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I ABSTRACT

| The previous theory (1962) is extended to the case of an
asymmetrical potential of the main body especially in the
case of small eccentricity by assuming that J,, the coeffi-
cient of the n-th order zonal harmonics of the potential, is
of n-th order of magnitude and the eccentricity is ofthe first
order of magnitude, Here there is a peculiar < -d of libra-
tion whichnever occurs inthe case of moderate eccentricity.
This peculiar kind of libration splits into two kinds of
libration, depending either on the anti-asymmetrical terms
srevailing case or on the symmetrical terms prevailing case,
which is a continuous transformation of the type described
in the previous theory. Numerical test discloses that for the
earth the former peculiar kind of libration occurs. Also it
is shown that the fifth coefficient is comparatively large and
plays an important role in the asymmetrical theory for the
case of smalleccentricity. The present paper shows that the

anti-asymmetrical terms can not be neglected for the earth

in the case of small eccentricity.

1This work was performed under a National Ac.odemy of Sciences Post-doctoral
Resident Research Associateship program connected with NASA.
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§1 Introduction
In the previous paper by the same author (1962) the motion of a
close satellite inthe vicinity of the so-called critical inclination was studied.

However, at that time the author omitted the effect of the anti-symmetrical

terms in the potential of the malin bodies. The theory including these
terms was given, for example, by Y. Kozai (1961). However, in spite

of his comment on the case of small eccentricity, it does not seem

very extensive.

Therefore the author decided to develop a theory to avoid the
difficulty connected with small eccentricity. A preliminary consid-
ration shows that this difficulty arises only in the vicinity of
e = 0, and thatthereisnotrajectory in general extending from the vicinity
of e= 0 to a value of the order of the unity. Keeping this in mind,
the author has expanded the Hamiltonian into a power series in
e, which is assumed to be of the first order of magnitude, assuming that
I, » the coefficient of zonal harmonics of n-th order, is of the n-th order
of magnitude, and that the deviation given by the following formula

is assumed to be of the second order:

a=1-5H (ua )", (1.1)

where H, a constant, is the projected angular momentum to the equa-
torial plane, and a, the mean semi-major axis,

The necessary terms up to the sixth order of magnitude in this
respect are picked up from the Hamiltonian F*, which is given by

removing the so-called periodic perturbation terms. The terms



lower than the sixth order are all constant, thereforc the sixth order
terms are considered as the leading terms in our theory,
The author found that the equation of motion can be reduced to the

same type as the ones given by H. Andoyer:

dh SF F
Foak__OF (1.2)

dr 9h’ dr %
where
P d
F = - fh + (v + 8)h% + (¥ = fHk? + (n? + k)2, (1.3)

with a different restriction on the sign of A’ than that given by Andoyer.

He assumed a restriction such as

B >0,

which is always confirmed in his theory connected with the librational
problem of asteroids. In our theory, however, this restriction should be
removed; namely, in some case we have B'< 0 as well as £ > 0. Espe-
cially in the case of the earth, B is negative. Therefore, some change
from his theory must take place. This slight change might easily be
overlooked, but as will be seen later in this paper, some alternations
are required afterwards, if we want to have real expressions for the
solutions.

The main purpose of this paper is to develop the theory with this
difference in mind, and exclusively to give the case for B < 0. §2 pre-
sents a preliminary discussion on obtaining the equations of motion in
Andoyer's form. §3 is the same as that of his theory; however, in

order to avoid some confusion the present author rewrites the results

3



in a very compact form. In §4 some changes from his own appear in
separating the several cases connected with the relation between the
qua'mtities Yy, = v/B¥3 and B = B'/B%3, §5 gives a classification under
which the solutions connected with the quantity u, = u/8*%?, where u is
the energy constant of the system, should be written down separately.
§6 gives the whole expressions of the solutions in the real number repre-
sentation. §7 is an appendix which gives the characteristics, which
means the trajectory within the plane of e cosg and e sin g without any
attention to the relation with the time, the independent variable. Several
pertiuent numerical results are given. §8 gives some discussions related
with the convergency, the relation to the previous theory and soforth.
Finally §9 gives the conclusion,

In order to test the assumption imposed on J , the quantities for
the earth are listed below = not only in actual values but also in units
of proper powers of aoﬁl/3 = 0.0528, which is assumed to be of the

first order of magnitude:

J, =1082.36 x 10" =0.3882 %% a %

"

Jy = -2.566 % 106 = -0.0174 8%3a 3,

J =_-2.14x10°6 = -0.275 8%3%a *,

and

Js =-0.063x10"% = -0.154 §5%a *.

Roughly speaking, these nume rical values show that J,, J, and Jg play

approximately the same order of role in the vicinity of e = 0, say



e = 0.10 or 0,05; on the other hand, J, does not take any important role

here,

2. Equation of Motion

The potential, under which influence a negligible small mass parti-

cle moves, is assumed in the following form:

v=§[1_>:1n (?) P.(sin 5)] (2.1)

where u=Mk? kbeing Gaussian constant and Mbeing the mass of the
main body,
ris distance of the particle from the center of the
main body,
8is the declination of the particle,
J.'s represent numerical constants which characterize the
spheroidal potential;
in this paper the summation X extends from 2 to 5 as seen later,
Using a result of the so-called secular and long periodic parts in
the original Hamiltonian such as given by Y. Kozai (1962a), we may
pick up only the following necessary parts provided that J_ is assumed

to be of the n-th order of magnitude as well as the eccentricity e to

be of the first order:



3 Ty J2 Js
4 )/5 L12

+

9 “7Js

Tov T &

esin g,

where a =1 - SH¥(x ao)‘1 - a constant whichis assumedto be ofthe secondorder,
and the other notations correspond to Delauney's. In this expression, the
terms of beyond the sixth order of magnitude are neglected. As the Hamiltonian
has only sixth order of magnitude and nothing else, neglecting the higher

orders, we may take £ and 7 as the canonical variables,

{I:esingzg, YLecosg=m7.

in the canonical equations of motion:

A ~ ¥
d¢ dn _ _©F (2.3)
3t



For mathematical simplicity, if the canonical variables and the inde -

pendent variable are changed:

k = e cos g,

3#4J2t
—6L7

—

then the equations of motion will be

where by neglecting an unnecessary constant in F*,

~ 6
F:1_6L

3/~L4J2

h,z—esing,

1

3 #1/2 J2'
16 , 1/2

[ed

(F* - constant)

t,

"ﬁlh + (71 + ;Bxl)hlz + (71 ’/Bll)kz

+ B (% + kD) hy + (hy? + k)2,

with
6 - ] 4
14 Js
nE=3 1, a0 - 2a,
A =':—§J2JZO'

Js 24

4 Js
ta e - — — -~ = 3
3T a  Yial 5751,

> (2.4)
(2.5)
(2.6)

~
> (2.7)




In order to remove the third degree terms i

given by

n h; and k, h is changed to h

h :h1 +}4_181n. (2.8)
Further, if the equations are transformed in terms of p and q,
p =h + ik,
(2.9)
q=h-ik,
the equations can be written as follows:
dp oF dgq oF
—_— =21 = 5= = i — 2.10
Ir 1 % ar +21 % ( )
with
~ 1 1 .
F=-38(p+9 +ypa+ 5 p @ - q?) + 9’ q, (2.11)
whe re
J5° J5? AFEN) h
F_F = 2 3 18 J3 16 J3 4
i S-S R 55T .4 2573 a4
Jg a, J a JZ 4
24 J3 Js 3 Ja4 ~
5ET7 -3 T2574 = constant,
2 JZ a, J2 a,
5= 4+8J4 23,2\ 4 Js 24 s
(22,228 L8 — - — )
5 53,2 57,3 Ysa3 5Y5],a, > (2.12)
2
14 Jo a4 Js
y==2a+——— 7 >
5 J2 a02 5J22 ao2
and
2
g2 < RIRRE
= ) - .
5422 T, 12
-~




[T

The form of the Hamiltonian (2.11) shows that it is the quadratic
in p or q, re spectively; this was the technique which H. Andoyer (1903)
used for the problem associated with the libration near the commensur-

ability between the mean motion of asteroid and that of the disturbing
body, Jupiter. Therefore, we can follow after his development in order to
solve the equation of motion. Nevertheless, there is a slight difference
between his case and ours concerning the sign of some coefficient. He
assumed that the coefficient 8’ is always positive; but in our case Jeul

can take a negative value as well as a pasitive one depending on the inter-
relation of the magnitude of J,'s. Especially for the earth it is negative
as seen later. Therefore, we are restricted to take the negative B case
here unless otherwise mentioned, because for the positive case any

alternation from his results is not required.

§3. General Expression of Solution

The general form of the solutions does not change from Andoyer's
results. But, in order to avoid some confusion about the real/complex
criterion, we shall make a slight change in the notation. The calculations

are omitted but only the results obtained are given here.

The solutions of equations (2.10) are given in the following form:

1 1 1 7
"‘i,/;j[?;("”“i 3x) - t(rer-ge o= 5%)

——Q(p«w()——é(ﬂ /O]

SERER

I 1,1 1, L
Qvi}/;;_,-[é('r+>\+zp+ ) Z_,<7’+}\ 2 2/()

1 1,

L - ue-nl
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with

&Kp) = =(a,? +a,’ a\,‘,)(ao')‘1 (real),

' (p) = i(a’bz a; +3a,’ a;a, + 2ax3)(ao')‘3/2 (imaginary),

Q0 = 9(P) 43 iGa, N2 B (R (real),
@' (0 = =B B (a,) e (P (imaginary),
wherc
a,' = -85, a, = =20, 7

a, = % (8u + 28'2 - 272), a; = By - 8",

34 =8u18‘ “,62; P

u is the energy constant such that
F+u=0.

@ (2) is the Weierstrassian elliptic function with the parameters,

g, = -8, a, - 4a, a, +3822. Al

= ‘g 2
g; = 2a, 8,3y —a; 3,38, —3;" 8

+a.’ 3

2
0 83 -_-82 »
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such that

p'(2)? = 4¢° (2) - g, 9(2) - &3> A3.6)

where p'(z) denotes the derivative respective to z. {(z) is the associated

{ -function defined by

{(z) = -i- - j (p(v) -—i—2-> dv. (3.7)

0

In the expression of solution (3.1) Ais an integration constant, which
with the energy constant u forms a system of the arbitrary constants in
the solution of the equations of motion. u is of course a real value; A is,
however, not necessarily real. A should be taken such that the expression

(3.1) could give real values of h and k,

h=—15(p+C1),

k =2—1. (p - Q- (2.9)°
1

§4 Discrimination Among Several Cases

At the first step it is necessary to know the sign of the discriminant

A =g, -27 gt (4.1)
For brevity, let

P=p() = % (4u - y? + 68"y = 56'%),

and {4.2)

Q=p' (/i = 16uf’ - 48 (B -N* - 26%

11
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which are also real values even for our case, then

12P2 - 4(y - 2/3)Q,

€,

and

1

g, = -8P% + Q% +4(y - 28)PQ.

it follows accordingly that

A =1024Q2 {u3 - % (v + B')% 2
i 0+ B [+ 59 + 987

1 2 3 27 2
--6—4'8 [(')’+ﬁ) +—4—,B}}

For brevity, let

u, =u/BY3, B =B /B0

y. =v/B¥3, A, =b0/88, <

Q. = Q/B%, P, = P/B*/3,

and so forth, then

A 1 o 1 , :
4, =1024Q,° {U.3 -5 (7. +58)u? + 18 (e + 8D U, + 8% +9) u,

) -3}3[(7.+5i)3+%‘z}}°_

(4.3)

(4.1)"

(4.4)

(4'1)n




If the subscript *is omitted inthis expression, then every term remains
the same as in (4.1)' except for B which is replaced by the unity; besides,
as casily seen, 8 1is of the third order of magnitude, and we may

choose
h‘Zh/‘BXB, k,:k/ﬁ1/3. (4.4):

As a result, all quantities are measured in units of proper powers
of A*/3 which is assumed to be of the first order of magnitude, provided
that 4 # 0. Therefore without any restriction we may take S =1 hereafter
unless otherwise stated. This is an application of the non-dimensional

analysis.

n any way, there are two cases for A = 0:

If we consider (4.5) as an equation foru, then we know the value u, which

satisfies this equation’

WS YV IO YA (4.6)
ii) f(U)Eu3-l(*/+ﬁ’)u2+7+ﬁl [(y+B87% + 9k
2 16
S8 ~3-o. (4.7)

Here two cases again are divided according to the sign of the discrimi-
nant A’ of f(u) itself:

3
A'=—ﬁ§{(7+ﬁ)3+%z} ; (4.8)
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namely, if

| 1N

y+ B8 >-5, ' (4.9)

then among the threz roots u;, Yz, Y3 of Eq. (4.7)interms of .u, two ofthem must

complex values, while the other, say u remains real. On the other hand,

if
.3
y+B' <-3, (4.10)

then the three roots are all real,

uzg<u, <up,
Now, it is necessary to know in what sequence the roots u, (1=0,1,

2, 3) appear; in other words, to know the relation between u, and

u, (i =1, 2,3) (A" >0)or u, (A'<0), Inthe case when (4.9) occurs we

can easily determine it in the following way: first of all we have

f(u)20, if andonly if uz u,; A)

however, since

f(uo)zagz(yz +%,8"1)P02, (4.11)

where P, denotes the value of P when u =u,, we have, if B'> 0, the second
hand side of (4.11) is always positive, but if 8’< 0, this is not always true,
Consequently, we have a new discrimination, which never occurs in the

case when 8'> 0:

1
;0 then u0§u1. (B)

lf 72 +% BI_
On the other hand, in the case when (4.10) is satisfied, we may only say

that

14



. 1 -
xf‘/2+§ﬁ'1<0, then u, <ug <u,, N
or u0<u3;
> (C)
. 2 1 =1 .
and if v +§,B >0, then u, <ug
or u3<u0<u2- ;

The detailed criterion will be given in a later part.
In the sccond step it is necessary to divide the cases according

to the sign of (g;), (i = 0, 1, 2, 3), where (g,), denotes the value of g

i

when u =u,. This is important because, for example, if (g;);<0 then
the energy constant u, corresponds to the unstable equilibrium point (s).

It is easily confirmed for (g,),: since

- 3
(), =8P =~ 22 82 (- prag s ) (4.12)

when fB'<0,

I} 1 1—2
if v-B8'+358 $0, then (g;),50- (D)

In order to know the relation between u, and u, (i=1, 2, 3) in more
detail as well as the sign of (g,;), it is convenient to divide the y vs. 8'-
plane into several parts so that in each of them the situation never changes.
For this purpose, it is sufficient to draw lines where the situation would

change. The following four lines serve this purpose:

. _ 3
y+Bl=- 5, (4.13)

15



y+ (=282 =0 (4.14)

vy (=262 -0 (4.14)"
. 1
and y=B8"+5(BH7*=0. (4.15)
In 2ffect, u, =u, occurs only on the lines (4.14) or (4.14)"; u, =u, oOr

u, ~u; only on the line (4.13); and (g3) =0 only on (4.15), (g3);=0

(i.70) occurs on either (4.14), (4.14)" or (4.13), as is easily confirmed.

Before dividing the plane by the four lines given above, for the sake
o* simplicity let us consider the division by separating the negative 5

k .if-planc into three parts:

Case 1. B' <=2,
in this ca;e we have
B3> 2BV S (2B B - Lenmr @16
Case II. -2<8"< —%,
(28925 < BT =3 > (226175 B - g (B2, (4.17)
Case IIL -% <B' <0,
(=281 > =g 3> = (m2p) V> B g (87 (4.18)

16



The rcason why we make a discrimination between Casc II and Case III

is that
if g = L1 then
2
[ 3 _ IN=1/2 _ Rt 1 1—-2 _
"ﬁ -2""'<"2ﬁ) —ﬁ —8@ —'1»
so that a domain, -8’ ..% > >=(=28")~1/2 for example, is cut
out at A’ = ..-‘1,2- and there is no continuous route conuecting the regions

corresponding to Case II and Case [II without meeting any one of the
above four lines.

Now, we sub-divide the regions with respect to the four lines
stated above; for example, Case I|, means £'< -2 and ¥ > - B’ —%,Case
I, B' <«-2 and =-p8" - %— > ¥ (=28")~1? and so forth. This sub-division
is not essential] as a whole because Case I1’ II1 and III,, for example,
have no difierences in the sense of continuous deformation. Therefofe,
it is uscful to assembly some of the too sub-divided cases into one
case, then finally we have the following division:

Case 1 which involves cases I1’ IIl, IIII;

Case 2' which involves cases I;

2
Case 2'' which involves cases IIz, IIIz;
Case 3' which involves cases Is’ II3 ;
Case 3" which involves cases IIIS;
Case 4' which involves cases 14’ II4 ;
Case 4" which involves cases III4;

Case 5 which involves cases Is’ Hs’ IIIS.

1 There is, nevertheless, a practical advantage, because B', or speaking more precisely
3's = B'/5%3, depends only on the coefficients of the zonal harmonics for the potential
and is totally independent of the initial condition.

17



The Fig. | shows the division in the B' vs y-plane. Here for the
sake of comparison, the case where 8'>0 (Andoyer's sub-cases.a’,
a", b', and b") is added.

We evaluate u, and (gy); in each case either by giving extréeme
values for B8’ and y or by giving special numerical values as
given in section 7. In any case one set of values for 8’ and y
is enough to determine the sign of (g;); and the relation of uj
and u, (i = 1, 2, 3)-\\

As an example, the case 3' is shown where extreme values axre given,

Case 3' B' = —e"1/3 y=4€3/3, €-+0,
1 _2/3 1/3
Uo ZZ € + € ,
512 _a

(g3)1'2:+ 7 € %

1/3

and

7 -2

(g3)3=’28 € )

where unnecessary higher order terms are omitted.

18



Therefore

and

(g3) > O) <g3)1 > 0’ (g3)2 > OJ and (g3)3 < O

0
Table 1 shows the results, From this table, combined
with(4.7), it is easy to find the sign of A(u) (e.g., in the case 3', if u, <u

then A&(u) >0, if uy <u<u, or u, <u<u, then A(u) <0, and so forth).

Table 1
Roots of A(u) = 0 and Sign of g; at Respective Roots
Cases u; (85), | (83, | (83), | (&),
Case 1 u, < u, + +
I
ase < < < -
Case 2 u; <u, u, u, + + +
| Case 2" u, <u, + +
. 3! < < < ‘ ‘ -
Case 3 uy <u, <ug <ug + + +
se 3" i < < < -
Case 3 | Ug <uy <uy <uy + + +
,
s e < < < : -
Case 4 uz <ug <uy <y + + +
se 4" < < < + -
Case 4 u; <up <y, <uy + +
< -
Case § uy <uy <u, <uy + B + + |

§5 Values of p and ¥
For the purpose of giving a real expression of the solutions, it is also

necessary to have the range in which p or ¥ falls. As a first step, a com-

parison is made here between p(p) or @(¥) and the parameters of p-function,

namely e;, e,, and e;. Let

49° (2)-g, 0 (2) —8; =4 (p(2) - €)) (p(2) = ey) (w(2) - ;). (5.1)

19



then it is well known that if the discriminant 4> 0, the three parameters

e,,¢,,and ey are all real; contrary to this, if A <0, then only one of

them, say e,, is real.

Since
P (P2 =4(p(P) -ey) (p(P) - €,) (w(P) ~ €5 (5.2)
[p(p):--(al2 +alzaz)ao' is real, (3.2)
and
p'(p) =i(a,fay +3ay a; a; + 2a}) (ao')':’/2 is imaginary,
it follows that, when &> O:
p(p) <e, or e, <p(p) <e,. (5.3)
where the three arguments are denoted such that
ez ey <ey
Similarly, with
() = (P +5 i Yag 71 () = Pisreal
(4.2)
e () =-B" B Yal ' (p) = iQ is imaginary,
when A > 0O;
(5.4)

p(X) <e; or e, <p() <e,

20



In the case when A <0, it follows necessarily that

p(p) < e, N

and > (5.5)

N <
pe(X) <e;- P
Besides, from (4.2) it follows that

< . <
p(p) s p(x) if Q5 0,
that is to say (8’ <0), (E)
>
u ¢ UO .

The above is simply obtained. The next is to decide whether () and
w(p) drop either in the region between e, and e, OT the region smaller
than e,. This decision can be given by knowing the behavior near u = Ug,
where generally the situation is changed, and by knowing the behavior in

the extremc case such as u - +«- The detailed calculations are omitted

here, and only the results thus obtazined are listed in Table 2. In this

table, for brevity, we let:
P=p(x) and p =g(p). (5.6)
Besides, p'(4)/1andg  (p)/iare determined by
' (GO)/i=Q=168" (u=-ug), (5.7)

and

o' (p)/i=-16(ag)™V? (u-ug), (5.8)

21



which give us the sign of both values, provided that (a,')!/?, or more
rigorously (a ' 172 2 (36)1/2/181/3) is non-negative without any restric-
tion, In effect, since in the form of the solutions h andk, or mor‘e
rigorously h, = h/8 and ky Zk/B'?have (a;)~'/?, or more rigorously
(ag)t/? = B1/3/2(-28")1/2 as a factor, the change of sign of (ay)'/?

as a whole does not produce any real difference in the solutions at all.
It is to be noted that when B<(0 this provision means (a(’))'”2 itself,
which does not mean a non-dimensional quantity (aj)x!/? , should be
taken as negative. By this method we may ignore the difference

of sign of B but may unify the procedure as a whole. This is justified
directly from the fact that in the equations of motion the sign of B can
be changed without any significant alternation except for the change

of signs of h and k for the same time,

22



Table 2

The Values of P = () and p = p(0) (B8 <0)
( -
i Sign of
i Cases | Rangeofu Values of Pand p | o' (X) andgo'(,o) Classification?’
1 i
Case 1 u, <u p<e; <e, <P<e - 01
u =u, P=e;=¢e,=p 0
u, <u<u, P<e,<e, <p<e + 02
u <u, P<p<e + 12
Case 2’ u, <u p<e <e <P<e - 01
u =u, p=e;=e, =P 0
u, <u<uy, P<e, <e, <p<e + 02
| u, <u<uy P<p<e, + 12
| u, <u<u, p<p<e3<e2<el3) + .22
u<u, P<p<ed + 12
. Case 2" u, <u p<e; <e <P<e - 01
; uy <u<uy p<P<e - 11
‘ u =y, p=e =€ =Pce 0

2) See Table 3.

3) e, in the lower line is the continuation of e; in the up

and e, in the upper line into imaginary values.

23
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Table 2 (Continued)

Sign of
Cascs |Rangeofu Values of Pandp | o' () dp’(p) Classification
‘ i 2N
Case 3’ u, <u p<e;<e, <P<e - 01
u, <u<u p <P <e - 11
u=u, p=e;,=¢€e=P 0
u2<u<uo P<g.7<€1 + 12
u3<u<u2 P<8o<e3<e2<el3) + 22
u <u, p<p<e + 12
Case 3" u, <u p<e;<e <P<e - 01
u, <u<u o<p<e® - 11
u, <u<u, e<P<e,<e,<e? - 21
u, <u<ug|p<P<e - 11
u=u, 9:e2=e3=P<el 0
u <uy, P<p<e, + 12
Case 4' u, <u p<e; <e, <P<e - 01
u2<u<u1 pw<P<e - 11
u0<11<L12e3<e2<(@<P<e1 - 23
u = u, ga:es.':ez:P 0
u, <u <y p<@<e3<e2<e13) + 22
u<u3 P<8o<e13) + 12

4) e, in the upper line is the continuation of e,

and e, in the lower line into imaginary values.
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Table 2 (Continued)

P<p<e

Signof
Cases | Rangeofu Values of Pand p | ' (X) dp'(p) Classification
i and
Case 4" u, <u p<e, <e, <P<e - 01
u, <u <y &o<P<e4) - 11
Ug “u<u,| p<P<e; <e, <e - 21
u = p=P=e; =¢e 0 !
u, <u<u, 83<62<P<g.><e1 + 24
U<U3 F’<5§a<el + 12
Case 5 u, <u p<ey <e, <P<e - 01
u, Cu<u i p<P<e - 11
u, “u<u, e3<e2<;@<13‘<e1 - 23 ;
u =, e,=P=p=e¢e 0 :
u, <u <y e, <e, <P<p<e + 24 1
+ 12 }‘
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The next step is to determine the range in which ; or y will
fall, For this purpose it is convenient to classify the various cases
which are associated also with the value of u. This was done in
the last column of the Table 2. The specification of each class is

given in Table 3. Thus we can determine the range of p and ¥, if

we remember that:
when A <Q, if\ 0<v<«{, then N
—o<p(iv) <e,, and p'(iv)/i <0,

but ifwi’ <v<2w;’, then

e, >p(iv) > -, and p'(@{iv)/i >0, J

~

where w/i is the purely imaginary semi-period given by

e] dp

4] = ’

') Yae, o) ey - ey - D)

when e, is real.
On the other hand, when A >0,
if 0<wv<w”, then N
e, >p(w +1iv) >e,, e (w' +1iv)/i >0,
-~w<p(iv) <e;, and p'(1v)/1 <0,
but if w"<v<2«”, then

e, <p(w' +iv) <e, e' (0 +1v)/1 <0

e, >p(iv) > -o and ' (ivy/1 >0,
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where ' is the real semi-period and w"i is the purely imaginary semi-

period given by (e; < e, <e,;)

w' = j dp , (5.10)
| Ve -c) e @)
83 .
and w” = j dp . (5.11)
o Y 4(e, -p) (e, -p) (5 -P)

§6 Real Expression of Solutions

As seen in the preceding section the values p and X are uniquely
determined within the parallelogram, whichis (2«’, 2"i) for A>0
or (2w;, w; +wji) for A< 0 ; however, the parameters which are in-

cluded in the expression of solutions are not p and X respectively but

2
ogram but correspond to the four values respectively. In effect, v

1 and %X. These values can not be uniquely determined in the parallel-

is uniquely determined by: @(v) = given constant, @' (v) has given sign,

then

-%-v+w', —;—v\»w”i, and —12i+w'+w”i,forA>O,
or
1 , 1 1 , - 1 3 . 1 4.
—é—v+w1, —2—V+-i—(wl+w11), and-i-v+-i-w1 +—2-w11‘for A< O,

4

are all required values as well as % .
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This phenomenon, however, does not provide any essential difficulty.
In effect, the change from—é— v to -:-2'- + «' produces only a half period
advance, and this is cancelled out by choosing the proper value for the
additive constant A. On the other hand, the change from—;—y to
%u + w"i‘or to -1% vV o+ -12- (w; +w, i) produces another series of sol‘u-
tions, which satisfy the equations of motion as well as the given energy
constant u. Speaking from the results advancely, Class 2 (which includes
Classes 21-24) has two series of real solutions; contrary to this, Class 1
has only one series of real solutions while the other corresponds to
imaginary solutions, and Class O has no series of real solutions. This
change can be also carried out by changing A to A’ + w"i or
Ao+ é— () +@"1) without any alternation of—;—p and—%—x respectively,
as was done by Andoyer, since the solutions are periodic qua function

of ?\,—l'p or—‘l,z—‘,( respectively, and the argument.is in the form of

A i-—l— 0 i-l-')( . Accordingly, we may fix the values for —l-,o and—l—)(. And from
27772 g Y 2 2

—é'(p'#X):Xl, W

and > (6.1)

1
—2-(p"'X) :X2v

we may construct.Table 4,
Thus we have obtained the real expressions of the solutions

in each class. From (3.1) the expressions of h and k are easily obtained:
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Table 4

Constants )(1 and X2

Xy =5 (0 + 1) Xy =5 (0 =0
=—%—w’ + X i, %:‘ <%y <%(~" =--—;—wt Ao i, ~w" <X, <0
—;-a)'+X1i, —az)il <X;‘<—g-w" —é—w'ﬁ-Xéi, ~w" <X, <0
Xg iy O<X{<wi’ Xgi, _:é’.’l.<,('<0
XIi, -w'1’<)(1<0 Aai, —%i <)(é<0
X!i, 0<XAl <o Kpi, =% <Xj <0
A0y, w"<X{<2w" X1, -—-C%" <X, <0
Wl F XD, @t <K< 20" Xyi, =% <Ay <0
o e X1i, 0<X! < Xyi. % <X; <0

30




h:%(p +9)
'—‘——1——- (L(m + A+ %)) - LT+ A =X)
4iy-28'
+ L(m + A+ X)) - L(r + A =Xy
~L(2%,) = L2 X)) (6.2)
k:-}; (p-a)

sl (g an X)) LT A=Ky
4vY=275"

- L(7+ }\+x2)—§(7’+>\—x2)}.

When A > 0, the expression of [(v) is given by

v o 7]
L =5 T 5
@ n
27 g . nm
+ =T 1 - q2n an;?(v?w"i), (6.3)
n=1

where the double signs should be taken according to the sign of the

imaginary part of v:

31



upper sign for 0 <Im(v) <2w"
or lower sign for ~2w” <Im(v) <0,

exp [~mw"/d],

o]
1

L(w'), | (6.4)

3
"

«'is the real semi-period, and «”i is the purely imaginary semi-period;

when A0,

27 aj . nm 1+ 1 .
B L g gbradsien) (65

where the double sign should be taken according to the sign of the

imaginary part ofv:

upper sign for 0 <Im(v) <w,

or lower sign for -a <Im(¥) <0,

(= iq,, q, beinga real positive value), (6.6)
m; = {w]).

The real semi-period ) given by
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2
w =

J dp , (6.7)
Ya(p -e,) (P-¢e,) (P-e3)

€1

"o o . . . . ’ ’ 1 [ 4 " -
and w1 is the purely imaginary semi-period. (Note: w, and —2‘ (wy +w] 1)

form a system of the fundamental semi-period.)

All the necessary preparations havebeen completed and we are now ready

to construct the real expressions of the solutions in the following: (8 < 0)

A<0O (Class 1)

, w

B 1 7 2 : a3 p nm )
h = ?1 [ W{Cn COS-O—)—I,('T+>\)+Cn°}

n " n7T 1"
. Z Q3 {cn cos gz (7 + ) +cn°}

l-qg"

+ A} g (6.8)

q
k = 1 1—; § 2 s’ sin—n—T,r-(T+>\)
wl 1 +q2n n cul

where

q, = exp

]
ol 3

Ie

[ —

‘]

1
—
O\I‘*’

®

~
N

—

~

[

o
]
~X
~
L8]
[ d



S’ means the summation extending only over positive odd numbers, and

5" only over positive even numbers. The coefficients are expressed

by
) nﬂxl” an2” w
C,' =c,' cosh -— + cosh -
w w1l
1
n7T " nTrX [
. 1 . 2
C" =sinh — + sinh :
n w
1 1
" "
nmwy nmy
. . 2
S '=s!sinh - sinh
n wl!
1 1 &
(6.9)
" "
nmy nmy
" . . 1 . 2
S." =sinh — - sinh 7
1 1
i w "
n; nmy
(] 1 2
C ' =—cosh = = cosh -
no w
1 1
., " . om
" 1 . nﬂAl 1 . nW}(2
C. = -~ sinh ——— - =-sinh—-.
2 Wy 2 wi p,

The coefficients and the arguments involved in the above expressions are
given for each class in Table 5 respectively.

A>0 (Class 0 has no real solution; on the other hand Class 2 has
two series of real solutions; the existence of two sub-classes corresponds
to this phenomenon. The second sub-classes are constructed by making
A=A +a"i in the first sub-classes respe ctively. After being expanded

into series, the unnecessary prime on A is omitted in the following.)
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> n 7

28 1‘ Z 1q 2“{C“°°SE’T(”A)*C"°}'
- " w — -q w

+ A E (6.10)

®

n
k = —7-77 E 3 S sinT,-('r+)\)},
-28 w 1-~-g* n w
n

=1

-

-
where
= ex -—-—Ww” T = 3 172 3 a7/t
G = P (4)‘ ) _'E',L‘L 2 o .
The coefficients are expressed by
Coamyy” ) nTy," 7
C =c, sinh + sinh -
n
nmy,” n7my,"
S, =5 cosh e cosh o S (6.11)
nTTX w nﬂX w
-1 sinh ,1 —lsinh ,2 .
no 2 w 2 s
-

The coefficients and arguments involved in the above expressions are
given in Table 6. These constants are chosen such that all the expansions
should be convergent, or in other words, the re striction imposed on (6.3) is
always satisfied. If this would not be satisfied, before being expanded into
series the argument has been changed keeping in mind the periodicity of
h and k qua function of X, .

It seems necessary to add the dimensionality of w, X, % €tC. They

are all expressed in the following way: «, = wfB?/3, and so forth.
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§7 Characteristics

Some numerical calculations connected with the characteristics
are given here. The characteristics means the orbit without any
regard to.the independent variable 7 but only the plotted line in h
and k space. In thisproblem it is easy to obtain such a characteristic.

In effect,
F+u=0 - (7.1)

gives one; or, in more detail

(h? + k)% + (7 + BB + (¥ = BHK? - fh+u=0. (7.2)

The same procedure of the non-dimensional analysis taken in §5 gives

the following form (omitting the subscript *):

(h? + k2)2 + (7 + BOh? + (v =Bk ~h+u=0 (7.2)’

from which we have simply

k2=-{h2+%(7-5‘)}

* I/-—2,8'h2+h—u+%(7—,3')2- (7.3)

Accordingly, by putting

=
1"

-24 h? +h +%(7—,5')2
(7.4)

and U, = -h* = (¥ = B)Hh? + b,

fl

the following criterion is given:
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1) ifu>Up, then 0 solution for k;
i), ifu<y, Wiz -8)>0
ii)11 and u > U,, then 0 solution,
ii)12 or u< U2, then 2 solutions; L (H)
iy, ifu<uy, h2+é(7-,8')<0,

ii),, and u > U,, then 4 solutions,

ii),, or u <U,, then 2 solutions.

The critical values for u also come from these criterion as follows:

3u
weu o () o (7.5)
h=h
3u, .
u, = U, (b)), <—£>h=h =0 (i=1,2 3. (7.6)

1

As an example, one set of B andy for each (I ,...1I1 ) is
taken and several characteristics corresponding to some values
of u are given in Figs. 2-16. Table 7 presents the numerical
values of u; (i =0, ... 3) etc. Also added is the Case E where By’ = -0.13,
which is, of course, included in Case III, but this is the actual case for the

earth. Adopted values of the harmonic coefficients are fromKozai (1962b):
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J, = 1082.36 % 10-6
J,=-214x% 10-6
Accordingly,
3=0.147 x 1073 - a3?,
B’ =-0.360 x 1073 - aj?
y=~2a -~ 5.540 x 10~3
BI=-4.24x107% a7l
therefore,
Bl =p8'/6%3 =-0.129
Y. = - 717 ag a-1.99
h, =

18.9 ayk

k

where a, stands for the mean semi-major axis,

and g for the argument of perigee.

=18.9a,h =189 a, e sing - 0.0201

= 18.9 aoe cos g,

JS = =2.566 x 10°6

(7.7)
Jg = -0.063 10-8.
BY/3 -0.0528 aj’ A
> (7.8)
ay? (a=1-5H2/L?)
7

L (7.9)

7

e for the eccentricity,

1t is noted that in the case of the earth the asymmetrical part comes

mainly from J, but not from J ;.

pends only on J, in our theory is small.

The linear shift term (87) which de -

It is also noted that 8, is not

dependent on the mean semi-major axis a, but only on J_'s; therefore,

if the potential is given, it is an absolute consfant.
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In concluding this section, we should add some remarks
on the critical value Ug. As is seen from Table 7, the critical value
u, corresponds neither to stable point nor to a unstable one except for
Casé 5 where of course it corresponds to the unstable points. The
sign of (g;), is positive except for Case 5. Therefore it might be con-
siderced that u, corresponds to a stable point. In fact, however, it cor-
responds to imaginary equilibrium points. Or in other words, if we
draw the characteristics corresponding tou, it is split into two circles

given by

1 1

th=vl

and for Case 5 two circles meet at two points sothat the twopoints become

1 (7.10)

N —
N

k2 + (h, 3

unstable points; on the other hand, except for Case 5, they cannot meet

cach other or the radii(us) of one or both circle(s) become(s) imaginary.
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Table 7

Critical Values of u, and Corresponding h, and k,

Casel g, =-3.0
Sub-case v. | 1 u, ., h,, ! k,,; . Remark
I, +2.01 0 | + 6.2083 - -
1 | + 1.0548 | +0.8847 0.0 stable
I, +1.0] 0 [ + 3.9583 - -
1 |+ 2.0562 | +1.1072 0.0 stable
2 |+ 0.0734 | -0.8376 0.0 stable
3 |- 0.1295 | -0.2696 0.0 unstable
I, 0.00 1 |+ 3.5139 | +1.3008 i 0.0 stable
0 |+ 2.2083 - -
2 {+ 1.0702 | -1.1309 0.0 stable
3 |- 0.0840 | -0.1699 0.0 unstable
I, -2.0| 1 |+ 7.8553}| +1.6290 0.0 stable
2 |+ 4.6947 | -1.5286 0.0 stable
0 |+ 0.2083 | - -
3 |- 0.0500 | -0.1004 0.0 unstable
I, 4.0 |1 !4+14.1383] +1.9056 | 0.0 stable
2 1410.3976 | ~1.8340 0.0 stable
0 | + 0.2083 | -0.0833 | £0.7022 | unstable
3 |- 0.0358 | ~0.0715 0.0 stable
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Table 7 (Continued)

Case II B8, =-~1.0

Sub-case Y i u,, h,, k,, | Remarks
IT, +2.0 ) 0 | +2.1250 - -

1t +0.2148 | +0.3855 0.0 stable

I1, 0.0 [ 1| +1.0548 | +0.8847 | 0.0 stable
0 | +0.1250 - -

11, 0.6 |1 {+1.6022 | +1.0221 0.0 stable
0 | -0.0850 - -

2 [ -0.1524 | -0.6396 0.0 stable

3 |~-0.1698 | -0.3823 0.0 unstable

IT, -1.0 |1 | +2.0562 | +1.1072 0.0 stable

2 | +0.0734 | -0.8376 0.0 stable
0 | -0.1250 - -

3 | ~0.1295 | -0.2696 0.0 unstable

IT, ~2,011 | +43.5139 | +1.3008 0.0 stable

2 +1.0702 | -1.1309 0.0 stable

0 | +0.1250 [ -0.2500 |10.6614 [unstable

3 | -0.0840 | -0.1699 0.0 stable
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Table 7 (Continued)

Case III 3. =-0.25
Sub-case Yo | 4 u,, h,, k,, Remarks
111, +3.0 | 0 | +0.7656 - -
1 {+0.1371 +0.2645 0.0 stable
1112 0.0 11 +0.5825 | +0.6959 0.0 stable
0 | -0.4844 - -
1113 -1.3 11 | +1.5506 +1.0111 0.0 stable
2 1 ~0.1717 -0.5966 | 0.0 unstable
31 -0.1777 -0.4145 0.0 stable
0 | -0.2244 - -
III4 1.5 11 +1.7641 +1.0546 0.0 stable
5 | -0.0815 | -0.7296 0.0 unstable
0 | -0.1094 - -
3 |1 -0.1512 -0.3249 0.0 stable
111, | -3.0 |1 |+3.9518 +1.3457 | 0.0 stable
i 2 | +1.4070 \ -1.1895 | 0.0 stable
! 0 | +1.3006 | ~1.0000 | £0.6124 | unstable
| ] 3 1-0.0775 | -0.1562 | 0.0 stable
i
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Table 7 (Continued)

Case & [, =-0.13
Sub-case Yo |1 U, hy, k., Remarks
E, +3.0 |0 | + 1.4877 - -
1 |+ 0.0863 | +0.1707 0.0 stable
E, 0.0 {1 | + 0.5269 | +0.6643 0.0 stable
0 | - 0.9573 - -
E, -1.5 |1 | + 1.6337 | +1.0286 0.0 stable
2 |- 0.1397 ] -0.6608 0.0 unstable
3|~ 0.1655| -0.3679 0.0 stable
0| - 0.4923 - -
E, -3.01 |+ 3.7379} +1.3243 0.0 stable
2 |+ 1.2412! -1.1618 0.0 unstable
0!+ 1.0977 - -
3 - 0.0806 | -0.1625 0.0 stable
E ~-8.0 |1 | +18.5553 | +2.0463 0.0 stable
2| +14.5236 | ~1.9847 0.0 stable
0 | +14.5227| -1.9231 | +0.4865 | unstable
3|~ 0.0302] ~0.0611 0.0 stable
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§8 Discussions

1. As mentioned before in §6 the expansions of solutions are $o
arranged that they are always convergent, But it is still a problem to
find out the most efiicient expansions for the solutions; in other words,
to rearrange the series when it is too slowly convergent., This situa-
tion occurs when q tends to the unity. In such a case we have another
type of expansion by exchanging the real period and imaginary period
with each other, so that for the extreme case of q = 1 we have hyper-
bolic functions instead of circular functions.

In any way, in order to have suitable expansions of the solutions it
is necessary to rearrange them into a different form appropriate to
ecach case, respectively.

Also neglected is a proper method to calculate semi-periods

¢ "

(o, @' i, @, 0rwyi) in terms of given constants 3’, yand u. These
calculations are closely related with the evaluation of q (if A >0)or
q, (if A < 0). The numerical processes to find o and X are also
omitted here.

These practical problems are, of course, important if we wish to
obtain the solutions in detail but they are so complicated that their
discussion will be postponed.

2. The adoption of non-dimensional analysis in units of the proper
powers of B is of course optional. We can treat the calculation without
any non-dimensional analysis; or we may have another type of non-
dimeasional analysis in terms of B' or vy for example. However, the
process which we treated in this paper has a slight advantage; firstly,

in doing so B! is an absolute constant depending only on the coefficients
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of harmonics but independent of the initial conditon; secondly, we may treat
both the cases 8 > 0Oor 8’ <0, in the same framework, for example, we can
draw a diagram such as Fig. l on a single sheet; thirdly, the difference
between 3> 0 and 3< 0 can be neglected automatically by always selecting
the sign of )//; or Y-8' such that }é_'_. . /:23—': »> 0. This is caused by the
fact that the difference between 8 > 0 and 8< 0 remains only on the sign

of hand i but there is no difference on the nature of the critical character,
etc.
3, We have assumed J_ to be of n-th order of magnitude. But if those
assumptions are broken down, how shall the situation change? We may
consider this breakdown as follows within our framework: S - 0, in
other words a non-cffective case of the anti-asymmetrical terms J; and Jg
(B8',-w). I this case, the range h, and k, for the critical nature (the
transition from librational to revolutional) is not restricted in a limited
area according as y, - -, but h and k themselves are limited. There-
fore we may tend 8 - 0 without any essential difficulty in our theory.

On the other hand if A’ ~0, keeping 3 constant the range of h, and
K, as well as h and k themselves for the critical nature arenot restricted
as 7, - - @ Therefore, another type of theory would be required which
could treat not only the small eccentricity case but also the moderate
eccentricity case. In this case where the anti-asymmetrical terms pre-
vail over the symmetrical terms, the general feature, which is constructed
here by adding the anti-asymmetrical terms to the symmetrical terms or
at most by considering the same order contributions in some meaning fro:
both sources, would be broken down. Fortunately, since 8! for the carth

is approximately -0.13, it does not seem to necessitate any new theory

for this respect,
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4, A higher order theory beyond the one discussed here could be
developed along the line which we gave in a previous paper
(1962). However we must keep in mind the restriction made there
that the leading terms which are, for example, the ones discussed here,
should prevail to the remaining terms. In other words, if the leading
terms are so small that the neglected terms play an important role in
the behavior of the solution, then such an approximation process would
be broken down. In addition, in the present paper, we have taken into
account two parameters such as [ and B', the former is assumed to be
third order and the latter is of second order; namely the non-dimensional
quantity 8, = B8'/£% 3is assumed to be far from zero or from the infinity,

In the previous paper, it is assumed that, for example, J23, J, T4 and
J¢ are all of the third orderof J, + J.,/3,5 this means that, if J, + J./J,
tends to zero, J23 etc. should tend to zero as well, in order to be able to
apply the 'general treatment described there, otherwise the leading terms
are so small that the series obtained along the theory would be divergent.
A similar situation occurs in the present theory in the aforementioned
sub-section 3. This is also true in the case of the higher order
theories than discussed. At any rate it is important to consider first the
most significant parts ol the terms,

The difference between the previous theory and the present one
exists in the fact that here the anti-asymmetrical terms are given
the same importance as of the symmetrical terms by assuming that

J, is of the n-th order of magnitude in the case of small eccentricity.
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§9 Conclusioan
In this paper we tried to solve the equations of motion of a

close satellite near the critical inclination in the case of small eccen-

tricity under the influence of the potential given by

V£ [1 -] (-a—e)" P_ (sin 5)].
r n T n

Assumed are as follows: the coefficient of zonal harmonics J is of
the n-th order of magnitude and the eccentricity is of the first order
of magnitude. The terms which are taken in the Hamiltonian are of the
sixth order of magnitude in this respect; namely, the terms which have
e?J,,e?J, e’F; el T, eJ, etc. as factor are included. It is also
noted that the lower order terms do not enter the Hamiltonian except for
unnecessary constant terms.

In §6 the explicit solutions are given with classification according
to the interrelation of 3,’, ¥, and u, (as for the definition of these
quantities, see Eqs. (4.4), (2.12) and (3.4)), where 8', strictly depends
on the coefficients of zonal harmonics J _, ¥, depends on the projected
angular momentum to the equatorial plane as well, and u, is the energy
constant in units of 843 This classification is made in order to have
real expressions for the solutions. Three parameters involved are
expressed by the non-dimensional quantities so that one may have the
actual solutions by factoring a proper power of g1/3, which is assumed
as of the first order magnitude.

For the earth g!/3 is +0.0528/a0; accordingly, if the eccentricity
is coniined within some range, say 0.05 or 0.10, then the theory devel-

oped here is applicable.
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In any way it is noted that the transition from the symmetrical term
prevailing case to the anti-symmetrical prevailing case within the
approximation adopted here occurs at (between Case II and Case 111,

where a great change especially in characteristics occurs).

3 1
T U 2/3 _ -
8l =88 = -5

This quantity for the earth is approximately -C.13; therefore, the

earth's potential is in the anti-asymmetrical term prevailing case in

this respect.
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