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PREFACE

This Memorandum is part of a continuing theoretical study of the
geomagnetic field. The results should aid the development of repre-
sentations of the geomagnetic field in space, and are directly appli-
cable to both geophysical problems involving scalar and vector poten-
tial fields, and to the design of conjugate point experiments. The
work was supported by the National Aeronautics and Space Administration

under Contract NASr-21(05).
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ABSTRACT

The geomagnetic field is analyzed by spherical harmonics and by
integrals. Series representationms in spherical harmonics of geomagnetic
field charts are compared for truncation of the series at the 6, 8,

10, and 12 terms of degree. Scalings are at a uniformly spaced
latitude-longitude grid from both U.S. and U.S.S.R. isomagnetic charts
for 1955.0. A numerical integration method for analyzing the field

is developed from Poisson's integral. A new surface grid, suitable
for use with integral analysis, is described. This grid is based on
subdivisions of a spherical icosahedron, and its points are almost
uniformly spaced over a sphere. This integration method is applied to
calculations of field values, field lines, and conjugate points. The
results are compared with those of earlier spherical-harmonic analyses
by Vestine and Sibley. A comparison is also made between those conjugate
points calculated by spherical harmonics from different sets of

coefficients derived from various sets of isomagnetic charts. Some

minor but undesirable effects are mentioned that arise because of the
uniform angular spacing of data points scaled from charts. The vari-
ation of the earth's magnetic moment and the location of the dipole
axis since 1835 is described and discussed. Finally, an extrapolation

of the geomagnetic field into the earth's interior is described.
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1. INTRODUCTION

About 1839, Gauss first used spherical harmonics to analyze the
geomagnetic field's potential function. Since then, at intervals of
ten years or more, others have made such analyses (Chapman and Bartels,
1940) . The results of their work, usually in the form of charted
values, have seldom been rigorously comparable. This is hardly
surprising, since they used different accuracies and distributions
for the observational data points, assumed different numbers of
spherical harmonic terms to fit the data, weighted their observations
differently, and used different methods of analysis.

This paper estimates the differences caused by defective data
and procedures, and indicates the effect on a few ma jor main-field
parameters and their interpretation. It compares the computed results
of spherical-harmonic analysis with those of integral analysis, in
two meridional planes and at various heights above the earth's surface.
It describes formulas and grids that are useful for integral analysis.
It then compares the sample results with previous tabulations of the
main field that have been used in analyzing particle data for the
Van Allen radiation belts. It indicates the change since 1835 in the
geomagnetic-pole position and in the earth's magnetic moment. Finally,
it discusses extrapolation of the surface field into the earth's

interior.



II. SPHERICAL HARMONICS

Spherical harmonic analyses of the geomagnetic field usually
represent the geomagnetic surface potential over a spherical earth

(whose radius equals a) in this form:
ntl

a
V=a22<—> (g: cos:n>\+h: sin m\) P: (cos 8) (1)
r

The earth's center is taken as the origin of the three spherical
coordinates: r, the distance from the origin; 6, the colatitude; and

A, the longitude east of Greenwich (Chapman and Bartels, 1940).

PE (cos 8) are Schmidt's semi-normalized associated Legendre polynomials
of integral order m and degree n, and g: and h: are the Gaussian
(Schmidt) coefficients. The north, east, and vertical (or downward)

components of the surface magnetic field are then given by

13V 1 v 3V
E=-—,Y7-——— —,z=— . (2)
r 39 . r sin 8 A or
The values of g: and h: are usually determined from the observed field
values. Most analyses provide values up tom = n = 6 and fit, by the
method of least squares, weighted data taken from charts at 5% to 10°

intervals of latitude and longitude. An example is the analysis for

1922 (Dyson and Furner, 1923); essentially the same methodology was

followed by Vestine, et al., for 1945, and for secular change at

10-year intervals from 1912.5 to 1942.5 (Vestine, et al., 1947). The

results obtained are therefore comparable, since they include the
influence of similar defects as well as advantages in methodology.

Repeating the study of 1945 — but now using the data of Vestine, et al.,



up tom = n = 15 — gave surprisingly similar results (Fanselau

and Kautzleben, 1958).

Other methods based on observed points (unequally distributed
measurements at observatories) have afforded almost as good an
approximation, though they have not well represented the field's
distribution over the oceans. Analyses to terms of high degree
(512 coefficients) have been based on the charted vertical component

of the geomagnetic field for 1955.0 (Jensen and Whitaker, 1960;

Jensen, Murray and Welch, 1960). Most of the other analyses have

been based on the more precise charted or observed horizontal components
of field, for which the fit obtained by Jensen and Whitaker had a
root-mean-square error estimated to be 1150y (one vy = 10-5 cgs=-unit)

in the charts of the U.S., and 632y in those of the U.S.S.R.; the
maximum difference in the computed minus observed value of horizontal
intensity was 6200y. Results based on this analysis have fit, within
about one per cent, several satellite measurements in the lower

Van Allen radiation belt (Heppner, et al., 1960). Coefficients obtained

by Finch and Leaton have given a similar or somewhat better fit within

another region (Heppner, et al., 1960; Finch and Leaton, 1957). Tabulations

of field values, of field lines and their conjugate points, and of
adiabatic invariants applicable to geomagnetically trapped particles

have been derived for these coefficients (Jensen, Murray, and Welch,

1960; Vestine and Sibley, 1960; Ray, et al., 1962). There is now a

spherical-harmonic analysis for 1960, based directly on observational

points (Jensen and Cain, 1962). The radiation-belt L-shells of

McIlwain (1961) use the 1960 values.



I11. INTEGRALS

Various books on potential theory have shown how to analyze
magnetic fields by surface integrals (Kellogg, 1929). Vestine (1940,
1941), Taylor (1944), and Benkova (1953) have extended the technique

to the geomagnetic field of a sphere, while Vacquier, et al., (1951)

has done the same for a plane earth.

A convenient starting point is Green's theorem, which gives a
magnetic potential V(P) at an internal point P(r,6,)) in terms of
surface values of the potential and its normal derivative %% (n being

the outward normal):

1 f ( 0 1 13V
V(P) = - — v—=-——1]ds , 3)
() 4m Sy Onr r on

where S is the surface of the earth.

1f Ve is that part of V originating outside the earth, and Vi is

that part originating inside the earth, then for P external to S,

1 3 1 13V
v, @®=— ] (v——-—-—)ds , (%)
4t S on r r 3n

and, for P internal to S,

- — s (5)

1 3 1 1V
vV (P) ( )
e

4m S

where V = Ve + Vi' Upon S itself

1 1 av d 1

- = — 6

Ve Yy — T (-0 — - | ds+ U, ©
2r S r on on r



where U/4m is the strength of any uniform double layer on S, a layer
whose potential is zero outside S, and equal to -U everywhere inside S
(Vestine, 1940; Taylor, 1944).
For a spherical earth,
1 2 /2

v -v,=— [ [ (V+2a2)cosydy &, (7
2T o o]

where Ve - Vi is taken at the pole of coordinate (a,8,A) and | = /2

and Z = d9V/dn (Vestine, 1941) and an analogous expression for z, - Zi

was obtained in correction of Vestine's earlier result (Taylor, 1944).
Therefore, as in spherical harmonic analysis, an integral method suffices
to separate an observed surface magnetic field into parts of external

and intermnal origin.

Equation (4) can be transformed with the Green's function of the

first kind:
1 al
G(Q,P) =—-——, (8)
R rR'

where P is the outside point (r,8,\), Q the point (a,8',\') on S,
R the distance PQ, and R' the distance P'Q (where P' is the image

point to P in the sphere). From this, we get the well-known Poisson's

integral:
r2 - a? £@®',\"') ds
vV, (r,8,0) = , (9
i 4mra R3
giving Vi at P outside, in terms of the surface values £(6',A")
of V., on §.
i

Existing spherical-harmonic analyses of the geomagnetic field do

not show an external contribution Ve that can be detected with any



certainty. In this paper, consequently, we will neglect the possible
contribution of external main-field terms.

Z is not a potential function, because its direction in space
is not always the same, but the values X, Y, and Z are known over S
and are defined in Eq. (2). Therefore, if we take the earth's center
0 as origin, we can transform the values into a Cartesian coordinate
system (x, y, z) with the x axis towards 90°W of Greenwich, the y axis
toward the Greenwich meridian, and the z axis toward the north pole.
Thus x ® =r sin 8 sin A, y = r sin 8 cos A, and z = r cos 6, so that
the transformation results in the potential functions X = - dV/dx,
Y = - 0V/dy, and Z = - 3V/dz. Since X, Y, and Z are potential functions,

and therefore are not the same as X, Y, and Z, from Poisson's integral

r - a x(x',y"z')ds
X<x’y’z) = 3 b
4mra s R
r2 - a2 Y(x',y',z')ds
Y(x,y,2) = —— 3 : (10)
4ma S R
r2 - a2 Z(x',y',z")ds
Z(XSY’Z) = 3 H
4ma S R
where x'2 + y'2 + z'2 = a2, and X, Y, Z are the surface values of f in

the x, y, and z directions, respectively.

The field components on S in the three directions are then

X(x',y',2') =X cos 8' sinA' - YcosA'+ Z sin 6’ sin A' ,

Y(x',y',z') = - X cos 8' cos A' - ¥ sin A' - Z sin 6' cos \' , (11)

Z(x',y',2") sin © -~ Z cos B8' |

i
b



where, as in Eq. (2),

1 av 1 oV oV
X=-— , L=-—— — , z=(—
r=

a o8’ asin 8' A’ or

Here, a is the earth's radius, 8' is the colatitude, A' is the
longitude east of Greenwich, as in Eq. (10).

By inserting the values of X, Y, and Z from charts of the
geomagnetic field into Eqs. (10) and (11) we may then calculate
by machine the earth's main field at external points. To calculate
the field lines and the various adiabatic invariants, we merely
take the field direction as specified by the field's three orthogonal
components given by Eq. (10) and use a Runge-Kutta-Gill integration

scheme (Vestine and Sibley, 1960).

We need know only 3V/dn over S to estimate the potential V at P.
For a point inside a sphere, P(r,0,A), we use a Green's function of
the second kind, H(Q,P). This function gives the potential at P

relative to a point on the sphere, Q(r', 6',A'), and an image point,

2
a
P'(_)Q:)‘ :

T 1 a1 2a2
H(Q,P) = —+ — + — 1log 2 . (12)
R 1R a a” = rr' cos y + rR'

The value R is the distance PQ, and the image point P' is inside the
sphere along the line OP so that the equality of R' and P'Q is
defined by the condition OP' : QP = a2, where a is the radius of

the sphere (Kellogg, 1929). H(Q,P) can be transformed by known
methods into a form H'(Q,P) suited to the calculation of V(P) at an

exterior point P(r,8,\) relative to a point on the sphere Q(r', 8',A").



Thus the equation

1
V) = — [ H'(Q,P) £(Q) dS' (13)
4m S

provides the magnetic potential at P in terms of the surface values
of £(Q) = %% on S. By differentiating H'(Q,P) with respect to
r, 8, and A, and by integrating, we can obtain the field components
in polar coordinates. But since Eq. (10) seems to offer a more
complete use of the measured information, we will not use here the
normal component alone.

The following sections will describe and discuss for the first
time new spherical-harmonic analyses of the American and Soviet
world isomagnetic charts for 1955. We will indicate the quality of

fit, apply Eq. (10) to the American charts, and compare the computed

results of field parameters with those obtained by Vestine and Sibley

(1960) for points in the radiation belts.
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IV. SPHERICAL-HARMONIC ANALYSES OF ISOMAGNETIC CHARTS
OF THE U.S. AND U.S.S.R. FOR 1955.0

Scalings of American and Soviet charts at 5° intervals of
latitude and longitude have been represented in terms of spherical
harmonics by one of the authors of this paper (J. L. Carlstedt). He
determined the coefficients of Eq. (1) by fitting the values of
X, Y, and Z, supposing the series to terminate with n = 4, 6, 8, 10,
or 12. He obtained a weighted least-squares fit for each case by
using a scheme that Vestine and Lange described in their analyses of

the isomagnetic charts for 1945 (Vestine, et al., 1947).

Table 1 compares the results to P6 with those obtained by Finch

6
and Leaton in the British Admiralty charts for 1955. It reveals a
fairly good agreement in magnitude and in sign, though discrepancies
are sometimes as great as 10"2 cgs when results for 32 are quoted

to four figures. 1In certain analyses, this means that the computed
values for the lower Van Allen region may disagree by as much as
1000y (where 1y = 10-5 cgs).

We have repeated the analyses, quoting more figures, for the
American and Soviet charts for 1955. To note the effects dependent
on the series' truncation, we supposed that the series of Eq. (1)
terminated with PZ’ Pg, Pg, Pig, and Pig. For the American charts
of X and Y, Tables 2(a) and 2(b) list our values of g:, and h:,
respectively. Tables 2(c) and 2(d) list our corresponding values
for Z. Similarly, Tables 3(a), 3(b), 3(c), and 3(d) list our values

for the Soviet charts.
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Fanselau and Kautzleben (1958) noted that the terms up to PZ

(but not to PZ) are very roughly the same, whether the series ends

there or goes on to Pl5 Agreeing even better, apparently, are the

15°
results for low-degree coefficients of the series that terminate in
8 10 12
PB’ PlO’ and P12.

Our X, ¥, and Z series were synthesized at the points in a
17 x 36 grid that is composed of 100 spacings in colatitude and
longitude. Table 4 gives the root-mean-square (rms) errors in fit
for this grid between the synthesized and charted American and Soviet
data.

The quality of fit revealed by the rms errors in the X component
ranges from about 230y (0.0023 cgs) for the series terminating with

to about 110y for the series terminating in P12 (about 90y for

4
P 12

4
the Soviet charts). Interestingly, the series for Z has a larger
rms departure (320y) when it terminates in PZ, and the smallest value

of all (55y) when it terminates in P12 — a considerable improvement.

12
Between the points of a 10° x 10° grid, of course, the present estimates
of quality will not necessarily apply. In addition, the discrepancies
for X and Y should theoretically be larger than those for Z. This is
because we synthesized X and Y from their mean coefficients, not
from direct analysis, as with Z. 1In reality, however, the coefficients
based on Z are probably less accurate than those for X and Y, merely
because Z has been less accurately measured. Therefore, when Tables 2
and 3 are used for physical rather than for statistical purposes
(or for discussion of methodology), it may be appropriate to regard

the third digit from the right, rounded off, as the last significant

figure.
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It would be interesting to compare the various results obtained
by using coefficients up to Piz while computing values in the upper
atmosphere and beyond. In attempting extrapolations to the earth's
core, one would probably minimize errors by choosing low~degree terms
from the series to Pig. The analyses contain other defects, some
not yet mentioned. For instance, the spacing of the 10° x 10° grid
is necessarily non-uniform in distance. Therefore, though it is
theoretically possible to determine the coefficients of Eq. (1) so
that the resulting values are independent of n (the number of terms
in the series), actual practice may require data at equidistant grid
points, making difficult the appropriate weighting of data.

Difficulties also occur in the integral methods mentioned earlier.
Of principal importance is the distribution of data over the area of
integration. How this is useful in calculating the geomagnetic field
will be considered in the next section. But it should be mentioned
here that non-uniform spacing of sampled chart data could conceivably
minimize some small effects that might result from the use of uniform
spacing. Thus, if there are higher-order harmonic components asso-
ciated with magnetic anomalies, an aliased contribution to lower-degree
harmonics may arise (Blackman and Tukey, 1959). For analyzing geo-
physical data, alternative schemes may minimize any possible effects

(MacDonald, private communication).
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V. ANAIYSIS BY NUMERICAL INTEGRATION

IWO EQUAL-AREA GRIDS

The integral expressions for the field given by Eq. (10) require
that X, Y, and Z be specified. These integrals can be evaluated
approximately by using values of X, Y, and Z specified at points on
a grid covering the sphere, S, Assuming that these field values
represent average values for surface-area sectors ASk centered on
the grid points, we can replace the integrals of Eq. (10) with summations.
By selecting grids that specify surface sectors of equal area, we can
eliminate one source of variation in the integral and use field
values directly, without weighting.

Iwo equal-area grids are described here. The first is formed
by lines of latitude and longitude, the second by nearly equal
subdivisions on the faces of a spherical icosahedron. This equal
spacing of grid points over the surface of the sphere will enable
similar local features of the surface-field to affect the values of

X, Y, and Z similarly anywhere on the surface.

Longitude~Latitude Equal-Area Grid

A grid of points can be constructed with lines of latitude and
longitude so that each grid point represents sectors of equal area.
First, take two planes that are parallel to the earth's equator and
that are separated by a fixed distance. The area of the earth's surface
between the planes will be the same, regardless of where the parallel
Planes are located. If we divide the earth's diameter with a series of

equidistant planes that are parallel to the equator, the spherical
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anoments between the planes will be equal in area. These spherical
segments can be further divided into smaller equal areas by drawing
meridional planes that are spaced at equal polar angles. Figure 1
shows such a subdivision of the earth's surface. The area sectors
adjoining the poles are triangular. Each area sector is bounded by
lines of latitude and longitude.

To represent this kind of subdivision, we can generate a set
of grid points in a similar fashion. 1Its advantage is that most
magnetic field data are similarly scaled at equal intervals of latitude
and longitude. 1Its principal disadvantage is the unequal spacing of
points over the sphere. 1In a grid with a longitude and latitude
spacing of 100 lm at the equator, for example, the northernmost grid
points will be 1130 km from the pole, though separated from each other
by only 18 km in longitude. Giving field data only at these grid points
would cause unequal representation of the field's surface features due
to internal sources: the representation of features distributed in
longitude would obviously surpass that of features distributed in
latitude. Hence, extrapolations of the field to heights greater
than 100 km using this grid in combination with Poisson's integral —
or Eq. (10) — will reflect more accurately the effects of sources
that are distributed in longitude than those of sources that are
distributed in latitude. Nevertheless, extrapolation tests using
this grid from 70°N to 70°S give results with an accuracy commensurate
with that of surface data.

As we shall later use more advanced grid systems, we will here

use only one calculation as a sample. We take a grid of data points
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distributed over the surface of the earth at regular intervals of
latitude and longitude. By spacing the points closely, we can better
assess the potential accuracy of the surface integral method. We
actually use a composite of two latitude-longitude grids. The primary
grid has points spaced at intervals of 2o in latitude and 40 in longitude.
The smaller, secondary grid (whose over-all measurements are 4° in
latitude by 16° in longitude) is located beneath the point at which
the field is calculated. Its points are spaced at intervals of
1/4o in latitude and 1/2O in longitude.

In such a grid, the area sectors assigned to each grid point
vary in size over the surface of the sphere. We determine the area
assigned to each grid point by integrating dS = azsin 6 do dyp over the
assigned area, where 6 is the colatitude and @ is the longitude of
a point on the sphere, and a is the sphere's radius. Values of
X, Y, and Z for each point were calculated from the coefficients we
had derived from the American charts of 1955.0; using these values,
we calculated the field at SOON, 0°E and at an altitude of 600 km by
integrating Eq. (10) over the composite latitude-longitude grid. These
spherical harmonic coefficients give the field at this point as
0.3654 gauss (with direction cosines of dx/ds = - 0.0723, dy/ds = 0.8937,
and dz/ds = 0.4464). This value can serve as a reference for
determining the accuracy of the value given by the surface integral
(0.3649 gauss with direction cosines of dx/ds = - 0.0723, dy/ds = 0.8958,
and dz/ds = 0.4470). The error in the field's magnitude is about 0.1%.
The maximum error in the direction cosines is for dy/ds — about 0.25%.

Obviously, the surface-integral method can yield quite accurate
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extrapolations of the geomagnetic field. The calculation is quite
lengthy, however, and requires an interpolation scheme for points at

which the field is not known.

Icosahedral Equal-Area Grid

The foregoing discussion has shown why it is desirable to have
sectors with equal areas, with a high degree of symmetry about their
centers, and with shapes that are independent of their location on the
sphere. From this, J. W. Kern decided that the icosahedron, being
the highest-degree regular polyhedron, is an excellent model for
subdividing a sphere.

If we trace a spherical icosahedron onto the surface of the earth,
letting one axis correspond to the axis of rotation, we can form an
equal-area grid by subdividing the faces of the icosahedron with great
circles. We will regard the grid points so determined as center points
of the sectors of integration. Figure 2 shows that almost every sector
will be a hexagon centered on a grid point; the exceptions will be the
pentagon centered on each vertex of the icosahedron. Figure 2 shows the
arrangement of the grid points for one face of the icosahedron. Since
equal areas are to be assigned to each of these grid points, we must
make small adjustments in the shape of the sectors and distribute them
over the sphere. Note that the sectors will not, in general, be
regular spherical polygons. But these irregularities will be quite
small if we make a fine subdivision, using the technique described below.

Consider the spherical triangle ABC, shown in Fig. 2. This face
of the spherical icosahedron is one of the five spherical triangles

joining in a common vertex at the north pole of rotation. TIts sides,



-17-

o & * ' o

P A )
e 8" " e,

- :...O' *see .,

Vg
& @

Spherical Plane
icosahedron icosahedron

*
e o * o o
L . o

-

‘e

*»

Fig. 2 Method of generating an equal-area,

equal-spacing grid based on the spherical icosahedron



...18_

AB and AC, lie in meridional planes and can be subdivided into m
equal arcs. (In the figure, m = 16.) This subdivision determines
points on AB and AC that can be identified by their colatitude
measured from the pole. If we pass great circles through the points
on AB and AC that have the same colatitude, we will determine m
great-circle arcs inside the ABC face of the spherical icosahedron.
MN in Fig. 2 is one such arc. If we now subdivide each arc once for
every arc lying between it and the pole, we generate a regular grid.
This grid can be transferred to all twenty of the spherical triangles
that make up the spherical icosahedron. For example, the grid for
triangle ABC in Fig. 2 may be transferred to triangle BCD by rotating
it 180O about a radius through E, the midpoint of BC. By joining two
spherical triangles (such as ABC and BCD in Fig. 2) we form an equilateral,
spherical quadrilateral (ABDC). To cover the sphere, we need only
repeat the grid pattern of ABDC five times around each of the poles.
Thus, identification of this single pattern will enable us to prescribe
the grid for an entire sphere.

This technique can be formalized in terms of a set of vector
operations, in which linear transformations begin by generating the
grid within the spherical quadrilateral, and then repeat the grid
pattern about each pole. It can be made so general that an electronic
computer can readily generate the coordinates for a grid of any

frequency, m.

NUMERICAL FORMULAE FOR SURFACE INTEGRATION

After a grid has been generated, and after the Cartesian components,

X, Y, and Z, have been calculated, the integral expression for a given
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component at any point of space can be replaced by this summation:

2 - a? Xk(xé, yi, zé) S,
X(x’y’z) == 3

4ma Rk

M

Here, X(x,y,z) is the desired x-component of the field in space
(similar expressions can be written for Y and Z); k is the index of
summation; Xk(xi, yé, zﬁ) is the field value for ASk (the k-th surface-
area sector) that is specified by the components of the radius vector
to the center point (xé, yi, and zé); and Rk is the distance from the
point in space to the center of the k-th sector.

R, is given by

k

Ri =2+ a? - 2(xx, + yy, *ozzp)
where r is the radius vector from the center of the sphere to the point
in space, a is the radius of the sphere, and (x,y,z) and (xﬁ, yé, zé)
are the Cartesian coordinates of the point in space and of the k-th
sector's center.

Both the longitude-latitude and the icosahedron grids assigned
equal areas to the centers of their surface-area sectors. Therefore,
each sector is AS = AﬂaZ/N, where 4ﬂa2 is the area of the sphere, and
N is the total number of grid points. If we substitute this expression
for ASk into the summation for X given above, we see that

N
X(x,y,z) = ———— L
N k=1

(14)

ol
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while
a(r2 - a2) N Yk
Y(x,y,2) = Lo,
N k=1 Rk
and
a(r2 - a2) N Zk
Z(x,y,z) = )
N k=

1 &

These are the approximate expressions that will be used in the surface-
integration method of calculating the field in space from surface values
over the earth. For example, the total number of grid points over the

surface of a spherical icosahedron is 1Om2 + 2, where m is the number

of subdivisions on the icosahedron's edges.

ANALYTIC PROCEDURES

We may regard Eq. (14) as sums of integrals:
2 2

(r® - a% N Xds
X(x,y,2) = z 3
4mia k=1 as, R

in which we use the approximation,

Xds 4ﬂa2

e —3_ ~

J , (15)
AS, R N

Pl

to reduce the computation's complexity. For a point near the surface
of the earth, R becomes small for some terms in the series. As R
approaches zero, the integrand approaches infinity. This challenges
the range of applicability for Eq. (15) and similar approximations.

If Xk is a good representation of X over ASk, we may write
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Xds J' ds
— ~ X —
AS{ R3 k ASk R3

and then estimate the appropriate variable weight by this equation:
ds
W= —
As‘r R
k
One such value is, of course,

(16)

An alternative would be the integral for the cap segment of angle

A8 (Fig. 3):

I?.TT IAB sin € d6 dp
W=
0 0 (a2 + r2 - 2ar cos 6)3/2
| e sin 8 do dp
o 0 [XZ + z2 + a2—2(x a cos ¢ sin 6 + z_a cos 8) 3/2
o o o o
For small A8, the approximations
82
sin 8 ~ 6, cos 6 =1-— R
2
after making a = 1, lead to the integral
2m A6
d
[ 6 48 dy .an

0 0 2 2 _ 271 3/2
[xo+zo+l-2z0 ZXOGCOScp'onS]
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Fig. 3 Coordinate system for surface integration
over a single area sector

(circular cap on sphere)
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The integration of Eq. (17), with respect to 9, yields

2,2 % 2
1 2nm K (K“-2x A6 cos @ + z AB) " - (K“-x A8 cos @) | do
0 ) )
. : (18)

2
ko (Kzzo-xg cos2 w)(Kz-Zone cos @ + zer)

where

K2 =1 -2z + x2 + 22
o o o

Table 5 exhibits the relative merits of Eqs. (16) and (18) for
the case x_ = 0. 1In it, AB = .04, which is quite close to the weighting
appropriate to N = 2562.

For X, # 0, Eq. (18) must be evaluated by numerical quadrature.

In subsequent numerical results, an eight-point Gaussian quadrature
was used over (0,m). Figure 4 exhibits the behavior of one-half of
the integrand, both for values of X and z where (xg + zi)% = 1.1,
and for positions ranging from directly over the center of ASk out
to a distance of one sphere radius.

A trapezoidal integration of the curve for D = 1 (Fig. 4) yields
a value of .00504.

Comparing this result with corresponding entries in Table 5, we
see that for a distance of one sphere radius from the center of ASk,
Eqs. (16) and (18) give virtually the same result regardless of
orientation. This suggests that a combination of Eqs. (16) and (18)
satisfactorily estimates the surface integral. Equation (16) should
be used for those ASk farther than one sphere radius from the point
in space, and Eq. (18) for those closer than one radius.

Table 6 estimates f ) for a grid corresponding to N = 2562.

S R
The Center column lists positions along a radius vector through the
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center of a particular ASk; the Off Center column lists positions
along a radius vector through a point midway between two ASk. To

account for overlapping AS, and to achieve the distribution of errors

k
listed under Center, A8 in Eq. (18) and the coefficient in Eq. (15)
2

were modified as follows: A8 = —— (.0675);
411 N
the coefficient = ET (.9978).

In general, one-tenth of a sphere radius is the minimum distance

from the sphere at which an error of less than 1% can be maintained.
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VI. APPLICATION TO GEOMAGNETIC FIELD-LINE CALCULATION

To avoid reading the magnetic charts at the previously described
grid points and to get results comparable to the spherical harmonic
analyses, we obtained the surface values of X, Y, and Z from the
48-coefficient expansion of the American 1955 charts. These data
allow one to compare directly the field lines obtained by the integral

method with those lines obtained by Vestine and Sibley (1960).

Each integration was by a fourth-order Runge-Kutta-Gill scheme,
moving by steps of 0.1 earth radius (Gill, 1951).

Table 7 and Fig. 5 indicate the results of generating a field line
starting at 0.1 of a radius above the point at AOON, 90°E and ending

at an altitude of about 0.1 of a radius.

Figure 6 shows a SOON, 0°E field line generated by both the spherical-

harmonic and the surface-integral methods. For each, the integration
step is 0.25 earth radius. Note that the difference between the
calculated positions in the equatorial plane is greater than in Fig. 5
where we have a smaller step-size. Near the surface, the Runge-Kutta-
Gill integration of Eq. (16) yields field-line positions quite close
to those obtained by the spherical-harmonic analysis. Differences in
conjugate points at constant altitude are less than 0.0l earth radius
(about 65 km). To determine mirror points (the point along the line
where the field is the same as at the starting point), the integration
of Eq. (16) is less useful. The calculated magnitude of the field can
have errors on the order of 3% at altitudes of less than 0.1 earth
radius. Such an error would allow the altitude of mirror points

estimated with Eq. (16) to be in error by as much as 0.0l earth radius.
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The field lines calculated with either Eq. (16) or with the
two-part integral correspond quite closely to those calculated by
spherical-harmonic methods. This correspondence can be further improved
by using shorter integration steps in the surface-integral methods.

This would require more computing time than in the calculations of
Figs. 5 and 6. But because surface-integral methods already increase
more than tenfold the time required by the spherical-harmonic methods,
the penalty for using shorter steps is proportionally small.

Table 7 lists the coordinates for three lines. The first was

derived by Vestine and Sibley (1960); the second by the mixed-integral

method discussed above; and the third by the integral method that uses
Eq. (15) throughout. For each step along these three lines, we have
computed the magnetic-field values (X,Y,Z) and listed them in Table 8.
The three methods produce quite comparable results for shorter
field lines. Figure 6 and Tables 7 and 8 show that the two integral
methods produce almost identical results that differ from the spherical
harmonic ones by about 100 km. The consistency of the integral results
can be explained in part by the fact that, although the values of X,
Y, and Z in Table 8 differ, they are almost proportional. The constant
of proportionality is the square of the ratio of the factors noted
in Table 6. This is not entirely unexpected. Because the direction

of the line of force is determined by the direction cosines associated

with the X, Y, and Z at each point, the constant of proportionality
disappears.
In general, as a point moves away from the surface of the earth,

Eq. (15) provides an increasingly good approximation of the field. Near
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the surface, however, only a few values tend to be heavily weighted,
because of the l/R3 argument in Eq. (15). This weight disappears in
the computation of the direction cosines. A clue to this behavior may
be found by rewriting Eq. (14):

2 2

a(r® - a%) 1 N
X(x,y,z) = z Xk mo,
* 3,3 3 . k
N R1R2 R RN k=1
_ o3 53 3 3 3 . . . ‘
where T = R1 R2 . Rk-l Rk+1 “es RN. The direction cosine defined by

X becomes
X zxk ﬂk

etz exm?+ ermp? e @)’

If we allow R, to tend toward zero, we obtain

Kk
X ) X e
k
2 . 2. 2 2 2. .2 2 2 2
+ Y5 +
}ﬁ( Y+ 2 Vank+Yknk+zknk
2

7 .2
ka+Yk+zk

precisely the direction cosine at the surface.
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VII. COMPARISON OF CONJUGATE POINTS CALCULATED FROM
VARIOUS SPHERICAL-HARMONIC ANALYSES

DeWitt's study of IGY all-sky camera data (DeWitt, 1962) has
shown that auroras occur simultaneously in regions that are connected
along magnetic field lines (that is, geomagnetically conjugate).

Vestine and Sibley (1960) computed the conjugate points of a number

of locations in the auroral zones. They calculated that the IGY all-sky
camera station at Farewell, Alaska, and the station at Campbell Island
in the Southern Pacific Ocean are nearly conjugate, and that the same
is true of Kotzebue, Alaska, and Macquarie Island. DeWitt's observations
indicate that Vestine and Sibley may have been in error by as little
as 20 km.

We have repeated their calculations for Campbell Island, using
spherical-harmonic coefficients to order 6. Table 1 lists these

coefficients we derived from the British (Finch and Leaton, 1957), American,

and Soviet isomagnetic charts for 1955.0. We also used coefficients

derived from the American charts for 1960 (Jensen and Cain, 1962).

We have extrapolated the field line from Campbell Island (52032'8,

168059'E) to the northern hemisphere by the method of Vestine and Sibley

(1960). The surface positions of points conjugate with Campbell Island,
calculated with the indicated coefficients are: (1) British, 61°59'N,
154°39'W; (2) American, 1955, 61°45'N, 156°46'W; (3) Soviet, 61°40'N,
156°23'W; (4) American, 1960, 61°37'N, 155°05'W. The mean latitude

of the four conjugate points is 61045'N, with a mean deviation for the four
positions of + 7' (about + 13 km). The mean longitude of the four conjugate

points is 155043'W, with a mean deviation of + 52' (about + 44 km at the
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mean latitude). 'The probable error in this procedure has been
previously estimated to be about 8 km. Apparently, uncertainties in
the mathematical representations of the surface field can cause
significant errors in the conjugate points. For the mean latitude
and longitude of the four conjugate points of Campbell Island, the
probable errors are + 4' =+ 7 km and + 26' = * 22 km.

DeWitt's observations (1962) suggest an error limit of about this

order for the Campbell Island calculations of Vestine and Sibley (1960).

Obviously, no absolute criterion exists for preferring any one of the
above determinations. Note that the largest probable error is in the
conjugate point's longitude. Owing to the general east-west elongation
of auroral structures, the longitude may also be the most difficult to

check by auroral observations.
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VIII. MAGNETIC MOMENT AND DIPOLE AXIS SINCE 1835

Spherical-harmonic analyses of British, American, and Soviet
isomagnetic charts for 1955.0 give coefficients that agree rather well
with each other. This is not surprising; they are independently derived
from practically the same sets of measurements. Truncating the series,
however, does affect the results. We see in Fig. 7(A) the positions
of the geomagnetic north pole since 1829, as placed by series to 4,
to 6, and to 12. It will be seen that pole positions for 1955 from
our analyses to PZ agree well with those of Gauss (1839) for 1838. Also
agreeing well with each other are those positions derived from series

to Pg, including the last analysis (Jensen and Cain, 1962).

Figure 7(B) shows that the earth's dipole moment still continues
its rather uniform decrease with time. Points for Soviet charts are
based on our analysis presented here, as well as on a recent analysis

by Adam, et al., (1962).




79°0
9l A
8
7 @ 1845
) @1885
6 F 91885
1955@ ‘I9.4|360
o O 1955@ O 1922
° 1955
2 L 1955 @ 81922 o g 650
° 1955
£ 3r @ 1955
] A 1829
c
S 2t 01945
-
Q
g 'r
o
8 78°0
© ‘ A 955
ol Legend: 1955 A
) ( Internationally adopted
8 A Series to P: 41835
71 ® Series to Pg
B Series to P2
6 I
77°5 i { I

1 L L )| )
‘288° 289° 290° 29i° 292° 293° 294° 295° 296° 297° 298°
Geographic east longitude

8.7
(x 102%)
B

8.4

8.3 |

Mognetic moment, M (cgs)

82

8.0 L 1 L 1 1 1 1 L 1 1 1 L 1 L
1820 '30 '40 '50 's0 ‘70 '80O '90 1900 ‘l0 20 ‘30 ‘40
Yeaor

Fig. 7 (A) Geomagnetic north pole, from various analyses, 1829--1960

(B) Moment, M, in units of 1025 cgs



_35-

IX. MAGNETIC FIELD IN THE EARTH'S MANTLE

As we have seen, only a very small part of the magnetic field at
the earth's surface can be ascribed to external sources. The main field
is, in fact, thought to originate in the earth's core, and to be
maintained by motions of electrically-conducting fluid material in the
core. Extrapolation of the surface field to the boundary of the core
is therefore of great interest to geophysicists. However, the sources
producing the surface field are not entirely confined to the core. The
spherical-harmonic representation of the field given by Eq. (1) may
contain contributions from sources in the earth's mantle and crust.

For illustration, we have calculated the nondipole portion of the main
field at a depth of 1500 km (about halfway down to the core), using
the American coefficients of 1955.0.

Figure 8 shows the results in terms of the downward (Z) and
horizontal (H) components of the field. To exclude contributions from
localized sources in the outer mantle and crust, it uses only terms
up to m=n=6. If such contributions were present, the strong dependence
of higher-order temms on r in Eq. (1) would produce relatively large
errors in the field calculated for r < a. This kind of extrapolation
seems to present no numerical difficulties, and if the possible sources
in the crust and mantle are reflected only in coefficients of degree
and order higher than 6, the extrapolation can in principle be

extended to the boundary of the core.
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X . CONCLUSIONS

Spherical-harmonic or integration analysis of the geomagnetic
field's potential offers a way to extrapolate and interpolate the field
over the earth's surface and nearby space. Spherical-harmonic analyses
of different sets of isomagnetic charts yield sets of coefficients that
are nearly the same to about PZ’ with differences commensurate with the
probable errors in the data. To represent complex surface features
(such as anomalies), we must use a spherical~harmonic series with many
higher-order terms. Theoretically, integral methods avoid this difficulty.
But if accuracy comparable to spherical-harmonic analysis is required,
similar difficulties are met in supplying field values for the large
number of data points that are necessary for an integration.

Geomagnetic field lines can be extrapolated into space either by
spherical-harmonic analyses or by surface integrals. To this
extrapolation, Poisson's integral is applied. The key is recognizing
that each component of the geomagnetic field, specified over the earth's
surface in a Cartesian-coordinate frame rotating with the earth, can
be treated as a scalar potential function. Then, by applying Poisson's
integral separately to each component, one can calculate the corresponding
components at any point in space external to the sphere. We doubt that
such application to a sphere has been previously noted.

The calculations based on-spherical harmonics take less computation
time, because their coefficients embody the surface-field data in a
convenient analytic form. Surface-integral calculations require a

relatively complete specification of the surface field, particularly
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those parts near the earth's surface. Each integration over the surface
requires the handling of the total surface-field data. It involves an
argument of l/R3, where R is the distance from a point at which the
integral is evaluated to a data point on the surface of the sphere.

The calculation of this for each data point greatly extends the time
required for evaluating the surface integral. Accuracies comparable

to those with spherical-harmonic methods require increases in time by
factors of between ten and one hundred.

However, since the integral method involves only the process of
summation, it may be less limited in accuracy. It also offers
conceptual advantages convenient to those familiar with potential
theory. Further, the calculations presented here indicate that
comparable field-line positions are obtained by both methods.

There is no evidence of change in the position of the geomagnetic
north pole from 1835 to 1960. The apparent motions are in some
instances probably due to truncated series in spherical-harmonic
representations of the field. The dipole moment of the earth has
decreased at a uniform rate from 1829 to 1960.

Finally, there appear to be no serious obstacles to an inward
extrapolation of the geomagnetic field to the earth's core. Sources
of the geomagnetic field external to surface of the earth are negligi-
ble, and those due to sources in the mantle and crust are likely to
contribute only to harmonics of order and degree higher than 6. Thus
a truncated spherical-harmonic series should give an adequate represen=-

tation of the field external to the core.
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Table 1

Spherical-Harmonic Analyses of the Geomagnetic Field for 1955,

Based on British, American, and Soviet World Charts.

Gaussian (Schmidt) Coefficients, gi, h@,

in units of 1077 cgs
m m
8y hn

n,m | British U.s U.S.S.R. British Uu.s U.S.S.R.
1,0 | -3055 -3055 -3051

2,0 | - 152 - 147 - 141

3,0 118 117 113

4,0 95 87 97

5,0 - 27 - 24 - 33

6,0 10 2 7

1,1 - 227 - 210 - 202 590 585 584
2,1 303 307 299 <190 -185 -187
3,1 - 191 - 170 - 174 - 45 - 59 - 56
4,1 80 65 78 15 18 11
5,1 32 40 33 2 10 10
6,1 5 12 8 - 2 - 6 - 7
2,2 158 145 168 24 49 38
3,2 126 127 125 29 30 26
4,2 58 47 57 - 31 - 24 - 31
5,2 20 21 16 10 10 12
6,2 2 - 3 3 11 16 14
3,3 91 86 81 -9 -3 - 8
4,3 - 38 - 44 - 36 - 4 - 7 - 5
53] - 4 - 5 - 9 -5 -1 - 4
6,3 - 24 - 26 - 26 0 0 - 1
4,4 31 29 33 - 17 - 13 - 13
5,4 = 15 - 15 - 14 - 14 - 18 - 14
6,4 - 3 - 7 - 3 - 1 0 0
5,5 = 7 - 4 - 6 9 8 1
6,5 0 3 1 - 3 - 4 -1
6,6 - 11 - 10 - 9 - 1 - 4 - 3




Table 2(a)
U. S. World Charts.
with indicated values in P’;.
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Spherical-Harmonic Analyeis of the Geomagnetic Field for 1955,
Mean values of X and Y , for series terminating

Gaussian (Schmidt) Coefficients, gg (Units of 1076 cgs)

L 6 8 10 12
Py Pg Fq 1o P12

n, n

0, 0 0 0 0 0 0
1, 0 -30L4664 -305L47 -305191 -305179 -305189
1, 1 -30265 -21017 -22277 -21996 -22253
2, 0 -14837 -14726 -14735 -1k7ho -14740
2, 1 30527 30655 30705 30727 30734
2, 2 15360 1LL6L 13957 13750 13578
3, 0 13402 11667 12179 12225 12235
3,1 -20295 -16952 17411 17287 -17386
3, 2 11949 12722 12722 12723 12702
3,3 9354 8609 9155 9129 9327
L, o 8517 8692 8677 8620 8616
L, 1 6260 6454 6541 6578 6592
L, 2 5131 L719 L4184 4385 L4299
b, 3 -3270 =4403 -4ko9 -4531 454
L, & 3389 2905 3085 3342 3485
5, 0 -2410 -167T7 -1581 -1519
5,1 3981 3683 3777 3701
5, 2 2078 2081 2083 2048
5, 3 =452 -176 ~-191 -85
5, & -1466 -1716 =1759 -1806
5, 5 -382 -692 -6kl -615
6, 0 225 201 83 65
6, 1 121k 1322 1372 1394
6, 2 -249 -409 =479 -546
6, 3 -2592 -2723 -2766 -2786
6, b -676 =577 -439 =359
6, 5 259 218 218 212
6, 6 -1031 -1241 -1380 1470
7, O 971 1118 1248
7, 1 -634 -554 -620
T, 2 9 81 32
7, 3 152 1 217
7, 4 -328 -380 ]
T, 5 -407 -379 -360
7, 6 196 136 118
T, 7 310 378 307
8, 0 -31 =215 -2h9
8, 1 10 65 96
8, 2 =103 =160 =216
g, 3 -268 =325 -352
8, L 79 175 232




Table 2(a)cont'd
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Gaussian (3chmidt) Coefficients, gz (Units of 10-67cgs)

U 5 o 10 12
n, m Ph P6 °8 P10 Ple
8, 5 2 b =5
8, 6 -157 -2k0 -293
8, 7 116 59 28
8, 8 163 216 20k
9, 0 197 392
9, 1 -168 -228
9, 2 -29 -9k
9, 3 -4h 17
9, 4 -36 -108
9, 5 109 126
9, 6 =L ~-64
9, 7 95 5
9, 8 30 2
9, 9 33 ko
10, 0 241 -291
10, 1 -96 -60
10, 2 -97 -145
10, 3 -159 -191
10, L 88 131
10, 5 19 7
10, 6 -98 -138
10, 7 -96 -135
10, 8 1 3
10, 9 51 66
10, 10 12 T
1, 0 255
1,1 117
n, 2 =255
1, 3 136
1, 4 =50
n, s 93
n1, 6 -2
1, 7 -3%
n, 8 -4
1,9 2
11, 0 -31
1, 1 1
12, O -62
12, 1 7
12, 2 85
12, 3 =Tk
12, 4 L
12, 5 -80
12, 6 =73
12, 7 =49
12, 8 23
12, 9 -2
12, 10 -34
12, 11 -4
12, 12 L 0

L
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Table 2(b) Spherical-Harmonic Analysis of the G-omagnetic Field for 1955,
U. S. World Charts. Mean values of X and Y , 7or series terminating
with indicated values in Pg.

Gaussian (3chmidt) Coefficients, hi (Units o? 10"6 cgs)

L 6 8 10 12
i F5 Pe 10 P1o

n, m
0, 0 0 0 o) 0 0
1, 0 0 0 0 0 0
1,1 57713 58524 58340 58218 58273
2, 0 0 0 0 0 0
2,1 ~-18505 -18539 -18583 -18606 -18613
2, ? 2213 4889 4814 4626 4633
3, 0 0 0 0 0 0
3, 1 -6243 -5932 -6004 ~-603% -6007
3, 2 254N 3041 3117 3209 3243
3, 3 -10k =257 -763 -319 -k12
4, 0 0 0 0 0 0
b, 1 1810 1767 1695 1658 1643
b, 2 | -3608 -2356 -2392 -2487 -2489
L, 3 -781 -Th2 -752 -765 -T79
4, L -1214 -1286 -1543 ~1L43L -1500
5, 0 0 0 0 0
5, 1 955 902 890 917
5, 2 953 1060 1204 1258
5, 3 -83 -335 -107 =157
5, 4 -1769 =1737 -1752 -1741
5, 5 795 1122 1332 1495
6, 0 0 0 0 0
6, 1 -583 -681 -729 -T5h
6, 2 1561 1537 1468 1462
6, 3 -28 -48 -65 -89
6, b -24 -167 -110 -146
6, 5 -4L0 -1 -Llo -437
6, 6 -L4o -279 -k10 -480
7, © 0 0 0
7, 1 23 16 42
Ty 2 -8 179 252
Ty 3 =50 107 73
7, 4 89 T2 87
T, 5 269 391 483
7, 6 ~199 -118 -116
Ty 7 -L466 -394 =546
8, 0 0 0 o]
8, 1 -236 -283 -318
8, 2 -85 -1ko -1L6
8, 3 -160 -183 -215
8, & -181 -1hh =167




Table 2(b) cont'd
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Gaussian (Schmidt) Coefficients, h‘: (Units of 10°° cgs)

4 6 8 10 12
n, m Ph P6 PB P10 P12
8, 5 118 68 72
8, 6 91 11 -29
8, 7 42 92 100
8, 8 -282 -279 -330
9, 0 0 0
9, 1 =255 -230
9, 2 251 336
9, 3 17k 148
9, 4 9 27
9, 5 128 194
9, 6 163 166
9, 7 120 27
9, 8 -30 -2k
9, 9 -65 =42
10, © 0 0
10, 1 231 191
10, 2 18 43
10, 3 -134 -176
10, 4 -17 =34
10, 5 -104 -101
10, 6 27 -3
10, 7 64 73
10, 8 16 -16
10, 9 19 25
10, 10 -6 -9
1, o 0
1,1 =155
n, 2 ko
1, 3 103
1, &4 26
1, 5 75
1, 6 =12
1, 7 -101
n, 8 35
1, 9 10
11, 10 37
1, n 0
12, 0 0
12,1 27
12, 2 130
12: 3 ‘203
12, & 60
12, 5 -37
12, 6 -48
12, 7 -9
12, 8 -40
12, 9 2
12, 10 21
12, 1 -2
12, 12 0
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Table 2(c) Spherical-Harmonic Analysis of the Geomagnetic Meld for 1955,
U. S. World Charts. Mean values of Z , for series terminating
with indicated values in P:.

Gaussian (Schmidt) Coefficients, gﬁ (Units of 10'6 cgs)
4 6 8 10 10
Py Pg Pg P10 P12

n, m

0, 0 34 321 245 197 134
1, 0 -302261 -30L4385 -304137 -304074 -303936
1, 1 -20508 -19510 -19530 -19542 -19552
2,0 ~15723 -15234 -15421 -15528 -15616
2,1 28576 28769 28915 28915 28916
2, 2 16545 16581 16660 16668 16660
3, 0 13593 111kk 11506 11629 11800
3,1 -21123 -18413 -18463 -18517 -18506
3, 2 10791 11485 11319 11252 11250
3, 3 10166 10025 10016 9988 9974
L, 0 8723 9315 9026 8862 8764
L, 1 7158 TL92 7773 7776 7752
L, 2 5459 5609 5859 5893 5895
L, 3 -3194 -3735 -3697 -3696 -3694
L, 4 3719 3651 3655 3659 3660
5, 0 -2663 -2192 -2017 -1773
5,1 3969 3893 3773 384k
5, 2 1875 1480 1337 1318
5, 3 =752 -811 =923 -978
5, b -1098 -1120 -1116 -1122
5, > -220 -252 =254 -256
6, 0 687 323 96 -32
6, 1 Lh5 890 895 791
6, 2 300 750 827 862
6, 3 -1952 -1827 -1826 -1813
6, b -450 -ko7 -390 -385
6, 5 109 127 1L3 154
6, 6 -558 =552 =552 =552
7, O 538 757 1078
7, 1 -103 -291 -140
T, 2 -647 -896 -939
T, 3 -157 -396 -52k
7, b -100 -82 -96
Ty 5 =247 =275 -287
7, 6 -73 -95 -94
Ty T 521 529 528
8, 0 -418 =695 -864
8,1 598 607 iToy
8, 2 699 829 919
8, 3 254 256 285
8, & 146 189 201
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Gaussian (Schmidt) Coefficients, g’;‘ (Units of 107" cgs)

4 6 8 10 12

n, m Py Pe P8 P10 Pz
8, 5 93 206 23k
8, 6 60 45 55
8, 7 -116 -125 -12k
8, 8 137 137 137
9, 0 247 643
9,1 -256 -2h
9, 2 -372 -L47
9, 3 =432 -662
9, b L 14
9, 5 -118 -153
9, 6 -131 -124
9, 7 86 62
9, 8 -100 -107
9, 9 -29 -26
10, © -316 -524
10, 1 12 -289
10, 2 194 348
10, 3 2 55
10, 4 92 116
10, 5 343 414
10, 6 -80 -Lo
10, 7 -61 -1k
10, 8 -7 L
10, 9 -110 -112
10, 10 -78 -72
1, 0 Lig
1,1 305
n, 2 -109
n, 3 =37k
1, 4 =56
11, 5 '90
1, 6 23
nm, 7 =137
1, 8 ~50
n, 9 34
1, 0 -48
1, 11 -32
12, 0 -248
12, 1 -376
12, 2 232
12, 3 82
12, & 43
12, 5 152
12, 6 18
12, 7 200
12, 8 T3
12, 9 -1k
12, 10 81
12, 11 10
12 1
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Table 2(d) Spherical-Harmonic Analysis of the Geomagnetic Field for 1955,
U. 8. World Charts. Mean values of zZ » for series terminating
with indicated values in Pg.

Gaussian (Schmidt) Coefficients, h: (Units of 10-6 cgs)
in & 8 10 12
Py P Pg Flo Mo

n, m

0,0 0 0 0 0 0
1, 0 0 0 0 0 0
1,1 56779 56787 56736 56739 56728
2, 0 0 0 0 0 0
2, 1 -18000 -18067 -18115 -18117 -18117
2, ? 4418 4575 4569 4572 4564
3, 0 0 0 0 0 0
3,1 -4336 -4315 -LLLo -Lh2k -4h12
3, 2 1749 2042 2041 2073 2073
3, 3 ~54 -551 =525 -510 -520
L, 0 0 0 0 0 0
b, 1 1036 922 829 80k 802
L, 2 -2889 -2230 -22k8 -2236 -2234
L, 3 -132k -1375 -1428 -1k29 -1426
4, 4 -1876 -1942 -1948 -1949 -1952
5, O 0 0 0 0
5, 1 [ 32 -157 -123 =43
5.2 | 792 790 858 857
5, 3 -36 124 187 148
5, 4 -1014 -923 -919 -913
5, 5 580 562 565 562
6, O 0 0 0 0
6, 1 -153 -299 -353 =362
6, 2 1320 1288 131k 1353
6, 3 -182 =354 =357 -3k0
6, 4 -430 -489 -495 =504
6, 5 11k 186 177 179
6, 6 =451 -456 -455 =455
7, 0 0 0 0
7, 1 -256 -202 -32
T, 3 426 559 L69
7, b 408 426 W)
7, 5 -139 -10k -124
7, 6 -69 -57 -60
Ty 7 =3k -338 -337
8, 0 0 0 0
8, 1 -197 -282 -301
8, 2 =50 -5 91
8, 3 -348 -353 -317
g, & -200 -217 =237
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Gauseian (Schmidt) Coefficients,hl: (Unitse of 107° cgs)

4 6 B 10 12

n, m Py Pé ‘8 Plo Plo
8, 5 38k 325 330
8, 6 -k5 -33 -25
8, 7 -180 -177 -178
8, 8 -153 -155 -156
9, 0 0 0
9, 1 Th 332
9, 2 175 172
9, 3 2kl T9
9, 5 150 88
9, 6 69 35
9, 7T 58 Th
9, & -112 -100
9, 9 -2h6 =240
10, O 0 0
10, 1 -112 ~-140
10, 2 67 232
10, 3 -8 5T
10, & -36 =75
10, 5 -1T1 164
10, 6 59 91
10, 7 20 -9
10, 8 -19 -29
10, 9 -109 -107
10, 10 -111 -109
1, o 0
1,1 341
n, 2 =5
1, 3 -262
1, b 63
n, 5 -156
u, 6 -12’4
11, 7 0
11, 8 86
1,9 T5
11, 10 -13
u, 11 -2"'
12, 0 0
12, 1 =35
12, 2 247
12, 3 100
12, & -T1
12, 5 28
12, 6 93
12, 7 -120
12, 8 -65
12, 9 L
12, 10 2k
12, 11 -50
12 -1
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Table 3(a) Spherical-Harmonic Analysis of the Geomagnetic Field for 1955,
U.S.S.R. World Cherts. Mean values of X and Y , for series terminating
with indicated values in Pg.

Gaussian (Schmidt) Coefficients, g: (Units of lO'6 cgs)
4 6 8 10 12
P, Pg Pq P10 Py,

n, m

0, 0 0 0 0 0 0
1, 0 -304078 -305135 -304975 -304965 -30L4973
1,1 -2847Th -20227 -21230 -20832 -21195
2, 0 -14495 -14138 -14150 -14154 ~14154
2,1 29756 29877 29909 29926 29935
2, 2 15913 16781 16814 16329 15898
3, 0 13593 11250 11571 11609 11618
3, 1 -20413 17440 -17793 -17641 17776
3, 2 11843 12450 12425 12472 12485
3, 3 9222 8093 8554 8207 8236
4, 0 9127 9690 9668 9629 9624
L, 1 7626 7818 7875 790k 7916
4, 2 5326 5723 5726 5497 5298
b, 3 -2L99 -357h ~3625 -3641 -3656
L, i 3427 3248 340k 3395 3641
5, 0 -3255 -2795 -2715 -2664
5, 1 3259 3044 3148 3052
5, 2 1626 1596 1666 1688
5, 3 -899 -666 -845 -829
5, b -1423 -1621 -1601 -1607
5, 5 -581 -882 -6Th4 -872
6, 0 725 691 609 592
6, 1 837 907 o7 966
6, 2 342 345 185 W6
6, 3 -2623 -2688 -2710 -2731
6, b -312 -225 -228 -90
6, 5 139 176 135 17
6, 6 -864 -111k% -1050 -1109
7, 0 609 732 839
7, 1 -T73 -687 -768
7, 2 296 389 421
7, 3 134 10 21
7, 4 -413 -385 -393
T, 5 -297 -176 -287
7, 6 297 258 262
Ty T 206 153 210
8, 0 -45 -172 -205
8, 1 -18 29 56
8, 2 -553 -682 =795
8, 3 =57 -84 -12
8, & 126 125 22k




Table 3(a)cont'd
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Gaussian (Schmidt) Coefficients, gi (Units of 107 cgs)

4 6 8 10 1z
n, m Py Fs 8 P10 P12
8, 5 122 73 50
8, 6 =212 =17k -209
8, 7 102 32 22
8, 8 213 163 252
9, 0 164 325
9, 1 88 14
9, 2 277 320
9, 3 -156 147
9, b 89 79
9, 5 167 89
9, 6 -79 -7h
9, 7 ~14 21
9, 8 13 34
9, 9 -6 -7
10, © -166 =215
10, 1 7 L6
10, 2 -354 -45k
10, 3 -23 =52
10, & 25 103
10, 5 -29 =57
10, 6 85 58
10, 7 -116 =127
10, 8 =54 3
10, 9 55 70
10, 10 2 3
11, 0 210
1, 1 Ly
1, 2 206
11, 3 0
1, s -67
ll, 5 "38
n, 6 28
n, 7 2
1, 8 L7
11,9 -11
1, 10 -3k
12, 0 -61
12,1 162
12, 2 -228
12, 3 75
12, & 81
12, 5 -69
12, 6 -64
12) 7 "7
12, 8 31
12, 9 38
12, 10 14
12, 11 -2
12, 12 L 0
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Table 3(b) Spherical-Harmonic Analysis of the Geomagnetic Field for 1955,
U.S5.5.R. World Charts. Mean values ofX and Y , for series terminating
with indicated values in P:.

Gaussian (Schmidt) Coerficients,llz (Units of 10'6 cgs)
L 6 8 10 12
P P P P P

n, m 4 6 8 10 12
0, 0 0 0 0 0 0
1, 0 0 0 0 0 0
1,1 58167 58378 58173 58498 58753
2, 0 0 0 0 0 0
2,1 -18709 -18693 -18739 -18745 -18754
2, 2 1559 3772 3817 3634 3643
3, 0 0 0 0 0 0
3,1 -5709 -5606 -5684 -5582 -5488
3, 2 2087 2630 2611 261k 2641
3, 3 -225 =816 =459 148 23
L, 0 0 0 0 0 0
L, 1 1081 1135 1063 1052 1037
4, 2 -4167 -3126 -3104 -3201 -3201
L, 3 -421 k75 ~440 =425 -400
L, &4 -1343 -1310 -1322 -1332 -1116
5, 0 0 0 0 0
5,1 1005 950 1008 1075
5, 2 1239 1209 1214 1256
5, 3 -428 -244 59 -8
5, b -1412 =146 -1401 -1375
5, 5 766 955 1031 1020
6, 0 0 0 0 0
6, 1 -735 -838 -857 -880
6, 2 1387 1402 1330 1326
6, 3 -84 =34 -1k 25
6, b 12 4 -4 117
6, 5 -142 -102 -85 -118
6, 6 -335 =177 -208 -232
7, O 0 0 0
7, 1 -21 21 78
7, 2 -170 -163 =107
7, 3 178 381 334
7, 4 -122 -63 -29
7, 5 182 226 219
7, 6 10 67 115
7’ 7 '-280 '317 "315
8, 0 0 0 0
8,1 -396 -L2o6 -1458
8, 2 43 -16 -20
8, 3 137 164 216
8, k -38 -b7 L1
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Gaussian (Schmidt) Coefficients, h: (Units of 107° cgs)

4 6 8 10 12
n, m Py P6 Pg P10 P12
8, 5 10k 123 80
8, 6 140 120 106
8, 7 -29 -56 -42
8, 8 -81 -148 =160
9, 0 0 0
9,1 399 450
9, 2 29 93
9, 3 36 -2
9, & 129 170
9, 5 65 60
9, 6 97 155
9, 7 48 48
9, 8 -128 -151
9, 9 -2 25
10, O 0 0
10, 1 -232 -273
10, 2 200 197
10, 3 156 220
10, 4 -83 -13
10, 5 -7 -57
10, 6 71 60
10, 7 -T7 -61
10, 8 -23 -30
10, 9 63 30
10, 10 0 -2
1, o 0
1,1 -23
n, 2 -22
n, 3 -o4
11, 4 54
n, s -1
n, 6 32
n, 7 31
n, 8 -15
n, 9 23
1, 10 65
n, 1 0
12, 0 0
12, 1 -78
12, 2 109
12, 3 186
12, b 91
12, 5 -80
12, 6 -35
12, T 9
12, 8 -39
12' 9 -37
12, 10 -10
12, 11 1
12, 12 0
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Table 3(c) Spherical-Harmonic Analysis of the Geomagnetic Field for 1955,
U.S.S.R. World Charts. Mean values of Z , for series terminating
with indicated values in P:.

Gaussian (Schmidt) Coefficients, sﬁ (Units of 1070 cgs)

L 6 8 10 12
P, Pg Pg P1o Po

n, m
0,0 1196 1772 1733 1751 1740
1, 0 -301699 -304698 -30L4281 -304319 -304288
1, 1 -22973 -22099 -22126 -22117 -22117
2, 0 -15459 -14476 -14572 -14530 -14546
2,1 29565 29863 29822 29817 29817
2, ? 16357 16431 16434 16433 16434
3,0 13345 9886 10494 10420 10459
3,1 -20485 -1811k4 -18180 -18138 -18138
3, 2 11724 12225 12190 12213 12211
3,3 8849 8747 8769 8755 8754
4L, 0 9651 10841 10693 10756 10739
L, 1 7185 7699 7621 7564 7568
L, 2 5476 578k 5793 5768 5788
L, 3 -3204 -3876 -3888 -3898 -3894
L, L 3283 3226 3225 3220 3222
5, 0 -3761 -2969 -3074 -3019
5,1 3472 3372 3463 3466
5, 2 1355 1271 1320 1295
5, 3 -546 -409 -k62 -L67
5, 4 -1204 -1293 -1280 -1278
5, 5 -1016 -1058 ~-1060 -1058
6, 0 1380 1194 1281 1259
6, 1 685 562 438 460
6, 2 616 633 622 617
6, 3 -2427 -2L466 -2489 -2465
6, & -376 -382 -k10 -402
6, 5 358 378 386 386
6, 6 -723 =725 =725 =725
7, O 905 T4 8u6
T, 1 -135 8 13
T, 2 -137 -51 -108
7, 3 364 250 239
T, b4 -400 =343 -337
Ty 5 =325 -3k6 -332
7, 6 195 190 192
T, 7T 298 301 302
8, 0 -213 -106 -136
8,1 -166 -362 -320
8, 2 26 9 "
8, 3 -79 -123 -70
8, & -22 -92 -Th
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Table 3(c)cont'd

Gaussian (Schmidt) Coefficients, gxnn (Units of 10°° cgs)

4 6 8 10 2
2 P Py Pg Plo P
8, 5 110 166 164
8, 6 -16 -25 -1k
8, 7 10 -1 -2
8, 8 182 176 176
9, 0 -148 =59
9,1 194 202
9, 2 129 30
9, 3 -207 -226
9, b 142 154
9, 5 -91 -7
9, 6 =30 -5
9, 7 36 48
9, 8 =149 -146
9, 9 49 43
10, © 122 86
10, 1 -259 -196
10, 2 -26 -48
10, 3 -73 22
10, L -149 -114
10, 5 168 163
lo, 6 -hﬁ "5
10, 7 =76 -87
10, 8 -67 -58
10, 9 38 36
10, 10 19 22
1, 0 101
n,1 10
n, 2 -145
1, 3 -31
1, 4 2k
1, 5 110
n, 6 89
n, 7 72
n, 8 23
n, 9 -68
1, 10 76
1, 1 -33
12, 0 ~k3
12,1 79
12, 2 =33
12, 3 1k7
12, b 64
12, 5 -11
12, 6 118
12, 7 -b7
12’ 8 61#
12, 9 =14
12, 10 20
12, 11 14
12, 12 1
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Table 3(d) Spherical-Harmonic Analysis of the Geomagnetic Field for 1955,
U.S.5.R. World Cherts. Mean values of g » for series terminating
with indicated values in P‘:.

Gaussian (Schmidt) Coefficients, hf; (Units of 10'6 cgs)

N 6 8 10 12
Py Fg Fg P10 P1o

n, m
0, 0 0 0 0 0 0
1, 0 0 0 0 0 o}
1,1 57984 58093 5817k 58170 58161
2, 0 0 0 0 0 0
2,1 -18287 -18511 -18590 -18594 -18593
2, 2 3315 3473 34k5 3454 3455
3, 0 0 0 0 0 o}
3,1 -5236 ~k9ho =4740 -4759 -4752
3, 2 2179 2543 2553 252 2522
3 3 -1333 -1337 ~-1331 -1321 =1329
4, o 0 0 0 0 0
4, 1 1525 1137 986 943 938
L, 2 -3749 -3086 -3176 -3139 -3139
L, 3 -846 -857 -914 -895 -897
L, & -1608 -1630 -1631 -1629 -1632
5, 0 0 0 0 0
5, 1 43y 735 694 T80
5, 2 982 1006 okl 926
5, 3 -20 21 60 28
5, b -1511 -1522 -1520 -1511
5, 5 1104 1113 1114 1112
6, 0 0 0 0 o}
6, 1 -516 756 -848 869
6, 2 1327 1166 1251 124)
6, 3 -38 -224 -181 -189
6, b -146 -154 -145 =156
6, 5 =81 -30 -30 -26
6, 6 =432 =423 =422 =422
7, O 0 (o) 0
7, 1 408 344 Ly2
7, 2 38 -69 -110
7, 3 109 194 120
7, & -48 -38 =16
T, 5 73 91 73
7, 6 -1k9 =116 =116
T, T -554 -5k46 =547
8, 0 0 0 0
8,1 -323 -468 =510
8, 2 «250 =107 =125
8, 3 =377 -293 -312
8, & -29 6 -31
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Gaussian (Schmidt) Coefficients, hz (Units of 10-6 cgs)

I 6 8 10 12

2, m Py Pe P8 Plo P12

8, 5 270 270 279

8, 6 78 91 90

8, 7 =55 =51 =51

g, 8 -57 -52 -52

9, 0 0 0

9, 1 -88 62

9, 2 -160 -231

9, 3 154 22

9, &4 23 12

9, 5 76 19

9, 6 196 195

9, 7 80 69

9, 8 -Th =Tk

9, 9 81 76

10, © 0 0
10, 1 -192 =254
10, 2 214 183
10, 3 140 106
10, 4 k9 0
10, 5 0 25
10, 6 65 62
10, 7 27 32
10, 8 56 50
10, 9 -261 -248
10, 10 35 32
n, o 0
n,1 198
n, 2 -104
1, 3 -21h
1, 4 92
n, s -1k2
1, 6 -3
1, 7 ~63
1, 8 0
1,9 -67
11, 10 -18
1, 1 -46
12, 0 0
1z, 1 -T1
12, 2 -b7
12, 3 -53
12, U -88
12, 5 53
12, 6 -9
12, 7 21
12, 8 =41
12, 9 96
12, 10 =k7
12, 11 -7
12, 12 L -1

U
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Table &4

Weighted rms Error E in Units of 10_2 cgs in the Fit of Tabular Values
at 10° Intervals of Colatitude and Longitude; U.S. and U.S.S.R. Charts
for 1955 for Spherical-Harmonic Series Terminating in Degree 4, 6, 8,
10, and 12 for (a) U.S. Charts and (b) U.S.S.R. Charts

Component of Field

Degree X Y Z Mean

(@) 0.223 0.222 0.324 0.256
4

) 0.241 0.295 0.318 0.285

(a) 0.108 0.116 0.107 0.110
6

(b) 0.151 0.226 0.186 0.188

(a) 0.098 0.092 0.071 0.087
8

(b) 0.134 0.220 0.148 0.167

(a) 0.091 0.097 0.058 0.082
10

(®) 0.132 0.223 0.129 0.161

(a) 0.087 0.093 0.054 0.078
12

(b) 0.131 0.226 0.101 0.153
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Table 5

Values of Eqs. (16) and (18) for A6 = .04 and X, = 0

z -1 (16) (18)
.1 5.02655 4.44741
.2 .62832 .60657
.3 .18617 .18300
A .07854 .07772
.5 .04021 .03992
.6 .02327 .02315
.7 .01465 .01459
.8 .00982 .00978
.9 .00690 .00688

1.0 .00503 .00501




Table 6

Values of f ) for Various Heights Above the Sphere
S R

z, - Value Center Error Off Center Error
% %

10. .00952 .00948 4 .00948 b

1. 2.09440 2.10289 - .4 2.10312 - .4

.1 54.39988 54.02121 .7 53.99732 .7
.01 619.00356 626.65094 -1.2 705.91803 =14,
.001 6273.85754 6287.95575 - .2 8299.55323 ~32.
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