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ABSTRACT

The general Laguerre equations provide the simplest examples

for testing perturbation theories.
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PERTURBATION THEORY FOR ILLUSTRATION PURPOSES

The aim is to use simple equatior_with simple perturbation functions

which allow for simple integration of both unperturbed and perturbed

equations. The Laguerre functions are used in this manner.

La_uerre Functions

Let us consider a mathematical or artificial perturbation problem

involving the general Laguerre functions. How such a perturbation could

arise in connection with a two dimensional wave equation with a potential

energy equal - (constant)1(x2+y2) ½. Some of the properties of Laguerre

functions are considered in the Appendix° The wave functions for harmonic

oscillators correspond to Laguerre functions Lm with m = -½ for
n+m

the symmetric solutions and m = +½ for the antisymmetrico The cases

where m is an integer provide much simpler results when used in con-

nection with perturbation theory°

The harmonic oscillator solutions are reduced to the Laguerre

functions in the following manner

d2 2 2
H = - -- + (I+0L) r , H = H + V

dr 2 o

d 2 2
H = - -- + r V = (2GL +_,2)r2

o dr 2

I

Replacing _ H

2
by H _ and introducing the new variable x = r

find for the symmetric, antisymmetric solutions, respectively,

(i)

we

d2 d 2 x

Symmetric H = - x--½ _x + (1+05) [ , E
dx 2 n

Antisymmetric
d2 3 d x

H = - x _d_+ (I+O(,)2 _ , E
dx 2 n

I

(n+ [)(l+O&) ,

(2)

3

=

The general Laguerre example treated as a perturbation, proceeds

as follows:
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Hy = (Ho+V)y = Ey

d 2 d x
H = - x--- (re+l) _xx + (1+6L)2 _

dx 2

d 2 d x

= - x--- (re+l)_+
o dx 2

, En = (n+ __I_)(I+GL)

_- z(°) = (n+--_l-) .• V = T (1+ )x -t n

We shall define the unperturbed functions by
x l+s

o0

2 l-s _ n$(x,s) ffi e ffi Yn(X) s
(l_s)m+l

n=o

corresponding to the explicit expressions

(3)

Yn (x)

X n

e" 2"Z (n'n_)_

k=o

, (4)

, (4a)

X

2

yo_,X) = e

X

Yl(X) ffi e m+l-x ,

X

• etc.

(4b)

From (4) the normalization integral

Q@

(X)_ (x)xmdx ffi (nn_I)"I , (5)

whence we see that functions are normalized only in the case of m = 0 .

The recurrence formula

xY n = (2n+m+l)Y n - (n+l)Yrrbl- (n+m)Yn_ I (6)

is also easily established. In the general case of arbitrary m we

shall prefer these non-normalized functions.



Weshall write

Hz = Ez (7)

for the perturbed functions and expand them in terms of the Yn

z(x) = I CnYn(X) '

n=o

which by means of (3) and (6) gives the linear equations

. _ _ [( ___I)(i+_) + (2n+m+l)(_-) - El cn T (i+ _)Cn_ I + n+-- o¢ 2 n

- (n+l-hn) --ff (1+ Cn+ 1 --

(7 a)

(8)

The true eigenvalues E of (3) can be found from the corresponding
n

determinant; however, not quite easily. These eigenvalues being known, we

may put, say, E = E_ into (8) to obtain the coefficients of z_(x) .

We might take zj(x) : y_((l+_)x) . For better conformity, however,
m+l 2

we should have to add a factor (I+_)T. To the order of _ this

corresponds to writing

_,m+l

z_(x) : (i+ T J _ ((l+_)x) . (9)

Then putting (_) as upper index in c of (7a) we have
n

a&. n-._., C_) (- 1_ k (n'I'm+k_ "_' OLn (n-_ +k). (n+m) _ I_
._i (i+ T) k=o

(lO)

For small c_. then approximately

however, easily found in this way.

We shall, therefore, write

(J,)
c = i . The coefficients are not,

_- _,. m+lz_(x) t_ (i+ T) ¢((l+_)x, t)

_=o

(Ii)
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The transition to the harmonic oscillator, whether for non-normalized
or normalized functions are easily performed by putting m = + ½ for

symmetric and antisymmetric solutions_ respectively.

For general illustration purposes, however, the simplest case of

m = o, with normalized eigenfunctions and self-adjoint differential

equation, should be preferred.

Ordinary Perturbation Theory

(Ho+V)_ = E_ (14)

(Ho-Eo) $ = (E-Eo-V) _ (14a)

= $o +$I +@2.'-, _
E = E +E + ..

o I E2"

(14b)

(Ho-Eo)$o = 0 ,

(Ho-Eo)$ i = (EI-V)$ ° ,

(Ho-Eo)_2 = (EI-V)$ I + E25 o ,

(Ho-Eo)$3 = (EI-V)$ 2 + E2$ I + E3$ o ,

(Ho-Eo)$ 4

(Ho-Eo)$ 5

= (EI-V)$ 3 + E25 2 + E351 + E45 o ,

= (EI-V)_ 4 + E25 3 + E35 2 + E451 + E55 o

(15)

We may take

2d_ " = i _ n (16)



Hence from the first and (n+l)st

E = dFV_o _n-ldT "n

equation

(17)

Using various other combinations of the above equations we find

E 1 = fV_/o2d'_

E 2 = /V$o$1d_"

E 3 = /V$12dl_- El/*12d_

E 4 = /V$1,2dT - EI/$1*2 dT " E2/*I 2dT

E 5 = fV,22dT Elf*22dT - 2E2f*l*2dT

(18)

- E 3 / $I 2dT

Application to La_uerre-functions m = 0

Looking upon the balance of this theory_ considering for simplicity

only the ground state with energy

E = ½(I+_) , (19)

we shall rather have to express it in terms of

with

, (19a)

(19b)

E = ½_--_ = ½ +_ _ £2 + 2G3 _ 564 + 14e5 ....

I(2n) ('1) n'l_n½ n 2n - I

n=o

(20)



We now have

V : _.x (21)

and from

xy n = (2n+l)y n - (n+l)Yn+ I - nYn_ I

to = Yo ' @I = _ Yl (21a)

we obtain

2 3 3 3

E = ½ j E 1 = _ j E 2 = -G j E 3 = 36 - _ = 2_ .
O

(21b)

To find E4 and E 5 we must have @2(x) . The right hand side of the

third equation (15) is

E 2[(l-X)Yl- Yo_ = E2['2Yl + 2Y2_
(22)

from the recurrence formulaj and from

(Ho'Eo) Yn = nYn (22a)

we find

_2 = _ - 2Yl + y "

This gives

E 4 = - 8_4 + 264 + G 4 = - 5G 4 j (23a)

5 5 5 5 5

E 5 = 25_ - 5_ - 4e - 2_ = 146 . (23b)



The energy series is easily continued into

E = _ +_ - _2 + 2_B _ 5_4 + 14_ 5 . 42G6 + 132_7 .... (24)

according to the general expression (20). Similarly the wave function

is_because of

-1 2+4e -2
2+OL _'I-_+I 4_

i [ ] - 14_ + 42 ....½ +E - ½_-_ = _ _ 2G2 + 5G3 4 _5

(25)

and from (12)_ putting _ = 0

_/ _ (2+-_)n == Yn

n_o

Yo + (G -2_ 2+5E3-14_ 4)y I

+ (G 2-4_ 3+14_4)y 2 + (6 3-6_4)y 3 +_4y 4 + "°°

(25a)

From this is seen that the successive approximations of the wave

function according to the above method are

_0 = YO

_I = _Yl

_2 = _2__ 2y I + Y2_

3

_/3 = G _5Yl 4Y2 + Y3]

_4 = _4 [- 14Yl + 14Y2 - 6Y3 + Y4]

The series can be easily continued.

Finally it may be nice to see that the series

(25b)
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ffiI (2+-_)n Yn (26)

n--o

really gives the correct normalization integral and the correct energy

ao o_ 2

/ = I ( o_ )2n (2+0_) 2 (I+ _-)_/2d'_ _ - = i+ O_
o (2+0¢) 2 _ _.2

n--o

(26a)

as it should be.

On the other hand, we find

f I _n[,H_d'_ ffi (2-_-_) (n+½)(l+O_) + (2n+l)(_) 2

II----O

(i+_ 2

- "_-) [½(i+O£) - (_)2] + (l+Ot)l n(
OL.n

I+ _ 2-'_-__
n=o

(z+ __)2
_+_ [_c_+_)-c_) 2

ot 2
(l+ T)

i+ (X.

(26b)

Hence,

E ffi ½(l+0t,) (27)



APPENDIX

Additional Considerations Concerning Laguerre Functions

Consider the two-dimensional wave equation

--+--f+E+ _ = 0 , r =
5x 2 By

in polar coordinates

22 1 _ I _2+-- + 2 _r_r r

Make the substitution

imp
ffi y(r)e

(AI)

(A2)

(A3)

i0

to obtain the radial equation

d 2 I d m

+ 2 + E + y(r) =
r dr r

Putting

n

I m= c _+v e'4-_r
v

v=o

it is found on requiring the series terminating on n that

(A4)

(A5)

z = _q_ (2n+m+1) (A6)

or

Z 2

Therefore, making the transformation

(A7)

r = 2_C_x , x = r/2Jl_ (A8)



we may write

d 2 1 d m I

dx 2 x dx x2 _ +

which for integral n has the solutions

X m

2 2 m

y = e x Ln+ m (x) ,

y = 0 j (A9)

(A10)

ii

m being the well-known generalized Laguerre polynomials ofthe Ln+ m

degree n .

The ordinary Laguerre polynomials

_.x d2 d n_
m + (:_x):ix+
dx 2

L (x) obey the equation
n

L = 0 j
n

or

Ix d2 d rrbm'_
-- + (l-x) _x + Ln+ m = 0 .
dx 2

On differentiating m times the latter equation we obtain

d n_ (m)
+ (m+l-x) _x + Ln+m(X) =

Substituting (AI0) into (A9) j we have

0

+ (re+l-x):fx + --

dmm

the same equation if L_em(X ) = dx m Ln+m (x) •

The polynomial may be defined as

0

-m x I dn n+m -x_m
L (x)= x e x e
n+m'- n2

dx n

from which their explicit expressions

n

L_(x) = I (n-_)_

k=o

(All)

(Alla)

(Allb)

(Allc)

(AI2)

(Al2a)



as well as their differential equation (All) are easily obtained.

Another equivalent and often useful definition is
xt

l-t I _ n$(x,t) - e = L (x)t .
(l.t) m+l

nffiO

It should be observedj howeverj that by this definition

12

(Al2b)

L_(x) = (-l)mL_+m(X) (Al2c)

for integral m .

direct definition.

Example:

L5(x ) =

For non-integral m , we must stick to the above

2 3 4 5
X X X X

I 5x+10: - 10rr+sr, ,5'Z J;

2

x 3 3L 3)(x) = - I0 + 5x - _.i = (-I) L2+3(x) •

(AI3)

If in (A9) we make only the substitution

m

y = x2y (AI4)

we find the equation

{d2x -- + (re+l-x) d xdx 4 +n+ Y
dx 2

= 0

referred to in the former Eqs. (2) and (3).

If in the function Y we replace the argument x by x(l+ _t)

(Al4a)

Y((l+_)x) ffiz(x) , (AI5)

we, of course_ obtain the equation

x--+ (re+l-x)d 2 x i)(i+_ Zd-_" (l+_) _+ (n+--
dx 2

= 0 (Al5a)



The normalization factors
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/ e-XL_(x) Ln + m(X) xmdx

o

(AI6)

are most easily found from the integral

/xme-X_(x_ s)_(xj t)dx

o

l-st

Te'X !l-s)(l-t)

= oJ (l-s)m+l(l.t) m+l xmdx

m:

(l.st) m+l

I _/___/Inn= n2 s t

n=o

(Al6a)




