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61. THERMAL ANALYSIS OF CONNECTORS

61.0 Summary

by

S. Levy and L. H. Tomlinson

This Section has been divided into four parts: Section 61.1, Fluid

Heat Transfer Coefficients; Section 61.2, Radial Heat Flow Through a Surface

Film into a Circular Flange; Section 61.3, Temperature Transients in Bolts;

and Section 61.4, Temperature Transient Analysis in Flange Assemblies.

Section 61.1 is included because knowledge of the fluid heat-transfer

cQefficfent is necessary in order to evaluate the magnitude and duration of

temperature gradients within a flange connection during the transient state
after flow has started. In several examples, coefficients are calculated for

a hot combustion gas, liquid oxygen in straight forced convection, and liquid

oxygen in two-phase flow. Also a coefficient is calculated for a blanket of

stagnant gas to show how it could be used to insulate the inner wall of a

flange against sharp temperature changes. It may be stated that calculations

of heat-transfer coefficients in single-phase flow are fairly simple and

straight-forward as illustrated in the first two examples. In two-phase flow,

however, this is not the case, and in many situations the coefficients may

only be estimated or guessed at by people with considerable experience and

knowledge in the field.

Section 61.2 presents a thermal analysis of transient heat flow into

a flange which takes into account the curvature of the flange and is the

type of analysis necessary for the larger radius ratios (outer radius divided

by inner radius. It is assumed that the flange temperature rise (or fall) can

be adequately described by a function such as T = Arn + B where A and B are

functions of time and n is a constant. A and B are determined by the conditions

that (I) the total change in heat content of the flange equals the integrated

heat flow through the boundary layer film; and (2) the total change in heat

content of the flange outside the mid-radius circle equals the integrated heat

flow through the mld-radius circle. The constant n is determined to satisfy

the requirement of equal heat flow through the surface film and into the flange

at the time of maximum temperature difference from inner to outer wall of the

flange. It is assumed that the heat flows radially only. The film coefficient

and the thermal properties of the flange material are considered constants.

Analytical expressions are given for the maximum temperature difference and

the time at which it occurs. The results are in a form which can readily

be used in Section 48 to obtain distortions and stresses. Numerical results

are presented for several examples. These show a greater temperature difference

for the case of a stainless-steel flange than for an aluminum flange, as might

be expected, The results are also compared with results using "exact" methods

for a flat slab OE thickness equal to the flange thickness. Multiplying

certain coefficients by a factor of 0.95 brought the agreement to within about

a percent.
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Section 61.3 presents some preliminary information on what the bolt

temperature transients might be. Some temperature transient curves worked up

for a particular flange are presented and are used also for the bolt which

has a similar path length. Also included is a brief diicusslon of thermal

resistance of metal-to-metal surface contacts along with curves summarizing

some of the most applicable data. These data show that for low bolt pressures,

and especially for the steels, the thermal conductivity may run from a few

hundred to a few thousand Btu/hr.ft_ OF. At high bolt loading and for the

softer me_al, aluminum, the thermal conductivity may reach many thousands of

Btu/hr.ft_ OF and the joint may for all practical purposes be considered to

be bridged by conducting metal.

Section 61.4 presents the analysis of temperature transients in flange

assemblies by the use of a digital computer. Preliminary investigation shows

that the low-profile flanges (with radius ratios close to I) used commonly in

the missile industry may be regarded as sections of flat plate for purposes

of analysis. The permissible radius ratios are as high as 1.4. Analysis of

a simple model system representing a flat plate on the digital computer showed

very good agreement with previously known flat-plate data. Equations are

presented for the analysis of much more complex model systems representing a

specific flange assembly. The computer solution for this case is given. It

shows good agreement with the appropriate results obtained in Section 61o3.
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61.1 Fluid Heat Transfer Coefficients (by L.H. Tomlinson)

61.1.1 Introduction

The fluid heat transfer coefficient at the inner wall of a flange

will have an important effect on the magnitude and duration of thermal

transients within the flange. Very high coefficients (in the thousands of

Btu/hr. ft. z OF) result in the inner surface driving toward the fluid temp-

erature very quickly. In this case, thermal constants of the flange material
exercise most of the control over the thermal history. Lower heat transfer

coefficients which may sometimes be encountered will result in reduction of

the temperature transients and gradients, and the magnitude of the coeffi-

cient will be of considerable importance. It should be noted at this time

that all work to date has considered the outside of the flange insulated.

Heat flow from the pipe wall into the flange will be small until a combina-

tion of very low fluid heat transfer coefficients and high flange conduc_iv_

ity is encountered.

The thermal characteristics of the system may be best described

through the use of two dimensionless numbers:

2
the Fourier Number, K_/pcs

and the Biot Number, hs/K

where, K = thermal conductivity of flange material

p = density of flange material

c = specific heat of flange material

s = radial thickness of flange

T = time
h = heat transfer coefficient of the fluid at inner surface of the

flange

It will be shown elsewhere how these numbers are related to the

thermal transients in the flanges. For the remainder of this section we will

confine our discussion to methods of evaluating the h in the Biot Number

above.

The heat transfer equation with the widest application to the fluids

encountered in missile work is the Dittus-Boelter equation for flow in pipes.

In various standard heat transfer texts (Refs. 1-3), this equation may be

found with several slightly different coefficients. For calculations done

here, the following forms of the Dittus-Boelter equation are used (Ref. 2,

p. 394) :

Nu = 0.023 (Re)0'8(pr) 0"4 for heating the fluid (i)

Nu = 0.023 (Re)0"8(pr) 0"3 for cooling the fluid (2)

The above dimensionless numbers may be written as follows:

Nu = hD/Kf Nusselt's number

Re = DG/_ Reynolds' number 6

Pr = cp/Kf Prandtl's number
61-3
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where h = heat transfer coefficient of the fluid

D = diameter of pipe

Kf = thermal conductivity of fluid

G = mass flow density

= fluid viscosity

c = heat capacity of fluid

Other equations will be introduced where required.
now be calculated are listed as follows:

i. Hot combustion gas flowing in 2 in. I.D. pipe

2. Liquid oxygen flowing in 20 in. I.D. pipe

3. Nucleate boiling of liquid oxygen

4. Stagnant film of oxygen gas

Typical set of

consistent units

(Btu/hr. ft.2 OF)

(ft.)

(Btu/hr. ft. OF)

(lb./hr. ft 2)

(lb./hr. ft.)

Btu/ib. OF

Examples that will

7
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61.1.2 Sample Calculations of Heat Transfer Coefficients

Example I. Heat transfer coefficient for hot combustion gas flowing

in 2 in. I.D. pipe.

Given data: i0000 lb./hr, flow rate

1700°F gas temp.

940 psi pressure

The following were obtained from Ref. 3, assuming that values for air

are close enough at the low temperature of the gases:

= 3.1 x 105 ib./sec, ft. or 0.iii lb./hr, ft.

c = 0.28 Btu/Ib. OF

Kf _ 0.044 Btu/hr. ft. OF

It may be calculated that:

G = I0000 x 144 = 4.58 x 105 lb./hr, ft_

2
D _ -- - 0.167 ft.

12

Equation (2) will be used for this case

Nu = 0.023(Re)0"8(pr) 03

0.167 x 458000
Re = DG/_ = 0.iii

= 6.89 x 105

Pr = C_/Kf 0.28 x 0. iii= 0.444 = 0.705

0.8(0.705)0.3
Nu = hD/Kf = 0.023(689000)

0.044 x 0.023(46600)(0.90)

0. 167

= 254 Btu/hr. ft_ OF

h

Example 2. Heat transfer coefficient for liquid oxygen flowing in
20 in. I.D. pipe at a flow rate of 3917 ib./sec.

The following were obtained from Ref. 5:

= 0.36 lb./ft, hr.

c = 0.4 Btu/Ibo OF

Kf = 0.08 Btu/hr. ft. OF

8
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It may be calculated that:
3917 x 3600 x 144

G=
i00_

20
D = ---- 1.67 ft.

12

Equation (I) will be used for this case.

Nu = 0.023(Re)0_(pr) 0/+

1.671 x 6.45 x 106

Re = DG/_ 0.36

0.4 x 0.36
Pr = c_/Kf = 0.08 -- 1.8

Nu = hD/Kf = 0.023(30 x i06)0"8(1.80"4

0.08 x 0.023 x 9.6 x 105 x 1.265
h=

1.67

= 6.45 x 106 lb./hr, ft 2

= 30 x 106

- 1340 Btu/hr, ft_ OF

Example 3. Heat transfer coefficient for nucleate boiling of liquid

oxygen flowing at 3917 Ib./sec. in a 20 in. I.D. pipe. Pressure is low at

this point (i00 psi).

First the burnout heat flux for pool boiling (no flow) is calculated by

the following equation of Zuber (Ref. 3, p. 349).

Q/A = _ °g(P_'Pv)'0"25( P_+DvI0"52 (6)

24 Ov P_ I

_he terms are defined and evaluated as follows, the information coming

from Ref. 5.

p_ = 72 lb./ft 3

Pv = 0.25 lb./ft. 3

Hfg = 92 Btu/Ib,

o = 35.3 X 10 -3 ib./sec 2

g = 32.2 ft./sec 2

liquid density

vapor density

heat of vaporization

surface tension

gravitational constant

Substituting these values in Eq. 6

x 92 x 0.25 35.3 x 10-3 x 32.2 x 721
Q/A I

25 0.252

neglecting final term

9
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Q/A = 18 Btu/ft_ sec.

= 65,000 Btu/ft_ hr.
i

burnout heat flux

Now that the burnout flux is known, a heat transfer coefficient for pool

boiling is calculated by use of the following equation of Labuntsov (Ref. 4)

I

h cp_ oT
2 js -- O.125(NRE)0"6_pr) 3 (7)

K/ (PvHfg)

p2 (Q/A) coT s

where NRe = _(PvHfg ) 3j (8)

The additional terms needed for the above equations are defined and

evaluated as follows, the information coming from Ref. 5

J

T
S

O

Pr -- c_/K__ =

K_ = 0,08 Btu/hr. ft. OF

c = 0.4 Btu/ib. OF

= 778 ft. ibo/min. Btu

= 205°R

= 0_36 lb./ft, hr.

= I.I x 10-3 lb./ft.

0.4 x 0.36

0.08

thermal conductance of liquid oxygen

thermal capacity of liquid oxygen

mechanical equivalent of heat

saturation temperature at i00 psi

viscosity of liquid

surface tension

=1.8

Evaluating equation (8) we get

NRe =
722(6.5,000)0.4 x i.I x 10-3

3
0. 36(0. 25x92) 778

x 162

= 7.05

Equation (7) may now be evaluated.

-3
h x0.4 x 72 x I.i x I0 x 162

2
0.08(0.25x92) 778

= 0.125(7.05)

i

O, 65 ( i.8)

h = 3230 Btu/hr. ft_ OF pool boiling heat transfer coefficient.

I0
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The temperature difference betweenwall and saturated liquid maynow be
calculated

T -T = Q/Ah = 65000 = 20OFw x 3230

The next step is to compute a burnout heat flux for the flowing liquid
oxygen by the following equation of Kutaleladze (Ref. 6)

2 0.25

Q/A[ Pv
PvHfg °g(P_-Pv)"

25

o -Ov o.] i + 0.057

(9)

Two additional terms need to be defined and evaluated

V = 25.3 ft./sec.

T_ = 205°F

Equation (9) is now evaluated

velocity of liquid flow

temperature of liquid

0 25

q/A[.x92 '0252 ] "0025 35.3 x 10-3 x 32.2 x 72

= 0.085[25.3 ( 72 )0°25] 0.535.3 x 10-3 x 32.2

Q/A = 9,700 Btu/sec. ft 2 OF

= 350,000 Ftu/hr. ft 2 OF

057/ 72 I 0.5 0.4(0)i+0. _0. 251 92

NOW Fig, 61.0 is constructed as shown with a llne of slope equal to 3

passing through the pool boiling flux and (Tw-Ts) 0 Then the new burnout flux

just calculated is entered on the curve and a new (T -T ) value of 39°Fw s
obtained. This graphical method was described to the author in a personal

communication from No Zuber who is now in the Advanced Technology Laboratories

of General Electric Co.

q/A
Now h = (Tw_Ts)

= 350_00Q
39

= 9,000 Btu/hr. ft_ OF heat transfer coefficient for

nucleate boiling in the flowing

oxygen stream.

61-8
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Example 4. Heat transfer coefficient for a stagnant film of oxygen

vapor at low temperature.

The main reason for making this simple little calcuation is to show how

low the heat transfer coefficient might go and to suggest a possible use

for this.

Assume the vapor film to be at about -250F and the thickness to be

1/16 in. Then Ref. 5 gives a value for Kf of 0.0061Btu/hr. ft. °F,

Then: h m Kf/s

m 0.0061 x 12 x 16

1.15 Btu/hr. ft_ OF

The actual value will no doubt be several times higher due to natural convec-

tion or flow leakage, but this is still far lower than any of the normally

occurring fluid coefficients and could be applied to certain flanges in

order to reduce the magnitude of the temperature transients in them. The

method of application might be to place a thin metal sleeve liner in the

pipe at each flange location so that vapor might be trapped behind it. This

scheme would be considerably less effective for hot gases due to heat radia-

tion and to the higher conductivity of a hot gas.

61- I0
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61.1.2 Discussion

From the above examples and other calculat£ons made in the past, one

may devise a chart illustrating the approximate ranges into which the

coefficients may 5e expected to fall.

Flow condition

Gas flow

Liquid flow

Straight convection

Film boiling

Nucleate boiling

Heat transfer^coefflcient

<Btu/hr ft z oF)

100-500

200-2000

100-300

I000-i0,000

The above ranges of coefficients are higher than would be expected in

normal practice and most examples will perhaps lie on the high end of these

ranges. These high heat transfer coefficients are commonly encountered in
the missile field because fluid transfer is being carried out very rapidly in

mlnlmum-wefght equipment with flow friction losses being of secondary

importance.

In actual practice it is possible that in the initial transient, all

regimes of heat transfer coefficients may be passed through by cryogenic

fluids at lower pressures. Initially, with high temperature differences,

film boiling may exist. Then as temperature differences decrease some

nucleate boiling may take place, only to be followed by straight liquid

convection as inner wall temperatures fall to near the fluid temperature. At

higher pressures, forced convection may be the only mode of heat transfer
encountered. The boundaries for each of these modes will depend upon: (i)

the fluid properties; (2) the pressure and flow conditions; (3) the material

and temperature of the flange; and (4) the conditions just upstream of the

flange.

1!
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61.1.4 Conclusion

In conclusion, two main statements should be made on the subject of

calculation of heat transfer coefficients.

I. Calculations are straightforward for the case of single phase flow

and use of the Dittus-Boelter equation or its equivalent will be satis-

factory for practically all the fluids encountered (not liquid metals).

2. Calculations are not so simple for two-phase flow, and in some cases

exact coefficients cannot be obtained without experimental data. This field

is still being studied and data obtained and correlated. It would be wise

to consult an authority on two-phase flow or at least have on hand authori-

tative information covering the situation in question.

15
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61.2.2 Nomenclature

T

A,B,n

r

a

b

t

c7

h

k

T
a

Tb

T

CI, C 2, C 5

C3 and C4

m I, m 2

temperature rise (OF). (Minus sign indicates a fall)

terms in T = A(r/a) n + B

radius (ft)

inner radius of flange (ft)

outer radius of flange (ft)

time (hr)

Beat content per unit volume of flange m_terial per

F temperature rise (BTU/cu ft/°F)

film coefficient (BTU/hr/sq ft/°F)

thermal conductivity (BTU/hr/sq ft/(°F/ft))

inner wall temperature rise (OF)

outer wall temperature rise (OF)

fluid temperature difference from initial flange

temperature (OF)

mlt m_t
terms in B/T* = Cle + C2e + CI0

mlt m2t
terms in A/T* = C3e + C4e

constants in above equations

16
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61.2.3 Results

It is shown in Section 61.2.6 that the temperature in the flange Is

given by:

T/T* = i + C3(r/a) exp(mlt) + iC2 + C4(r/a) j exp(m2t)

where, f
!

CI = i-

[b_n+2_ - I-_)

(m:2m-----_) - ,m--_l / (_)n

C2 = -CI-I (see Fig. 61.3)

_mlm 2 l/c--21-1[b2, (__)2]
C3 _/_ 2nkJ /a+b In (0.95)

C4 = -C 3 (see Fig. 61.3)

.[ I_]/"la+3bI/i ( !a+b_]n = log og \_--a'j (see Fig. 61.1)

and mI and m 2 (see Fig.

C5 m2 + C6m + C7 = 0

61.2) satisfy the equation

where,

b n+2) _ a (n+2)] (b2.a 2)

C5 = (n+2) " (n+2)

b ) a+b (n+2)"
(n+2

nk n
C0:I 1a" lb.(a 12]

_ [ 2ah

Lc_(n+2)

[b(n+2) _ {a-_bl (n+2) ]

a+b 2

(1)

(2)

C7

12ahl Ik.nl (a-_) n

]7
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The temperature difference between r = a and r = b is shownto be given by

(_) Imlm2I c--_-!-] [b2 (a2b) ][exp (m2t)]= Lm2.__lj(2n_) _a+b'nanb n _2 (mlt) - exp (0,95)
(3)

The time at which the maximum value of the difference occurs is (see Fig. 61.4)

log (ml/m2)
t =

max m2-ml )< )! m2m___L_lmlexp(m.t ) = Iml

I max ira2
; exp(m2tmax)

(4)

The maximum value of the difference is (see Fig. 61.5)

max

The maximum value of A (see Fig, 61o6) is valuable in computing stress.

is given by

(_) max

Imlm-------']{2c--2--k_[(an-bn>] I[{ _2} m(m2__l_(_I mm_-2m_]

= (0'95)Lm2-ml j -
It

= (0.95)_ (2nC__k){ a2b-) ml

Lm2- mlJ la+b ]n _2

 na;

(5)

(6)

18
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,i. 2.4 Examples

Exampl e I: Consider a flange joint in a pipe (stainless steel) which is

suddenly exposed to the flow of liquid oxygen at a temperature 300UF less than

the initial temperature of the pipe. ThenT* = -300°F. The inner flange radius

a = 3 in. = 0.250 ft. The oute_ flange radius b = 4 in. = 0.3333 ft. _et the
value of c7 = 52.4 BTU/cu. ft./ F, the value of k = 12.4 BTU/hr./ft.2/(F/ft.)

and the value of h = 500 BTU/hr./sq. ft./°F. What is the maximum temperature

difference in the flange?

a. From Eq. 1 or Fig. 61.1, n = -4ol

b. From Eq. 2 or Fig. 61o2, m = -604, m 2 = -42°9

c. From Eq. 4 or Fig. 61.4, t(max ' diffo)=0.00471 hrs. = 1o70 sec.

d. From Eq. 5 or Fig. 61.5, (Ta -T b) = -171°F
max

eo From Eq. 1 or Fig. 61.3, C 1 = 0.519

C 3 =-1.015

C 2 = - i. 519

C 4 = 1.015

f.

(Ta) = _172°F
(max, diff.)

From Eq. I at the time given by (c) and using Eq. 4, we get

(Tb) = _l.2°F
(max, diff)

= _250°F
g. From Eq. 6 or Fig.61.6 (A)ma x

h. It is of interest that at the time of maximum temperature differ-

ence, exp(mlt) = 0.0579 and exp(m2t) = 0.8169.

Example 2: In this example we consider a larger flange with material

having greater conductivity (aluminum). Inner radius a = i0 in. = 0.8333 ft.,
outer radius b = 11.3125 in. = 0,9427 ft., c7 = 36.2 BTU/cu. ft./°F,

k = 118 BTU/hr./sq. ft./(°F/ft.), and h = 500 BTU/hr./sq. ft./°F. What

is the maximum ratio of the temperature difference to the fluid temperature?

a. Proceeding as was done in Example I, we find n = -10.5, giving

m 2 = -102.0 and m I = _2425.

b. Substituting these values in Eq. 4 or using Fig. 61.4, given

= 4.9 secs. (.00136 hrs.)
t (max. diff_

c. Substituting in Eq. 5 or using Fig. 61.5, gives (Ta -Tb)
max

= O, 176T*
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61.205 Discussion

An approximate method of calculating thermal transients in pipe

flanges has been presented_ It takes account of the flange curvature and

in this respect adds additional information to "exact" methods that consider

the flange to be flat. A correction factor of about 5 percent has been

applied to some coefficients to bring the results presented within about 1

percent of "fitting in" with the flat-plate results° Curvature is shown to

be a small factor° No account has been taken of axial flow of heat from the

hub _to the flange° In general, it is felt that such a heat flow would in-

crease the effective value of h and thus result in somewhat greater temp-

erature differences than would otherwise be reached_

The examples indicate that substantial temperature differences develop

in flanges having low thermal conductivity in the presence of a high film

coefficient. Flange thickness increases also increase the temperature dif-

ferenceo For the examples presented, the time required to achieve the

maximum temperature difference was only a few seconds. This indicates that

thermal transients in pipe flanges occur quickly.

In the design of pipe flanges, it might be possible to modify con-

siderably the transient behavior by including an insulating sleeve at the

flange or by modifications in the flow pattern at the flange. Such schemes

of thermal design warrant further study°

2O
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61.2o6 Appendix: Thermal ABalysis

We assume that the flange temperature rise can be adequately described

by
r = A(r/a) n + B (IA)

where A and B are functions of time and n will be subsequently selected for

fit. We can determine A and B by the conditions:

a. The total rise in heat content of the flange equals the net heat

flow through the boundary layer; and

b, The total rise in heat content of the outer half of the flange

(outside of mld-radius) equals the net heat flow through the

mid-radius layer.

These conditions give b

ah T*-T = _-_ rTc7dr

a

b

Substituting Eq. (IA) into (2A) and (3A) and integrating

(2A)

(3A)

and

(a_) * _I dB [b(n+2) (n+2)]
(T-A-B) = d'_ + -. -a dA

(n+2) an dt

Note:
b (n+2) -a (n+2) ]

n+2 J

ImaJ 2

b --Note : n+2

b
log a as n _ -2

+
(n+2) an

--_ log 2b• _ asn_ -2

(4A)

(5A)

2!

61-19



Differentiating Eqso (4A) and (5A) with respect to time, and using _he ?
resulting equations together with Eqo (5A) to eliminate dB/dt and d_B/dt -
gives

__ dA +C7= 0C5 d2A + C6 dt
dt 2

where C5, C6, and C7 are given with Eq.12).

Equations such as (6A) have solutions in the form

A/T* = C3 exp(mlt) + C4 exp(m2t)

(6A)

(7A)

where C3 and C4 are arbitrary constants and mI and m2 are roots of

C5m2+ C6m+ C7 = 0 (8A)

Equation (2) is the sameas Eq. (SA)o

Substituting the value of A given by Eq° (7A) into (5A) and integrating
gives

-C3

B
--_ = CI0
T

Icnk la+blnlb 2

exp(mlt) L ym I _-a ] 2_i_ )

+

[-_(n+2) (a+b_(n+2)]

f li.° - -rJ .i
In+21 2 a+b 2 an

[ anb - (_) l

Icnk la+bln[b 2 2]

-C 4 exp(m2t) I ym 2 1_-a ] 2__a2b)

+

(9A)

2'2
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Weknow that initially T is zero for all values of r.
(9A) into (IA) and setting T = 0 and %= 0 gives

0 : CIO - C3

- c4,

Substituting (7A) and

(10A)

0 = c3 + c4 (llA)

w

We know also that when t is very large, T = T . We will find that m. and m 2
are negative, so that when t is large, exp(mt) is zero. With (IA) 6_en

Cl0 = i

Combining Eqs. (10A), (IIA) and (12A)

(12A)

,a b,nE210 = i - C31_--a ] a+b 2

giving

b2-1a2b) ]

=Imlm21 c--Z-) = -C 4 (14A)

C3 Im2-ml/[2nk [(_._ala+b n j

Substituting (TA), (9A), (12A) and (14A) into (IA) gives Eq. (I), except

for the factor (0.95). This factor was applied to force the solution to fit

in somewhat better with Ref. 9_ Without this factor, the curves for

b/a = I.I and 1.3 in Fig. 61.5 would have fallen above the curve for

b/a = 1.0, taken from Ref. 9. Applying a _f_ctor of 0.95 to C3 and C.
caused the curves for b/a = i.I and 1.3 to be lowered as shown in Fi_.61.5

In this position they "fall in" with the flat curve b/a = I. Since
coefficients C and C also deal wihh the transient heat flow phenomena,

it was felt that the _.95 factor should be applied to them also. Apparently

requiring the temperature distribution to arbitrarily fit the form of Eq. (IA)

with only two parameters, A and B, has introduced this 5 percent error. The

solution has shown that changing b/a from 1.0 to 1.3 has only a small effect

on the answers. This raises the question of using the results in Ref. 9

directly, neglecting curvature effects. This was not done, since a solution

in the form of Eq. (IA) is particularly useful in subsequent stress and dis-

tortion computations, Section 42°

61-21
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The temperature difference between the inner and outer flange surfaces
is obtained by evaluating T and T. at r = a and b, respectively, from
Eq. (i) and forming their d_fferen_e. The result is given in Eq. (3). To
obtain the time at which the difference is a maximum,the derivative is set
to zero. The resulting solution for the time of the maximumtemperature
difference is given in Eq. (4). Substituting the result into EC. (3) gives
Eq. (5). From Eq. (IA) it is evident that A = (ra-Tb)[an/(an-bn)]. Using this
result in Eq. (5) gives Eq. (6)

Wewill now select n to give equality of heat flow through the film and
at the inner face of the flange at the time given by Eq. (4). In equation
form this is expressed by

* _IIdTl when t = t(max'diff_ (15A)h(T -r a) = -k-_r r=a

Substituting from Eq. (i) into this equation (neglecting the 0.95 factor for
this purpose) gives

m2 mI
m2C8 + ml C9 = mlC8 + m2 C9

where

nk 2 (n+2) a+b(n+
C8 = (I- _)a n- (_-$_)[b -{--_)

(16A)

C9 -I 2nkl - (_)n

= IcY ; Ib2 .[a___b)21

Equation (16A) can be put in the form

m2÷ = .
ml / C_.88

mlm2 / C9

(17A)

Likewise from Eq. 2 we know that

Im2 + mll C6

ml_2 I= "Cq

(18A)

Combining Eq. (17A) and (18A) and solving for n gives

. la+3b

" i°g_4a + 4bl

n = _ |a + b%

 °gl-lT-al
This is the value of n given with Eq. (I) and in Fig. 61_ i
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61o3 Temperature Transients in Bolts (by L°H° Tomlinson)

61.3.1 Introduction

Knowledge of the temperature transients in the connector bolts is

necessary in order to determine the changes in stress and strain in the bolt

and the overall effect on the connector. In the case of a sharp and large

heating transient in the connector, it may be possible to actually over-

stres_ the bolt and put a permanent set in it before it has had a chance to

come up to temperature.

In the case of a sharp and large cooling transient, it may be possible

to release all bolt loading on the connector before the bolt gets a chance to

come to temperature equilibrium.

Determination of the actual temperature transient in the bolt in relation

to the fluid transient is quite complex and requires considerable mathe-

matical effort, preferably on a computer. Efforts of this nature will not be

covered here at this time, however. Instead, some simplified methods of

looking at the problem will be discussed.

Considering the bolt shown in Fig. 61.7 one assumption that may be made

is that there is no heat transfer between the bolt and the connector other

than by contact with the bolt head and nut. At room temperatures and below,

this is very nearly true_ _s the convection coefficient around the bolt will
be only 2 or 3 Btu/hr.ft? OF and the radiation coefficient will be negligible.

At high temperatures the coeff_ents can be considerably higher and might
run as high as 20-40 Btu/hr.ft. VF for connectors carrying hot combustion

gases.

Accepting the simplifying assumption of only lengthwise heat flow in the

bolt, one may look upon the bolt as merely a small section of an infinite

flat plate and apply some of the already available thermal transient infor-

mation to certain cases. In order to get a rough picture of what the thermal

transients may look like, Fig 61.8 was included. This graph was drawn

originally to show the temperature transients occurring in flange SK20-1286A

(sketched in Fig. 61.7) with liquid oxygen as the fluid and a heat transfer
coefficient at the fluid-wall interface of 2000 Btu/hr.ft. 2 OF. This curve

was drawn from flat plate data in Ref. 1 and Ref. 2 using dimensionless

numbers containing the thermal constants of stainless steel and aluminu_
the dimensions of Fig. 61.7 and the above mentioned h of 2000 Btu/hr.ft. °F.

31
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FIG. 61.7

CROSS SECTION OF

BOLT AND FLANGE CONFIGURATION

SIMILAR TO SK 20-1286A

II

Scale 1 to 1
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i_3o2 Thermal Resistance at Contact Points

Before we can even use the curves of Fig. 61.8 as approximations for some

cases, we must discuss the matter of the contact resistance at the bolt head

and nut. Because contact resistance is quite dependent on surface finish as

well as on material and the pressure on the joint, only general approxi-

mations can be given here. Fig. 61.9 shows some curves (from Refso I0 and II)

that should apply reasonably well. These data apply to surface roughnesses

in the range of 50-100 microinches, which is equivalant to a fairly ordinary

machining job that might be done on a flange or bolt. Certainly it would be

unreasonable to expect contact surfaces on bolts and flanges to possess a

high degree of flatness and a smoothness on the order of I0 microinches or

less.

It will be noted that the hardest pair of surfaces, steel on steel,

exhibit the lowest thermal conductance at the contact area. Both stainless

steel on aluminum and aluminum on aluminum show much higher thermal

conductances due to the much greater tendency of the softer materials to

deform locally at their scattered points of contact and increase the area of

actual physical contact as pressure is increased. Sometimes as the pressure

is raised very high, very considerable amounts of plastic flow occur, even

in steel, and the resulting high thermal conduction is retained down to very

low pressures.

A point to note, especially at lower conductances, is that at the nut

end of the bolt there are two resistances in series.

81
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Fig. 61.9 Thermal Conductivity of
Dry Joints in Air

12000

O

C,J

q_

.4

>

4-J
O

O

i0000

8000

6000

4000

2000

(3)

(i) Steel to Steel
(2) Aluminum to Steel
(3) Aluminum to Aluminum

1)

0 2000 4000 6000 8000

Contact Pressure (psi)

61-33



_i. 3.3 Examples

It will be shown how flat-plate data may be used for getting rough esti-

mates of temperature transients in symetrically heated bolts. It should be

kept in mind while using flat-plate data from Ref. i, pp. 33-34 and Ref. 9 or while

referring to Fig. 61o8 that the following terms are equivalents:

Flange outer surface=Bolt center=Flat plate midplane

Flange inner surface=Bolt ends=Flat plate outer surfaces

Flange midplane=i/4 way thru bolt=i/4 way thru flat plate

The reasons for these terms being equivalent may be seen by considering

the following facts:

I. Heat flow into the infinite flat plate is from both sides and at

the midplane there is no heat flow.

2. Heat flow into the flange is from one side but the outside is

considered insulated and there is essentially no heat flow thru the outer

boundary.

3. Heat flow into the bolts is limited arbitrarily in our cases to

symetrical flow from both ends. Thus there is no heat flow thru the center

of the bolt.

It can be seen therefore that the heat flow through the flange is

equivalent to heat flow through one-half the thickness of the flat plate or

through one half the length of the bolt.

(a) First case - Stainless steel bolt as per Fig. 61.7

Stainless steel flanges as per Fig. 61.7

Assume a contact surface pressure of abo_t 7,000 psi, producing thermal

surface conductance of about 2000 Btu/hr. ft.e°F. For a first look at the

bolt, we could assume that the temperature of the flange had changed

instantly. Than both halves of the bolt would exhibit temperature transients

as in Fig. 61.8 with the center of the bolt being equivalent to the curve

labeled "outer surface". It is evident that at this rate, i00 seconds will

elapse before the center of the bolt comes down even halfway in temperature

and much longer before the bolt as a whole comes close to the final temper-

ature.

Since the assumption of instantaneous temperature change in the flange

is certainly not correct, it is well to take a look at what actually happens.

It will be noted fromFigo 61.8 that the point at which the bolt contacts the

flange (about 3/4 of the way out) really follows a temperature curve rather

closer to the outer surface than the midplane. This, then, is the initial

temperature applied, thru the contact resistance, to the bolt head or nut.

Obviously the temperatures in the bolt will take even longer than previously

estimated to reach to the initial fluid temperature change. A good estimate

might be 2.5 minutes for the center of the bolt to come down halfway in

temperature.

61-34
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(b) Secondcase - Aluminumbolt as per Fig. 61.7
- Aluminumflange as per Fig. 61.7

Assumea modest contact surfac_ressure to produce a thermal surface
conductance of about 2000 Btu/hr.ft. _F.. Actually, though, higher thermal

conductlvities are not going to alter greatly the answers arrived at here.

Again making a temporary assumption that the flange temperature changes

instantly, it becomes evident from Fig.61.8 that the center of the bolt will

be halfway down in temperature in about 14 seconds. If the actual rate of

change in flange temperature is taken into account, it is estimated that it

will take about 25 seconds for the center of the bolt to drop halfway in

temperature.

Other more complex cases, where flanges of different materials are used,

will not be discussed here, as even rough estimates of temperatures in the

bolts will be difficult and hardly worthwhile.

37
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6104 Temperature Transient Analysis in Flange Assemblies (by L.H. Tomlinson)

610401 Preliminary Computer Efforts

Sections 61o2 and 61_3 present information on temperature transients

for plain flanges and for flange bolts in certain simplified cases. There

is a need for some knowledge of the thermal transients in more complex assem-

blies, however. This could cover combinations of flanges, bolts, spacers,

and sometimes, gaskets of various materials in the same assembly.

One question that needed to be answered was whether or not the flanges

could be considered as sections of flat plates due to their relatively low

profiles or low radius ratios. Refo 12 gives data on thermal transients in

cylinders, and some of it lies in the range in which we are interested. Fig.

61.10 presents a curve plotted from flat plate data given in Re,so i, pp.

33-34, and Refo 9_ Data from Re,0 12 for radius ratios of 1.3 and 1.4 are

plotted on Fig_ 61,I0 and it will be noted that the points fall very close to

the curve for flat plate transients. The conclusion to be drawn is that we

may consider our low profile flanges of radius ratio I.i to 1.3 to be sections

of flat plate.

As a test, a section of flange or plate was divided into nodes as

shown in Fig° 61.11 _ and the dimensionless heat transfer equations of Tables

I and II were derived° A very brief description of their writing follows. A

heat balance equation is written for the node "a" as the generalized example

following shows:

t'

A (tb-ta) + B (tc-ta) + C rt a- a) = 0
AT

This equation is written with so-called "forward time steps" wherein all the

temperatures t are known for the beginning of the time step and only one

temperature t'nof the node itself is unknown and therefore readily solved for,

The other waynof writing the equation with "backward time steps" is as

follows:

A (t_-t_) + B (t'c t_) + C -"_ta-_Tta)- = 0

Here there is only one known t and the rest unknown. This results in a

matrix of unknowns to solve fo_ each time step_ This latter method is in-

herently a much more accurate one but it is very time consuming to solve a

matrix each time. The use of "forward time steps" avoids this difficulty

but introduces possible error because of the assumption that

-t'
(ta i)

_T

is constant throughout the time interval. Since there is usually more or

less curvature to the function the only way to keep error down is to make

the time interval (_T) quite small° It was decided to try "forward time steps"

since there could be considerable savings in computer time and in programming

if the time steps did not have to be extremely small. The equations of Table

I were made dimensionless by appropriate manipulation of the constants in-

volved_ Trial solutions were run on these equations using time steps of one-

tenth of a second and printouts every second but these solutions proved

61=3789



to be somewhat in error. Selection of a time step of one hundredth of

a second with a printout of data every second gave results of quite satisfactory

accuracy with only a small increase in computer time (to a little over 5

minutes on the GE 225)_

['17654
3 z

FIGU_ 61.1i

Division of thickness into nodes for step-by-step

numerical solution

It should be noted here that Ref0 13 contains a very good description of the

methods being used here° Pages 19 and 20 of this reference have some especially

pertinent comments concerning time steps.

4O
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TABLEI

i°

,

a

,

.

,

,

Equations for Simple Flat Plate Representation of Flange

(written in completely dimensionless form)

'R I = l--l-- , + , R2
I+A [I+A

' [ B_T ] BATR A_T , - A_T , + _ - i R2 +--6- R3

2 = C(I+A ) LC(I+A ) C

!

R3 _ BATE R2 - _ +--_- - -_- R 4

R4 = T R3 - _ + --G- - i R4 +--_- R5

R' FAT F FAT
5 = -_- R4 - t.--_- H_T I] R5 +--_ R6+-l-"

R6 = -L-- R5 " _ +-L'- " T R 7

' JAT [JAT ]R7 = _ R6 - _ - I R7

41
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TABLEII

Definition of Terms Used in Equations of TABLE I

E

n

R =

n

AT =

A =

I

A =

B

C =

D

E =

H

I =

J

L =

M =

K

p =

C _-

S =

h =

t t

Known dimensionless temperature at beginning of time steP(t°__t ?

t - t'

o _)Unknown dimensionless temperature a£ end of time step (t t
O O

time step in seconds

40

K
40 h--s

i0

2

0.05 pcs
k

5.71

2

O. 15 P_---9--s
k

5

2

0.2 pc s
k

5

2

0.2
k

5

Pcs 2
0.2

k

Pcs 2
0.2

k

thermal conductivity of flange material BTU/hr.ft.°F

density of flange Ib/ft 3

specific heat of flange material BTU/Ib°F

radial thickness of flange

heat transfer coefficient of fluid at

surface

ft

BTU/hr.ft2°F
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FIGURE 61.12

Bolt & Flange Assembly

(cross section)
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5

3

2

i

f

8

7--

6

9

Ii

12

13

Nodes

(Bolt)

4:3

61_41



61_4_2 GeNeral Equations for ComputerSolution of F lan_e Assembl_LI_erature T_

Fig.61ol2 shows a combination of flanges, bolt and spacer each of which

may be a different material. The nodal structure chosen is also shown.

Heat balance equations were written for each node and the general equations

of Tables III and IV obtained. These equations are non-dimensional only

in temperature in order to make substitution of different materials and

dimensions of flanges easier.

It would be appropriate at this time to comment on why the flanges are

left disconnected from the pipe in this analysis. Actually for most cases

of cryogenic fluid flow the fluid heat transfer coefficient is so high that

the pipe wall makes a rather ineffective fin for the flange. For those

cases where the flu_doheat transfer coefficient is not very high (perhaps
under 500 BTU/hr.ft F) an additional node will have to be introduced to

represent a piece of pipe wall.
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TABLE III

Equations 14rftten for Flange & Bolt Assembly of Figure 61.12

=' L =,J ==L_--t_--'J == ==_'

= L== j'_, L_.,J==+pj__.t=7
L s=jS

L _3 -1J _3 k s3 J_4' L_3j

L_,.j_-L_- _/,,,+F'.'_-_--?,r,,,y, r=,,..,F_
_-. J_ +L_-q-J', +L---V--_j.,

"_ L_sT_/"_L- s t_/"_+L-_",,

I R
{I 8+

, ] S7 RL0
FZ58 AT ]

Ls' J"'L _8"----_- "+b,_-J',

' L_-V--J' L_'- "'L S _1',o
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II.

12;.

13.

14.

15.

16.

17.

18.

19.

=,_= _j=o _ _ ]=_o-E ,3,,,,

=,2° L S,2 j=11-
!

RI3 =

!

RI4 =

f

R15 =

L SII RI2
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+p15-14 AT]

+_I 6-15 AT]

RI6
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All __

KI2AI2

ZI2 =

K23A23

Z23 =

Z34 = _34

Z45 = 745

A36

Z36 _ I+--_T36

h 6 K36

A47

h c K47

A58

Z58 =

h K58

A 89

Z89 I + + 78

= AT-lo
Z7- i0

h c K 7 I0

TABLE IV

Definition of Terms in TABLE III

_UA
Zn_ n n

Z_-ll

A6-11

= i+ __--

h c Kll

K9-10 A9-10 _

Z9-10 -- /9-10

KIO- liar0 -ll

ZIO-II= - 710-II

KII. 12 All-12

ZII-12 =-- _ii-12

K12_13 A12_13

Z12-13 = -- 712-13

Zfl3

_f_" KI3

A4- 14

Z4-14 = _--

"hc K4

KI4-15 AI4-15_

Z14_15 = - _14-15

K15.16 AI5-16

ZI5 -16= - _15-16

KI6-17 AI6-17_

Z16-17 = _616-17
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TABLEIV
(continued)

KI7-18 AI7- 18

ZI7" 18 = _17- 18

KI8- 19 AI8-19

ZIS_I 9 -
18- 19

Z18-19

AIO- 19

i.  16-19
hc + KI0-19

Further definitions

S -- M C
n n n

M
n

C
n

A ____.

nm

hf =

h

C

n =

_nm =

n

R

n

t

fluid heat transfer coefficient

contact heat transfer coefficient

length of heat path in node n

length of heat path in nodes n & m

thermal conductivity in node n

mass of node n

specific heat of node n

cross section of node interface between n & m (it 2)

(BTU/hr ft2°F)

(BTU/hr ft2°F)

(it)

(it)

(BTU/hr it°F)

t
= temperature ratio at beginning of time stop

tf-t o

nodal temperature at time T

tf

t
O

!

R =
n

AT =

fluid temperature

nodal temperature at time 0

temperature ratio at end of time step

length of time step



61.4.3 Computer Solution for Specific Flanse Assembly

The general equations previously presented have been solved for a

specific case° This is for the test flange assembly shown in Figure 61.7

where one flange is aluminum, the other is stainless steel, the spacer is

stainless steel and the bolt is aluminum. Thus nodes 1 through 8 are stain-

less andnodes 9 through 19 are aluminum. The following physical char-

acteristics are assumed for these materials:

Aluminum

K = 80 Btu/hr, ft.°F

C = 0.211 Btu/ib. OF

p = 0. i01 lb./in 3

Stainless steel

K = i0 Btu/hr. ft.°F

C = 0.117 Btu/ib. OF

O = 0°283 Ib./in_

When the above constants and the physical dimensions are substi-

tuted in the general equations of Tables IIl& IV, the equations of Table

V are arrived at.

The equations of Table V were solved by a digital computer using

time steps of 0.01 sec. The program was run for 50 sec. with a printout

of results every second. Figure 61o13 shows some of the most significant

of these results plotted in terms of dimensionless temperature vs. time.

The assumption is_ of course, that the flange assembly is at temp-

erature t o when suddenly at time zero a fluid of temperature tf is passed

over the inner surface. Temperatures then start towards tf and are given

as a fraction of the total initial temperature difference _ - to. The
O I

bolt temperature B is just an arithmetic average of all the temperatures

of the bolt nodes but it should be quite close to the true average temp-

erature. It is of interest to compare some of the curves of this figure

with those of Figure 61.8 which was prepared for just plain disconnected

flanges of the same dimensions and materials. It is apparent that they

show fair agreement.
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Equations

Table V

for Test Flange Assembly of SK20-1286A

!

1.17 R1 = 0.000853 Rf

!

1.17 R2 = 0.00121 R I

1.17 R_ = 0.00121 R 2

+ 1.167937 RI + 0.00121 R 2

+ 1.16758 R 2 + 0.00121 R 3

+ 1.167408 R 3

+ 1.166947 R 4
1.17 R4 = 0.00121 R 3

+ 0.00121 R 4 + 0.000172 R 6

+ 0.00121 R 5 + 0.000172 R 7
+0.000461 R14

, = 0.00121 R 4 + 1.168618 R 5
5. Io 17 R 5

6. 0,219 R_ = 0.000172 R 5 + 0.218048 R 6

7. 0.219 R_ = 0.000172 R 4 + 0.000227 R 6

8. 0,219 R_ = 0.000172 R 5 + 0.000227 R 7

9o 0,753 R$ = 0.000553 R 8 + 0,742787 R 9

i0o 0.753 RI0, = 0.000553 R 7 + 0,00966 R 9

+ 0.000172 R 8

+ 0.000227 R 7 + 0.000553 RII

+ 0.217821 R_ + 0.000227 R 8

+ 0.060553 RI0

+ 0.218048 R 8 + 0.000553 R 9

+ 0°00966 RI0

+ 0.732666 R_0 + 0.00966 RII

0.000461 RI9

I

Ii. 0.753 RII

12. 0.753 R'12

f

13o 0.753 Ri3

!

14. 0.117 R14

!

15. O. 103 R15

!

16. 0o 103 R16

!

17. 0. 103 R17

!

18. 0. 103 R18

!

19. 0o 141 RI9

= 0.000553 R 6 + 0.00966 RI0 + 0.733127 RII

= 0.00966 RII + 0°73368 RI2 + 0.00966 RI3

= 0.00123 Rf + 0.00966 RI2 + 0.74211 RI3

= 0.000461 R 4 + 0,11620 RI4 + 0.000339 RI5

+ 0.000232 RI6

+ 0.000232 RI7

= 0.000339 R14

= 0.000232 RI5

= 0.000232 RI6

= 0°000232 RI7

= 0.000461 R10

+ 0. 102429 RI5

+ 0.102536 RI6

+ 0.102536 RI7

+ 0. 102429 RIB

+ 0.000339 RI8

+ 0.00966 RI2

+ 0.000232 RI8

+ 0.000339 RI9

+ O. 14020 RI9

61-48

59



GL348 (Feb. 1962)

!AJ.

IN

0

Jr_

61-49

£I.



61.5 References

i. W° H. McAdams, Heat Transmission_ 2nd Ed., McGraw-Hill, 1942.

2. J. G. Knudsen & D. L. Katz, Fluid Dynamics & Heat Transfer_ 1958,

McGraw-Hill.

3. E. R. G. Eckert & R. M. Drake, Heat & Mass Transfer, 2nd Ed.,

1959, McGraw-Hill.

4. D. A. Labuntsov, "Generalized Correlation for Nucleate Boiling,"

T_loenergetika, Vol. 7, No. 5, 1960, pp. 76-81o

5. WADD Tech. Report 60-65, Part I, "Properties of Materials at Low

Temperatures°"

6. S. S. Kutaleladze, "Critical Heat Flux to Flowing, Wetting,

Subcooled Liquids," Energetika_ No. 2, 1959, p. 229.

7_ M. P. Heisler, "Transient Thermal Stresses in Slabs and Circular

Pressure Vessels," Pressure Vessels and Piping Desing Collected

Papers 1927-1959_ ASME, po 532 (also Jo Appl. Mech_ 1953).

a A. Mendelson and S° S. Manson, '_pproximate Solution to Thermal

Shock Problems in Plates, Hollow Spheres, and Cylinders with Heat

Transfer at Two Surfaces," Trans. ASME, April 1956, pp. 545-553°

9. M. Jakob, Heat Transfer_ Volume I, J. Wiley & Sons, 1958, p.

415, 416.

i0. N. D. Weills and E. A. Ryder, "Thermal Resistance Measurements of

Joints Formed Between Stationary Metal Surfaces", Trans. ASME_

April 1949, p. 259-266.

II. M. E° Barzelay, N. Kim, and Go Holloway, "Effect of Pressure on

Thermal Conductance of Contact Joints", NACA TN 3295, May 1955.

12. Jo E. Hatch, Ro Lo Schacht, L° U° Albers, and Po G. Saper,

"Graphical Presentation of Difference Solutions for Transient

Radial Heat Conduction in Hollow Cylinders with Heat Transfer at

the Inner Radius and Furite Slabs with Heat Transfer at One

Boundary", Tech° Report No° 56, NASA

13. G. M. Dusinberre, Neat Transfer Calculations by Finite Differences_

International Textbook Co°, 1965.

61-50

52



62. EFFECT OF PRESSURE SURGES

by

B. T. Fang

62.0 Summary

The pressure surges ("water hammer") in a pipeline system have been

studied extensively by hydraulic engineers (Refs. i, 2 and 3). Attention was

mainly given to the severe case of sudden stop of liquid flow in a pipeline.

For launch vehicles we are faced with the pressure surges in connection with

the sudden start of flow. In this section the magnitudes and frequencies of

these pressure surges are studied. The essential effects they have on the

sealing of fluid connectors are

(I) The higher pressure associated with these surges aggravates the

already existing adverse effect of internal fluid pressure.

(2) These pressure surges are sources of shock loading which may

excite undesirable vibrations.

(3) The results indicate that a proof pressure of twice the operating

pressure would exceed any expected surge pressure.
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62.1 Water Hammer Effect as a Phenomenon of Interchange of Kinetic and

Pressure Ener_

The water hammer effect is a phenomenon of the interchange of the

kinetic and elastic (pressure) energy of the fluid. When the motion of the

fluid is suddenly stopped, most of its kinetic energy is transformed into

its elastic energy with a resulting increase in its pressure. Conversely,

when the pressure of the fluid is suddenly released, most of its elastic

energy is transformed into kinetic energy with a resulting increase in its

velocity. It can be shown from an energy balance that the relation between

the pressure change and velocity change is given by the simple formula

(Ref. I)

Pressure Increment, Z_p =%wn/_---

Velocity Reduction, -_v
(1)

where p is the density and K the bulk modulus of the fluid.

Equation (i) shows that the denser and the more incompressible the

fluid, the greater is the magnitude of pressure surges.
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62°2 Transmission and Reflection of Pressure Signals

Pressure signals are transmitted in a fluid with finite velocity - the

velocity of sound. In a rigid pipe the velocity of sound of the fluid is

(Ref. I)

v (2)
P

For not-so-rigid pipes the velocity of sound is smaller. It can be calcu-

lated from Eq. (2) with the bulk modulus K replaced by the apparent bulk

modulus (Ref. i) i

2r
K' - K/(l + _ K) (3)

where r is the radius, t the thickness and E the Young's modulus of the

pipe.

Eq. (I) can now be written in the alternate form

ffi OV (la)
-Av p

The following table gives v and -Ap/Av for some typical liquids in a

rigid pipe P

Water (60°F)

Liquid Oxygen (-325°F)

Liquid Hydrogen (-428°F)

Velocity of Sound

vBi fps

4700

33 70

4010

Pressure Increment , Apl psi

Velocity Reduction i -Av, fps

63.3

53.6

3.92

Within a pressure wave, the velocity of the fluid particle is given

by Eq. (la)

-Av =, Ap/OVp

It is in the direction of wave propagation if the pressure wave is a com-

pression wave and is opposite to the direction of wave propagation if it
is a rarefaction wave.

The pressure wave will be reflected unchanged when it comes to the

closed end of a pipeline. At the open end (where pressure is fixed) a

pressure wave is reflected reversed in sign, i.e., a compression wave is

reflected as a rarefaction wave and a rarefaction wave as a compression wave.

At an obstruction (change in cross section of pipe, pipe bends, etc.), the

pressure wave is partially transmitted and partially reflected. In particu-

lar, it can be shown from Eq. (i) and the equation of continuity that at a

cross section where the area changes from A T to A^ an incident wave of
Intensity Ap is reflected as a wave of intensity _Ref. I)
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A 1 - A 2

"AI + A2 _P

and transmitted as a wave of intensity

(4)

2A 1

A 1 + A 2
_p (5)

With the above understanding we shall be able to discuss the sequence
of events following the opening of a valve.

r.=
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62.3 Instantaneous Valve Opening

If a valve can be opened instantaneously, the fluid layer adjacent To

the valve drops to the outside pressure with a resulting increase in velocity

Av related to the pressure drop -z_p by Eq. (i). This pressure drop, -Z_p,

propagates upstream with sonic velocity v_. With the passage of this rare-

faction wave, the fluid particles move downstream with velocity _v. At the

upstream end of the pipe (a tank or pump outlet), the pressure is maintained

constant, the incoming rarefaction wave-Z_p is reflected as a compression

wave of magnitude Zip moving downstream. The fluid particles now return to

their previous pressure while acquiring a velocity PAv. When this compres-

sion wave reaches the valve end, it is again reflected as a rarefaction

wave moving upstream. This process goes on and on until finally _afsteadTflow

dondition prevails. The following figure_shows the idealized pressure and

velocity variation at the mid-point of a pipeline.

Pres sure --

Velocity ---

Valve opens

I
I
I

I

' IAv

time, t

= length of pipeline

Fig_ 62.1 Pressure and Velocity Variation in a Pipeline

The actual pressure-time and velocity diagram, of course_ will have rounded

corners and less stiff rises and falls because of friction and other effects.

It is clear that in this case the pressure in the pipeline alternates

between tank pressure and outside pressure, and there will be no dangerous

high pressure build-up. This conclusion also holds if the opening of the

valve is so rapid that the valve is fully open before the reflected compres-

sion wave comes back to the valve, i_e.,

•wlce the length of pipeline

Time of valve opening _ Velocity of pressure wave
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62.4 Slower Valve Opening

The preceding section indicates that a characteristic time of the pipe-

line can be defined as

T = Time for pressure wave to travel from the valve to the pipe

inlet and back

When the time of valve opening is less than T, we have the preceding case

of instantaneous valve opening with no dangerous pressure build-up. When

the time of valve opening is large compared with T, the elastic property of

the fluid is negligible, and again there is no dangerous pressure build-up.

In this section we shall discuss the case where the valve opening time is

intermediate between these extremes and shall show that pressure surges can

occur under certain mases.

In order to illustrate, we shall consider a valve partially opened

instantaneously, with the opening held constant thereafter. The fluid layer

behind the valve immediately experiences a pressure drop -Zip. The magnitude

of Ap depends on percentage area of valve opening A. If the valve opening

is not large, the usual discharge equation holds:

Av = CdA _ (6)

where cd is the discharge coefficient (close to unity) and

--P Po °

Po being the pressure in the pipeline before valve opening. This equation
together with Eq. (la)

-Z_p = AVpVp (la)

enables us to determine the pressure drop-Z_p. This pressure drop-Ap (and

velocity increment _v)propagates as a wave of rarefaction upstream and is

reflected at the pipe inlet as a compression wave. After the passage "of

this reflected compression wave, the fluid returns to the pressure p_ and

acquires a velocity 2v. When the reflected compression wave comes b_ck to

the partially opened valve, because of the obstruction of the valve, only

part of the wave is transmitted, the rest is reflected as a compression

wave of intensity

(7)

according to Eq. (4). The pressure in the pipeline now Jumps to the pressure

Po + np 77% (8)

By keeping track of repeated reflections, we will be able to find out the

pressure in the pipeline at each instant. The idealized pressure-tlme

history at the valve end and at the mid-polnt along the pipeline is shown
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in the following figures. The actual pressure-time history would, of course,

be smoother because of friction effects and because of the imp6ssibility of

instantaneous valve openfngo

P
O

Pressure, p

I+A

Lp T

I

Valve opens time, t

Fig.62o2a - Pressure-Time History at the Valve End

P

O

Pressure, p

P

Zip I-A

I
Valve opens

_ime, t

Fig_62.2b - Pressure-Time History at the Midpoint

of the Pipeline
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It is clear from these figures that each point along the pipeline experiences
a decaying pressure oscillation of period 4_/v . The maximumjump in pres-
sure P

is the sameat points along the pipeline. But at points closer to the pipe
inlet end, the duration of pressure quiescence is longer. Notice that since
Z_p_p° and A_0, the pressure jump can never be greater than the static
pressure of the fluid in the pipeline.

As an example, we shall consider a pipeline carrying liquid oxygen at
190 pslg. A valve at 50 ft. from the pipe inlet is suddenly opened. The
percentage area of Opening isA -- 1/4o For simplicity, we take the discharge
coefficient cd = io Eqso (la) and (6) become

-Ap = 53.6_v

_V = I/4y2<19(_'_)-
144X

(ib)

(6a)

from which we obtain the pressure drop following the valve opening

-f_p = 189.1 psi

The maximum pressure in the pipeline is

' Po = f_P_

fl-1/41
=190+189 j

The period of the pressure oscillation is

303 psi

4_ 4 x 50
-- = = 0.06 see.
v 33%
P

In the above we considered the valve as being opened instantaneously

and held constant thereafter. In the actual situation the valve is being

opened continuously, and we have to know the variation of valve opening

with time. The above example shows that most of the pressure _drop occurs

in the beginning of the valve opening; therefore, a good approximation;:t_ _

the maximum pressure jump can be obtained as

I-A

Pol-_

where • is the percentage area of valve opening at a time of 2__ after the

start of valve opening. Vp

(I0)

A surge pressure of 325 psi was recorded by Marshall Space Flight Center

following the opening of valve for liquid oxygen at 190 psi. This shows good

agreement with the present result, even though the exact manner of valve

opening is not known. Also recorded was the 50 milliseconds time interval

between the peak and the valley of the pressure surges. This corresponds to

th_ half period 2_/v of the pipeline. Assuming a sonic velocity of
P
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v = 3370fps, this would correspond roughly to a pipe length of 85 ft.P
It is to be noted that in the usual treatment of water hammereffect,

the discharge equation (6) is used instead of Eq. (7) in the determination
of the pressure surges. Water hammeris a transient effect. It seemsto be
unreasonable to use Eq. (6) which is based on the steady flow Bernoulli's
Equation. Furthermore, the use of Eq. (6) cannot explain the sequence of
events following the instantaneous valve opening. It is also in conflict
with experimental data obtained in Huntsville and elsewhere. (The use of
Eq. (6) can only predict pressure surges smaller than a quarter of the static
pressure (Ref. 2),) The use of Eq. (7) in the present treatment seemsto
be more reasonable, based on physical reasoning as well as providing better
correlation with experimental evidence.

G1
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62_5 Closing of Valve

The water hammer effect in the sudden closing of a valve is a subject

treated extensively in the literature. We shall only describe it briefly

here.

When a valve is closed instantaneously, the layer of fluid in contact

with the upstream side of the valve is suddenly stopped; its kinetic energy

is converted into strain energy with a sudden rise in pressure. This gen-

erates a compression wave moving upstream with sonic velocity, and with the

passage of the compression wave, the fluid originally flowing with velocity v

comes to a rest. Similarly, a rarefaction wave moves downstream of the valve.

The amplitude of the compression wave can be obtained from Eq. (la) as

LXp = -_pVp

and it can be seen that dangerous high pressures may occur. The propagation

and reflection of these pressure waves follow much the same manner we dis-

cussed previously. If the valve is not closed, instantaneously, the pressure

in the pipeline will be the superposition of these traveling waves and will

in general be lower than that given by Eq. (la). If, however, the valve

closing time is shorter than the characteristic time T of the pipeline, then

there is no chance for the reflected rarefactionwave to come back to the

valve and prevent the pressure at the valve from reaching its maximum value

given by Eq. (la) o

G2
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62.6 Fluid Reaction at Pipe Bends

We have shown that due to sudden initiation of flo_pressure

surges approaching twice the operating pressure may occur. The increase in

"hoop stress" in the pipe due to this pressure surge is usually considered

in piping design. Because of the unavoidable existence of pipe bends, how -

ever, large bending moment and axial force may occur, depending on how the

piping is supported. There are two kinds of fluid reaction at a pipe bend_

that due to the fluid momentum and that due to fluid pressure. The fluid

reaction due to the change of fluid momentum can be obtained as follows:

v

FIGURE 62.3 Reaction due to Change of Fluid

Momentum at a Pipe Bend

From Newton's law we have

F = 2 Q v cos 0

where Q = mass flow rat_ slugs/sec.

v = fluid velocit_ ft./sec.

F = reactive force, lb.

As an example consider a 90 ° bend in a 20 in. inside diameter pi_e. The

fluid is LOX at a pressure of 190 psi, a density of 2.3 slug/ft _ and at a

velocity of 25 ft/sec.

20 2
then F = 2 (2.3) (_)( 2x12 ) (25) cos 45 °

= 180 lb.

which is rather small in comparison with the end force of

20 2
, (190)(_)(_) = 59,600 lb.

due to static fluid pressure. This example shows that the fluid momentum

effect is generally not of importance _nlessthere is possible resonance due

to pulsating flow. The static pressure on the other hand is of great im-

portance for fluids under high pressure. Depending on the method of

62-II
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supporting the piping, the static pressure force may be transmitted as an

axial load, a bending moment on the pipe or may be transmitted entirely to

the support. The axial load due to static pressure has been well recognized

by previous investigators. The possibility of large bending moment, however,

has not attracted much attention. The following figure illustrates the

situation where the static pressure at a pipe_bend gives rise to bending

moment but negligible axial load.

expansion Joint

B

A

reaction due to static pressure, F

FIGURE 62.4 Pipe Arrangement Giving Rise to Large Bending Moment

Because of the flexibility of the expansion joint some of the hydraulic end

load is transmitted to the support A0 The pipe at A is subjected to a bend-

ing moment of F_. Take our previous example, and assume the unbalanced hydraulic end

load is half the maximum possible with complete flexibility at the expansion

jpint_

F = 1/2 (59,600) lb. = 29,800 lb.

a length _ = 2 ft., the bending moment at A is

29,800 x 2(12) = 720,000 ib-lb

which could be rather serious.

So far we have been considering the hydraulic end load under steady

flow conditions. With the sudden intiation of flow, we have shown that surge

pressures higher than the operating pressure may occur. First.of all

this higher pressure aggravates the adverse effects of hydraulic end load we have

discussed above. Secondly it is a source of shock loading which may set up

undesirable vibrations. The following figure illustrates a pipe arrangement

which is subjected to negligible bending moment during steady operating

conditions but to a shock loading during start-ups.
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B

C _ valve

FIGURE62.5

A

Pipe Arrangement Giving Rise to Impulse
Following Valve Opening

Because of the pressure oscillation in the pipeline after sudden opening of
the valve, the pressure _AandBmay not be the sameat any instant. This sets
up an unbalanced force in the pipe° To illustrat_ consider the valve at C
being opened instantaneously. The pressure drops from the static pressure of
approximately 190 psi to, say, vacuum. This pressure drop propagates up-
stream. After the wave front passes B, the hydraulic end force acting toward
the left is reduced to zero_while at A the hydraulic end force acting toward
the right is still 190 psi° There is an unbalanced force of (190) (pipe
cross-sectional area) = 59,600 Ibo acting to the right, which is taken by
the pipe support. After a time interval of

t
pipe length between A and B

velocity of wave propagation

the wave front reaches A and the unbalanced force vanishes. Since the wave

velocity is usually large r this time interval is small and this unbalanced

force appears as a sharp impulse

-f-
59600 Ib

FIGURE 62.6 Impulse Due to Fluid Pressure

which may excite undesirable vibrations of the pipe system. This pressure

wave is reflected back and forth and, therefore, will appear repeatedly until

it finally dissipates. The situation becomes mostserious when there is

possible resonance.
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62.7 Conclusions

In this section the pressure surges in a pipeline following the sudden

opening of a valve have been investigated. It is concluded that

(i) There will be pressure oscillations in the pipeline with period

equal to

v
P

4 (pipe length from valve to pipe inlet)

Velocity of wave propagation in the pipeline

If the valve opening is either very fast or very slow, there will

be no high pressure build-up. For valve opening time intermediate

between these extremes, there will be high pressure surges. The
maximum amplitude will always be smaller than the static pressure

Po in the pipeline before opening and can be approximated by

where A is the percentage area of valve opening at time 2_/v after

the start of valve opening. At points closer to the pipe in_et,

the duration of the high pressure is shorter.

(2) These high pressure surges may affect the sealing capability of

the fluid connecte_ in the following ways:

(a) Theyaggravate the adverse effects of internal pressure such

as stretching the pipe line and reducing the gasket com-

pression, causing the flanges to roll due to the barreling

effect, and introducing higher stresses in the pipeline.

(b) They a_easource of shock loading which may induce undesirable

vibration of the pipeline,

(3) Recommendations:

(a) The usual proof pressure should be raised from 1,5 to 2 times

the operating pressure, since, as shown in Eq. (I0), the

surge pressure may be greater than 1.5 times the operating

pressure but never greater than twice the operating pressure,

(b) It is desirable to locate the fluid connector as far as

possible from the valves, since the duration of pressure

surges will be shorter there.

(c) Pipe layout should be treated with care to minimize the

conditions that give rise to large bending moment due to

hydraulic end load and the conditions that are prone to shock
loading during start-Up'and shut-down.
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63_ ¸,
EFFECT OF SHOCK AND VIBRATION ON CONNECTORS

by

G. W. Sarney

63.0 Surmmary

This section considers a simplified analysis of the missile piping

system to determine its response in terms of pipe reactions of interest to

the fluid connector designer. The sinusoidal and shock excitation levels

specified for the Saturn C-I, Block llvehicle are used on typical pipe con-

figurations to predict their response in terms of end bending moments. A

dynamical method of analysis is presented for simple pipe configurations to

show the nature of the problem. For complex pipe systems a simplified

approach is used to give the fluid connector designer a quick estimate of

the pipe reactions. The loads determined in typical examples are quite high

and must be included in the connector design if leakage is to be avoided.
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63.1 Introduction

The fluid connector joins sections of pipe and seals against leak-

age. Environmental conditions in the missile induce vibrations in the piping

system which are transmitted through the fluid connector (Fig. 63.1). Design

of the fluid connector requires an estimation and evaluation of the effect of

these pipe reactions.

The random noise excitation may be predicted based on past tests

and is presented in terms of vibration acceleration levels in the Shock and

Vibration Specifications (Ref. I). This loading acts on the pipe configura-

tion which may be described by its end conditions, joints, physical dimensions,

and damping characteristics. The response of the system can then be predicted

with varying degrees of sophistication. This analysis uses a greatly simpli-

fied approach to meet the needs of the fluid connector designer to obtain

estimates of the missile piping end reactions.
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63.2 Environment

The piping system of a missile is subjected to vibrations due to such

environmental effects as maneuvering loads, aerodynamic noise, the rocket

engine sound field, and direct transmission from the supporting structure.

These effects are grouped and presented in the "Shock and Vibration Specifi-

cations for Components on Saturn, C-l, Block II Vehicles" (Re,. I). Thls

specification presents acceleration loading for sinusoidal resonant vibrations

in terms of peak "g" level for a given range of frequency. The shock test

requirement specifies an impulse shape and g level of shock acting along any

axis of the component.
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63.3 Deffnition of Component Loading

The vibration excitation in the missile environment is random

in direction, magnitude and frequency. This random excitation acts on a

piping system which usually has many intermediate joints connecting different

shaped sections (see Fig. 63_I), A complete dynamical analysis of such a

system is not required for the purposes of the fluid connector designer. The

procedure here, then, is to make reasonable simplifications of the loading

and structure to obtain quick estimates of the pipe end reactions.

The following simplifications of loading are made. The

vibration acceleration level specified for the component under consideration

will be the value for the frequency range which includes the natural

frequency of the beam. This acceleration acts on the mass of the beam to

produce a uniform load transverse _o the beam and a concentrated load along

the beam axis. The most severe vibrations will occur in a direction which

is transverse to the longest beam length.

Complex pipe configurations wii] be resolved into straight beams
whose length equals the pipe length normal (transverse) to the direction in

which the acceleration acts. Sections of pipe along the acceleration axis will

serve only to produce a concentrated load.
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63°4 Response

The response of several typical pipe configurations will be ob-

tained for the loading conditions discussed°

A simple configuration of a straight pipe with fixed ends (the

actual end support may vary from simple-support to fixed; however, the effect

of this variation on connector bending _oment will depend on connector

location) is first considered and the response found in terms of the normal

modes of vibration of a simple beam based on the analysis of Sections 63.5

and 63°8. This analysis is useful to show the type of response typical of a

missile piping system.

An example of a complex piping system is included to illustrate

the simplifications of loading and pipe configuration used to estimate the

response (Section 63.6). A static analysis is used on this type of system

to compute the inertial reactions of the pipes for a given "g" level of ex-

citation° The pipe reactions thus obtained are modified by an amplification

factor for possible resonances.

The piping structure will contribute an appreciable amount of

damping_ The gimbal is a sliding type joint which serves as an additional

damper so that the expected amplification factor at resonance, Q, has the

range

5<'Q <20

The conservative estimate Q = 20 will be used in the examples that follow.
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63.5 Vibration Anal_sls of Lox Interconnector Line

This first example is a straight pipe to which a complete analysis

can be simply applied.

The LOX interconnector line connects the main oxygen tank with

smaller oxygen tanks on the periphery of the Saturn Block II Vehicle.

Configuration (See Fig. 63.2)
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63,5.1 Physical Parameters

Internal pressure 200 psig (max_

Density LOX OL = 62.4 ib/ft _

Density Steel Ps = .285 Ib/in 3

Beam Thickness t = .0625 in

Beam Diameter D o = 12.75 in _2Beam Length _ = 58.3 in" = 3390 in 2"

Cross Section,Inertla I = 43.2 ink

Modulus of Elasticity E = 30,000,000 Ib/in 2

Beam Mass per Unit

Length 0 = .0132 Ib sec2/in 2

Beam Weight per Unit

Length _ = 5.09 Ib/in

_4 = ll.5xlO6in 4
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63.5.2 Excitation

The LOX interconnector line is located in Zone 3-2-B as designated

by the "Vibration and Shock Specifications for Components on Saturn, C-I

Block II Vehicles" (Ref. i). In this zone the following vibration and shock

requirements must be met along any axis of the LOX interconnector component.

Resonant Test Code I-A

20-28 cps at 0.I in D.A. displacement

28-72 cps at 4.0 g peak

72-140 cps at 0.015 in D.A. displacement

140-2000 cps at 15.0 g peak

Shock Test Code b

50 g peak

?7
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63.5.3 Analysis of Loading

All loading cases are considered with LOX in the pipes since this

lowers the natural frequency and increases the magnitude of the load signifi-

cantly.

The beam may be analyzed in either of the two models shown below,

depending on stiffness of the gimbal Joint.

Cont inuous Model Discrete Model

The gimbal joint configuration is as follows:

/
/
/
/
/

}_issile /
/

Structure/

/

/

/

/

/

/

/

/

Sliding
We Id Cont act

The relative stiffness in bending for this joint as compared to the

LOX pipe is indeterminate. As extremes, the response of a continuous model

with uniform stiffness will be compared with that of a model which assumes no

gimbal stiffness in bending.
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63.5.4 Response for Continuous Model

The following mode parameters are obtained from Ref. 2 for the

continuous beam with clamped-clamped supports.

Mode an Bn_ n_ f ¢ (x=M2) (x=O)

1 0.98 4.73 22.4 500.6 330cps 1.588 2.00

3 0.99 10.99 120.9 14617 1790cps -1.406 2.00

5 0.99 17.28 298.6 89135 4400cps 1.414 2.00

63.5.4.1 Steady State Vibration

r

The steady state acceleration loading in the resonant test code

requirement is most critical in the frequency range of 140 to 2000 cps where

the peak acceleration is G = 15 g's.

This acceleration acts on the mass of the beam to produce the load

intensity P(x). (See Appendix, See. 63._

P(x) = _G

Then

Pn = _Jo (_G) 0n(X) dx

The integral is evaluated using Ref. 3, clamped-clamped beam, Integral #i.

Pn = _ i- (-I)
n = 1,2,3 .......

Since _m_;I and for n = 1,3,5, ......

p =4_

n gB n

We calculate the bending moment at the end of the beam (x=0) according to

the relation obtained in the Appendix, Sec. 63.8

M _

OO

I
n=l

2 .I!

Pn0n (x) sin(_t._l

2 /( uZ,2 1 w_n] 2(/IBn) Vll-7 ) + Q-2
n

n = 1,3,5 .....

(even modes are

not excited)

(72)
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The amplitudes of the fifth and higher modes are negligible and their natural

frequencies are too high for resonances to occur in the range of interest.

The amplification factor is taken to be Q=20.

The amplitude of the bending moment is:

I I
M = (3390) (305.6) (2.0) II w 2 _ I w 2

4.73) (22.4) J1- -_+ --_ -_

k 001/ Q ('°1

+ I ]21(11) (121) - + Q2 2
c°3/ _3

and

19600

f2 I f

- 1

1570
15

f ,2

at f = 330 cps we get the maximum moment ignoring phase relations as:

M = 392,000 + 1600 = 393,600 in ib

63.5.4.2 Shock Response for the Continuous Model

The transient excitation requirements in the shock test code are

most critical for the rectangular type pulse. The ratio of response to

excitation which is applied to each mode of beam vibration is: (See

Appendix, Sec. 63.8.3

Response I e-_It= - COS _ t
Excitation n

0<t K,_=

for rectangular pulse T=.005 seconds

8O
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A calculation is nowmade to determine the time needed to reach the
maximumresponse amplitude for each mode in this beam. The maximumamplitude
of the shock response occurs when

cosw t m -I
n

Then the rise time is: t = _/_n

Mode Circular Frequency, _ Rise-Time, t
n n

1 (330) (6.28) rad/sec .0015 second

3 (1790) (6.28) .00028

5 (4400) (6.28) .00011

Since there is little damping of the response during the excitation period

( 'C = 5 milliseconds) it is possible for the first fives modes to reach

their maximum during this time and this summation must be considered.

The load function for a G = 50 g's peak impulse is

50

Acceleration

5
Milliseconds

Now the load per unit length is:

t

Pn = If (_G)_n(X)dx
jo

Using the integral tables of Ref. 3 for the clamped-clamped beam:

Pn = ;B i- (-i)
n

n = 1,2,3,4 .....

Since _n_l ; _G = (5.09)(50)

1018
_-- n = 1,5,b .....Pn Z B

n

81
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The bending momentat the ends of the LOXpipe for a 50 g shock impulse as
determined in Section 63.8 is:

2 11

oo _ Pn_n(X )

M= I 2

n=l (_Bn)

I - e-_tcOS_n_

The maximum amplitude of the end bending moment is therefore

M = I _ Pn_n(X) _

n=l (_Bn)2 (2) n = 1,3

(even modes are not

excited)

Then the value of bending moment neglecting phase is:

negligible)
M = 131,000 + 10,400 = 141,400 in Ib

(higher modes are
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63.5.5 Response of Discrete Model

In this section the LOX interconnector is analyzed by considering

the gimbal joint to have zero stiffness in bending.

The beam loading is analyzed in two sections; however, the natural frequency

of the system is a function of the deflections of the combined system. Since

_ is 12 inches, the split in the continuous beam ( _ - 58 inches) occurs
I'

at its point of inflection or when the moment of the continuous beam is zero.
This discrete model will have the same static deflection shape as the con-

tinuous model and hence nearly the same natural frequencies.

An approximate type of analysis will be used. The cantilver beam

_i will be analyzed as loaded with a uniform load and a concentrated load
at the end due to one-half the loading on the center span _2" The mode

parameters will be taken for the cantilever section alone as obtained from

Ref. 2 for the uniform clamped-free beam. These are as follows:

n* 0 " 0 _l,Bn) 2Mode f 0n(gl ) n ( ) @IBn _n

i 330 2.00 2,00 1.875 3.516 .734

2 910 -2.00 2.00 4.694 22.03 1.018

3 1790 2.00 2.00 7.855 61.70 .999

4 2950 -2°00 2.00 10.995 120.90 1.000

5 4400 2.00 2°00 14.137 199.86 .999

f for continuous beam model
n

63.5.5.1 Resonant Vibration

Steady-state vibration response for a slnusoidal excitation of

G = 15 g's is now calculated:

Load: W = 1/2(5.09)(58-24)(G) = 86.6 G

then W = 1300 lb.

Then the load intensity is:
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P(x)

and Pn

= W(x:II) + _G

= W 0n(_ ) + _G_n(X )dx

Using the tables of integrals in Ref. 3 for a cantilever beam

p W - I_G_ n n = 1,2,3,4,5, ......

The steady state response for moments at the fixed end of the cantilever

beam based on the relation from Section 63.8 is

_o

I
n=l

2 i!

_]Pn_n (x=0) sin(_nt- _

_nl Q2 lW2n)

Neglecting phase, as a conservative assumption, the amplitude of this bending

moment for the first four modes then is

Mx= 0 ] 1300
(2) (144) [_(2.0)+ 1.875

<_._ _ +_/__
<_o> Yt-g;g_

+
2 1300 2 0 + (2) (76.3) (1.01811

I( )(144)[_ (- " ) 4.69

The amplification factor at resonance is taken to be Q=20 as for the continuous

beam:

Mx=o = 22 _700 +

V_- +_

2_410

f-_+ 1/f__

_0 _[9_0_
63-17
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The amplitude of the end bending momentat the wcrst condition when, f = 330 cps,
is:

M m 454,000 + 2,000 + 1,000 = 457,000 in lb.

63.5.5.2 Transient Solution for Cantilever Beam

The analysis of the response function for a rectangular shock pulse

is similar to the approach used for the continuous model. Therefore, the

maximum ratio of response to excitation is two for each mode. The excitation

function for a G = 50 g's rectangular impulse on the cantilever beam is

similar in form to the steady state vibration excitation.

Pn =[86.6L_I _n_ I)+2 _l--_n] G

The maximum amplitude of the clamped end bending moment therefore is:

= i (2)
n--I

2 _Y

I Pn@n (x=0)

Considering the first three modes, and neglecting phase:

Mx= 0 = 151,000 + 16,000 + 7,300 = 174,000 in lb.
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63_6 Vibration Analysis of LOX Suction Line

The LOX suction line is an example of a complex pipe configuration

which must be simplified.

The LOX suction line connects the LOX tanks to the nozzle assembly.

A typical configuration from the Saturn Block II Vehicle (Fig. 63.1) is shown

in the attached drawing (Fig. 63.3).

8G
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63.6.1 Physical Parameters

The following parameters are typical and are applied as though

continuous in the system:

Density LOX

Density steel

Line thickness

Line diameter

Cross section inertia I

Modulus of Elasticity E

Line mass per unit

length 0

Line weight per unit

length

PL

0 s =

t =

D
o

62.4 ib/ft 3

.285 Ib/in 3

.0625 in

= 8.00

11.8 in4

30xlO 6 psi

= .00573 Ib sec2/in 2

= 2.21 Ib/in

g9
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63.6_2 Loading Requirement

The LOX suction line is located in Zone I-I-G as designated by the

"Vibration and Shock Specifications for Components on Saturn, C-l, Block II

Vehicles". In this zone the following steady-state vibration and transient

shock conditions must be met when the inputs are applied to the end of the

llne which fastens to the pump on the lower end.

Resonant Test Code I-A

20-100 cps at 4.0 g peak

100-142 cps at 0.0078 in D.A. displacement

142-540 cps at 0.00055 in D.A. displacement

540-1000 cps at 0.00055 in D.A. displacement

1000-2000 cps at 28.0 g peak

Shock Test Code b

i00 g peak

9O
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63.6.3 Analysis of Loading

The procedure here is to consider the system to have uniform stiff-

ness and to consider the acceleration to act along each of the three axes

shown on the drawing. The pipe system is spilt into four sections labeled

A, B, C and D which are either normal to or lle along the axes x, y and z.

Each section has a static weight per unit length given by _ = 2.21 Ib/ino

The complex pipe configuration will be simplified by constructing a beam of

length equal to the pipe length which is normal to the direction of the

acceleration. The loading diagram for acceleration acting along the y axis

is: (Section C) W = (2.21)(42,2_)G

Tank,-!

End

P(x) = 2.21G Ib/in

Section A Section B ,

" I " I "
29.7 _ 33.0 ";._ i4.3

Nozzle

End

The pipes which are normal in direction to the axis through which the

acceleration acts contribute a uniform load along their length, and pipes

which are parallel to the acceleration axis contribute a concentrated load.

The bending moments at the fixed ends can be calculated for a steady load

distribution at the "g" level of excitation along each of the three axes.

These values are modified by an amplification factor for possible resonances

(Q=20).

This procedure is used to find the bending moments at each end of

the LOX suction line for the three cases:in which the acceleration is

resolved along the x, y and z axes resp_ctlvely. The accuracy'depends on

the ability to obtain the same deflection shape in the equivalent model with

the new length and loading conditions.

91
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63.6.4 Response

The first case is analyzed using the loading diagram above for

acceleration resolved along the y axis. The moments at the ends are evalu-

ated by superimposing the following two loading diagrams and applying

formulas from Roark, Ref. 5.

J

J
J

J

J
J

J

J

P(x) =(2.21)G

11

._= 77.0 _-

\
\
\

\
,,...
\

\

J
J
f

J
J

J
J
J

II

a =62.7-

w I (42.z)(:

--L_ b=14-._,,.

I)G

Then M I = + (62.7) (14.3)_ 2

(77) 2
(4 2.2) (2.21)] G = 1300 O

M2 =[2"21(77)2 + (62.7)2(14.3) )]12 (77) 2 (42.2)(2.21 G = 2020 G

For this component G = 4 g's, assuming the natural frequency below I00 cps.

M I = 5,200 in Ib

M 2 = 8,000 in ib

Applying the expected amplification factor for resonance

M I = 104,000 in ib

M 2 = 161,000 in Ib
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The second case is analyzed using the following loading diagram

for weight resolved along the x axis.

(Section B) W = (33)(2.21)G

LOX

Tank

End

J
/

/

/
/
/
/

/

Section A

"_-----_29.7

T

Section C

< 42,2

Nozzle
End

The moments at each end are obtained by superimposing the following

loading diagrams :

P(x)=2.21G

t\

iii ii .

-- a=29.7 ---_-< b=42.2

[(2.21) (71.9) 2+ (2.21)(33)(29.7)(42.2) 2]
M I L 12 (71.9) 2

J
G = 1700 G

M2 = [(2.21) (71.9) 2
12

+ (2.21) (33) (42.2) (29.7)]
2 3

(71.9)

G = 1490 G

For the LOX suction line G = 4 g's

M I = 6,800 in ib

M 2 = 6,000 in ib
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The end pipe reactions at resonance are then: (Q _ 20)

M 1 = 136,000 in Ib

M 2 = 120,000 in Ib

The third case is analyzed using the following loading diagram for weight

resolved along the z axis.

LOX

Tank

End

P(x) = 2.21G

section B I Section ,C_ " " section D

_< 89,5 >

\
\
\ Nozzle

End

The static bending moments at each end are:

(2"21)_89"5_2 G = 1550 G
MI = 12

M 2 = 1550 G

For the LOX suction line G = 4 g's

M 1 = 6,200 in Ib

M 2 = 6,200 in Ib

Applying the amplification factor for resonance

M 1 = 124,000 in ib

M 2 = 124,000 in Ib

, Q=20:
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63.7 Conclusions

Only for simple pipe configurations can an exact dynamical

analysis be easily applied. For pipe systems with intermediate joints or

curved sections, the normal modes of vibration cannot be predicted easily,

and simplifications must be made. A pipe system of variable stiffness, com-

plex shape and uniform loading is replaced by an equivalent straight beam

with a uniform stiffness, an altered length and a variable loading to ap-

proximate the deflection curve of the original configuration. The typical

examples of this section show that gimba!-type joints of indeterminate

stiffness occur near the point of in_ _ction of the continuous equivalent

system so that a good approximation for the deflection curve of the original

configuration is obtained. A static analysis of the equivalent system can

be used to obtain a reasonable estimate of the pipe end reactions for

purposes of the fluid-connector designer.

The end reactions determined on some typical pipe configurations

in the environment of the Saturn C-I Vehicle are quite high and must be

considered in the connector design if leakage is to be avoided.

83
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3,8, Appendix: Vibration Analysis of Beam

3.8,1 Normal-Mode Analysis (Sun_aary of References 3 and 7)

The governing differential equation of motion of a beam with a

time-varying load is obtained by equating the external load intensity to

the sum of the inertial and elastic loads.

YI

_- Jl

Y2

>X

The equation of motion is written with respect to the co-ordinate system, X,Y.

Motion of the beam with respect to this co-ordinate system denoted by '_" may

be caused by an application of an external load or by movement of the beam

supports which is denoted by YI and Y2 o The movement of the supports with
respect to the fixed co-ordinate system produces an equivalent "G" loading on

the beam. This "G" loading is a continuous load which has a value at x=O of

_2Y I

e (O) = O _t 2
(i)

and at x =_ _2Y2

P _) = P 2
_t

(2)

This equivalent load intensity varies linearly across the beam to satisfy

the boundary values.

_2Y I _2Y 2
For the case of uniform acceleration .... Gg (3)

_t 2 _t 2

the equivalent load intensity becomes

P (x,t) = pGgf(t) (4)

or

P (x,t) = _0f(t)

63=29

(5)
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whe re 0 = mass per unit length of beam

= weight per unit length

G _ = number of g's - uniform acceleration

f(t) = time function of acceleration loading

The external load produces a beam deflection y with respect to the ends of

the beam. This deflection is resisted by the following forces.

I. Flexural stiffnemof beam - resistance to bending along beam.

bending moment (6)

_M

Q = _x _ shear force

P(x,t) ='_x = E1 _4y load intensity
_x 4 '

where: El is uniform stiffness of beam

2. Beam Inertia - resistance to movement of each section

P(x,t) = 0 _t 2

where: 0 = uniform density of beam

3. Damping in beam - considered viscous and distributed along the beam

(7)

(8)

(9)

P(x,t) = C _t (I0)

The governing equation for flexural vibration of the beam, neglecting

shear forces and rotary inertia, is:

E1 _4y + O _2y + C _t = _Gf(t) (Ii)
_x 4 _t 2

where: = deflection of beam with respect to its end_(in),Y

bending stiffness of beam - uniform (Ib/in _)(in 2)E1

0 uniform mass density per unit length (ib/sec/in)

C = damping coefficient per unit length

= beam weight per unit length

G = number of "g's" peak acceleration

f(t)= time function of acceleration loading

(12)

The beam is a continuous system with an infinite number of degrees

of freedom which may be analyzed by superimposing the response in the normal

modes. 9_
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Let beamdeflection in each modeYn _n

Then beamdeflection

(x) 7n (t)

Y = I _n (x) 7n(t)

n=l

(13)

(14)

where the mode shape in the nth mode is _n (x) and the amplitude 7n.

The normal modes are solutions of:

_x 4 _t 2

=0
(15)

Trying as an assumed solution

Yn = _n (x)_isir_nt

then Eq. (15) yields:

2
po0

E1 _n (x) = 0

Define 2

p4 _ P _n
n E1

then

4
- Pn_nr = 0

Define "" i $4

_n (x) = __ [_n (x)]
_n _x4

(16)

(17)

(18)

(19)

(20)

then

III!

_n (X) - Cn = 0 (21)

9S
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The general solution for the modeshape _n(X) from equation (19) is:

(_n(X) = Asin_nX+BcOS_nX+Csinh_nX+Dcosh_nX (22)

The constants A, B, C, and D are solved from the boundary conditions of mode
shape at the ends of the beamand maybe grouped as follows:

_n(X) = cosh_nX-COS_nX-an(sinh_nx-Sin_n x)
(23)

The mode shape for the case of a simply supported beam will be analyzed here

to determine _n, _n and _n(X). These values are tabulated for all other

mounting conditions for the first five modes in Ref. 2.

Boundary conditions - simply supported beam

y = O; x _ 0, x - _ (24)

y"= 0; x = O, x = _ (25)

Applying the above conditions to Eq. (23) yields:

@n(X ) = sin_nX (26)

Using y = 0; x =

O = sin_n_

(27)

(28)

then

_n Z = n_ n = 1,2,3," .... (29)

From Equation (18)

0o
n

= (n_/_) 2_ (30)

and Cn(X) = sin n_x/_ (31)

The response of the beam system will now be obtained for a transient

and a steady-state type time-varying load.

J99
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63.8.2 Response to Steady-State Vibration

The steady-state excitation is a sinusoidal force which is specified

by its frequency and peak acceleration in g's.

Excitation P(x)simot =

Response

where:

y

Z Pn_n(X ) sino0t

n=i

Pn = l_p(x)_ (x) dx

_/0 n

_an_n(X ) sinwt

n=l

(32)

(33)

(34)

Substituting the excitation and response into the governing differential

equation yields for each mode n.

E1 a -- n ( - _o02an_n(X)+jWCan_n(X) = Pn_n(X)
n _x 4

(35)

where

n ( = _-_ _n (x)

_n

(19)

2 n4
n

(18)

then

2 2
anO0n -anW +jc0Oan/@ = Pn/O

P
n

an= 2 2

p(Wn-m )+jwc

(36)

(37)

and

where tan _

Pn_n (x) sin(_0t-_ )

n=l /2 2 2 2
VP (_n -_ )2+c2m

wc/p 2 2= (_n-_)

109
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2 EI_4Making the substitution 00n_=
(18)

po

y _
n=l.

Pn_n(X) sin(00t- _)

which can be written as:

(39)

Pn_n(X) _4 sin(_0t-_)

Y = n_--I (g_n)4 El _

-
n

The deflection is the infinite sum of the modal deflections due to an excitation

Pn " _ P (x) _n (x) dx

acting on a mode shape characterized by _n(X) and _n"
type are tabulated in Ref. 3.

Integrals of this

The beam response is also a function of the beam parameters:

= length

E1 = stiffness

p = density

C = damping coefficient

The amplification factor of a particular mode of resonance, _ = Wn, is of
interest.

Resonant deflection Yn = QnYstatic

Resonant condition _ = w
n

Then combining equations (40), (41), and (42)

_°n

Qn = C-

The damping factor may be defined as

(41)

(42)

(43)

= c/2p (44)
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,3.83 Amplification Factor for Shock

The shock response of the linear, multiple-degree-of-freedom beam

can be obtained by applying the transient response for a single-degree-of-

freedom system to the normal coordinates of the beam system. The normal

coordinates are the amplitudes in the modes. The amplitude of the steady-

state deflection for each mode is:

Pn 74
A _ (45)

(__n )4 E1
n

This amplitude of displacement of the beam for each mode "n" will be modified

by the shock response.

The shock requirement used on the LOX pipes is presented in

'_ibration and Shock Specifications for Components on Saturn, C-l, Block II

Vehicles" (Ref. I) in terms of peak acceleration for each component or block

within the vehicle. The shock test code states that the acceleration shall

be applied along each of the three perpendicular axes and shall be one of

the following wave shapes.

I. Triangular pulse with duration of I0 milliseconds

2. Half-sine pulse with duration of 8 milliseconds

3. Rectangular pulse with duration of 5 milliseconds.

This analysis considers lateral vibrations which are the most

critical. The shock pulses have approximately equal areas and approximately

equal responses. The response' of a linear, single-degree-of-freedom system

with damping for the rectangular shock pulse is now derived. (Ref. 6, pages

8-49,50).

Equation of motion

mv+cv+kv = g (t) (46)

m" c. (47)
_v+_v+v = _(t)

_(t) =
k (48)

Also

v = response

= excitation

..

V

+ k _ + v = _(t)

1 0"2
(49)
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The Laplace transform with respect to "t" is:

(50)

The initial conditions in this case are:

v(o) = 0

_(o) = o

The subsidiary equation becomes

F_ (s)

Fv(s) = S2 c

--7+_- s + 1
_0

n

(51)

(52)

(53)

Response

2 ]L- I [ con F_ (s)v(t) = '"

S 2 c 2 S+ m
n

(54)

For rectangular pulse _ (t) = [ , 0<t _- (55)

Pulse

_t
V

Then

F (s) = L{_ (t)I = I/S, O<__t<--- m
(56)

(5Z)

1
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Roots of denominators, in addition to S = O, are

Let coJn c
= 2k 2row

n

Rewriting Eq. (57):

Therefore from inverse Laplace tables

v(t) : [ n[ab +
be-at_ae -bt]
ab(a-b)

where:

a = Wn(C-i 1_'._ 2) b : _On(_+i _

(58)

(59)

(60)

(61)

then

2
I" ab =co

n

a-b :-2 ioJn

-b e : - + e- . e

a 2i- 9

2

a-b e = + e "w

2i_ e

Therefore Eq. (61) becomes

b(t) : [iq_-C°n,_t (cos<_On 1-_21
t - _ sin(w n l-_)t}I (62)

lJ
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Now

cD0
n c

n

(59)

C
Let q =--2m

damping factor (44-a)

then _ = _
n

Since the damping _ is small

and the frequency

(64)

_ 2 (65)

[ ]

v(t) = _Ll-e'1]t(coS00nt)J 0_ t<--T (66)

Therefore the dimensionless amplification factor for shock in the "n" mode

of vibration of the continuous beam is:

, -qt
_n(t) = _ " i- e (cOS_nt)• _(t)

(67)

Then for 0<t<'_ the transient response Js given by Eqs (14_ (45) and (67) as,

4
P _ (x)
n ny=.__

.n=l (_n)4 El

(68)

1.05
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The solution for bending momentin the vibrating beambased on the
deflection relation follows:

Y _ Z An _n (x) _n (t)
n=l

(69)

where An 7n(t ) = time response of nth mode

Bending Moment M -- -El d2y

dx 2

(70)

_4p d_n(X)3

n dx 2

M-- %(t)
n=l (f _n)4

(71)

whe re

" I d_

Cn (x) - 2
_n dx2

Tabulated values in Ref. 2.

Then

2

n=l (g _n )

(72)

Solution for flexural stress in vibrating beam

max

MD

21 (73)

M =

D =

I =

bending momen_,in-lb

diameter of pipe

moment of inertia about neutral axis
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Solution for Shear force in vibrating beam

Shear force Q = _El d3y

dx 2

(74)

d3

Q _ n= . [n(t)

n =1 (_ _n)4

(73)

where ''' d3I_ 13_n (x) =-- n (x _n
dx 3

V# !

Cn (x) Tabulated in Ref. 2

then
_o

Q=-

n:l _n)

7n(t) (76)
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64. EFFECTS OF RADIATION_ VACUUM_ AND THERMAL ENVIRONMENTS

ON POLYMERIC GASKET MATERIALS

by

J.R. McLoughlin

64.0 Summary

The properties of polymers which are important for their consideration

as elements of seals are discussed. The effects of radiation, high vacuum,

high temperature, and low temperature on the mechanical behavior of various

types of polymers are described. Thermal expansion, the glass transition,

stress relaxation, oxidation, thermal degradation, and dynamic behavior are

considered.
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64.1 Introduction

The chief interest in polymers for use in seals is as the gasket

material. In this application the most important properties to be considered

are the mechanical properties of the polymer although resistance to attack

and degradation by other materials in the environment is, of course, a

necessary requirement.

Ideally, a gasket material should respond instantaneously to applied

pressure and exert back pressure against the flange or compression element

indefinitely. Furthermore, the material should be able to conform readily

to temperature changes in the seal area without releasing its back pressure

or moving laterally with respect to the compression elements. Such ideal

requirements are, of course, very difficult to achieve with real materials

except over limited temperature regions. For example, a network polymer

in that region of temperature where it exerts ideal rubber behavior will

very nearly conform to these requirements. However, if the temperature is

raised very far, the rubber will relax its back pressure due to degradation

of the polymer network by oxidation or simple thermal breakdown. Even the

most thermally resistant rubbers such as silicone rubbers will be attacked

slowly at temperatures of 250VC_and the degradation proceeds more rapidly

as the temperature is raised. This causes the stress in the rubber to relax

so that eventually the gasket ceases to press back against the seal flanges

unless the latter are designed to continuously produce pressure by spring

action. This process which takes place in a rubber is known as chemical

scission, and the stress relaxation which it produces is called chemical stress

relaxation. Some rubbers undergo such behavior at lower temperatures than

others. For example, polysulfide rubbers undergo chemical scission by a

process of opening sulfur bonds at 60-i00°C. Ordinary carbon-based natural

and synthetic rubbers are somewhat better, depending on exact formulations and
oCanti-oxidants used, but none are very durable at 150 . More thermally

resistant polymers are being investigated, but it is doubtful whether the

temperature limit will be raised much above 300°C in the near future. Therefore,

polymers can be considered useful as gasket materials only at temperatures of

300 degrees Centigrade and lower.

As the temperature is decreased, another characteristic behavior of

polymers must be considered. This is the transition from a rubber-like

material to a glass-like material. All polymers exhibit this behavior,

although the characteristic hardening takes place at different temperatures

for different materials, and the shape of the modulus-temperature curve may

be somewhat different due to variations in crystallinity, polarity, chain

length and other structural variations. This transition is known as the

glass-transition. Most polymers exhibit this behavior at room temperature

and above, but some hydrocarbon rubbers have transitions at temperatures well

below 0°C,s_ch as polyisobutylene at -74°C, natural rubber at -73°C, and
GR-S at -61C. Some silicone rubbers also have very low glass transitions and

are more suitable for use as rubbers at such temperatures than carbon-based

rubbers because they do not have as great a tendency to crystallize.

Below the glass transition, all polymers behave like hard solids with

Young's moduli of elasticity in the neighborhood of I0 I0 dynes/cm. 2 (145,000

pounds/sq, inch) and higher. Above the glass transition, a polymer deforms
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by uncoiling of long chains of atoms which are linked together in a network

of periodic "crosslinks". This is what makes it possible to stretch a rubber

several hundred percent. The modulus may be as low as i00 PoS. I° As the

rubber is cooled through the transition, it is no longer possible for the

chain segments to move freely, and finally they cannot move at all, so that

any deformation due to stress can only come through small displacements of

chain atoms with respect to neighboring atoms on the same or nearby chains.

Because this "freezing-in" process occurs over a rather wide temperature in-

terval, there is another type of stress relaxation which occurs in high poly-

mers at and below the glass transition (and sometimes in crystal transforma-

tions) o This relaxation is associated with short movements of segments of

chains, and its chief importance for this study is that it results in a slow

decay of the reaction force which is exerted by a gasket polymer on its re-

straining flanges. Considerable data on this stress relaxation of polymers

in their glassy state (below the glass transition temperature) have appeared

in the literature, but most of the direct measurements of relaxation do not

extend far below the glass transition, due to the small deformations and long

times which are involved in such studies. Instead, the majority of investi-

gators have used dynamic measurements (vibrations) to study the deformation

behavior of polymers at low temperatures. Such measurements have been ex-

tended down to as low as 4 ° Kelvin in some cases and to 80 ° Kelvin in the

case. of quite a few polymers. A good review of the work done in this field

was published recently by AoE° Woodward and J. Ao Sauer (Refo i) o This article

presents dynamic shear modulus data and dynamic loss data for such polymers as

polymethacrylates, polyvinyl ethers, polyvinyl esters, polyethylene, poly-

amides, polyurethanes, polyesters, polyvinyl chloride, polyvinylidene chloride,

polytrifluorochloroethylene (KeI-F), polytetrafluoroethylene (Teflon) and

polyacrylonitrile.

To understand the importance of these measurements to this project, it

is only necessary to realize that the small-deflection behavior of a polymer

in various modes of distortion such as creep, stress relaxation, and constant

rate of strain can be estimated from its behavior in such dynamic measurements.

A wealth of information has been published on this subject, much of which has

been collected in J.D. Ferry's book, Viscoelastic Properties of Polymers

(Ref° 2)° If we are interested in the probability of stress relaxation of a

polymeric gasket at low temperature which may result in failure by excessive

decrease in the force the gasket exerts against its restraining members, we

must convert the dynamic data to stress-relaxation data. This can be done

approximately by looking at the dynamic loss at a given frequency and temp-

erature. A peak in the dynamic loss-temperature curve means that a mode of

relaxation occurs at that temperature° Conversely, a low value of dynamic

loss indicates low relaxation at that temperature for that frequency. Polymer

properties are very sensitive to time as well as temperature, so behavior at

several frequencies is necessary to gain a true understanding. However, it is

usually possible to make a frequency-temperature conversion so that we can

predict low-frequency behavior from high-frequency behavior by sliding the

curves along the temperature scale° That is, the same behavior observed at a

certain frequency and temperature will be observed at a lower frequency at a
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lower temperature. Considerable experience is available for making this
time-temperature transformation based on manypolymers. So, from the pub-
lished information on dynamic losses of polymers at low temperatures, there
is available a body of information enabling us to makean approximate pre-
diction of long-time stress relaxation behavior at low temperatures. In
general, this shows that most polymers have very little dynamic loss below
around -100°C. The most notable exceptions are those polymers which appar-
ently exhibit somecrystal transformations at lower temperature, such as
polyethylene, polytetrafluoroethylene (Teflon), and polyamides (Nylon). Even

• o
these have dlsappeared at -200 C. Therefore, we can expect very little stress

o
relaxation in polymers at temperatures of -200 Co Instead they will behave

like hard solids with a high modulus of elasticity and typically will tolerate

only low strains without failure, sometimes less than 1%o

One of the most serious limitations in the use of polymers as gaskets

lies in the high coefficient of thermal expansion of polymers compared to

metals which are likely to be used in the restraining flanges and compression

elements. Polymers have a higher coefficient of expansion in the rubbery state,

above the glass transition, where values of linear expansion around 1 to 2
o

x i0 -4 per C are normal. This is about I0 to 20 times as high as most metals.

The thermal expansion coefficients of plastics are only about 1/2 to 1/3 as

high below the glass transition as above it, but they are still much higher

than for metals. The discrepancy between metals and rubbers is not so

serious_since a rubbery gasket can readily distort to conform to its metal

retaining element• However, as it is cooled below the glass transition, the

capacity for the plastic to deform and match the metal surface is diminished

rapidly and is practically non-existent at very low temperature. Assuming

a seal held in place by metal compressing elements on top and bottom surfaces

and cooled to low temperature after compression, the reactive force by the

plastic against the compression elements will begin to decrease as soon as the

temperature drops through the glass transition. It may actually decrease to

zero and the gasket may shrink away from the compressing faces if some provision

is not made for a "follow up" spring action by these compression faces. While

the flanges can be designed to achieve such a spring action in the direction

normal to the compression surface, the mismatch of expansion in a direction

parallel to the compression surface is much more difficult to compensate, since

the gasket and compression face are in constant contact. This may result in

sliding of the gasket across the compression face so that irregularities in

the face no longer match the irregularities in the plastic gasket which were

molded in at much higher temperature°

These considerations suggest that if relative sliding motion proves to be

a problem, the coefficients of expansion of compression face and gasket might

be matched by incorporating mineral fillers in the polymer to lower its

coefficient of expansion or by making the retaining mechanism out of reinforced

plastic in order to raise its coefficient° Since reinforced plastics are now

listed among the strongest known materials of construction, this seems like a

good possibility• When glass fibers are used as the reinforcement, the

thermal coefficient of expansion is much less than that of the basic plastic,

while the stress relaxation (or creep) is considerably decreased° Moreover,

the strength of the plastic is considerably enhanced.

il'>~
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64.2 Radiation Resistance

The question of radiation resistance of seal materials may arise since

the vehicles carrying these seals may pass through belts of high intensity

radiation such as the Van Allen belt. However, the seals would be expected

to be shielded from direct radiation by other materials, the exact thickness

and composition of which would be determined by the design. All we can do

now is outline roughly the behavior which might be expected with polymers.

The situation is further complicated by the different intensities of radiation

and different particles encountered in various parts of the radiation belts.

According to a recent report by RoS. Rochlin (Ref. 3), the Van Allen radiation

consists of protons and electrons trapped by the earth's magnetic field. The

protons have energies ranging as high as 700 Moe. V. or more and are capable

of penetrating up to several inches of lead. The energy distribution and

number of electrons varies with both positions in the belt and time, but they will

be almost completely absorbed by thin layers of shielding. For example, a

detector in the Pioneer IV space probe which was shielded by 1 gram/cm. 2

(equivalent to a 0.050 inch thickness of stainless steel) indicated a total

dosage of I0 ro/hour in the heart of the inner Van Allen zone. In the heart

of the outer zones, the dose ranged from I0 ro/hour to I00 r./hour equivalent.

It was further reduced by a factor of 50 by 4.6 grams/cm. 2 additional shield-

ing. These doses correspond to 8.3 Rad°/hour maximum in the inner zone and

83 Rado/hour maximum in the outer zones° Examination of a report by CoG.

Collins and VoP. Calkins (Ref. 3) on radiation damage in polymers shows that

there is no significant damage to most polymers below a dosage of 106 Rad.;

therefore, the effect of Van Allen radiation on polymeric seals can be safely

ignored in the case of vehicles passing through the belt only once. In the

case of satellites which may spend significant amounts of time in high

radiation intensity zones it m_ be necessary to design seals with some

radiation resistance. Collins and Calkins list the dosage for threshold

damage and for 25% damage for a number of polymers, part of which is repro-

duced on the next page° Since average radiation doses encountered may often

be less than i0 Rads./hour and since seals may readily be protected by more

than the equivalent of 0.05 inches of stainless steel, it is unlikely that

many cases will arise where radiation resistance will be a prime consideration

in design.
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FIGURE 64.1

Radiation Damage in Plastics and Rubbers (Ref. 4)

Material

Natural Rubber

Butyl Rubber

Neoprene

Thiokol ST

Silicone Rubber

Cellulose Nitrate

Ethyl Cellulose

Furan (Duralon)

Asbestos & Carbon Filled

Methyl methacrylate

(Plexiglas)

Trifluorochloroethylene

(Fluorothene)

Phenol Formaldehyde

(Unfilled)

Polyamide (Nylon FM-I)

Polyethylene Terephthalate

(Mylar)

Polystyrene

Polytetrafluoroethylene

(Teflon)

Threshold Damage 25% Damage

Rads. Rads.

2 x 106 2.5 x 107

2 x 106 4 x 106

2 x 106 5.5 x 106

5 x 105 i. 5 x 106

9 x 105 5.5 x 106

6.3 x 105 5.7 x 106

1.4 x 106 5.4 x 106

3.3 x 108 3.3 x 109

8.2 x 105 I.i x 107

1.3 x 106 2.0 x 107

2.7 x 106 i.I x 107

8.6 x 105 4.7 x 106

3.0 x 107 1.2 x 108

8.0 x 108 4 x 109

1.7 x 104 3.7 x 104

Polyvinyl Chloride
(Geon 2046) 1o9 x 107 i.i x 108

Vinylidene Chloride
(Saran) 4oi x 106 4.5 x 107

Note: Dosage are defined as follows:

Threshold dosage: The dosage at which physical property changes first

become apparent. This represents a point at which the functional

ability of the material is unchanged.

25% damage dosage: The dosage at which at least one of the physical

properties of the material has changed by 25% from its initial value.

This was arbitrarily chosen as the point beyond which the usefulness

of the solid materials would be questionable.

1!I
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64.3 Vacuum Effect

The questions of the effect of ahigh-vacuum environment on the performance

of polymeric seals may also be raised. In general, a high vacuum may be

expected to cause volatilization of low-molecular-weight materials if any

are present. However, volatilization rate is proportional to vapor pressure_

and vapor pressure of polymeric materials goes down very fast as mSlecular

weight goes up. Another way of looking at this is to observe that boiling

point goes up fast with molecular weight. For example, in the linear

dimethyl siloxane polymer series: (methyl silicones)_ the boiling point of

the dimer with a molecular weight of 162 is 100°C at 1 atmosphere. As the

series progresses to longer and longer chains, the boiling point rises very

fast. At molecular weight 278, it is 153°C, at molecular weight 394, it

is 194°C_and at a molecular weight of 742, the boiling point is 199°C at a

pressure of 0.02 atmospheres. Since rubbers have an infinite molecular

weight because they are crosslinked, and even uncrosslinked straight chain

polymers have molecular weights in the hundreds of thousands and in the

millions, they have substantially zero vapor pressure; therefore, they can

be regarded as non-volatile. Some plastics do, however, contain plasticizers

which are lower-molecular-weight materials added to increase flexibility. It

would be possible to distill out some of these molecules in long periods under

high vacuum, particularly at high temperature. The best way to avoid this
possibility and consequent property changes is to choose materials without

low-molecular-weight plasticizers for use where long exposure under high

vacuum is necessary. It is usually necessary to confer with the supplier to

make this choice, since it is impossible to tell from trade names which

formulations contain low-molecular-weight plasticizers.
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64.4 Oxidation Degradation

One effect of high-vacuum environment will be a benefit due to the

absence of oxygen° The most rapid deterioration of many plastic materials

occurs by a mechanism of oxidation. This effect has been shown to be due to

the oxygen in the air which chemically attacks the rubber molecules, cutting

them like a pair of scissors. This has been observed by a host of workers,

Refs. 8 to i0, who have found that the experimental approach of stretching

the rubber in an air oven and measuring the decrease in force required to

hold the same extension is a convenient way of measuring the rate of attack

by oxygen. Sometimes the oxygen causes crosslinks to form between chains

faster than the degradative mechanism can cut chains. In this case the poly-

mer may stiffen with time in oxygen at high temperature rather than soften,

as is the case when the chain cutting or scission reaction predominates. In

either case, the end product is a deterioration in properties from the stand-

point of the seal designer. If scission predominates, the seal will gradually
loosen with time as the stress relaxes. If crosslinking predominates, the

rubber will become too hard and lose its flexibility, so that it may even,

tually crack. These processes have been so well documented for some materials

that the stress-relaxation curves for different temperatures can be shown to

obey the Arrhenius rate law. Figure 64.2 shows how the stress relaxation due
to oxidation of natural rubber follows the same curve for different tempera-

tures but displaced along the logarithmic time scale. Such a displacement

indicates a process following a simple rate law and having a constant acti-

vation energy.
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FIGURE 64.3

STRESS RELAXATION OF POLYSULFIDE RUBBER AT VARIOUS ELONGATIONS AT 60°C (Ref,
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64.5 Thermal Degradation

Naturally, none of these effects will be observed in the absence of

oxygen, but there are other types of degradation which can occur in polymers

even without oxygen. If the temperature is high enough, polymer chains

may begin to split up into smaller fragments, which may volatilize if

small enough. Sometimes this process occurs in a kind of polymerization

in reverse or chain unzipping. When this happens, polymer molecules

lose one monomer unit at a time like beads coming off a string. The

monomers are quite volatile at the temperature where this occurs, so they

boil off immediately. In polystyrene, for example, this process begins

at 300°C.

Another type of degradation at elevated temperature is bond exchange.

This results in stress relaxation just as bond scission by oxidation does,

but the chemistry is a little different and it does not depend on the

presence of oxygen. In polysulfide rubber, for example, bond exchange

occurs between sulfur atoms on adjacent chains, resulting in rapid stress

relaxation at temperatures as low as 60°C_as illustrated in Fig_ 64.3.

A convenient way of ranking the thermal stability of polymers is the

use of thermogravimetric analysis. This test consists in heating the

polymer sample at a constant rate while accurately measuring its weight

change. This is most often done in nitrogen to avoid the effects of

oxidation. The weight curve will show a sharp drop where decomposition

starts and the temperature at which this occurs can be regarded as a measure

of the thermal stability of the polymer.

FIGURE 64.4

Decomposition Temperatures of

Some Common Polymers as Determined by

Differential Thermal Analysis

Material

Polystyrene

Maleic hardened epoxy

Polymethylmethacrylate

6-6 Nylon

Polytetrafluorethylene (Teflon)

Polytrifluorochloroethylene (KeI-F)

Viton A

Silicone resin

Temperature, °C

395

405

345

419

555

410

460

505
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64.6 Differential Expansion

As mentioned briefly earlier, the differential coefficient of expansion

between polymers and metals will result in the loosening of a seal compressed

by metal elements as the temperature is lowered below the glass transition.

Furthermore, it will make almost no difference how much the seal is compressed

when it is in the rubbery state; as the polymer cools through the glass

transition, chain coiling and uncoiling is frozen and the only motions left

to the polymer molecules are small displacement of the chain segments with

respect to other segments on the same molecule and segments on adjacent

molecules. As the polymer is cooled, it would normally shrink, but if it

is restrained from doing this by a metal framework, the chain segments will

be effectively displaced from their equilibrium positions by an amount equal

to the differential coefficient of expansion between the metal and the

polymer. Therefore, the force exerted by the polymer molecule on its

restraining elements can be calculated roughly by using the strain due to

the differential coefficient of expansion and multiplying by the average

Young's modulus of elasticity over the temperature interval considered.

An example of this behavior is shown in Fig. 64.5. These'data were obtained

for polymethylmethacrylate (Plexiglas) which exhibits typical rubber-like

behavior at temperatures above i05°C and has a glass transition between

80°C and i05°C. The experiments illustrated show the change in force

required to hold fixed the elongation of a sample of this material while

lowering the temperature. Two different elongations were used;oin each
case the elongation was applied by stretching the sample at 150 C and

then the oven temperature was allowed to dro_ slowly to room temperature.

As soon as the temperature dropped below 100_C, which is in the glass

transition, the force (plotted as stress) began to rise and continued

steadily up until the oven reached the lowest temperature. The oven was
then warmed and the stress fell almost on the same curve with some hysteresis

at the glass transition. The important observation is that with two widely

different elongations imposed at 150°C, the identical curve was traced below

the glass transition. If one assumes that all the strain below the glass
transition is due to linear coefficient of expansion of the polymer

(9 x i0-5/°C) and, using an average Young's Modulus of 300,000 P.S.I_ in

the glass% region, one calculates a stress of 1350 P.S.I. or 93 x i0v

dynes/cm. _ which is almost exactly what is observed. Thus, the polymer

sample "stretched itself" as it cooled. Furthermore, if it had been in a

compressed state upon cooling through the glass transition, it would have

made little difference; it still would have contracted and either stretched

itself or pulled away from its restraining elements unless it was fastened

to them by an adhesive.

1.20
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64°7 Glass Transition

The behavior exhibited by polymethylmethacrylate in the above illustration

is a perfectly general one, which will be exhibited by any polymer upon

cooling through the glass transition; and it illustrates the importance of

knowing the glass transition temperature, the coefficient of expansion of

the polymer_ and its modulus of elasticity. A further observation in the

above example is how closely the stress levels on the warming curve agree

with the stress levels on the cooling curve; this illustrates the relatively

low degree of stress relaxation which has occurred in the glassy state due to

the progressive freezing-ln of modes of relaxation as the temperature is

lowered.

Since the glass transition is so important in the behavior _of polymers,

a short table is reproduced below to show where this transition falls for

some common polymers. It will be noted that all the polymers listed encounter

this transition upon cooling to -100°C.

FIGURE 64.6

Polymer Glass Transition Temperatures

Material

Polyisobutylene

Natural Rubber (Hevea)

Polyvinyl acetate

Polyurethane

Polystyrene

Polymethylmethacrylate (Plexiglas)

Polyvinyl Chloride

Butadiene - styrene rubber

Silicone rubber

Polytetrafluoroethylene (Teflon)

Glass Transition_ °C

-74

-73

+32

-35

i00

105

74

-33

-80

+25

The way in which the modulus of elasticity increases sharply as temperature

decreases below the glass transition is illustrated in the curves shown in

Fig° 64°7. These depict the shear modulus of several rubbers as a function

of temperature. It will be noted that an increase in modulus ranging between

a factor of I00 and i000 occurs in a fairly narrow temperature interval.
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FIGURE 64.7

YOUNG'S MODULUS VS TEMPERATURE FOR VARIOUS VULCANIZED RUBBERS (Refo 6)

O natural rubber

V polybutadiene
X butadiene-styrene 85/15

O butadiene-styrene 75/25

/_ butadiene-styrene 60/40
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64.8 Glassy State Stress Relaxation

The properties of polymers in the glassy state below the glass

transition are an important consideration where polymers are to be used as

seals at low temperature. Some polymers have been studied directly in this

temperature region by use of stress relaxation measurements (Refs. ii, 12).

These measurements show that stress relaxation does indeed occur in glassy

polymer_ but at a very slow rate compared to relaxation in the transition

region. The relaxation is, of course, a function of temperature and depends

on free volume and often on water content and plasticizer content. The free

volume in a polymer below its glass transition depends on thermal history.

Samples cooled rapidly have greater free volume than those cooled more

slowly; therefore, rapidly cooled samples exhibit greater relaxation of stress

at low temperature than those which have more time to accommodate to the

temperature change during the cooling process.

Because relaxation is a slow process in the glassy state, and due to

experimental difficulties in measurements at low temperatures over long

periods of time, few relaxation measurements have been made directly on poly-

mers below the glass transition where the glass transition occurs at low

temperature. Instead, the technique of dynamic measurements has been widely

used to study the response of polymers at small deflections below their glass

transition temperatures. This technique consists in subjecting the specimen

to a cyclic load and measuring the amplitude and phase shift of the resulting

deflection. The ratio of stress amplitude to strain amplitude is the complex

modulus of elasticity, and the phase angle between the stress amplitude and

strain amplitude is the loss angle 5o For a material with zero loss, the

stress amplitude and strain amplitude would be in phase, and the angle B would

be zero. The tangent of the angle 5 indicates the relative magnitudes of

viscous and elastic effects in the material, and hence the relative degree of

stress relaxation to be expected. For a simple Maxwell (spring - dashpot)

viscoelastic model of the material, the relaxation time is the time for 63%

decay in stress under a steady-state deformation and is i0/_ times the period

of oscillation for which tan _ = 0°05°

By making measurements at different frequencies and temperatures, it is

sometimes possible to estimate long-term behavior at low temperatures from

higher-frequency behavior at higher temperatures° In order for this to be

done, it is necessary that all parts of the frequency-response curve have the

same temperature dependency. This is a fair assumption if all the measure-

ments are made far enough below the glass transition. At the present time,

however, only limited frequency and temperature response data are available

for most polymers at low temperatures, so only qualitative remarks concern-

ing their viscoelastic behavior can be made. That is, it can certainly be

said that polymers which exhibit low dynamic losses below their glass transi-

tions will exhibit low stress relaxation. Some dynamic measurements on

Plexiglas and polyethylene are shown in Figures 64.8 and 64o9,respectively.

Examination of some of these dynamic-losses-versus-temperature plots which

contain data at several frequencies shows that the loss curves shift to lower

temperature in a fairly uniform manner as the frequency is reduced. For
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example, in Figure 64°8, the point where tan 8 is 0.05 shifts from 35°C to
-20°C as the frequency is reduced from 2000 c.p.s, to 0_4 c.p.s. If one
assumesthat the shift is uniform on a logarithm-of-frequency scale, the
temperature at which tan 8 is 0.05 at a frequency of 8 x i0 -J c.p.s, would be
-75°Co A frequency of 8 x 10-5 c.p_s, corresponds to a relaxation time of
40,000 seconds, or about half a day. This meansthat there would be sub-
stantial decay in stress observed in Plexiglas when strained at -75°C and
held at constant strain during a period of half a day. However, such a stress
relaxation on this time scale would fall off fast at lower temperatures,
since the loss is decreasing with temperature at the frequency for which tan
B = 0.05. These are only qualitative interpretations of the data, which is
all that is possible where the frequency-loss curves do not slide perfectly
along the temperature scale, as evidenced by the fact that the loss peak
height is muchgreater at 2000 c.p.s, than at 0.4 c.p.s. The fact that the
loss peak height decreases with reduction in temperature would suggest that
the relaxation would be even lower at -75°C than the above simple extra-
polation might indicate.

64-17



tan

0._

a_

0
-I00

I

,2oooCI

./loot I)

120Cl.. ]_

-50 0 +50 +100 °C

Temper#lure

FIGURE 64.8
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MODULUS AND LOSS_NGLE TANGENT, TAN _, OF UNORIENTED CRYSTALLINE

POLYETHYLENE TEREPHTHALATE AT VARIOUS FREQUENCIES (Refo I)

6 I0,000 c.p.s.

® 5.9 c.p.s.

X 0.72 c.p.s.

O 0.082 c.p.s.

0.0094 c.p.s.

D 0.001 c.p.s. 64-19



64.9 Ultimate Strength and Elonsation at Low Temperature

When a limited amount of dynamic measurements are available at too few

frequencies, it is difficult to carry out the necessary correlations between

dynamic measurements and stress relaxation. More measurements of dynamic

properties at low temperature are needed to predict low-temperature stress

relaxation, but an even greater need is for ultimate-strength measurements on

polymers at low temperatures, since these materials can be expected to be

brittle below the glass transition temperature; the lower the temperature

below the glass transition, the greater the likelihood of brittleness will. be.

Yet, only limited data are available (Ref. 13) to show either how much stress

various polymers will endure at very low temperatures or how much elongation

they will endure before breaking. These measurements are probably of greater

importance than stress relaxation, creep, or dynamic measurements since fail-

ure by cracking at these temperatures seems to be a much greater possibility

than failure by distortion. It must be remembered that no known rubbers act

like rubbers at liquid-oxygen and liquid-nitrogen temperatures. All are more

or less brittle, glass-like materials, just as are all plastics. Which

materials are least subject to low elongation failure would seem to be the

key question, and this can only be answered by experiment.

128
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64.10 Conclusions

Exposure to the intensity and kind of radiation exhibited in the Van

Allen belts will not have a serious effect on polymer properties unless

exposure times of years are required or unless the polymeric materials

are exposed without shielding.

The effect of high vacuum on polymer properties will be negligible
unless the formulation contains more than small amounts of low molecular

weight plasticizers or solvents.

High temperatures cannot be tolerated by polymers very long. Many
rubbers oxidize and either soften or embrittle at temperatures of 150°C

(302°F) and lower. Others undergo chemical changes without oxygen.

Thermoplastics such as polystyrene and golymethylmethacrylate revert to
monomer at temperatures over 300°C (572 F) and their properties deteriorate
slowly at much lower temperature. Polysulfides deteriorate at 60°C (140°F).

Higher temperature polymers are in development but 250-300°C looks like the

upper operation limit at present for these materials.

Low temperature causes all polymeric materials to stiffen because

they pass through glass transitions before reaching -100°C (-148°F). In

their glassy state below this transition, all polymers are very stiff and

more or less brittle although very little information is available on

strengths or failure elongations at liquid oxygen and liquid nitrogen

temperatures. Dynamic measurements have been made at such low temperatures;

these reveal high moduli and very little flow.

All polymers have much greater thermal expansion coefficients than

metals and, therefore, present problems if used in contact with metals at

low temperature where the polymers have little flexibility or flow and,

hence, cannot accommodate as well. The use of fillers to decrease expansion

coefficients of polymers is a possibility, but most fillers increase stiffness

and decrease the failure elongation in the glassy state. The use of fiber-

reinforced, polymeric supporting elements in contact with polymeric gaskets

may help relieve the problems due to coefficient-of-expansion differences.

129
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