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POWER TRANSISTOR COOLING 
IN A SPACE ENVIRONMENT 

by 

James E. A. John and John J. Hilliard 
Goddard SPace Flight Center 

SUMMARY 

The cooling of power transistors was investigated in a space 

environment, where the only available mode of heat transfer is 

conduction to a heat sink and radiation from the heat sink to space. 

An attempt was made to minimize the thermal resistance between 
the transistor case and the heat sink, so that the transistor would 

dissipate as much power as possible while maintaining its temper­

ature within the maximum tolerable level to prevent thermal 
runaway. Further, it was necessary to electrically insulate the 

transistor from the heat sink. Beryllium oxide washers provided 
electrical insulation and added very little to the thermal resistance 

between case and sink, the BeO being a good heat conductor. How­
ever the problem of contact thermal resistance at each interface 

arose, especially in vacuum; this contact resistance provided 
practically all the thermal resistance between case and sink. The 

effect on the contact resistance of surface pressure, insertion of 

foil, and soldering was examined. It was concluded that, for the 

most efficient cooling, indium foil should be inserted at each inter­

face, the indium foil having the effect of reducing the contact re­

sistance in vacuum by a factor of 8. 
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POWER TRANSISTOR COOLING IN A SPACE ENVIRONMENT* 

INTRODUCTION 

by 

James E. A. John and John J. Hilliard t 
Godda?rd SPace Flight Center 

The problem of maintaining the junction temperature of a transistor within certain limits to 

prevent runaway and failure is well known. The work performed to date has been concerned with 

transistor cooling in an atmospheric environment, by either free or forced convection. Typical of 

the work in this area is that performed by Abel (Reference 1) and others (Reference 2). The investi­

gation performed here, however , had the purpose of extending present knowledge to cover transistor 

cooling in a space environment. 

The only mode of heat transfer available in space is radiation , either directly from the tran­

sistor or from a heat sink to which the transistor is thermally coupled. Calculations show that the 

surface area of the transistor is too small to provide more than a few milliwatts of direct radiative 

heat dissipation, whereas several watts may have to be dissipated. Therefore the problem resolves 

itself into an investigation of the thermal path between the transistor junction and the heat sink, with 

the goal of making the thermal conductance as high as possible. 

Figures 1 and 2 show how a typical power transistor is mounted 

on a heat sink. Two thermal paths are available: one from the case , 

through the top washer , to the heat sink; and the other from the 

case , through the stud and nut, through the bottom waSher, to the 

heat sink. Essentially, the thermal resistances are in parallel. 

The net thermal resistance deSirably should be as low as possi­

ble. However it is often necessary that the transistor be e lectrically 
insulated from the sink. This means that some sort of device , such 

as a washer , must be used to provide good thermal conductivity 

while serving as an electrical insulator. Further, if washers are to 

be used, they must have good mechanical properties to resist 

cracking when the nut on the transistor is tightened during mounting. 

Materials satisfying these specifications, to a greater or lesser de ­

gree , are beryllium oxide (Reference 3) , mica, and aluminum oxide. 

Figure 1-Mounting of 2N 1724 tran­
sistor on anodized aluminum heat 
sink, using two BeO washers. 

' Wo rk was pe rfo rm ed by the authors for th e NASA Godda rd Spa ce Flight Cenre r Summe r Work s ho p P rogra m 1962. 
IMr. John is an ins tru c tor in th e De pt. of Mecha ni ca l Engine ering , Uni v. of Ma ryla nd. Mr . Hilli a rd is a grad ua te s rud ent in th e De pt. o f 

Elec trical Eng in ee rin g, Ca th oli c n iv . 
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Figure 3-Thermal network. 

Figure 2-Mounting of a typical power transistor. 

Figure 3 shows the thermal network. All quantities are readily determinable with the exception 

of contact resistance (the thermal resistance at the interface of two different materials). 

Contact resistance is due to improper thermal contact between the two materials. Since no sur­
faces are perfectly smooth, they touch only at a limited number of points-the remainder of the space 

being filled with a nonconducting vacuum. Variables affecting the contact resistance include the 

pressure between the two surfaces, the smoothness of the surfaces, the materials themselves, and 
the possible addition of greases, solders, or some soft material to fill the empty regions between the 

surfaces. 

Several theoretical and experimental investigations have been made in the general area of thermal 

contact resistance. Theoretical considerations must necessarily assume an idealized shape of contact 
point and a distribution of contact points. An analysis carried out by Fenech and Rohsenow (Refer­

ence 4) attempted to predict, with some degree of success, the thermal conductance of metallic 

surfaces in contact. It is felt, however, that an analysis of this type can be at the best only a fair 
approximation and that experimental values should be determined. Several investigators have done 

experimental work (References 5, 6, and 7); their results are not considered applicable to this prob­

lem because the data were obtained in air, not in vacuum. Also, their data necessarily depended on 

the configurations of the surfaces they employed, which were somewhat different from the ones dealt 
with herein. 

Tests were run to determine the thermal resistance from transistor case to heat sink as a func­

tion of the previously mentioned variables. It was hoped to minimize this thermal resistance so as to 
provide a practical means of cooling in a space environment. 

EXPERIMENTAL APPARATUS AND PROCEDURE 

In this experiment the junction temperature, case temperature, heat sink temperature, and energy. 

dissipated per unit time were measured for each test. Variations in contact resistance were intro­

duced by applying different torques on the transistor nut with a torque wrench and by employing vari­

ous interface materials such as foils and solders. Variation in surface smoothness was not undertaken 
because of the difficulty of measuring and controlling this parameter; in any case, it was felt that this 

could offer only limited improvement. 
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Case and heat sink temperatures were measured with copper-constantan thermocouples and a 

potentiometer. The thermocouples were fastened to the surfaces with aluminum tape, as shown in 

Figure 4. Two thermocouples were used on the heat sink, one at the base of the transistor , and the 
other at the extreme edge of the heat sink; and a third thermocouple was used on the case. 

Because the collector junction was inaccessi-

ble to a thermocouple, its temperature had to be 

measured indirectly. Junction temperature T j 

was determined by measuring the forward voltage 

drop V C BO from collector to base with emitte 
. open, since this voltage is directly depend01;-;: , . 

junction temperature. Appendix A explains '" I' 

technique employed and gives a schematic of thl. 
circuit used to make this measurement. 

Figure 1 shows a typical power transistor 

(2N1724, used for all t est s) mounted on a 

lO x lO x 1/ 16-inch black anodized aluminum plate , 
which served as a heat sink. In this configuration, 

beryllium oxide (BeG) washers were placed be­
tween the transistor case and the aluminum plate, 

and between the nut and the bottom of the plate. 

Figure 4-Location of thermocouples on anodized 
aluminum heat sink. 

The transistor stud was 1/ 4 inch in diameter, and the hole through the plate was 5/ 16 inch. 

sistor base diameter was 3/ 4 inch. All the BeG washers were 1/ 16 inch thick. 

The tran-

An environmental pressure of approximately 2 x 10-5 mm Hg was obtained with a bell-jar vacuum 

system employing a mechanical fore pump and an oil diffusion pump. In the tests made under both 
atmospheric and vacuum conditions , the measuring procedure was the same. Power was applied to 

the transistor from a constant-voltage power supply, and all temperatures were allowed to stabilize 

for approximately 30 minutes. The junction, case, and heat sink temperatures were then measured; 

and the temperature difference between the case and the sink was calculated. The thermal resistance 

was obtained by dividing the temperature difference by the input power. The input power was set at 

several different levels, and the procedure was repeated at each level. 

RESULTS 

Table 1 is a compilation of the experimental data obtained in this investigation, both in air and in 
vacuum. 

Early in the program it became apparent that the thermal resistance of the BeG washer 

(R= L/ Ak= 0.02 °C/ watt*) was much lower than the thermal contact resistances. Hence, instead of 

'Where L is the hea t pa th length , A is the cros s -s ec tional area normal to the heat flow pa th , and k i s the thermal conductivity of the 
material. 
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Table 1 

Experimental Data Obtained in Air and in Vacuum. 

Torque e c- s Configuration Vacuum or Air 
(in.-Ib) ( DC/ watt) 

2 BeO washers 
Vacuum 6 4.79 
Air 6 1.19 

2 BeO washers + 3 indium foil washers 
Vacuum 6 0.61 
Air 6 0.50 

2 BeO washers + 3 aluminum foil washers 
Vacuum 6 1.59 
Air 6 0.81 

2 BeO washers + 3 copper foi I washers 
Vacuum 6 3.15 
Air 6 1.04 

Vacuum 3 0.71 
Air 3 0.54 

Vacuum 6 0.66 
Air 6 0.50 

2 BeO metallized washers + 3 indium foil 

Vacuum 9 0.61 
Air 9 0.43 

Vacuum 12 0.55 
Air 12 0.42 

2 BeO meta II ized washers 
Vacuum 6 4.40 
Air 6 1.12 

2 BeO metallized washers + 2 indium foil + Vacuum 6 0.49 
transistor soldered to washer (indium solder) Air 6 0.40 

:Transistor soldered to metallized washer 
(indium solder), washer soldered to plate; Vacuum 6 0.56 

1 BeO washer + indium foil on bottom Air 6 0.43 

1 BeO washer + 2 indium foil; stud insulated 
Vacuum 6 0.70 
Air 6 0.49 

2 BeO washers + 2 indium foil + Apiezon Vacuum 6 0.57 
grease on threads Air 6 0.47 

Vacuum 6 5.16 
No washers Air 6 1.36 

*Washer dimensions: O. D. - 0.90"; I. D. - 0.26" . 
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testing the effects of different washer materials, it was decided to use BeO exclusively since little 
improvement over BeO could be expected. 

Effect of Environment 

Figure 5 illustrates the increase in thermal re­
sistance between the transistor case and the heat sink 

in a vacuum as compared with the resistance in air. 

In a vacuum the only mode of heat flow between the 
surfaces is conduction through the few discrete contact 

points; in air there is also the possibility of heat con­
vection between the surfaces or heat conduction across 

the narrow air layer. The presence of a vacuum thus 

tends to amplify the cooling problem. 

Use of Foils 

Figure 6 illustrates the effect of using foils along 
the interfaces of the BeO washers in a vacuum en­

vironment. In each case, a foil washer with the same 

surface dimensions as the BeO washer was placed be­
tween the transistor case and the top washer, between 

the top washer and the heat sink, and between the bot­

tom washer and the heat sink. The graph shows that 

the use of any of the three interface materials lowered 
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Figure 5-Effect of environment on thermo I re­
sistance . 2N1724 transistor mounted on anodized 
aluminum heat sink; 6 in.-Ib torque on nut; 2 BeO 
washers, no foils. 

the thermal resistance from case to heat sink. Indium foil, however, proved most effective and low­

ered the thermal resistance to 0.61 °C/ watt, approximately 1/8 of its value without interface material. 

The foil's effect is to fill the void between the surfaces with heat-conducting material. The soft­

ness of the foil seems very critical in determining its effectiveness. Indium, by far the softest of the 
foils , in most cases was found to adhere to the contact surfaces because of the penetration of contact 

paints into the foil. 

Surface Pressure 

The effect of surface pressure on thermal resistance is shown in Figure 7. The transistor was 
mounted with two BeO washers and three indium washers as interface material, and the torque on the 

nut was varied from 3 to 12 in.-lb in 3 in.-lb steps. As the graph illustrates, thermal resistance 

decreases linearly with an increase in surface pressure. Greater pressures probably would result 

in a still smaller thermal resistance; however the cracking of the washer limited further tightening 

of the nut. 
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Figure 6-Effect of interface foil on thermal resistance in a vacuum 
environment. 2NI724 transistor mounted on anodized aluminum 
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Figure 7-Effect of surface pressure on thermal 
contact resistance from case to sink, ec - s ' in a 
vacuum environment. 2N 1724 transistor mounted 
on anodized aluminum heat sink; 2 BeO washers 
with indium foil used at all interfaces; environ­
mental pressure == 2 x IO-smm Hg. 

This increase in conductivity is believed to be due to further penetration of the indium into the 

voids as the surfaces are further compressed. 

Effect of Soldering on Contact Resistance 

One way of reducing thermal contact resistance is to solder the surfaces together: in this case, 

soldering transistor to washer , and then washer to heat sink. As the ceramic washer material cannot 

be directly soldered, the beryllium oxide must be metallized and then copper- or silver-plated. The 

metallizing was accomplished by depositing on the washer surface a molybdenum manganese compound, 

a process carried out by the National Beryllia Corporation or the Brush Beryllium Company. The 

first tests made were for the purpose of investigating any change in thermal contact resistance due 

to the use of plated rather than unplated washers. With the same configurations, plated and unplated 

washers gave about the same value for contact resistance. Next, the plated washer was soldered to the 

transistor and also soldered to the aluminum heat sink, the heat sink being nickel-plated to hold the 

solder more easily. A low melting point, indium-alloy solder was used on the transistor to avoid any 

possible damage to it. Results showed that the soldering reduced the thermal resistance to roughly 

the same level as that achieved using indium foil in the interfaces. 

To determine the magnitude of heat conduction through the stud , nut, and bottom washer in re­

lation to that path through the top washer, the stud was insulated with Teflon and paper; and con­

duction was allowed only through the upper path. The change in thermal resistance was so small that 
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the lower path might almost be neglected when a good conductive configuration such as the indium-BeO 

washer method is used for the upper path. The high resistance of the lower path is thought to be 

caused mostly by ineffective contact between the screw threads and the nut, and between the nut and 

the BeO washer. An attempt was made to improve thermal conduction through the lower path by ap­
plying a film of Apiezon vacuum grease along the threads and putting indium between the nut and the 

BeO washer; however this made no appreciable change in overall thermal resistance. 

Several power transistor manufacturers have attempted to combine the necessary thermal con­
duction and electrical insulation by insulating the collector from the transistor case internally, as 

in the 2Nl724/ 1 (identical to the 2N1724 except for this modification); this transistor therefore may 

be mounted directly on the heat sink. A test run in vacuum showed that direct contact between the 

two metal surfaces still gave a high thermal reSistance , 5.16 °C/ watt; this could be lowered consider­
ably by the addition of indium foil to the interface. However measurements made with the 2Nl724/ 1 

transistor showed it to have a thermal resistance from collector junction to case of 1.17 DC/ watt, 

while that of the 2Nl724 transistor was 0.36 DC/ watt. If the latter transistor is provided with the 

indium-BeO washer method, the total resistance from junction to the heat sink is 0.98 DC/ watt, which 

is less than the junction-to-case resistance alone of the modified 2Nl724/ 1 transistor. 

CONCLUSIONS 

In summarizing, several facts stand out as important in the problem of cooling a power transistor 

in a space environment by conduction to a heat sink. The use of a soft interface foil is highly ef­

fective. Indium foil , used as an interface material, reduces interface resistance to almost 1/ 8 of 

its normal value; and the ease with which it may be shaped to the required geometry makes it very 

desirable. The use of aluminum and copper foils, which offer some reduction in interface resistance, 

depends on the amount of thermal conductivity desired. 

The effect of surface pressure , although critical when no interface material is used, is not of too 

much importance when indium foil is employed. At very high pressures the effect probably could be 

made appreciable; however cracking of the BeO washers prevents this. It might be noted that the 

use of indium along the faces of the washers allows a sizeable increase in the amount of torque that 

may be applied to the transistor nut before the washers crack. 

The process of soldering the transistor to the BeO washer and the washer to the heat sink pro­

vided effective cooling. The indium eutectic solder used between the case and washer proved very 

satisfactory, not only because of its conductive properties but also because of its low melting point, 

which decreases the danger of harming the transistor during soldering. 

RECOMMENDATIONS 

As a result of this investigation, recommendations can be made concerning the most efficient 

methods of cooling a power transistor in a vacuum. First, the insertion of indium foil at the interface 
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between the BeO washer and the heat sink and between the BeO washer and the transistor base is suf­

fic ient to reduce the thermal resistance between case and heat sink to a very low level. Thus the 

indium foil aids in maintaining the junction temperature within its maximum permissible value while 

the transistor is able to dissipate a fairly large amount of power. The use of indium in space will 

necessarily depend on its rate of sublimation and consequent deterioration. Reference 8, however, 

indicates that, even at a temperature of 400 °C, the rate of sublimation of indium in space is only 10-5 

centimeters per year , which is less than that of lead or zinc. Since the temperature encountered by 

the indium in this application is less than 100 °C, it is felt that sublimation will be no problem. 

A second recommended procedure for cooling ina vacuum is to metallize the BeO washer and to 

solder the transistor to washer and the washer to the case. This method provided roughly the same 

thermal resistance from case to heat sink as the previous method involving indium foil. 

The first procedure recommended, the indium foil, appears more advantageous because of its 

ease in assembly and adaptability. Once the jOints have been soldered, it would be impossible to re­

move the transistor from the heat sink easily. Further , it is felt that the former method gives a more 

reliable joint, which would better tolerate vibration and shock. 
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Appendix A 

Measurement of the Junction Temperatures 

The transistor junction temperature T
j 

can be determined by measuring electrical parameters 

of the transistors that are functions of T j. The parameter used in this experiment was the forward 

voltage drop VcBofrom collector to base with emitter open. A schematic of the circuit used to make 

this measurement is included as Figure A-I (also, see Reference 9). 

To determine the relation between v C BO and 

T j for each transistor, the transistor - in a 
nonoperating condition - was placed in an oven 

and heated to temperatures in the transistor's 

operating region (between room temperature 

and 100 °C). At each temperature the transistor 

was allowed to reach a constant temperature 

throughout its structure. The switch (S-l of 

Figure A-I) was then closed, so that the relay 

D-1 energized momentarily at set intervals and 

permitted V CBO to be measured on the oscillo­

scope and the calibration curve to be plotted 

(Figure A-2). 

In the actual tests the transistor first was 

mounted on a metallic plate serving as a heat 

sink and then was placed in a bell jar, which 

,-_-L-_--, S-l 
300v DC 
POWER 
SUPPLY 

6VAC HEATER 

4.7K 

I 

K-1 
CLARE 
HG41006 

I POWER 
: SUPPLY 
:15v DC,1.5 amp 
I -

Ar---+----+-----~~ 

0-5amp 

Fig ure A-l-Circuit for measuring heat dissipation 
and VcBoof a transistor. 

was evacuated to a vacuum of 10- 5 mm Hg (Figure A-3). Electrical connection was provided between 

the transistor and the circuit of Figure 3. Power into the transistor was varied by means of the 

rheostat in the base lead of the transistor; the emitter-to-collector voltage VEC was kept constant at 

14 volts while the emitter current IE was varied. At each power level, the transistor temperature 

was allowed to stabilize, with the assumption that the input power would be equal to the heat dissipated 

per unit time. For each configuration three or four different power levels were used. Switch S-1 

was then closed, activating the multivibrator; subsequently power was switched from the power cir­

cuit to the v CBO measuring circuit and back. The transistor remained in an operating condition for 

intervals of 2.25 seconds and was in the measuring circuit for 100 milliseconds. Since the switching 

time was in the order of 2 milliseconds, it was possible to read VCBO before the junction temperature 

had decreased from its operating value. The value V CBO was then measured, converted to degrees 

centigrade, and recorded. 
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