynamic

equilibrium within the shock front can be illustrated by comparison of the

impact velocity with the instantaneous velocity of lattice vibrations (near room

temperature). Assuming, for convenience, that the lattice vibrations behave

as harmonic oscillators, (i. e., ×=_U_C ) then the instantaneous lattice-

point velocity _/_f will be given by
/

d×
-- = c0  cot

where &O = 2._r;

= frequency of lattice vibrations

= maximum displacement of the vibrating atom within the

lattice unit cell

For a maximum displacement of one-tenth thelattice spacing ( a6 ), a lattice

frequency of I013 cycles per second (infrared band), and a nominal lattice

spacing of 5 angstroms, the maximum instantaneous lattice-point velocity is

Thus, the maximum lattice-point velocity is less than the impact velocity

in the hypervelocity region. This simple calculation is sufficient to illustrate

that even on an atomic scale, impact velocities in the supersonic range repre-

sent a gross disturbance to the lattice point displacements at the impact

interface.

The phonon mean free path (A.) in alpha-quartz at 0°C is 40 x 10 -8 cm
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or about 8 lattice spacings (51) given by

3/<
_. -

where K = thermal conductivity

H = heat capacity per unit volume

C = "mean sound velocity" - space averaged elastic wave velocity

The shock front thickness ( _s ) in alpha-quartz would be in the order of one

micron near room temperature ( _;s _-_ )"

D. Collisions Involving Porous Bodies

The calculations involving porous meteoroids are especially important

because of the relatively great frequencyofoccurrence of cometary meteoroids.

Impacts and shock waves in porous materials have been studied to a very

limited extent. Altshuler et al (10) obtained shock wave data for porous

(specific gravity = 5.52) and non-porous (specific gravity = 7.85) iron to

5 x 106 atm. The equation of state for tuff, a porous rock, is also available. (5'8)

In the following sections, the conditions during impacts between porous

materials and non-porous materials are compared to indicate the differences

caused by the presence of pores.

Case I - Impacts of Porous Meteoroids Against Solid Surfaces

Calculations of the shock-wave characteristics for impacts between

porous and solid iron, using Altshuler's data and assuming planar shock waves,

will be used to indicate the effect of porosity. The Hugoniots are shown in

Figure 25. The presence of porosity results in an increase in the pressure

and energy per unit mass at a given density of material in the shock front.

Since the pressures in the meteoroid and space vehicle surfaces must be

equal at the point of impact, the shock and particle velocities can be deter-
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mined. For example, consider the case of a porous iron meteoroid colliding

with a solid iron space vehicle surface at an impact velocity of 9 km/sec.

If we ask which combination of particle velocities for the porous and non-

porous materials add up to the impact velocity, we find using Figure 26

that at equal interface pressure the particle velocity ( t_, ) in the solid vehicle

skin is 3.8 km/sec. While the particle velocity ( t_ I ) in the porous "meteoroid"

is 5.2 km/sec. The shock velocities and density ratios can be read from

Figure 27. The energy per unit mass can be calculated from

e a - 27o

The results are given in Table 6. The energy per unit mass in the Porous

ll
"meteoroid" (1.4 x l0 ergs/gm).is significantly greater than that in the solid

vehicle skin (0.76 x l0 II ergs/gm). It seems likely that this energy distri-

bution will result in decreased meteoroid penetration due to greater evaporation

which in turn is due to greater conversion of kinetic energy into thermal energy

at impact. This conversion into thermal energy is illustrated in Figure 28,

which has been revised fromAltshuler's paper. Curve _-_ is the schema-

tic shock compression curve for a non-porous material. The thermal energy

(E r) added to a unit mass compressed to _ is indicated by the area of

triangle _1_7_ less the area of triangle _'l_ which is work required to

compress the material to _r at 0°K_ (E_,). The same type of material

(i.e., iron) containing pores will be compressed by shock waves to various

states along ,zrm_z. If we neglect the small amount of energy required to re-

move the pores by compression at absolute zero, (indicated by the dotted

line), the extra thermal energy added (_E T) to the porous material to com-

press it to n_l is given by the area _a__. Presumably, the
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increased temperature and pressure at _ will cause increased evaporation

or melting of the porous material when the pressure is released.

Case s II-V

When a non-porous meteoroid collides with a porous vehicle skin

(Case II), the particle velocity in the meteoroid is less than that in the vehicle

skin (see Table 5). The shock velocities and density ratios are also reversed

and the sign of the internal energy difference changes. When a non-porous

meteoroid collides with a non-porous vehicle skin (Case III) at the same velocity

as the preceding cases, the resulting interface pressure is increased and the

internal energy increase per unit mass is the same in both bodies. When a

porous "meteoroid" collides with a porous vehicle skin (Case IV), the initial

interface pressure is lower than in the previous cases and the internal energy

increase per unit mass is the same in both bodies and is roughly the same as

the value in Case III. To increase the impact velocity so that the initial inter-

face pressure is the same as that in Case III with porous materials requires

an impact velocity of 12.2 Km/sec. In this case (Case V) the particle and

shock velocities and the density ratios are increased. The internal energy

increases per unit mass in this case is 2.0 x l0 II ergs/gm.

It is evident that even a small amount of porosity significantly effects

the shock variables. The most important of these effects is the increased

thermal energy per unit mass. In the initial phase of crater formation, the

increased energy converted to thermal motion becomes unavailable to do

structural damage.

If the materials are very porous, as seems to be the case for cometary

meteoroids, the impact area is increased considerably and the initial interface
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pressure will be decreased. Due to the large increase in impact area it may

be better to calculate the crater depth using a one-dimensional theory.

E. Crater Wall Criterion

1. The Intrinsic Strength of Crystals. At low strain rates the shear

strength in crystalline materials is determined by the type and distribution

of dislocations. At high strain rates or when the geometry hinders dislocation

motion, the measured strength approaches the theoretical limit imposed by

interatomic forces.

Under isostatic compression, the engineering strength of most non-

porous materials increases markedly. Bridgeman's data (52) on static

compressive strength of several metals and ceramics for pressures in the

region of 400,000 psi are given in Table 7. The static compressive strength

increases with hydrostatic pressure becoming manyfold higher in normally

hard and brittle materials. These data provide evidence of the importance of

relaxation processes to static and dynamic mechanical properties. The pro-

cesses are highly restrained under isostatic pressure so that the static

strength approaches the dynamic strength.

A method, originally due to Frenkel, for estimating the theoretical shear

strength of crystals is describedby Kittel.(51) If one considers the stress due

to displacement of one perfect plane of atoms relative to another as shown in

the sketch below, the stress to a first approximation can be represented by a

sine function

0" _ 2_rd k?]

in which 0_ is the stress, G- is the shear modulus, a. is the space between
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atoms in a plane, d is the spacing between planes and X is the displacement

within a plane.

Ill

<

=¢
u}

I

, ', ©
I I

DISPLACEMENT (x)

As atom @ move, over atom Q the stress increases, passes through a

maximum and then decreases to zero. When atom _ is directly above atom

, it is in a state of unstable equilibrium with respect to forces in the X

direction. If the stress at the maximum value of this function is considered

to be the critical shear stress, the value of the critical shear stress (0-6 ) is

given by O'_ = _/2_d so that when 0_ and d are approximately equal,

as for the case of shear in a </00> direction on a

crystal

I00} plane in a cubic

in which G is the shear modulus given C4_ .

of the critical shear strength has been refined,

This approach to calculation

according to Kittel, (51) by

J. D. Mackenzie using an estimate of the form of the interatomic forces and

by "consideration of other configurations of mechanical stability that the

lattice may develop as it is sheared." These effects reduce the critical shear

strength to about G/30 in some cases.

Strengths as high as those predicted by this atomic model have been

observed for a number of materials in whisker form. In these crystals the

geometry restricts dislocation motion. Hoffman (53) lists the Young's modulus,
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ultimate tensile stress, and the tensile stress to Young's modulus ratio for

the strongest whiskers prepared from a number of materials. Several mater-

ials from this list are retabulated below with addition of the dynamic shear

modulus and the maximum shear stress ( 0"5 m_K ) to shear modulus ratio

_ l
(assuming _,--_-O" t ).

COMPARISON OF THEORETICAL AND OBSERVED STRENGTH

Iron

Copper

Sapphire

(corundum)

Carbon

Young' s
Modulus

(E)

29 x 106 psi

18

74

i xlO 6

Dynamic Ultimate
Shear Ten sile

Modulus Stre s s O't 0"8 max

(G) E

11.9 x 106 psi 1.9x 106

6.7 0.43

23.5 1.7

1/!5 l/1Z

1/42 1 /32

1/43 1 128

0.88 I/II

The ratios o's/G can be compared with 1/2 _/ and 1/30. The observed

ratios correspond quite well with the theoretically derived values: Since the

observed strength of whiskers increases with decreasing whisker diameter

and since the whiskers may have failed in tension rather than shear, the re-

suits for smaller diameter whiskers failing in shear are expected to yield

larger ratios. The possibility of still larger strengths is confirmed by the

recent results of McQueen and Marsh (54) who showed that the yield strength

of copper is in excess of 150 kilobars for shock wave experiments.- If the

maximum shear stress is one half the tensile stress at yielding, this indicates

a shear stress of 1.02 x 106 psi. Therefore, for copper 0"s/G = 0.152 which

can be compared with 1/2 7/" = 0. 159, giving an unexpectedly close comparison.

L
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McQueen and Marsh also indicate a critical pressure on the Hugoniot which

corresponds to the yield point (_ZP//eZV ' = 0). The negative pressure at this

point is a theoretical tensile strength. These theoretical strengths, with

corresponding shear stresses and other data are given in Table 8. The cal-

culated values of 0"%/_ based on this information are somewhat larger than

1/2 77' Based upon all of the information given above, the critical shear

strength = G/2_T is considered to be the best available value for the shear

strength at high strain rates.

2. The Influence of Shear Strength on Crater Formation. It has been a

common practice in fitting impact equations to experimental data to normalize

the impact velocities to the velocity of sound in the undisturbed medium. The

presence of a transition region, the velocity range near the sound velocity in

which there is a change in the relationship between crater depth and impact

velocity, has served as a partial justification for this practice. However, the

reason for the change in the relationship between crater depth and impact

velocity has not been clear. It seems reasonable that the processes governing

failure (i. e. , crater formation) should depend primarily on the properties of

the disturbed medium rather than the undisturbed medium since there is a sub-

stantial pressure discontinuity at the shock front even after the crater has

reached its final form.

Pressure profiles for impact of iron on iron and a natural meteoroid on

tuff have been calculated numerically by Bjork.(5' 8) These profiles indicate,

as might be expected, that the pressure gradients in the disturbed material

are greatest near the crater lip. It seems likely that shearing of the material

at the crater lip is the first requirement for ejection of material from the crater,
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at least in regions far from the impact point.

If one considers a cube of material at the crater lip, and assumes that the

material on the inside (toward the impact point) has already been removed or

melted, it is possible to visualize the shear stresses on this material. The

cube is pressed from behind by the high pressure material in the cavity. Motion

is resisted by the pressure of the material moving ahead of it and by inertial

forces and shear stresses. As the crater wall reaches its final position, the

motion of material slows down and stops while the pressure gradients and shear

stresses remain substantial so that, at this point, the inertial forces in the

tangential direction can be neglected. Therefore, the principal factors deter-

mining whether or not the material at the crater lip will be ejected are the

pressure gradient tangential to the wave front and the shear stresses in the

wave front.

It is obvious that the choice of a cube as the beam or ring element on which

the forces act is arbitrary. At the very high pressure gradients established

near the impact point these forces will act on a very thin ring since the material

nearer the impact point will have been ejected (Figure 29a). As the intensity of

the shock decreases, the thickness of the ring on which these forces act will

increase (Figure 29b). But the increase in thickness is limited because the

pressure decreases sharply toward the open crater (Figure 29c). This increase

in thickness is consistent with the observation that small fragments are ejected

from the crater early in the process at high velocities and large fragments at

(2Z)
low velocities later in the process. Reasonable dimensions for the radial

distance over which the pressure difference acts to cause shear are also in-

dicated by the thickness of the crater lip after crater formation is complete
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(Figure 29d).

3. The Dynamic Shear Modulus and Intrinsic Strength of Structural

Materials. An examination of the elastic property data in Tables 4, 5, and 7

indicates that high values of dynamic shear modulus are observed for low den-

sity metals such as beryllium, refractory metals such as tungsten, and for

ceramics such as corundum (A1203) and silicon carbide which contain elements

from the center of periods 2 and 3 of the periodic table. If one calculates the

intrinsic shear strength as a fraction of the shear modulus as suggested by

Frenkel and Mackenzie, the low density metals and ceramics will have the

highest strength to specific gravity ratios. The intrinsic shear strength (G/£,,)

to specific gravity ratio of beryllium is 1.85 x 106 psi and for silicon carbide

it is 1.23 x 106 psi. A comparable value for 34T stainless steel is

0.22x 106 psi.

There remains some uncertainty with respect to the choice of shear

modulus values. The values chosen here are for polycrystalline samples.

However, almost all single crystals show a substantial degree of elastic aniso-

tropy. The effect of anisotropy on crater formation has been illustrated by

Eichelberger and Gehring.(55) If the impacting particles are much larger than

the individual grains of the target material so that the forces resulting from

impact are spread over many grains, the correct choice would seem to be the

properties of the polycrystalline body. In intermediate cases, in which failure

can occur due to forces spread over only a few grains, the choice is uncertain.

Some materials are very weak in shear in particular crystal directions. For

example, the shear 'moduli for beta brass (CuZn) given by Lazarus (56) are

C44 = 8.24 x 1011 dynes and 1/2 (Cll - C12) = 0.975 x 1011 dynes/cm 2.2
cm
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This large anisotropy is characteristic of body centered cubic structures com-

posed of metals whose ions have closed shells (Zener57). In the case of large

grain size and substantial anisotropy, it may be important to use the smallest

shear modulus to calculate the intrinsic strength.

4. Variation of the Dynamic Shear Modulus with Temperature and

Pressure. The effect of temperature and pressure on the shear modulus, may

be important in calculation of the intrinsic strength. The temperature is of

direct importance in the case of space radiators operated at temperatures high

enough to affect the mechanical properties of the materials used. The shear

modulus of materials usually decreases with increasing temperature but in a

few cases, for example vitreous silica, an increase is observed. The tempera

ture variation of the shear modulus is influenced by the change in shear modulul

with volume at zero temperature, the thermal energy and the thermal expansior

The effect of target temperature on crater volume has been illustrated by

Eichelberger and Gehring (55) based mainly on data given by Allison et al.
(58)

The results indicate a marked dependence of crater volume on the properties

of target materials as these properties are affected by temperature. The metal

used were lead, aluminum, copper, zinc, and cadmium. These targets were

impacted at 5.01 Km/sec. The crater volumes increased substantially with

increasing target temperature.

The variation of the shear modulus of pure aluminum as a function of

temperature has been studied by K@.(59) The shear modulus decreases linearly

with temperature for aluminum single crystals and there is a pronounced de-

crease in shear modulus of polycrystalline aluminum in the temperature range

from Z00-400°C. Internal friction measurements at low frequencies indicate
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that this variation in polycrystalline aluminum is caused by grain boundary

relaxation.

The internal friction measurements indicate a long relaxation time for the

grain boundary: movement. Therefore, the linear variation in shear modulus

shown for the single crystal sample is more appropriate than the values for

pure polycrystalline aluminum for use with samples at the high strain rates

characteristic of meteorite impact.

Similar data for beryllium has not been found so far. For equiaxed grains

of uniform size, Zener (60) has shown that the ratio of the relaxed to the unre-

laxed modulus is given by

in which

£ ('7+5
- s C-/-4,0

9 is the Poisson's ratio. The Poisson's ratio of beryllium is very

low and shows marked anisotropy, varying from 0. I0 +_ 0.0Z.L"c" axis to

0.035 + 0.01 _["c" axis. Therefore, the ratio of the relaxed to unrelaxed shear

modulus (GR/Gu) will be between 0.42 and 0.45. The variation of the dynamic

elastic modulus (Young's modulus)with temperature is given by White and

Burke.(61) It decreases from about 45 x 106 psi at room temperature to about

39.5 x 106 psi at 1200°F. If the temperature variation of the shear modulus

is similar to the temperature variation of Young's modulus, the combined effect

of the ordinary temperature variation and grain boundary relaxation could lead

to a relaxed shear modulus at 1200°F as small as 370/0 of the room temperature

value. As mentioned earlier, the unrelaxed values are probably applicable at

the high strain rates characteristic of meteoroid impact. The characteristics

of the grain boundaries can be altered by alloying if this is considered necessary.
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The pressure dependence of the shear modulus may also be important.

The important pressure for the crater wall criterion is that existing in the

material near the crater wall at the time the crater formation ceases. These

pressures are relatively low compared with the pressures existing at earlier

times. Since the pressures are lowest near the crater lip and the elastic

constants usually increase with the increasing pressure, the weakest material

subject to shear forces is the material at the crater lip. The pressure range

of interest is 104 to 105 bars.

The pressure dependence of the elastic constants has been measured by

several investigators. (46, 62-64) Measurements have been made for KC2,

NaCZ, CuZn, Cu, Ag, Au, A1, vc SiO 2 andMg; in most cases to pressures of

about 10 kilobars, the lower end of the range of interest.

If we take impacts of aluminum on copper as an example to evaluate the

importance of the pressure dependence of the shear modulus, we find that the

shear modulus of copper can be expected to increase about 2.8% in 104 bars

and about 28% in 105 bars. The pressure derivative of the shear modulus of

other materials is larger than that of copper in many cases but in these cases

the shear modulus and critical shear strength are usually smaller so that the

pressure range is smaller and the percentage change in the shear modulus for

this pressure range may remain about the same. These changes in shear modu-

lus are somewhat smaller than the uncertainties in the choice of a strength

criterion. Furthermore, the increases due to pressure may be somewhat offset

by decreases due to temperature rise when the shock wave passes. Therefore,

the useofthe shear modulus at atmospheric pressure in the critical shear strength

criterion is justified until further improvements are made in this shear strength
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criterion. The most important variation in properties likely to occur in space

radiators is the decrease in the elastic constants due to high operating tempera-

tures. For aluminum used at 370°C ( ,v 700°F) the decrease in shear modulus

for a single crystal is about 23%. In the case of steel impacting on 25-0

aluminum, the increase in temperature from room temperature to 370°C

results in a 19% increase in crater radius. Again, in view of the crudeness

of the crater-wall criterion it doesn't seem necessary to make a correction

but, at higher temperatures, a correction would probably be necessary.
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III. SUMMARY AND ILLUSTRA TIVE CALCULATIONS 

This part presents a brief synopsis of the present status of this theory, 

and shows how to use the formula for crater size. No familiarity with other 

parts of the report is as sumed. The formulas below are pres ented in such a 

way that the interested reader may apply them readily, without the necessity for 

going through the lengthy analysis above . 

1. Review of the Anal ys is 

When a particle strikes a target surface at high speed, large amounts of 

energy and momentum are quickly depo site d over a very small portion of the 

surface. This release drives a strong shock wave , usually hemispherical in 

shape, into the target, generating extremely large pressures . Because these 

pressures (normal stresses) are so large compared with the material's resist

ance to shear defo rmation, o ne may consider that the target material behaves 

like an inviscid, compress i ble flu i d. Thus the problem of determining the 

response of the target is essentially that of solving for the flow behind a strong, 

hemispherical shock wave . This flow pattern is described by the standard 

fluid-mechanical equati ons expre ssing the conservation of mass , momentum, 

and energy, together with the equation of state of the medium. The solution of 

these equations is an exceedingl y formidable task. They are coupled, nonlinear 

partial differential equations in two independent spatial variables, as well as the 

time. Furthermore , as the shock w ave advances into the target, distributing 

its energy over more and m o re mass , the strength of the shock decays, so that 

ultimately the fluid-mechan ical approximation itself ceases to be valid. At this 

stage , a transition to a model whi ch properly accounts for the plastic and elastic 

behavior of the medium is needed. 
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In order to make possible an analytic solution of this complicated prob-

lem, a series of approximations to the physical picture has been made. They

can be grouped into three main areas, and are described in the paragraphs that

follow.

The first simplification is to examine only that class of solutions in which

the fluid motion is self-similar, i.e. , the distribution of physical quantities at

successive instants is assumed to be the same when viewed on a scale defined

by the shock radius at each instant. The mathematical consequence of this is

to suppress time as an independent variable. Each physical quantity, instead

of depending separately on the time and on the distance r from the impact

point, is now a function of the combination r/_s(_) , where ,_s(t) is the

shock-wave radius at any instant. This reduction in the number of independent

variable constitut es a significant simplification in the differential equations that

must be solved. At the same time, it imposes two restrictions.

The first restriction, which assures that there will be no explicit time de-

pendence in the differential equations, is that the shock radius must grow as a

power of the time. Thus, out of all the possible solutions of the basic equations,

we examine only that class for which Rs _ _N

The second condition imposed by the similarity assumption is that the

boundary conditions must also be independent of the time, and this in turn re-

stricts the type of state equation that can be used to those of the form

e = ??(/)

where e is the internal energy per unit mass, _ the pressure, and _9 is any

function of the density p In actual fact, the thermodynamic states of typical
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target materials are well represented by the Mie-Gr_ineisen equation of state,

in the range of interest here. This equation may be written in the form

p P P)

where the Gr_neisen constant, _ , depends weakly on to , and where the

function A depends only on density. The leading term of this equation can be

accommodated in a self-similar solution, and will obviously be a good approx-

imation at very high pressure, where the second term, /_0o) , is negligible.

The theory in its present state assumes that A(_) can be neglected, and

makes the further approximation of using the equation of state of a perfect gas

of constant specific-heat ratio _"

e --

This approximation amounts to the neglect of the small variation in the

Gr_neisen factor P_o) , and permits all the known analyses for blast waves

in perfect gases to be applied to the present problem. In every impact, some

portion of the hydrodynamic flow will occur at pressures sufficiently low that

the influence of the term A_o) is not negligible. In an attempt to account par-

tially for the presence of the term A_o) , the value of _ that is used in any

particular impact case is taken as the value that matches the actual state equa-

tion at the impact point. For a perfect gas, the density ratio across a strong

shock is always (9"+/)A_'-/) Thus, if the actual density ratio across
the

shock that starts into the target from the impact point were to be 2, then 7"

would be chosen as 3. For a given projectile-target combination, the "effective

_"' depends on the impact speed.
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The second important area in which approximations have been made deals

with the extent to which the conservation of energy and momentum are satisfied.

Two types of solution have been studied. The first, which allows for spatial

variations in two directions, permits conservation of energy and momentum, and

explicitly describes the pattern of mass ejection from the target. The second

type of solution considers only variations radially from the impact point, con-

serves only the total energy, and does not describe the pattern of mass ejection.

All the results that have been found for the former solution indicate that it is

nearly identical to the vastly simpler constant-energy solution. The physical

explanation for this is not presently known, although several specular ions have

been advanced. The simplest of these is based on the experimental observation

that targets struck by hypervelocity projectiles often acquire momenta many

times that of the projectile, implying that the material ejected from the target

must also carry several times the projectile momentum. Thus it appears the

momentum of the projectile itself plays a relatively minor role in the overall

conservation process.

These first two approximations -- that of similarity, and that dealing with

neglect of momentum conservation -- are sufficient to permit an extremely

simple solution for the time history of the shock radius

where E is the kinetic energy of the projectile, _- the time after impact, /o o

the undisturbed target density, and If(?' ) a function representing the influence

of the equation of state. This prediction shows reasonable agreement with the

very limited amount of data that have been published so far. It disagrees chiefly
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in that the experiments tend to favor a time dependence more like _/s , which

suggests that the experiments lie in a range intermediate between the strong-

shock limit ( _s _ __2/5)and the acoustic limit ( _s_ F )" In any event, the

agreement between experiment and the present form of the theory is not bad, and

may be expected to improve at higher impact speed. Thus, if used with caution,

it will serve as a basis for crater-size predictions.

This brings us to our third and final approximation, which is not asso-

ciated with the fluid-mechanical equations as such, but rather with the later

stages of crater formation, where the plastic and elastic response of the target

becomes important. This stage is reached when the inviscid-fluid approxima-

tion breaks down, i. eo, when the target's resistance to shear deformation is no

longer negligible compared to the pressure being generated by the shock. Thus,

the blast-wave solution must be cut off at the instant when this pressure has

become equal to the intrinsic shear strength, C-/2_ , C_ being the dynamic

shear modulus. Ideally, one would use the conditions at the instant of cutoff as

the starting values for a plastic- and elastic-wave solution, from which the

ultimate crater radius could be found, as a function of the cutoff value of the

shock radius, among other things. The theory in its present form does not ac-

tually carry out such a solution. Instead, the radius of the crater is taken to

be equal to the cutoff value of the shock radius. The formula that results

is quite simple, and agrees well with experiment, especially in materials like

lead, in which hypervelocity conditions are achieved at relatively low impact

speeds.
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In summary, then, the net effect of the set of approximations described

above is to make possible a simple solution, giving the dependence of the crater

radius on the pertinent impact parameters. In addition to its utility in making

predictions, the analysis contributes to our fund of analytical understanding of

the phenomenon as a whole, especially as regards the importance of momentum

conservation, and the separate influences of the state equation and material

strength. The theory is capable of considerable improvement, by accounting for

nonsimilar effects in the fluid-dynamic phase, and by accomplishing a better

description of the plastic and elastic stages of the process. The need for more

definitive experiments on shock-wave time histories is clearly indicated, and,

furthermore, it appears that some measurements of the dynamic strength

properties of targets must be made if the results of experiments are to be inter-

preted properly.

2. Illustrative Calculations

The formula recommended for crater size is Eq. (78) of Section I.

2 (7+1) .T.,(y) P

Here _c denotes the crater radius (the crater is assumed to be hemispherical)

and _ is the diameter of the projectile. (For nonspherical projectiles,

should be taken as the diameter of a sphere of equal mass. ) top is the density

of the projectile material, and V the impact speed. The symbol /P denotes

the intrinsic shear strength of the target, C_/_2_" , where C_ is the dynamic

shear modulus as measured, for example, by an ultrasonic technique. Table

lists values of C__/_7_ for a number of materials. Both _pV 2 and _ have
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the units of pressure.

gm/cm 3, V in cm/sec, and

useful conversion factors are

Multiply:

feet/sec

km/sec

psi

megabars

A convenient set of units to work with is to take (oF, in

IP in gm/cm-sec 2, i.e., in dynes/cm 2. Some

B__y To Get

30.48 cm/sec

105 cm/sec

6. 895 x 104 dynes/cm 2

1012 dynes/cm 2

The only quantity remaining to be determined is 2" which characterizes the

state equation of the target. The quantity 2" is actually the adiabatic index of

a perfect gas whose equation of state matches that of the target in the vicinity of

the impact point. The determination of _ is thus essentially a solution for the

initial conditions that exist between the shock wave that propagates into the tar-

get and the shock wave that travels back into the projectile. The steps to follow

are given below

1. Choose a value for the pressure _! in the region between the shocks.

This pressure is the same in the target and projectile.

Z. Find the particle speeds in both the target and projectile materials by

applying the following equation to each one, respectively

Table I gives the values of G
Z

$ , and _c for various materials.
)

to

V , is now found by adding the two velocities3. The impact speed,

This is the speed+ be,)found in the preceding step: V= L_I)PI_OJECTIL.E TARGET

required to generate, at the impact point, the pressure chosen in Step 1.
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4. The value of

found from

7" corresponding to the impact speed of Step 3 is now

-I

wherein the values used are those appropriate to the target material.

Repeating these steps at a series of values of _l then determines _'(V) ,

and this, in turn, allows one to calculate Rc/_ , using Fig. 8 for the function

(z*l) I,
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CONCLUDING REMARKS

The net result of the set of approximations described above is to

make possible an extremely simple solution, giving the dependence of

crater radius on the diameter, density, and speed of the projectile, and

on the dynamic strength and state equation of the target. Both fluid-

mechanical and solid-state considerations play a role in this solution, and

their individual effects are combined by the simple expedient of terminating

the blast-wave solution at the point where the shock pressure has decayed to

the intrinsic strength of the target. The fact that the solution for the fluid-

mechanical phase is simple enough to permit such an incorporation of the

target strength is a direct consequence of the fact that a constant-energy

approximation can be used. The formula that results displays reasonable

agreement with experiment, and may be expected to improve at higher impact

speeds, where the strong-shock approximations hold over a longer portion

of the process.

Improvements in both the fluid and solid aspects of the theory described

above can be achieved, at little or no expense in simplicity of the results.

In regard to the blast-wave portion, it would appear that the most fruitful

area to explore is the development of non-similar solutions. The most

definitive test to which this part of the solution can be put is the prediction

of shock location as a function of time. The experimental evidence presently

available in this area is quite limited, and apparently lies in a transitional

regime where the shock speed has begun to decay from the blast-wave behavior

_s "_ t2/5)toward the acoustic limit (_s _of). To properly account for this
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behavior, the hydrodynamic phase of the solution must be extended, so as

to incorporate the nonsimilar effects that enter by way of the low-pressure

term in the state equation. In spite of this deficiency, however, even the

presently available form of the solution gives a surprisingly accurate pre-

diction of the shock-wave location, and it may be expected to improve at

higher impact speeds.

On the solid-state side of the question, the most obvious area in need

of improvement is the rule for determining the crater size. There is no

theoretical obstacle to making the transition from blast-wave theory to a

plastic- and elastic-wave description at late time. Such an analysis would

provide a general relation between the final crater dimensions and the shock

radius at the instant of transition. Presently, these are assumed equal.

Finally, there is a need for further study of the importance of

momentum conservation, since the neglect of this consideration is crucial

in achieving the simplicity of the present solution.

Certain aspects of these theoretical findings have application to the

design and interpretation of experiments. Quite apart from its obvious use

as a practical method of estimating penetration, the implications of this

theory are that many experimental conditions must be carefully examined

if results of experiments are to be properly interpreted. In particular, it is

important to know the dynamic strength of the target material. Furthermore,

the influence of the equation of state demonstrated in these studies produces,

at high speed, a variation of crater radius with impact velocity suggestive of

"momentum scaling". The fact is that the total energy is the dominant para-

meter throughout the range of impact speeds, while reduction of the crater
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size below the value appropriate to pure "energy scaling" can be attributed

to the effect of the equation of state. Thus, extensive experiments in sub-

stances whose state equations are not well known would appear to be incapable

of determining the relative contributions from these two sources.
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APPENDIX A

TRANSFORMATION OF THE BLAST-WAVE EQUATIONS

This appendix outlines the steps by which the centerline equations

may be transformed to the _, 7 ' _ coordinate system, where:

N_ _ N_ 2_ _ (q,o)_-_---_- , _ , _ -= =q T_ _ q ae
For the constant-energy solution, of course, 7' , and hence @ , are zero,

A convenient starting point is to use the centerline equations in the form

N

-2_ N P

The quantities and jC can be eliminated from these, using

d_

c - It q
The resulting set of equations contains only _ ,

(.-N)_ P +de +(s¢ +_) _ =o

, _- and Z- :

(A-I)

(A-Z)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

-¢. +(¢,-N) ¢L]..,_
+¢,- + I _Z_ +2 7" +-_ =0 (A-8)
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Equation (A-7) has been used in deriving the form of (A-9) shown here.

we now use the continuity equation (A=7) to eliminate

and the energy equation (A-9) to eliminate _/_,vq

leads to

(A-9)

If

_._,_ from (A-8),
, a little algebra

andwhich may be regarded as a means of finding q , once _g ,

are known. Next, since the quantity I d_- can be written as

equation (A-9) can be rearranged to

,_, 2 - (_.-I) ,, - (3z- ,) ,

Equating this value of _46/6_,_ to that given by (A=10) then gives

, ,__ _:_-N)'-_-I_-_.-,). -(3_.-,)__3 _.-,

In these coordinates, the equation for D_)/D0 may be written as

= z -½ z"- 2 _ -2 _'oo

where

(A-l_))

(A=11)

(A=IZ)

(A=I3)
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APPENDIX B

SIMULATION OF METEOROID IMPACT BY ENERGY RELEASE

A major conclusion reached in Part I, above, is that crater formation

is controlled chiefly by the energy of the impacting particle, its momentum

playing only a secondary role. Thus we may expect to simulate hypervelocity

impact by any experiment in which a strong shock wave is driven into a

target by the deposition of energy in any form.

It is of central importance, in considering any simulation of this type,

to be certain that the mode of energy deposition does in fact drive a strong

shock wave into thetarget. We shall return to this question below, but for

the moment we assume that this condition has been achieved, and present the

formulas that follow as a consequence.

The relation between crater radius and the amount of energy absorbed

by the target is Eq. (77):

= (r+O I , (B-1)

To specify 7" in the particle-impact case, we matched the actual conditions

behind the shock at the impact point, and found that 7' depended only on the

impact speed V We may follow the same procedure for the case of energy

deposition by some other means, except that we must now identify the

experimental parameter that fixes the shock strength, and hence 7" The

quantity that does this is the power being absorbed by the target, per unit

area in the plane of the shock. To see why this is so, consider a plane shock

wave of unit area advancing at speed _/s into a medium of undisturbed

L RM-1655-M-4
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density Po

> &, eo -- o

do =0

In unit time, this shock processes an amount of mass given by

unit area, and raises it to the energy (per unit mass)

' 2po

5 per

(B-Z)

Thus the rate of energy acquisition by the material behind the shock, per unit

time and area, is

power/area = /_o Us 2/°o -- = -2- _i 6tl (B-3)

The strength of any shock wave may therefore be characterized by the amount

of power per unit area which it delivers to the medium through which it

travels. In particular, such a specification of shock strength serves to define

T The Hugoniot curve for iron is interpreted in this light in Fig. Z2, where

it is seen that weak shock waves, characterized by Y" = 1 0 (i. e. , (_t/tOo = 1 1/9)
g

impart about 10 9 watts/cm z while extremely strong shocks, for which _ = Z
p

transfer to the medium some 1013 watts/cm z. These orders of magnitude

are typical of metals. In fact, for any material whose Hugoniot is given by

6 = c + s_l (B-4)

a little algebra will show that

power/area = _6 '_-

2 Z 2s
(B-5)
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This function is shown in Fig. 23. In view of the fact that 1.0 megabar-km/sec

is equal to l0 I0 watts/cm 2, it can be seen that shock waves in the range of

interest here will generally have "power ratings" from 109 to 1013 watts/cm 2.

It is interesting, in this connection, to note that the experiments reported by

Altshuler et al9 achieved shock waves of strength equivalent to 4 x 1 011 watts/cm 2

If we consider the deposition of a total energy E over an area A of the

target surface in a time _ , it is clear that _ will be a function only of E/A_-

Thus the craters formed, according to Eq. (B-l), will depend on the two para-

meters E and _T _ Fig. 24 shows the craters predicted by Eq. (B-l) for

deposition of energy in iron targets, at various values of E and AT _ . Over-

laid as dotted lines are analogous predictions for the craters formed by impact

of iron projectiles of various sizes, striking at various speeds. As noted above,

there is a one-to-one correspondence between impact speed and the power

density at the impact point, and both of these are shown on the abscissa scale

of this figure. The point to be noted is that any experimental technique capable

of driving shock waves of strength greater than i0 llwatts/cm2 can simulate

impact conditions which are presently beyond the capability of conventional

projection techniques. One energy source that immediately suggests itself for

such an application is the laser. By focussing the beam from such a device,

power densities of I013 watts/cm 2, delivered in less than a microsecond, can

be achieved (30) with existing equipment. The fact that the maximum output of

these devices is currently being improved at such a rapid rate indicates that

simulation by a laser beam is a promising experimental technique.

The calculations presented in Fig. 24 to illustrate the simulation

possibilities start from the hypothesis that the energy absorption takes place

RM-1655-M-4 I14



by means of a blast wave mechanism. Particularly in the case of electro-

magnetic energy deposition, this assumption needs careful scrutiny. There

would appear to be little doubt that is is the correct mechanism when the

rate of energy input is sufficiently high. Certainly, the different phenomena

brought into play, at one extreme, by striking a match and, at the other,

by detonating a nuclear bomb, provide evidence that the mechanism of energy

absorption changes, at some point, from one of linear heat conduction to the

nonlinear shock-wave mechanism. Exactly where such a transition will

occur in solid media is not presently known, although it is presumably

amenable to theoretical analysis. The conclusions reached above are based

on the assumption that a shock wave will be the correct mechanism when-

ever the incident power density exceeds l0 ll watts/cm 2
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APPENDIX C

SOLUTION NEAR THE SONIC POINT

At the "sonic" point, two quantities must be zero:

_ 0 (C-l)

The asterisk is used here and in the equations that follow to denote conditions

at the sonic point. Because these quantities are zero, the values of _/_

and _/_ are indeterminate, according to Eqs. (A-I2) and (A-10). To

resolve the indeterminacy, put

and let

(C-4)

so that

E=_, _-_ _ , o_=_, _-_ 6

While all three of _, ?_ and _ appear in these equations,

be noted that only two of them are independent,

(c-5)

it should

since (C-l) and (C-2) must

hold simultaneously.

By using Eq. (C-3), the expression for may be written as
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A second relation between "_l and _ may be found from

/__,,.__ _ (_,/_)"
_: =t_-_/ - (d_Id.z..q),+

(c-7)

Thus, (C-6) may be written as

4, - (r-O+ _-(','-O_-"-_(,'-O,_I(_'-N)
(c-8)

which gives a linear relation between "_l

(C-6) then gives a quadratic for _1 :

2

A,_, + B.,A_+ C = 0

and _2" Using this relation in

(C-9)

where A = _ #" Flo (C-lO)

B: %-r,-_,5 +C-_ F,<> (C-ll)

C ...

c ---C% + ;, _-C;_

-(,,-0(_ N)

(c-lz)

(c-13)

--(_'-N)_-(v_i)__(3__i)_*] (C-14)

F5= :_% _* ;_- -#-(I--N)

(c-is)

(c-16)

(c-17)
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;, = s(_,_m_+(ctN)(¢-i) 2- (_'-I) _< -@¢_ 0 ,'* (c-18)

FIO _

_* ¢ * - 2 "gee2

z -(_'-O_'+-s(,'-O_ '+
(C-19)

Having _, and "_2' one can now find

(,_.,'_,q)"(3+..<.)+,,(3_,,+.,,---e"__-,])-F,.
2 (_,'-_/)-&,

(¢-2o)

k7£1 + s +
(,_"-N) 22._ (C-21)

L-+7t77-_;+ _., (C-22)

I I-IV ,.Vv¢ ?.,2 _[,p.,

z N _r/_ ,zr/*

-_(¢_'-_)
'7*_P \ae" ('7'°

(C-23)

'" ;. I
4- --

_v*
(C-24)
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Tab] e I

HUGONI OT DATA

11s= C + Su r

MATERIAL

SILVER

GOLD

CADMIUM

COBALT

CHROMIUM

COPPER

MOLYBDENUM

NICKEL

LEAD

TIN

THORIUM

TITANIUM

THALLIUM

VANADIUM

TUNGSTEN

ZINC

BISMUTH

IRON

ANTIMONY

BERYLLIUM

MAGNESIUM

INDIUM

NIOBIUM

PALLADIUM

PLATINUM

RHODIUM

TANTALUM

ZIRCONIUM

ALUMINUM

LUCITE

FUSED

QUARTZ

,% c, -_ocz GI2 Tr
gm/cm3 km/sec S MEGABAR$ MEGABARS SOURCE

1.6_ 1.09q II, 65I0. q9

19.2q

8.6q

8.82

7.10

8.90

I0.20

8.86

ll.3q

7.28

II.68

q..51

I 1.8q.

6.1

19.17

7.1q

9.80

7.87

6.62

1.82

1.7q

7.31

8.57

12.0

21 .q5

12.qq

16.6

6.5

2.7

1,18

2.20

3.22

3.06

2.ql

q.65

5.18

3.97

5.17

q.67

2.07

2.67

2.08

q.79

1.82

5.11

_.00

3.0q,

2,0

q.o

2.0

7.98

q.q9

2.37

q.q5

3.79

3.67

q,. 68

3.37

3.77

5.85

2.59

1.30

1.61

1.72

1.51

1.5q

I.q8

I. 20

I.ql

1.52

I. q3

1.88

I. 07

I. 57

1.21

I. 27

I .58

1.36

I. 59

I. 67

1.09

I. 27

1.61

1.21

1.92

I. qO

I. 6q

1.15

0.93

I.II

1.800

.501

I. 909

I. 902

I. q.oq

2.73

1.930

.qBq.

.518

.505

1.033

.393

I. 592

3.07

.661

,392

I. 259

.265

I. 157

.351

.q.II

I. 695

1.726

2.89

2.72

I. 890

.92q

.92q

0.069

O. 0069

0.21

0. I_

0.21

0.0062

0.062

O.Oql

I .51

I. 56

.0792

.0372

0.0021

O. oq8

REF. 7.

,!

_P

REF. 66

REF. q3
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Tab1 e 2

N(9") FOR ONE-DIHEHSIONAL BLAST WAVES

7

I

I.I

I.U,

5/3

2.8

O0

1.001

I.I

1.2

1.3

I.it

1.8

2.0

2.5

3.0

It.O

5.0

7,0

I0.0

100.0

I000.0

3+1

O0

21

6

It

2.1111

I

2001

.5

.56888

.6

.61073

.62670It

.6Itl6

.5106

SOURCE

REF. 28

w

R

N

@

PRESENT REPORT

21

II

7. 6667

6

3.5

3

2.3333

2

1.6667

1.5

1.3333

I .2222

1.0202

I .0020

• 5683

• 58It3

• 5935

• 6000

.61It3

.6182

,62ItIt

• 6279

.6321

,63Itl

• 6365

,6385

.6Itl2

,6It 16
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Tab1 e 3

STAGES OF I_IERGY TRANSFORMATION DURING IMPACT

STAGE ENERGY TRANSFORMATION DURATION OR TERMINATION

to ELASTIC DEFORMATION K.E. TO STORED MECHANICAL ENERGY

2. PLASTIC DEFORMATION

3. SOLID STATE PHASE

CHANGE

_8

K.E. TO ABSORBED MECHANICAL

ENERGY

K.E. TO ABSORBED LATrlCE ENERGY

HIGH PRESSURE

COMPACTION

5. SOLID/LIQUID AND

LIQUID/GASEOUS

PHASE CHANGES

6. GASEOUS EXPANSION

(EXPLOSION)

7. BLAST WAVE

8. GASEOUS/UQUID AND

LIQUID/SOLID

PHASE CHANGE

9. PLASTIC DEFORMATION

I0. SHOCK WAVES AND

STRESS WAVES

II. FRAOMENTATION

ABSORBED MECHANICAL ENERGY TO

THERMAL ENERGY

ABSORBED MECHANICAL ENERGY TO

THERMAL ENERGY

ABSORBED THERMAL ENERGY TO

MECHANICAL ENERGY

ABSORBED THERMAL ENERGY TO

ABSORBED AND STORED MECHANICAL

ENERGY PLUS MECHANICAL ENERGY

RADIATED AWAY FROM TARGET

ABSORBED THERMAL ENERGY TO

MECHANICAL ENERGY

DYNAMIC MECHANICAL ENERGY TO

ABSORBED MECHANICAL ENERGY

RADIATION OF MECHANICAL ENERGY

STORED MECHANICAL ENERGY TO

ABSORBED MECHANICAL ENERGY

ENDS WHEN INTERFACE PRESSURE

EXCEEDS DYNAMIC YIELD

STREN GTH

ENDS WHEN INTERNAL ENERGY

EXCEEDS LATENT HEAT OF

SOLI DI FI CATION

OCCURS IN SOME CRYSTALLINE

SOLIDS AT ELEVATED TEMP.

& PRESSURE

CONTINUES UNTIL THERMAL

ENERGY EXCEEDS REMAINING

KINETIC ENERGY

OCCURS WHEN LOCAL TEMPER-

ATHRE EXCEEDS HIGH PRESSURE

MELTING OR BOILING POINT

OCCURS WHEN LOCAL RATE OF

ENERGY ABSORPTION EXCEEDS

RATE OF ENERGY RELEASE BY

MECHANICAL OR THERMAL RAD-

IATION

EFFECTIVELY ENDS WHEN RATE

OF ENERGY RELEASE FALLS

BELOW THE STRONG SHOCK WAVE

VELOCI1Y

OCCURS AS THE OUTER TEMPER-

ATURES OF THE ENLARGED

DAMAGE AREA FALL BELOW THE

BOILING AND FREEZING POINTS

OCCURS MiEN BLAST WAVE

PRESSURE EXCEEDS DYNAMIC

YIELD STRENGTH. ENDS WHEN

STRAIN RATE BECOMES LESS

THAN WEAK SHOCK WAVE

VELOCITY

CONTINUES UNTIL ALL DYNAMIC

MECHANICAL ENERGY IS

ABSORBED

OCCURS AFTER RAPIDLY DEVEL-

OPED HIGH COMPRESSIVE

STRESSES
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Tab1 e it

PHYSICAL PROPERTIES OF SELECTED SOLIDS (AT ROOH TEMPERATURE)

MELTING OR

DENSITY SOFTENING

p POINT

MJTERIAL Om/ cm3 °C

PLASTICS

POLYETHYLENE 0.90 IO0°(S.P.)

POLYSTYRENE 1.06 86°(S.P.)I

LUCITE* 1.18 85°(S.P.)

SOFT METALS

INDIUM 7.28 156 °

LEAD 11.3 327 °

SOLDER(6OSn-qOPb) 8.52 188 °

METALS

ALUMINUM 2.71 660 °

DURAL (17ST) 2.87 5qo °

COPPER 8.9 1083 °

STAINLESS STEEL (3qT) 7.9

IRON 7.7 1535 °

TUNGSTEN 19.3 3qlO °

BERYLLIUM I.Bq 1278 °

GLAS_._SS

PYREX 2.23 820°(S.P.)

FUSED SILICA (Si02) 2.20 i870°(S.P.)

CERAMICS

HEHATITE (Fe203) 5.20 1565 °

MAGNETITE (Fe3Oq) 5.18 1538 °

CORUNDUM(AI203) 3.98 2020 °

SILICON CARBIDE 3.1 2600 °

POROUS SOLIDS

IRON (P = 99.3_) 0.06 1536 °

IRON (e = 93.55) 0.5 1535 °

IRON OXIDE (_-99.1_) 0.05 _,_1550 °

(P=90."`%) 0.5 .,.1550 °

YDUNG° S

MODULUS

Y

IOBpsi

O, II

0.78

0.58

I .57

2.3

"`.5

10.5

I0."`

18

28 ."`

29.9

62.5

"`"` .8

9.0

10.6

3q

33

59

68

_0.3

<0.3

BULK

DILATATIONAL

WAVE VELOCITY

CI

km / sec

2.0

2."`

2.7

2."`

2.0

3.1

6."`

6.3

5.0

5.8

5.9

5.q

12.9

6.6

5.9

6.8

7.3

I1.0

12.0

<2

"9=2

DYNAMIC

SHEAR

MODULUS
G

106psi

0.065

0.19

0.21

0.5"`

0,78

1.58

3.6

3.9

6.7

II.0

11.9

19.q

21.3

3.6

"`.5

15

13

23.5

2"`

0.01

•,,,_ O. I

0.01

0.15

SHEAR

WAVE

VELOCITY

C S

km I sec

0.5

i.I

I.i

0.7

0.7

I.I

3.0

3.1

2.3

3.1

3.2

2.6

8.9

3.3

3.7

",.IS

"`.2

6.q

7.3

,,,=1

,<1

" LUCITE IS A TRADE NAME FOR POLYMETHYL-METHACRYLATE

INTRINSIC

SHEAR

STRENGTH

G TO °
30 2_

106psi

0.002-. 0O9

0.006-.03

0.007-.03

0.02 -.09

0.03 -.I

0.05 -.3

O.I - ,6

0.1 - .6

0.2 -I

o.q -2

O.q -2

0.6 -3

0.7 -3

0.1 - .8

0.2 - .7

0.5 -2

o.q -2

0.8 -q

0.8 -q

_0.001

_O.OI

q=O.O01

"c0.02
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Tab1 e 5

VARIATION OF ELASTIC CONSTANTS WITH PRESSURE

MATERIAL

_-gUARTZ

(sio 2)

FUSED SILICA

(SiO 2)

ALUHINUM

COPPER

ELASTIC

MODULUS

M

CIq

Cztq

C66

CII

Cqzt

K =_ (CII + 2CI2 )

C_

K =_ (CII + 2CI2 )

Citq

PRESSURE COEFFICIENT

OF ELASTIC MODULUS

-9.0 xO -6 cm2/kg

_.9x0 -6 cm2/kg

-6.8x10 -6 cm2/kg

-I.3xlO -8 cm2/dyne

-I,OxlO -8 cm2/dyne

o_,_o__ C_'_)

o.,_x,o5._ (_÷r)

o.,,,x,o_._- (,,'r)

0"31x106 _ (b_-r)

PRESSURE

RANGE

STUDIED

I000 ATHOS.

3.5x106 dynes/cm 2

REFERENCE

67

68

_6 (p.32q)

q6 (p.32q)
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Table 8

INTRINSIC STRENGTH BASED UPON SHOCK WAVE DATA

(BASED UPON McQUEEN AND HARSH 5_)

14ATERIAL

Ag

Au

Be

Cd

Co

Cr

Cu

Hg

149

14o

Ni

Pe

Sn

Ti

T

V

W

Zn

C CRITICAL PRESSURE

(PH = O_t ) AT dP/dV = 0

-17_ kbar

292 "

273 "

75 "

371_ .

330 "

233 "

32 "

70 "

5t_8 "

331 "

77 "

86 "

237 "

68 "

329 "

606 "

107 "

2.52xlO6ps i

;.23 " "

3.96 " "

1.09 " "

5. u,3 " "

;.79 " "

3.38 " "

0._6 " "

I . 01 " "

7.95 " "

_. 80 " "

I. 12 ....

1.25 " "

3. _1_ " "

0.99 " "

II. 77 " "

8.80 " "

I. 55 " "

SHEAR

STRESS

_'6 max

I. 26x 106ps i

2.12 " "

I . 98 " "

O, 55 II .

2.72 " "

2. _0 " "

I . 69 " "

0.23 " "

0.51 " "

3.98 " "

2. I;O " "

0.56 " "

O. 63 " "

1.72 " "

O. 50 " "

2.39 " "

q'._0 " "

O. 78 " "

DYNA141C

SHEAR

140DULUSG

8.9

6,7

11,6

0.78

19.q,

_'_$ faSX

6

II_.5

_/_

il_._
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