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P_F_E

This Memorandum is part of a continuing theoretical study of the

geomagnetic field. The results should aid the development of repre-

sentations of the geomagnetic field in space, and are directly appli-

cable to both geophysical problems involving scalar and vector poten-

tial fields, and to the design of conjugate point experiments. The

work was supported by the National Aeronautics and Space Administration

under Contract NASr-21(05).
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ABSTRACT

The geomagnetic field is analyzed by spherical harmonics and by

integrals. Series representations in spherical harmonics of geomagnetic

field charts are compared for truncation of the series at the 6, 8,

i0, and 12 terms of degree. Scalings are at a uniformly spaced

latitude-longitude grid from both U.S. and U.S.S.R. isomagnetic charts

for 1955.0. A numerical integration method for analyzing the field

is developed from Poisson's integral. A new surface grid, suitable

for use with integral analysis, is described. This grid is based on

subdivisions of a spherical icosahedron, and its points are almost

uniformly spaced over a sphere. This integration method is applied to

calculations of field values, field lines, and conjugate points. The

results are compared with those of earlier spherical-harmonic analyses

by Vestine and Sibley. A comparison is also made between those conjugate

points calculated by spherical harmonics from different sets of

coefficients derived from various sets of isomagnetic charts. Some

minor but undesirable effects are mentioned that arise because of the

uniform angular spacing of data points scaled from charts. The vari-

ation of the earth's magnetic moment and the location of the dipole

axis since 1835 is described and discussed. Finally, an extrapolation

of the geomagnetic field into the earth's interior is described.
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I. INTRODUCTION

About 1839, Gauss first used spherical harmonics to analyze the

geomagnetic field's potential function. Since then, at intervals of

ten years or more, others have made such analyses (Chapman and Barte.ls ,

1940). The results of their work, usually in the form of charted

values, have seldom been rigorously comparable. This is hardly

surprising, since they used different accuracies and distributions

for the observational data points, assumed different numbers of

spherical harmonic terms to fit the data, weighted their observations

differently, and used different methods of analysis.

This paper estimates the differences caused by defective data

and procedures, and indicates the effect on a few major main-field

parameters and their interpretation. It compares the computed reaolts

of spherical-harmonic analysis with those of integral analysis, in

two merldlonal planes and at various heights above the earth's surface.

Xt describes formulas and grids that are useful for integral analysla.

It then compares the sample results with previous tabulations of the

main field that have been used in analyzing particle data for the

Van Allen radiation belts. It indicates the change since 1835 in the

geomagnetlc-pole position and in the earth's magnetic moment. Finally,

it discusses extrapolation of the surface field into the earthls

interior.
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II. SPHERICAL HARMONICS

Spherical harmonic analyses of the geomagnetic field usually

represent the geomagnetic surface potential over a spherical earth

(whose radius equals a) in this form:

(a) n+lV = a _ _ - (gm cos n_ + hmn sin m_) Pmn (cos e) (i)
r

The earth's center is taken as the origin of the three spherical

coordinates: r, the distance from the origin; 8, the colatitude; and

_, the longitude east of Greenwich (Chapman and Bartels, 1940).

pm (cos _) are Schmidt's semi-normalized associated Legendre polynomials
n

m hm
of integral order m and degree n, and gn and n are the Gaussian

(Schmidt) coefficients. The north, east, and vertical (or downward)

components of the surface magnetic field are then given by

I _V i _V _V

X =----, Y_- , Z--- • (2)
r Be • r sin e _% _r

m hm
The values of gn and n are usually determined from the observed field

values. Most analyses provide values up to m = n = 6 and fit, by the

method of least squares, weighted data taken from charts at 5° to i0°

intervals of latitude and longitude. An example is the analysis for

1922 (Dyson and Furner, 1923); essentially the same methodology was

followed by Vestine, et al., for 1945, and for secular change at

10-year intervals from 1912.5 to 1942.5 (Vestine, et al., 1947). The

results obtained are therefore comparable, since they include the

influence of similar defects as well as advantages in methodology.

Repeating the study of 1945 -- but now using the data of Vestine, et al.,
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up to m = n = 15 -- gave surprisingly similar results (Fanselau

and Kautzleben, 1958).

Other methods based on observed points (unequally distributed

measurements at observatories) have afforded almost as good an

approximation, though they have not well represented the field's

distribution over the oceans. Analyses to terms of high degree

(512 coefficients) have been based on the charted vertical component

of the geomagnetic field for 1955.0 (Jensen and Whitaker, 1960;

Jensen, Murray and Welch, 1960). Most of the other analyses have

been based on the more precise charted or observed horizontal components

of field, for which the fit obtained by Jensen and Whitaker had a

root-mean-square error estimated to be l150y (one y = 10-5 cgs-unit)

in the charts of the U.S., and 632y in those of the U.S.S.R.; the

maximum difference in the computed minus observed value of horizontal

intensity was 620Oy. Results based on this analysis have fit, within

about one per cent, several satellite measurements in the lower

Van Allen radiation belt (Heppner, et al_._____.,1960). Coefficients obtained

by Finch and Leaton have given a similar or somewhat better fit within

another region (Heppner, et al., 1960; Finch and Leaton, 1957). Tabulations

of field values, of field lines and their conjugate points, and of

adiabatic invariants applicable to geomagnetically trapped particles

have been derived for these coefficients (Jensen, Murray, an d Welch,

1960; Vestine and Sibley, 1960; Ray, et al., 1962). There is now a

spherical-harmonic analysis for 1960, based directly on observational

points (Jensen and Cain, 1962). The radiation-belt L-shells of

Mcllwain (1961) use the 1960 values.
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III. INTEGRALS

Various books on potential theory have shown how to analyze

magnetic fields by surface integrals (Kellogg, 1929). Vestine (1940,

1941), _ (1944), and Benkova (1953) have extended the technique

to the geomagnetic field of a sphere, while Vacquier, et al., (1951)

has done the same for a plane earth.

A convenient starting point is Green's theorem, which gives a

magnetic potential V(P) at an internal point P(r,8,_) in terms of

surface values of the potential and its normal derivative _nV (n being

the outward normal):

v(P)=--- _ v as
4_ S _ _n r r 5n

, (3)

where S is the surface of the earth.

If V e is that part of V originating outside the earth, and Vi is

that part originating inside the earth, then for P external to S,

vi (F)=- _ v as
4_ S 5n r r 5n

, (4)

and, for P internal to S,

v (P)---- _ v
e 4_ S

where V = Ve + Vi" Upon S itself

dS
/5n r r _n

, (5)

V
e i [I 8V

"Vi=--
2n S r 8n

(v- u)-- - dS+U,
_n r

(6)
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where U/4_ is the strength of any uniform double layer on S, a layer

whose potential is zero outside S, and equal to -U everywhere inside S

(Vestine, 1940; Taylor, 1944).

For a spherical earth,

I 2_ _/2

V - V. = -- J" ._ (V + 2a Z) cos _ d_ dX (7)
e l _ _

217 o o

where V - V. is taken at the pole of coordinate (a,8,l) and _ = 8/2
e 1

and Z _V/_n (Vestine, 1941) and an analogous expression for Ze l

was obtained in correction of Vestine's earlier result (Taylor, 1944).

Therefore, as in spherical harmonic analysis, an integral method suffices

to separate an observed surface magnetic field into parts of external

and internal origin.

Equation (4) can be transformed with the Green's function of the

first kind:

I a i

G(Q,P) = , (8)
g r g'

where P is the outside point (r,8,k), Q the point (a,O',k') on S,

R the distance PQ, and R' the distance P'Q (where P' is the image

From this, we get the well-known Poisson'spoint to P in the sphere).

integral:
2 2

r - a f(8',A') dS

Vi (r,e,k)= £ (9)4_a R 3 '

giving V i at P outside, in terms of the surface values f(8',k')

ofV. onS.
l

Existing spherical-harmonic analyses of the geomagnetic field do

not show an external contribution V that can be detected with any
e
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certainty. In this paper, consequently, we will neglect the possible

contribution of external main-field terms.

is not a potential function, because its direction in space

is not always the same, but the values X, Y, and _ are known over S

and are defined in Eq. (2). Therefore, if we take the earth's center

0 as origin, we can transform the values into a Cartesian coordinate

system (x, y, z) with the x axis towards 90°W of Greenwich, the y axis

toward the Greenwich meridian, and the z axis toward the north pole.

Thus x = -r sin 0 sin %, y = r sin 9 cos X, and z = r cos 8, so that

the transformation results in the potential functions X = - _V/_x,

Y = - _V/_y, and Z = - _V/_z. Since X, Y, and Z are potential functions,

and therefore are not the same as X, _, and _, from Poisson's integral

2 a 2r - X(x',y',z')dS

X(x,y, z) = I
4_a S R 3

2 2
r - a Y(x',y',z')dS

Y(x,y, z) =
4_a S R3

2 2
r - a Z(x',y',z')dS

Z(x,y,z) = 4_a IS R 3 '

, (i0)

where x '2 + y,2 + z,2 = a 2, and X, Y, Z are the surface values of f in

the x, y, and z directions, respectively.

The field components on S in the three directions are then

X(x',y' z') = X cos 9' sin X' - Y cos _' + Z sin 8' sin X'

Y(x',y',z') = - X cos 8' cos k' - y sin k' - Z sin 8' cos k'

Z(x',y',z') = X sin 9 - Z cos 8'

(ll)
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where, as in Eq. (2),

i _V

a _G'

y _.
' D

i _V ( _V !
a sin _' _l' Dr =a

Here, a is the earth's radius, e' is the colatitude, _' is the

longitude east of Greenwich, as in Eq. (i0).

By inserting the values of X, Y, and Z from charts of the

geomagnetic field into Eqs. (i0) and (ii) we may then calculate

by machine the earth's main field at external points. To calculate

the field lines and the various adiabatic invariants, we merely

take the field direction as specified by the field's three orthogonal

components given by Eq. (i0) and use a Runge-Kutta-Gill integration

scheme (Vestine and Sibley, 1960).

We need know only 3V/_n over S to estimate the potential V at P.

For a point inside a sphere, P(r,e,l), we use a Green's function of

the second kind, H(Q,P). This function gives the potential at P

relative to a point on the sphere, Q(r', e',_'), and an image point,

p' -- Q, X •

r 2
1 a 1 2a

H(Q,P) = - + -- + -- log 2 (12)
R rR' a a - rr' cos 7 + rR'

The value R is the distance PQ, and the image point P' is inside the

sphere along the line OP so that the equality of R' and P'Q is

defined by the condition OP' • OP = a 2 where a is the radius of

the sphere (Kello_, 1929). H(Q,P) can be transformed by known

methods into a form H'(Q,P) suited to the calculation of V(P) at an

exterior point P(r,e,%) relative to a point on the sphere Q(r', 8',_').
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Thus the equation

I

V(P)--- _ H'(Q,P) f(Q) dS'
4_ S

, (13)

provides the magnetic potential at P in terms of the surface values

_V

of f(Q) = _n on S. By differentiating H'(Q,P) with respect to

r, 0, and _, and by integrating, we can obtain the field components

in polar coordinates. But since Eq. (I0) seems to offer a more

complete use of the measured information, we will not use here the

normal component alone.

The following sections will describe and discuss for the first

time new spherical-harmonic analyses of the American and Soviet

world isomagnetic charts for 1955. We will indicate the quality of

fit, apply Eq. (I0) to the American charts, and compare the computed

results of field parameters with those obtained by Vestine and Sibley

(1960) for points in the radiation belts.
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IV. SPHERICAL-HARMONIC ANALYSES OF ISOMAGNETIC CHARTS

OF THE U.S. AND U.S.S.R. FOR 1955.0

Scalings of American and Soviet charts at 5° intervals of

latitude and longitude have been represented in terms of spherical

harmonics by one of the authors of this paper (J. L. Carlstedt). He

determined the coefficients of Eq. (I) by fitting the values of

X, _, and _, supposing the series to terminate with n = 4, 6, 8, i0,

or 12. He obtained a weighted least-squares fit for each case by

using a scheme that Vestine and Lange described in their analyses of

the isomagnetic charts for 1945 (Vestine, et al__.._.._.,1947).

6 with those obtained by FinchTable I compares the results to P6

and Leaton in the British Admiralty charts for 1955. It reveals a

fairly good agreement in magnitude and in sign, though discrepancies

are sometimes as great as 10-2 cgs when results for g_ are quoted

to four figures. In certain analyses, this means that the computed

values for the lower Van Allen region may disagree by as much as

10007 (where iV = 10 -5 cgs).

We have repeated the analyses, quoting more figures, for the

American and Soviet charts for 1955. To note the effects dependent

on the series' truncation, we supposed that the series of Eq. (i)

4 6 8 I0 and 12 For the American charts
terminated with P4' P6' PS' PI0' PI2"

of X and Y, Tables 2(a) and 2(b) llst our values of g_, and hm
m m n P

respectively. Tables 2(c) and 2(d) llst our corresponding values

for _. Similarly, Tables 3(a), 3_), 3(c), and S(d) list our values

for the Soviet charts.
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6
Fanselau and Kautzleben (1958) noted that the terms up to P6

(but not to P_) are very roughly the same, whether the series ends

15 Agreeing even better, apparently, are thethere or goes on to PIS"

results for low-degree coefficients of the series that terminate in

8 I0 and 12
PS' PIO' PI2"

Our X, _, and _ series were synthesized at the points in a

17 x 36 grid that is composed of I0° spacings in colatitude and

longitude. Table 4 gives the root-mean-square (rms) errors in fit

for this grid between the synthesized and charted American and Soviet

data.

The quality of fit revealed by the rms errors in the X component

ranges from about 23Oy (0.0023 cgs) for the series terminating with

4 12 (about 907 forP4 to about ii0_ for the series terminating in PI2

the Soviet charts). Interestingly, the series for _ has a larger

4

rms departure (3207) when it terminates in P4' and the smallest value

12

of all (55_) when it terminates in PI2 m a considerable improvement.

Between the points of a I0 ° x i0° grid, of course, the present estimates

of quality will not necessarily apply. In addition, the discrepancies

for X and _ should theoretically be larger than those for _. This is

because we synthesized X and _ from their mea__nncoefficients, not

from direct analysis, as with _. In reality, however, the coefficients

based on _ are probably less accurate than those for X and Y, merely

because _ has been less accurately measured. Therefore, when Tables 2

and 3 are used for physical rather than for statistical purposes

(or for discussion of methodology), it may be appropriate to regard

the third digit from the right, rounded off, as the last significant

figure.
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It would be interesting to comparethe various results obtained

12 while computing values in the upperby using coefficients up to PI2

atmosphereand beyond. In attempting extrapolations to the earth's

core, one would probably minimize errors by choosing low-degree terms

12 The analyses contain other defects, somefrom the series to PI2"

not yet mentioned. For instance, the spacing of the I0 ° x i0° grid

is necessarily non-uniform in distance. Therefore, though it is

theoretically possible to determine the coefficients of Eq. (i) so

that the resulting values are independent of n (the number of terms

in the series), actual practice may require data at equidistant grid

points, making difficult the appropriate weighting of data.

Difficulties also occur in the integral methods mentioned earlier.

Of principal importance is the distribution of data over the area of

integration. How this is useful in calculating the geomagnetic field

will be considered in the next section. But it should be mentioned

here that non-uniform spacing of sampled chart data could conceivably

minimize some small effects that might result from the use of uniform

spacing. Thus, if there are higher-order harmonic components asso-

ciated with magnetic anomalies, an aliased contribution to lower-degree

harmonics may arise (Blackman and Tukey, 1959). For analyzing geo-

physical data, alternative schemes may minimize any possible effects

(MacDonald, private communication).
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V. ANALYSIS BY NUMERICAL INTEGRATION

TWO EQUAL-AREA GRIDS

The integral expressions for the field given by Eq. (I0) require

that X, Y, and Z be specified. These integrals can be evaluated

approximately by using values of X, Y, and Z specified at points on

a grid covering the sphere, S. Assuming that these field values

represent average values for surface-area sectors AS k centered on

the grid points, we can replace the integrals of Eq. (i0) with summations.

By selecting grids that specify surface sectors of equal area, we can

eliminate one source of variation in the integral and use field

values directly, without weighting.

Two equal-area grids are described here. The first is formed

by lines of latitude and longitude, the second by nearly equal

subdivisions on the faces of a spherical icosahedron. This equal

spacing of grid points over the surface of the sphere will enable

similar local features of the surface-field to affect the values of

X, Y, and Z similarly anywhere on the surface.

Longitude-Latitude Equal-Area_Grid

A grid of points can be constructed with lines of latitude and

longitude so that each grid point represents sectors of equal area.

First, take two planes that are parallel to the earth's equator and

that are separated by a fixed distance. The area of the earth's surface

between the planes will be the same, regardless of where the parallel

planes are located. If we divide the earth's diameter with a series of

equidistant planes that are parallel to the equator, the spherical
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=_nts betwee_ the planes will be equal in area. These spherical

segments can be further divided into smaller equal areas by drawing

merldional planes that are spaced at equal polar angles. Figure I

shows such a subdivision of the earth's surface. The area sectors

adjoining the poles are triangular. Each area sector is bounded by

lines of latitude and longitude.

To represent this kind of subdivision, we can generate a set

of grid points in a similar fashion. Its advantage is that most

magnetic field data are similarly scaled at equal intervals of latitude

and longitude. Its principal disadvantage is the unequal spacing of

points over the sphere. In a grid with a longitude and latitude

spacing of I00 km at the equator, for example, the northernmost grid

points will be 1130 km from the pole, though separated from each other

by only 18 km in longitude. Giving field data only at these grid points

would cause unequal representation of the field's surface features due

to internal sources: the representation of features distributed in

longitude would obviously surpass that of features distributed in

latitude. Hence, extrapolations of the field to heights greater

than i00 km using this grid in combination with Poisson's integral --

or Eq. (I0) -- will reflect more accurately the effects of sources

that are distributed in longitude than those of sources that are

distributed in latitude. Nevertheless, extrapolation tests using

this grid from 70°N to 70°S give results with an accuracy commensurate

with that of surface data.

As we shall later use more advanced grid systems, we will here

use only one calculation as a sample. We take a grid of data points
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distributed over the surface of the earth at regular intervals of

latitude and longitude. By spacing the points closely, we can better

assess the potential accuracy of the surface integral method. We

actually use a composite of two latitude-longitude grids. The primary

grid has points spaced at intervals of 2° in latitude and 4° in longitude.

, 4°The smaller secondary grid (whose over-all measurements are in

latitude by 16° in longitude) is located beneath the point at which

the field is calculated. Its points are spaced at intervals of

1/4 ° in latitude and 1/2 ° in longitude.

In such a grid, the area sectors assigned to each grid point

vary in size over the surface of the sphere. We determine the area

2
assigned to each grid point by integrating dS = a sin e d_ d_ over the

assigned area, where 0 is the colatitude and _ is the longitude of

a point on the sphere, and a is the sphere's radius. Values of

X, Y, and Z for each point were calculated from the coefficients we

had derived from the American charts of 1955.0; using these values,

we calculated the field at 50°N, O°E and at an altitude of 600 km by

integrating Eq. (i0) over the composite latitude-longitude grid. These

spherical harmonic coefficients give the field at this point as

0.3654 gauss (with direction cosines of dx/ds = - 0.0723, dy/ds = 0.8937,

and dz/ds = 0.4464). This value can serve as a reference for

determining the accuracy of the value given by the surface integral

(0.3649 gauss with direction cosines of dx/ds = - 0.0723, dy/ds = 0.8958,

and dz/ds = 0.4470). The error in the field's magnitude is about 0.1%.

The maximum error in the direction cosines is for dy/ds -- about 0.25%.

Obviously, the surface-integral method can yield quite accurate
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extrapolations of the geomagnetic field. The calculation is quite

lengthy, however, and requires an interpolation schemefor points at

which the field is not known.

Icosahedral Equal-Area Grid

The foregoing discussion has shown why it is desirable to have

sectors with equal areas, with a high degree of symmetry about their

centers, and with shapes that are independent of their location on the

sphere. From this, J. W. Kern decided that the icosahedron, being

the highest-degree regular polyhedron, is an excellent model for

subdividing a sphere.

If we trace a spherical icosahedron onto the surface of the earth,

letting one axis correspond to the axis of rotation, we can form an

equal-area grid by subdividing the faces of the icosahedron with great

circles. We will regard the grid points so determined as center points

of the sectors of integration. Figure 2 shows that almost every sector

will be a hexagon centered on a grid point; the exceptions will be the

pentagon centered on each vertex of the icosahedron. Figure 2 shows the

arrangement of the grid points for one face of the icosahedron° Since

equal areas are to be assigned to each of these grid points, we must

make small adjustments in the shape of the sectors and distribute them

over the sphere. Note that the sectors will not, in general, be

regular spherical polygons. But these irregularities will be quite

small if we make a fine subdivision, using the technique described below.

Consider the spherical triangle ABC, shown in Fig. 2. This face

of the spherical icosahedron is one of the five spherical triangles

joining in a common vertex at the north pole of rotation. Its sides,
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E

Spherical Plane

icosahedron icosahedron

Fig. 2 Method of generating an equal-area,

equal-spacing grid based on the spherical icosahedron
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AB and AC, lie in meridional planes and can be subdivided into

equal arcs. (In the figure, m = 16.) This subdivision determines

points on AB and AC that can be identified by their colatitude

measuredfrom the pole. If we pass great circles through the points

on AB and AC that have the samecolatitude, we will determine

great-circle arcs inside the ABCface of the spherical icosahedron.

MNin Fig. 2 is one such arc. If we now subdivide each arc once for

every arc lying between it and the pole, we generate a regular grid.

This grid can be transferred to all twenty of the spherical triangles

that makeup the spherical icosahedron. For example, the grid for

triangle ABCin Fig. 2 maybe transferred to triangle BCDby rotating

it 180° about a radius through E, the midpoint of BC. By joining two

spherical triangles (such as ABCand BCDin Fig. 2) we form an equilateral,

spherical quadrilateral (ABDC). To cover the sphere, we need only

repeat the grid pattern of ABDCfive times around each of the poles.

Thus, identification of this single pattern will enable us to prescribe

the grid for an entire sphere.

This technique can be formalized in terms of a set of vector

operations, in which linear transformations begin by generating the

grid within the spherical quadrilateral, and then repeat the grid

pattern about each pole. It can be madeso general that an electronic

computer can readily generate the coordinates for a grid of any

frequency, m.

NUMERICAL FORMULAE FOR SURFACE INTEGRATION

After a grid has been generated, and after the Cartesian components,

X, Y, and Z, have been calculated, the integral expression for a given
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componentat any point of space can be replaced by this summation:

X(x,y,z) =

2 2
r - a

4_a k

', z_) AS kXk (Xk' Yk

Here, X(x,y,z) is the desired x-component of the field in space

(similar expressions can be written for Y and Z); k is the index of

' z_) is the field value for AS k (the k-th surface-summation; Xk(X_, Yk'

area sector) that is specified by the components of the radius vector

I

x' ', and Zk); and Rk is the distance from theto the center point ( k' Yk

point in space to the center of the k-th sector.

Rk is given by

2 2 2 2(x_ + yy_ + zz_)Rk=r + a -

where r is the radius vector from the center of the sphere to the point

in space, a is the radius of the sphere, and (x,y,z) and (_, y_, z_)

are the Cartesian coordinates of the point in space and of the k-th

sector's center.

Both the longitude-latitude and the icosahedron grids assigned

equal areas to the centers of their surface-area sectors. Therefore,

each sector is AS = 4_a2/N, where 4_a 2 is the area of the sphere, and

N is the total number of grid points. If we substitute this expression

for AS k into the summation for X given above, we see that

a(r 2 - a 2) N X k

X(x,y,z) = E -- , (14)

N k=l
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while

and

Y(x,y,z) =

Z(x,y,z)=

a (r2 - a 2)

N

a (r2 - a 2)

N

N

E

k=l

N Zk
E --

k=l

Yk

These are the approximate expressions that will be used in the surface-

integration method of calculating the field in space from surface values

over the earth. For example, the total number of grid points over the

surface of a spherical icosahedron is 10m 2 + 2, where m is the number

of subdivisions on the icosahedron's edges.

ANALYTIC PROCEDURES

We may regard Eq. (14) as sums of integrals:

X(x,y,z)=
(r2 - a 2) N XdS

4_a k=l AS k

in which we use the approximation,

Xd S 4_a 2 Xk

7 RT _ R3
AS k N

, (15)

to reduce the computation's complexity. For a point near the surface

of the earth, R becomes small for some terms in the series. As R

approaches zero, the integrand approaches infinity. This challenges

the range of applicability for Eq. (15) and similar approximations.

If X k is a good representation of X over ASk, we may write
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XdS dS

and then estimate the appropriate variable weight by this equation:

dS

W= f R 3
AS k

One such value is, of course,

4tTa2

W = -- (16)

An alternative would be the integral for the cap segment of angle

A8 (Fig. 3):

2_ A8 sin e d@ dq_

w=f f
0 0 (a2 + r 2 - 2ar cos 8) 3/2

2rf Ae

: f ; sin e de d_

Ix 2 a2- )]3/20 0 2 + z + 2(Xoa cos q0 sin @ + z a cos @
o o O

For small A@, the approximations

8 2

sin @-_ @, cos 8 = i --

2

after making a = i, lead to the integral

2'n" AO

2 2
0 0

e de aqo

Ix + z2 + i - 2z - 2x 8 cos _ + z 82] 3/2

q

o o o o o

(17)
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Z

( Xo, o, Zo)
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x/

Fig. 3
Coordinate system for surface integration

over a single area sector

(circular cap on sphere)
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The integration of Eq. (17), with respect to e, yields

1 2_
-2
I(0

where

2(K2-2XoA9 cos _ + z AS) ½ - (K2-x A8 cos _)] d_o o

2 2 ½
(K2z -x cos _)(K2-2x A_ cos _ + z A_)

O O O O

= 2K 2 i - 2z + x 2 + z
o O o

(18)

Table 5 exhibits the relative merits of Eqs. (16) and (18) for

the case x = 0. In it, Ae = .04, which is quite close to the weighting
o

appropriate to N = 2562.

For x _ 0, Eq. (18) must be evaluated by numerical quadrature.
o

In subsequent numerical results, an eight-point Gaussian quadrature

was used over (0,_). Figure 4 exhibits the behavior of one-half of

the integrand, both for values of Xo and Zo where (xo2+ z°)2_ = i.i,

and for positions ranging from directly over the center of AS k out

to a distance of one sphere radius.

A trapezoidal integration of the curve for D = i (Fig. 4) yields

a value of .00504.

Comparing this result with corresponding entries in Table 5, we

see that for a distance of one sphere radius from the center of ASk,

Eqs. (16) and (18) give virtually the same result regardless of

orientation. This suggests that a combination of Eqs. (16) and (18)

satisfactorily estimates the surface integral. Equation (16) should

be used for those AS k farther than one sphere radius from the point

in space, and Eq. (18) for those closer than one radius.
dS

Table 6 estimates _ --_ for a grid corresponding to N = 2562.
S R_

The Center column lists positions along a radius vector through the
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center of a particular ASk; the Off Center column lists positions

along a radius vector through a point midway between two AS k, To

account for overlapping AS k and to achieve the distribution of errors

listed under Center, Ae in Eq. (18) and the coefficient in Eq. (15)
2

were modified as follows: A_ = -- (.0675);

the coefficient 4--V-_
= N (.9978).

In general, one-tenth of a sphere radius is the minimum distance

from the sphere at which an error of less than 1% can be maintained.
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VI. APPLICATION TO GEOMAGNETIC FIELD-LINE CALCUlaTION

To avoid reading the magnetic charts at the previously described

grid points and to get results comparable to the spherical harmonic

analyses, we obtained the surface values of X, Y, and Z from the

48-coefficient expansion of the American 1955 charts. These data

allow one to compare directly the field lines obtained by the integral

method with those lines obtained by V_stine and Sibley (1960).

Each integration was by a fourth-order Runge-Kutta-Gill scheme,

moving by steps of 0.i earth radius (Gill, 1951).

Table 7 and Fig. 5 indicate the results of generating a field line

starting at 0.i of a radius above the point at 40°N, 90°E and ending

at an altitude of about 0.I of a radius.

Figure 6 shows a 50°N, 0°E field line generated by both the spherical-

harmonic and the surface-integral methods. For each, the integration

step is 0.25 earth radius. Note that the difference between the

calculated positions in the equatorial plane is greater than in Fig. 5

where we have a smaller step-size. Near the surface, the Runge-Kutta-

Gill integration of Eq. (16) yields field-line positions quite close

to those obtained by the spherical-harmonic analysis. Differences in

conjugate points at constant altitude are less than 0.01 earth radius

(about 65 km). To determine mirror points (the point along the line

where the field is the same as at the starting point), the integration

of Eq. (16) is less useful. The calculated magnitude of the field can

have errors on the order of 3% at altitudes of less than 0.i earth

radius. Such an error would allow the altitude of mirror points

estimated with Eq. (16) to be in error by as much as 0.01 earth radius.
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The field lines calculated with either Eq° (16) or with the

two-part integral correspond quite closely to those calculated by

spherical-harmonic methods. This correspondence can be further improved

by using shorter integration steps in the surface-integral methods.

This would require more computing time than in the calculations of

Figs. 5 and 6. But because surface-integral methods already increase

more than tenfold the time required by the spherical-harmonic methods,

the penalty for using shorter steps is proportionally small.

Table 7 lists the coordinates for three lines. The first was

derived by Vestine and Sibley (1960); the second by the mixed-integral

method discussed above; and the third by the integral method that uses

Eq. (15) throughout. For each step along these three lines, we have

computed the magnetic-field values (X,Y,Z) and listed them in Table 8.

The three methods produce quite comparable results for shorter

field lines. Figure 6 and Tables 7 and 8 show that the two integral

methods produce almost identical results that differ from the spherical

harmonic ones by about i00 km. The consistency of the integral results

can be explained in part by the fact that, although the values of X,

Y, and Z in Table 8 differ, they are almost proportional. The constant

of proportionality is the square of the ratio of the factors noted

in Table 6. This is not entirely unexpected. Because the direction

of the line of force is determined by the direction cosines associated

with the X, Y, and Z at each point, the constant of proportionality

disappears.

In general, as a point moves away from the surface of the earth,

Eq. (15) provides an increasingly good approximation of the field. Near
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the surface, however, only a few values tend to be heavily weighted,

because of the I/R3 argument in Eq. (15).

the computation of the direction cosines.

be found by rewriting Eq. (14):

This weight disappears in

A clue to this behavior may

a(r 2 - a2) I N

X(x,y,z) = N 3 3 _ k=l_Xk _k 'RIR2 •..

where _k RI R2 ......

X becomes

The direction cosine defined by

X ZX k _xk

X2+y2+z 2 Xk_k) 2 + (ZYk_k) 2 + (_Zk_k) 2

If we allow R k to tend toward zero, we obtain

Rk- 0

X Xk _k

_X 2 + y2 + Z 2 _ 2+ 2 2+ 2 2_k Yk _k Zk _k

_X 2 2 + 2+ Yk Zk

precisely the direction cosine at the surface.
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Vll. COMPARISON OF CONJUGATE POINTS CALCULATED FROM

VARIOUS SPHERICAL-HARMONIC ANALYSES

DeWitt's study of IGY all-sky camera data (DeWitt, 1962) has

shown that auroras occur simultaneously in regions that are connected

along magnetic field lines (that is, geomagnetically conjugate).

Vestine and Sibley (1960) computed the conjugate points of a number

of locations in the auroral zones. They calculated that the IGY all-sky

camera station at Farewell, Alaska, and the station at Campbell Island

in the Southern Pacific Ocean are nearly conjugate, and that the same

is true of Kotzebue, Alaska, and Macquarie Island. DeWitt's observations

indicate that Vestine and Sibley may have been in error by as little

as 20 km.

We have repeated their calculations for Campbell Island, using

spherical-harmonic coefficients to order 6. Table I lists these

coefficients we derived from the British (Finch and Leaton, 1957), American,

and Soviet isomagnetic charts for 1955.0. We also used coefficients

derived from the American charts for 1960 (Jensen and Cain, 1962).

We have extrapolated the field line from Campbell Island (52°32'S,

168°59'E) to the northern hemisphere by the method of Vestine and Sibley

(1960). The surface positions of points conjugate with Campbell Island,

calculated with the indicated coefficients are: (i) British, 61°59'N,

154°39'W; (2) American, 1955, 61°45'N, 156°46'W; (3) Soviet, 61°40'N,

156°23'W; (4) American, 1960, 61°37'N, 155°05 'W. The mean latitude

of the four conjugate points is 61°45'N, with a mean deviation for the four

positions of ± 7' (about ± 13 km). The mean longitude of the four conjugate

points is 155°43'W, with a mean deviation of i 52' (about ± 44 km at the
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meanlatitude). "The probable error in this procedure has been

previously estimated to be about 8 km. Apparently, uncertainties in

the mathematical representations of the surface field can cause

significant errors in the conjugate points. For the mean latitude

and longitude of the four conjugate points of Campbell Island, the

probable errors are _ 4' = • 7 km and ± 26' = • 22 km.

DeWitt's observations (1962) suggest an error limit of about this

order for the Campbell Island calculations of Vestine and Sible¥ (1960).

Obviously, no absolute criterion exists for preferring any one of the

above determinations. Note that the largest probable error is in the

conjugate point's longitude. Owing to the general east-west elongation

of auroral structures, the longitude may also be the most difficult to

check by auroral observations.
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Vlll. MAGNETIC MOMENT AND DIPOLE AXIS SINCE 1835

Spherical-harmonic analyses of British, American, and Soviet

isomagnetic charts for 1955.0 give coefficients that agree rather well

with each other. This is not surprising; they are independently derived

from practically the same sets of measurements. Truncating the series,

however, does affect the results. We see in Fig. 7(A) the positions

of the geomagnetic north pole since 1829, as placed by series to 4,

to 6, and to 12. It will be seen that pole positions for 1955 from

our analyses to P44 agree well with those of Gauss (1839) for 1838. Also

agreeing well with each other are those positions derived from series

6
to P6' including the last analysis (Jensen and Cain, 1962).

Figure 7(B) shows that the earth's dipole moment still continues

its rather uniform decrease with time. Points for Soviet charts are

based on our analysis presented here, as well as on a recent analysis

by Adam, et al., (1962).
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IX. MAGNETIC FIELD IN THE EARTH'S MANTLE

As we have seen, only a very small part of the magnetic field at

the earth's surface can be ascribed to external sources. The main field

is, in fact, thought to originate in the earth's core, and to be

maintained by motions of electrically-conducting fluid material in the

core. Extrapolation of the surface field to the boundary of the core

is therefore of great interest to geophysicists. However, the sources

producing the surface field are not entirely confined to the core. The

spherical-harmonic representation of the field given by Eq. (i) may

contain contributions from sources in the earth's mantle and crust.

For illustration, we have calculated the nondipole portion of the main

field at a depth of 1500 km (about halfway down to the core), using

the American coefficients of 1955.0.

Figure 8 shows the results in terms of the downward (Z) and

horizontal H_) components of the field. To exclude contributions from

localized sources in the outer mantle and crust, it uses only terms

up to m=n=6. If such contributions were present, the strong dependence

of higher-order terms on r in Eq. (i) would produce relatively large

errors in the field calculated for r < a. This kind of extrapolation

seems to present no numerical difficulties, and if the possible sources

in the crust and mantle are reflected only in coefficients of degree

and order higher than 6, the extrapolation can in principle be

extended to the boundary of the core.
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X. CONCLUSIONS

Spherical-harmonic or integration analysis of the geomagnetic

field's potential offers a way to extrapolate and interpolate the field

over the earth's surface and nearby space. Spherical-harmonic analyses

of different sets of isomagnetic charts yield sets of coefficients that

6 with differences commensurate with the
are nearly the same to about P6'

probable errors in the data. To represent complex surface features

(such as anomalies), we must use a spherical-harmonic series with many

higher-order terms. Theoretically, integral methods avoid this difficulty.

But if accuracy comparable to spherical-harmonic analysis is required,

similar difficulties are met in supplying field values for the large

number of data points that are necessary for an integration.

Geomagnetic field lines can be extrapolated into space either by

spherical-harmonic analyses or by surface integrals. To this

extrapolation, Poisson's integral is applied. The key is recognizing

that each component of the geomagnetic field, specified over the earth's

surface in a Cartesian-coordinate frame rotating with the earth, can

be treated as a scalar potential function. Then, by applying Poisson's

integral separately to each component, one can calculate the corresponding

components at any point in space external to the sphere. We doubt that

such application to a sphere has been previously noted.

The calculations based on'spherical harmonics take less computation

time, because their coefficients embody the surface-field data in a

convenient analytic form. Surface-integral calculations require a

relatively complete specification of the surface field, particularly
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those parts near the earth's surface. Each integration over the surface

requires the handling of the total surface-field data. It involves an

argument of I/R3, where R is the distance from a point at which the

integral is evaluated to a data point on the surface of the sphere.

The calculation of this for each data point greatly extends the time

required for evaluating the surface integral. Accuracies comparable

to those with spherical-harmonic methods require increases in time by

factors of between ten and one hundred.

However, since the integral method involves only the process of

summation, it maybe less limited in a_curacy. It also offers

conceptual advantages convenient to those familiar with potential

theory. Further, the calculations presented here indicate that

comparable field-line positions are obtained by both methods.

There is no evidence of change in the position of the geomagnetic

north pole from 1835 to 1960. The apparent motions are in some

instances probably due to truncated series in spherical-harmonic

representations of the field. The dipole momentof the earth has

decreased at a uniform rate from 1829 to 1960.

Finally, there appear to be no serious obstacles to an inward

extrapolation of the geomagnetic field to the earth's core. Sources

of the geomagnetic field external to surface of the earth are negligi-

ble, and those due to sources in the mantle and crust are likely to

contribute only to harmonics of order and degree higher than 6. Thus

a truncated spherical-harmonic series should give an adequate represen-

tation of the field external to the core.
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Table I

Spherical-Harmonic Analyses of the Geomagnetic Field for 1955,

Based on British, American, and Soviet World Charts.

Gaussian (Schmidt) Coefficients, g_, h_,
in units of 10-4 cgs

n,m

1,0

2,0

3,0

4,0

5,0

6,0

i,I
2,1

3,1

4,1

5,1

6,1

2,2
3,2
4,2
5,2
6,2

3,3
4,3
5,3
6,3

4,4
5,4
6,4

5,5
6,5

6,6

British

-3055
- 152

118
95

- 27
10

- 227

303

- 191

80

32
5

158
126

58
20

2

91
- 38
- 4
- 24

31
- 15

- 3

- 11

m hn
gn n

,,, , ,,

U.S.

-3055
- 147

117
87

- 24
2

- 210
307

- 170
65
40
12

145

127

U.S .S.R.

-3051

- 141

113

97
- 33

7

- 202
299

- 174

78

33

8

168

125

British

590

-190

- 45

15

2

- 2

24
29

U.S .

585

-185

- 59

18

I0
- 6

49
30

47
21

- 3

86

- 44

" 5

- 26

29

- 15

" 7

" 4

3

- I0

57
16

3

81

36

9

26

33
14

3

6
I

- 31
I0
II

- 9

- 4

- 5

0

- 17
- 14

- 1

- I

- 24

I0
16

- 3
- 7
- I

0

- 13
- 18

0

- 4

U.S .S.R.

584

-187

- 56
Ii

I0

- 7

38
26

- 31

12
14

- 8

- 5

- 4

- 1

- 13
- 14

0

- 3
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Table 2(a) Spherical-Harmomic Analysis of the Geomagnetic Field for 1955,

U. S. World Charts. Mean values of _Xand Y , for series terminating

nj m

O, 0

i, 0

i, 1

2, 0

2, 1
2, 2

3, 0

3, 1
3, 2
3, 3
4, 0
h, 1
h, 2

9, 0

9, 1
5, 2

5, 3

6, 0
6, 1
6, 2
6, 3
6, 4
6, 5
6, 6
7, 0
7, 1
7, 2
7, 3
7, 4
7, 5
7, 6
7, 7
8, 0
8, 1
8, 2
8, 3
8, k

with indicated values in pm.
n

Gaussian (Sehmidt) C_fflelents, g_ (Units of lO "6 cgs)

0

-30h664
-30265
-1_837
305_7
1538O
13_02
-20295
11949
935h

8517
626o
5131

-3270
3389

0

-305447
-21017
-14736
30655
14_6_
11667

-16952

12722
86o9
8692
6454

4719
-hh03

2905
-2410
3981
2078
-452
-1_66
-382

225
1214

-249
-2592

-676
259

-1031

0

-305191

-22277
-14735

30709

13957

12179
-17411

12722
9155
8677
6541
4_8_
-4499
3o85
-1677
3683
2081
-176

-1716

-692
201

1322
-_09

-2723

-577
218

-1241

971
-634
79

152

-328
-407
196
310
-31

10
-103
-268
79

i0

Plo

0

-305179

-21996
-147_o
30727
137_0

12225

-17287

12723

9129
8620
6578

4385
-_531

3342
-1581

3777
2083
-191
-1759
-64_
83

1372
-479
-2766
-_39
218

-138o
1118
-55_
81

I_i

-380
-3?9
136

378
-215
65

-160
-325
175

0

-3o5189
-22253
-l&7_o

30734

13578
12235

-17386

12702
9327
8616
6592

I_299
-454_
3485
-1519
3701
20_8
-89

-18o6
-615
65

1393
-5_6
-2786
-399
212

-1470
12118
-620

32
217
-441
-36O
118

307
-2_9
96

-216
-352
232
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Table 2(a)cont' d

_5_9___.

8, 5
8, 6
8, 7
8, 8
9, 0

9, 1

9, 2

9, 3
9, 4

9, 5
9,6

9, ?

9, 8

9, 9

I0, 0

i0, 1

10, 2

I0, 3

I0, h

i0, 9
I0, 6

I0, 7

I0, 8

i0, 9

i0, i0
11, 0

11, 1

Ii, 2

11, 3
11,

II, 9

11, 6

11, ?

11, 8

11, 9

11, 10

11, 11

12, 0

12, 1

12, 2

12, 3

12,

12, 9
12, 6

12, 7

12, 8

12, 9
12, I0

12, ii

12, 12

P_ o
_@ lO p_"8 Pl0

2

-197
_16
163

99
216

197
-168
-29
-h_

-36
1o9
-_h
99

30
33

-96

-97

-199
88
19
-98
-96
ii

51
12

-9
-293
28
_h

392
-228
-95
17

-lO8

].26
-65
91
2

$2
-291
-60

-i_9

-191
131

?
-138
-139

3
66
?

299
117
-259
136

-9o
93
-2

-3h
-_i

2

-31
1

-62

?

89
-?h

-8o
-73

23
-2

0
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Table 2(b) Spherical-Harmonic Analysis of the G_.omadfnetic Field for 1955,

U. S. World Charts. Mean values of X and Y , for series terminating
with indicated values in pm.

nj m

0, 0

i, 0

i, 1

2, 0

2, 1
2, 2

3, 0

3, 1

3, 2

3, 3
4, 0

4, 1

4, 2

5, 0

5, 1
5, 2

5, 3
5, 4
5, 5

6, 0

6, 1

6, 2

6, 3
6, 4
6, 5
6, 6
7, 0

7, 1

7, 2

7, 3
7, 4

7, 5
7, 6

7, 7
8, 0

8, 1

8, 2

8, 3
8, 4

n

Gaussian (Schmidt) Coefficients h TM (Units of 10 -6 cgs)
n

0

0

57713
o

-18_o5
2213

o
-6243

254_
-lO4

0

1810

-36o8
-781

-1214

6
P6

0
0

58524
o

-18539

4889
0

-5932
30hl

-257
0

1767

-2356

-7_2
-1286

0

955
953
-83

-1769
795

0
-583
1561
-28

-440

0

0

58340

0

-18583
4814

0

-6OO4
3117

-763
0

1695

-2392

-752

-1543
o

9o2
lO6O

-335

-1737
1122

0

-681

1537
-48
-167
-401

-279
0

23
-8
-9o
89

269

-199
-_6

0

-236

-85
-160
-181

i0
PIO

0

0

58218
0

-186o6
_626

0

-6034
32O9

-319
0

1658
-2487
-765

-lh3_
0

89o
12oh

-lO7

-1752

1332
0

-729
ih68

-65
-Ii0

-h40

-hlO

0

16
179

lO7

72
391

-i18

-394
o

-283
-i_0

-183
-144

12
PI2

0

0

58273

0

-18613

h633

0

-6oo7

32h3
-_12

0

1643

-2489
-779

-1900

0

917
1258
-157

-17hl

i_95
0

-75_
1h62

-89
-i_6

-h37
-48o

0
42
252
73

87
483
-116
-5_6

0

-318
-i_6

-215
-167
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Tabl, 2(b) cent'd

8, }
8, 6
8, 7
8, 8
9, 0
9, 1
9, 2

9, 3
9,
9, 5
9,6

9, 7

9, 8
9, 9
I0, 0

10, 1

I0, 2

10, 3
i0,

i0, 5
10, 6
10, 7
10, 8

10, 9

i0, I0

i/, 0

11, 1

11, 2

11, 3

11, 5

11, 6

11, ?

Ii, 8

11, 9
Ii, 10

11, 11

12, 0

12, 1

12, 2

12, 3
12,
12, 5
12, 6

12, 7
12, 8

12, 9
12, 10

12, 11

12, 12

Gausslaa (Se/_mldt) Coefficients, hm (Units of 7 CgS)
n

P_

L---

ll8

91
42

-282

10
PIO

68
ii

92
-279

0

-299

291
17_

9
128

163
120

-30
-69

0

231
_8

-13_

-17
-lOb

2?
6_
16

19
-6

12
PI2

72

-29
I00

-330
0

-230
336
i_8

19_
166
27

0

191
43

-155
_9
lO3
26

79
-12

-101

35
10

37
0

0

27
130

-203
6o
-37
-h8
-9
-_0

2

21

-2

0

-3
73
-16

29
-9
0

-176

-3h
-101
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Table 2(c) Spherical-Hsanaonie Analysis of the Geomagnetic Field for 1955,

U. S. World Charts. Mean values of Z , for series ter_natin6
with indicated values in pro.

n

nj In

O, 0

i, 0

i, 1

2, 0
2, 1

2, 2

3, 0

3, 1

3, 2

3, 3
_, 0

h, •

h, 2

4, 3

9, 0

5, •

5, 2
5, 3

6, 0

6, •

6, 2

6, 3
6,
6, 5
6, 6
7, 0

7, 1

7, 2

7, 3
7,
7, 5
7, 6
7, 7
8, 0

8, 1

8, 2

8, 3
8, &

C_us sia_

34
-302261

-20908
-15723
28576

16545

•3593

-21123

10791
10166
8723

7158

5459
-3•94

3719

Schmidt) Coefficients, gm (Units of 10-6 egs)

321
-3O4385

-19510
-15234
28769
16581
11144

-18413

11485

10025

9315

7492

56o9
-3735
3651

-2663

3969

1875

-752

-lO98
-220

687

445
300

-1952

-450
lO9
-558

245

-304137

i0
PIO

197

-304074

-1953o

-1542•
28915
•6660
11906

-181163

11319
10016

9O26
7773

5859
-3697
3655

-2192
3893
•48o
-811

-1120

-252
323
89O
790

-1827
-_07
127
-552
538

-103
-647

-157
-i00

-247
-73
521
-418
598
699
25_
i46

-19542

-15528

289•5
16668
11629

-18517

11252

9988
8862
7776

5893

-3696
3659

-2017
3773

1337

-923
-n•6
-254

96

895

827
-1826

-39O
143
-552
757

-291
-896
-396

-82

-275
-95
529

-695

607
829
256

189

12
PI2

134
-303936

-19552
-•9616

28916
16660

n8oo
-185o6
11290

9974
8764

7752
5895
-3694

366o
-1773

3841_.
1318

-978
-1122

-296
-32

791
862

-1813

-385
154

-552
lO78
-lhO

-939
-52_
-96

-287
-94
528
-864
_07
919
285
201
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_ble 2(c) cont'd

8,
8, 6
8, 7
8, 8
9, 0
9, 1
9, 2
9, 3
9,
9, 5
9,6
9, 7
9, 8
9, 9

I0, 0

I0, 1

I0, 2

10, 3
I0,
I0, 5

10, 6
10, 7
10, 8
i0, 9
10, 10

Ll, 0

11, 1

LI, 2

11, 3

11, 5
Ii, 6
LI, 7
11, 8
11, 9
11, 10

11, 11

12, 0
12, 1
12, 2
12, 3
12,
12, 5
12, 6
12, 7
12, 8.
12, 9
12, 10
12, 11
12, 12

Gau, si_ (S_midt) Coefficie.ts, g_ (Units of V Cgs)

I0 p12p66 p8 PIO 12P_
• , , , •

93
60

-116
137

2o6
h5

-]25
137
247

-e56
-372
-432

4_
-118
-131
86

-i00

-29
-316

12
19_

2
92

3_3
-8o
-61

-7
-110

-78

23h
55

-12h

137

6h3
-24

-447
-662

14
-153
-124
62

-107
-26
-524
-289

348
55

13.6

-14

-i12
-72
_9
3o5

-].09
-37_
-%
-90
23

-137

-50
34
-_8
-32
-248
-376
232
82
h3
152
118
20O

73
-lh
81
i0

1
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_ble 2(d) Spherical-Harmonic Analysls of the @eomagnetlc _lel_ for 1995,

U- S. World Charts. Mean values of _ , for serdes ter_Ltmating
with Inddeated values in pm

£z_9____

O, 0

i, 0

i, i

2, 0

2, 1
2, 2

3, 0

3, 1

3, 2

3, 3

_, 0
h, 1

h, 2

_, 0

5, 1

5, 3
5,

5,5

6, 0

6, 1

6, 2

6, 3
6,
6, 5
6, 6
7, 0

7, 1

7, 2

7, 3

7,

7, 5

7, 6

7, 7
8, 0

8, 1

8, 2

8, 3

n

@aussian (Sehmidt) Coefficients hm (Units of i0"6 egs)
n

0

0

56779
0

-18ooo
4h18

0

-_336
1749
-524

o

1036

-2889
-1324

-1876

6

P6

0

0

56787
0

-18o67

4575

o

-2315
20_2

-551
o

922

-2230
-1375

-1942
0

32

792
-36

-1014

58o
0

-153

132o
-182
-430
I14
-451

0

0

96736

o

-18115

4569
0

-424o
2041
-925

0

8z9
-22_8
-1428
-19h8

0
-157

790
124

-923
562

0

-299
1288
-354
-_89
].86

-456
o

-256

-3
4_

_o8

-139

-69
-342

0
-197
-90
-3h8
-200

I0
PIO

0

0

56739
0

-18117

_572
o

-4424
2073
-510

0

%o4
-2236

-1429
-1949

o

-123

858
187

-919
%5

0

-353
1314

-357
-495
177
-455

0

-202

112

559
426

-i02

-57

-338
0

-282

-9
-353
-217

o12
"12

0

0

96728

0

-18117

456h
0

-4412

2073
-520

o
8o2

-2234
-1226

-1952
0

-43
857
148
-913

%2
0

-362

1353

-3hO
-504

179
-455

0

-32
112

_69
422
-124
-60

-337
0

-301

91
-317

-237



-48-

_ble 2(d) cont' d

8, p
8, 6
8, 7
8, 8
9, O

9, i

9, 2

9, 3
9,

9, 5

9,6

9, 7

9, 8
9, 9

i0, 0

I0, i

i0, 2

10, 3

I0,

iO, 5
10, 6
10, 7

10, 8

I0, 9

i0, i0
11, 0

I/, 1

11, 2
11, 3

11,

11,

11, 6

11, 7

11, 8

11, 9
11, 10

11, 11

12, 0

12, 1

12, 2

12, 3
12,
12, 5

12, 6

12, 7
13, 8

12, 9

12, I0

12, 11

12, 12

Gausslan (Schmid%) Coefficients h m (Units of _ cgs)
' n

IO 12
p_ p6 PIO P12

U. , ,

38_
-)49

-180
-153

329

-33
-177
-199

0

7)4
179
2)41

h6

190

69

58
-i12

-2_6

0

-112

67
-8

-36

-177

99
2O

-19

-109
-iii

330

-29

-178
-156

0

332
172

79
79
88
39
71_

-lO7
-lO9

o
3)41

-9
-262

63

-196
-IRh

9o
86
79

-13
-24

0

-39
247
I00

-71
28
93

-120

-69

19
24

-90
-I

232

97

-79
16_

91

-9

-i00
-2_0

0
-i_0
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Table 3(a) Spherlcal-Harmonic Analysis of the Geomagnetic Fiel4 for 1955,
U.S.S.R. World Charts. Mean values of X and Y , for series terminating

n I m

O, 0

I, 0

i, 1

2, 0

2, 1

2, 2

3, 0
3, 1

3, 2

3, 3
4, 0

4, 1

4, 2

5, 0

5, 1
5, 2

5, 3
5, 4
9, 5
6, 0

6, 1

6, 2
6, 3

6,

6, 5

6, 6

7, 0

7, 1

7, 2

7, 3
7, 4
7, 5
7, 6
7, 7
8, o
8, 1
8, 2

8, 3

8, &

with indicated values in pm.
n

m

Gaussian (Schmidt) Coefficients, gn (Units of I0"6 cgs)

0

-304078
-28474
-ih495

29756
15913

13593
-2O413

11843

9222
9127
7626

5326

-2h99

3_27

0

-305135

-20227

-14138
29877

16781

1125O

-17440

12450
8O93

9690
7818

5723

-3574
32_8

-3255
3259
1626

-899

-1423

-561

725

837

3_2
-2623

-312
139
-864

0

-304975

-21230
-1415O

29909
16814

11571

-17793
12425

8554
9668
7879

5726

-3625

3_04
-2795
3044
1596
-666
-1621
-882

691

907
345

-2688

-225
176

-ii14

6o9
-773
296
134

-413
-297
297
206
-49
-18

-553

-57
126

i0
PIO

0

-304965

-2o832
-14154

29926
16329

11609

-17641

12472

82O7
9629

7904
5497

-3641

3395

-2715
3148
1666
-845
-16ol
-67_
6o9
947
185

-2710
-228
135

-I05O

732
-687
389
i0

-385

-176
258
153

-172
29

-682

-84

125

0

-304973

-2n95
-14154

29935
15898
11618

-17776

12485

8236

9624

7916

5 98
-3696

3641
-2664
3092
1688
-829

-16o7

-872
592
966
116

-2731
-90
117

-no9
839

-768
421
21

-393
-287
262
210

-205

%
-795
-i/2

224



Table 3(a) cont'd
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8, 5
8, 6
8, 7
8, 8
9, 0

9, 1

9, 2

9, 3
9,

9, 5

9,6

9, 7
9, 8

9, 9

I0, 0

I0, I

I0, 2

i0, 3

I0, I_

i0, 5
I0, 6

I0, 7

lO, 8

i0, 9

i0, i0

11, 0
11, 1

11, 2

11, 3
11, 4

11, 5

11, 6

11, 7

11, 8

]-i,9
ii, 10

11, 11

12, 0

12, 1

12, 2

12, 3
12, 4
12, 9
12, 6

12, 7

12, 8

12, 9
12, I0

12, 11

12, 12

Gausslan

P_

7 ogs)Schmldt) Coefficients, gn (Units of

p6 o8 I0"8 P1o

122 73

-212 -17_
102 32
213 163

164

88

277
-156

89
167

-79
-14
13
-6

-166
7

-394

-23

25
-29
85

-116
-54
59
2

............................................

12
PI2

5O

-209
22

292
325

].4
320

-147

79

89
-74
21

34
-7

-215
46

-494
-92

103

-97

58
-127

3
7o
3

210
44
206

0

-67

-38
28

2

47
-ii

1

-61

162

-228
75
81

-69
..,.54

-7
3]-
38
14
-2
0
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Table 3(b) Spherical-Harmonlc An_lysls of' the G_etlc Fiel_ for 1955,

U.S.S.R. World Charts. Mean values ofX and Y_ , for series terminating
with Indicate_ value,, in pm.

O, 0

I, 0

I, i

2, 0
2, i

2, 2

3, 0

3, I

3, 2

3, 3
_, 0

5, 0

5, i
5, 2

5, 3

9, 5

6, 0

6, I

6, 2

6, 3

6, 5
6, 6
7, o
7, i
7, 2

7, 3
7,
7, 5
7, 6
7, 7
8, 0

8, i

8, 2

8, 3
8,

n

Gaussian (Schmldt) Coefficients, hm (Unlts of iO"6 egs)
n

0

0

58167
0

-18709

1559
0

-5709

2087

-225
0

1081

-4167
-_21

-1343

0

0

58378

0

-18693

3772
0

-5606

263o
-816

o

1135
-3126

-475

-131o
0

lOO5
1239
-_28

-1412

766
0

-735
1387
-84
12

-1_2
-335

0

0

58173
0

-18739

3817
o

-5684
2611
-459

0
lO63

-3104
-4_o

-1322
0

950
12o9
-244

-14_6
955

0
-838
1402

-34

-i02

-177
0

-21

-170
178
-122

182
lO

-280

0

-396
43

137
-38

i0
PIO

0

0

584 
O

-18745

3634

0

-5582
2614

1_8
0

1052

-3201
-425

-1332
0

1008

1214

59
-14Ol

lO31
0

-857
133o
-14

-4

-85
-208

0

21

-163

381

-63
226

67
-317

0

-426
-16

164

-47

12
P12

_K

0

0

58753
o

-18754

3643
o

-5_88
2641
23
0

1037

-3201
-400

-1116
0

I075
1256
-8

-1375
1020

0

-88o
1326

25
117

-i18

-232
0

78
-107

334
-29
219
115

-315
0

-458
-20

216
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Table 3(b) eont'd

8, 6
8, 7
8, 8
9, o
9, 1
9, 2
9, 3

9,6
9, ?
9, 8
9, 9

10, 0
10, 1
10, 2
I0, 3

I0, 5
I0, 6

I0, 7

I0, 8

i0, 9
I0, i0

ii, 0
Ii, 1

iI, 2

II, 3

II, 9
LI, 6
ii, 7
11, 8
II, 9
II, IO
II, ii
12, 0
12, 1
12, 2
12, 3
12, &

12, 7
12, 8
12, 9
12, 10

12, II

12, 12

Gausalan (Sehmi_t) Coefflclentm, hm (Units of _ cgs)
n

I0
PIO

14o

-81

123
120

-56
-i_8

0

399
29
36

129
65
9?
h8

-128
-2

0

-232
2OO

156
-83
-7
71

-77
-23
63
0

12

PI2

80
lO6
-42

-160
0

93
-2

170
6o
155
48

-151

25
0

-273
197
220

-13

-57
6o
-61
-3o
30
-2

0

-23
-22

5_
-7
32
31
-15
23
65
0

0

-78
lO9
186

91
-8o
-35
9

-39
-37
-io
i
o
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Table 3(c) Spherical-Harmonic Analysis of the Geom_tlc Field for 1955,

U.S.S.R. World Charts. Mean values of Z , for series term/nating
with indicated values in pro.

n

n_A_9____

O, 0

I, 0

I, 1

2, 0
2, 1

2, 2

3, 0
3, 1
3, 2
3, 3
_, 0

_, 2

_, 0
5, 1
5, 2
5, 3

5, 5
6, 0
6, 1
6, 2
6, 3
6,
6, 5
6, 6
7, 0
7, 1
7, 2
7, 3
7,
7, 5
7, 6
7, 7
8, 0
8, 1
8, 2
8, 3
8, &

Gausilan (Schmidt) Coefficients, gm (Umlts of 10 -6 egs)
n

1196

-3o1699

-22973

-15459
29565

16357
133_5
-20485
11724
8849
9651
7185
5_76
-320_
3283

1772
-304698
-22099
-14476
29863
16431

9886
-18n4

12225
8747

10841

7699

5784
-3876

3226
-3761
3472
1355

-546
-1204
-1016
138o

685
616

-2427
-376
398

-723

1733
-304281
-22126

-14572

29822
16434

10494
-18180

12190
8769
10693
7621
5793
-3888

3229
-2969
3372
1271

-409
-1293
-Io98
1194

562
633

-2_66
-382

378
-725
9O5
-135
-137
36_
-4oo
-325

195
29a

-213
-166

26
-79
-22

I0
PIO

1751
-304319

-22117
-14530
29817
16433
10420

-18138
12213
8755
1O756
756&
5788
-3898
3220
-3074
3463
1320
-_$2

-1280
-1o6o
1281

438
622

-24.89
-410
386
-725

774
8

-51
25o
-343
-3_6
19o
3Ol
-lO6
-362

9
-123
-92

12
PI2

1740
-3o4288
-22117
-14546
29817

16434
10459

-18138
12211

8754
10739
7568
5788

-389_
3222

-3019
3t_:_6
1295
-_7

-1278
-lO58
1259

_o
617

-2_5
-14o2

386
-729
8_6
13

-108
239

-337
-332

192
3o2

-136
-320

-70
-7_
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T_ble 3(c)cont'a

8,
8, 6

8, ?

8, 8

9, 0

9, 1

9, 2

9, 3

9,

9,5
9, 6

9, 7

9, 8

9, 9

10, 0

I0, 1

I0, 2

10, 3
10,

10, 9

i0, 6

10, ?

10, 8

10, 9

10, i0

11, 0

11, I

11, 2

11, 3

11, 5

11, 6

11, 7
11, 8

11, 9

11, 10

11, 11

12, 0

12, 1

12, 2

12, 3

12,

12, 9

12, 6

12, 7

12, 8

12, 9

12, 10

12, 11

12, 12

...... | .......

I_10

-16

i0

182

i0
PIO

. , J ,

166

-29

-i

176
-i_8

19_

129

-207

-91
-30

36

-i_9

49
122

-259
-26

-73

-1_9
168

-76

-67

38

19

16h

-1_

-2

176

-79
2O2

30
-226

194

-_7

-7
48

-1_6

_3
86

-196
-#8

22

-II_

163

-7

"87

36
22

101

lO

-149

-31
2_

llO

89

72

23
-68

76

-33
-43

79

-33
i_7
6#

-ll

118

6h

-1_

.50

1
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Treble3(d) Spherlcal-Harmonic Analysis of the Geomagnetic Field for 1955,

U.S.S.R. World Charts. Mean values of Z , for ser_es terminating

O, 0

i, 0

i, I
2, 0

2, 1

2, 2

3, 0

3, I
3, 2
3, 3
_, 0
4, 1

4, 3

_, 0
5, 1
5, 2
5, 3
5,
5, 9
6, 0
6, 1
6, 2
6, 3

6, 9
6, 6
7, 0
7, 1
7, 2
7, 3
7,
7, 9
7, 6
7, 7
8, 0
8, 1
8, 2
8, 3
8, &

with indicated values in pm.
n

06ussian (Schmiat) Coefficients, h m (Units of 10-6 egs)
n

0

0

57984
0

-18287
3315

0

-5236

2179
-1333

0

1925
-3749
-St_
-1608

0

0

0

-185n
3473

0

-49_0
25_3
-1337

0
1137
-3o86
-857
-163o

o
_3h
982
-20

-1511
1104

0

-516

1327
-38
-i_6
-81
-_32

0

0

58174
0

-1859o
3445

0

-_7_o
2553

-1331
0

986
-3176
-914
-1631

0

735
lOO6

21

-1522
11.13

o
-756
1166
-224
-154
-30
-423

0

408
38
109
-_8
73

-149
-554

0

-323
-250
"3?'/

i0
PIO

0

0

5817o
0

-18594
345h

o

-W59
2524

-1321
0

9_3
-3139
.895
-1629

0

694
9_4
6O

-zS_
1114

0

-8_8
1251
-181

-145
-30

-&22
0

3_&
-69
194
-38
91

-116

0

-i07

-293
-6

12
PI2

0

0

58164
0

-18593
3459

0
-4752
2522

-1329
0

938
-3139
-897
-1632

0

7_o
926
_8

-1511
1/12

0

869
12_4
-189

-156
-26
-422

0

-110

120
-16

73
-116
-5_7

0

-510
-125
-312
-31
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8, 6

8, 7

8, 8

9, 0

9, i

9, 2

9, 3
9,

9,6

9, V

9, 8

9, 9

i0, 0

i0, 1

I0, 2
10, 3

I0,

i0, 5

i0, 6

i0, 7

i0, 8

I0, 9

i0, lO

I-1,0

1.1, I

Ii, 2

Ii, 3

iI,

1.1, 5
11, 6

Ii, 7
11, 8

Ii, 9

iI, I0

11, 11

12, 0

12, 1

12, 2

12, 3

12, b

12, 9
12, 6

12, 7

12, 8

12, 9

12, lO

12, ii

12, 12

C_u,slan (Scholar) Coefflcleata hm (Units of _ egs)
' n

27O

78

-59

-57

lO
PIO

e?O

91

-91

-92
0

-88

-160

154

23
76

196
8O

-74
81

0

-19e
e14

49
0

6D

27
96

-261

35

12
P12

e79

9o

-91

-52
o
62

-231

72

19

195
69

-74

76
o

-254

183
106

0

25
62

32
5O

-21_8

32
0

-104

92
-142

-3
.-63

0

-67
-h8

0

-?7

-_7

-53
-88

53

-9
21

-41

96
-47

-7
-i
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Tab le 4

-2
Weighted rms Error E in Units of i0 cgs in the Fit of Tabular Values

at i0° Intervals of Colatitude and Longitude; U.S. and U.S.S.R. Charts

for 1955 for Spherical-Harmonic Series Terminating in Degree 4, 6, 8,

I0, and 12 for (a) U.S. Charts and (b) U.S.S.R. Charts

Degree

i0

12

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

Component of Field

X

0.223

O. 241

0.108

0.151

0.098

0. 134

0.091

O. 132

.... |

0.087

0.131

Y

0.222

0.295

0.116

0. 226

0.092

0. 220

0.097

0.223

0.093

0.226

Z

0.324

0.318

0. 107

0.186

0.071

0. 148

0.058

0.129

0.054

0.i01

Mean

0.256

0.285

0. ii0

0. 188

0.087

0.167

0.082

0.161

0.078

0. 153
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Table 5

Values of Eqs. (16) and (18) for Ae = .04 and x = 0
o

z - i
0

.i

.2

.3

.4

.5

.6

.7

.8

.9

1.0

(16)

5.02655

.62832

.18617

.07854

.04021

.02327

.01465

.00982

.00690

.00503

(18)

4.44741

.60657

.18300

.07772

.03992

.02315

.01459

.00978

.00688

.00501
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Values of for

Table 6

Various Heights Above the Sphere

z
o

i0.

i.

.I

.01

.001

- 1 Value

., • , • ., . .

.00952

2.09440

54.39988

619.00356

6273.85754

Center

, J

.00948

2.10289

54.02121

626.65094

6287.95575

Error

%

.4

" .4

.7

-1.2

- .2

Off Center

.00948

2.10312

53.99732

705.91803

8299.55323

Error

%

.4

" .4

.7

-14.

-32.
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