
i

|:

!'

L

3

d

,..,,

I
4

N 53
\

%

THERMIONIC SCREENING OF BODIES IN ATMOSPHERE

AND INTERPLANETARY SPACE

• ' K.P. CHOPRA and C.S. SEEN

•_..... Polytechnic Institute of Brooklyn, .
National Aeronautics and Sp_ce Administratlon

Goddard _Space Flight Center ,

' ' Institute for Space Studies

New York, N.Y.

.%

Received April 5, 1963

/

OTS pRICE

i

4

I

,-• ,•°

/
J

1

/
/



A

-2-

i

ABSTRACT

%

This paper considers problems which accompany thermionic

emission of electrons from a hot body surrounded by a plasma.

In the absence of other mechanisms, an electric potential is

established at the surface of the body through the balance of

the rmionic emission and accretion of electrons from the

external plasma. Analytical solutions are obtained for the

electric potential field and the electron density distribution

around the body. A possible application of this analysis to

objects_in space is indicated.
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I. INTRODUCTION

An object in space may become hot while approaching a

hot stellar body like the sun, or while entering a dense

atmosphere like that of the earth. Long before such metallic

objects melt, evaporate, or ablate, they may acquire temperatures

which are sufficient to cause a copious emission of electrons

from the surface. Therefore, the temperatures lower than, and

in the neighborhood of, the melting point are of interest to

us in this paper. As a matter of convenience and without serious

loss of generality, we will regard iron as a reference' substance

composing the objects in space, and hence consider temperatures

lower than 1600°K. The analytical formulae are, however,

applicable to any other specific case of a Surface capable of

the rmionic emission.
l

Thermionic emission is very sensitive to temperatures; the

emitted e-lectr--on flux is of the order of 1012 and 1018

• 2
electrons/cm -sec at surface temperatures of 1000°K and 1600°K

respectively_ from a material of work function W o = 3 ev. The
¥

0"

emission of electrons from the object's surface leaves a positive

surface charge. A great majority of the emitted electrons

describe ballistic orbits 'and return to the surface, while a

certain number of those in the high energy tail of the energy

spectrum are able to escape from the potential field of the

L
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object. The positive charge at the object's surface is

established by these escaping electrons, and the rate of e_cape

@_ _hQ _mi%_Qd alQu_ron_ deu;_Qa w_h an in.;ease in the

surface potential. Furthermore, if the object is surrounded by

a plasma, the plasma accretion alone has a tendency to impart
'3

a negative charge to the object's surface. Therefore, a steady

potential can be establi&hed at the object's surface when the

net negative charge leaving the object due to thermionic emission

is completely replenished by the net negative charge brought to

the surface by the accretion from the surrounding plasma. The

magnitude of the equilibrium surface potential is then determined

from the balance of the plasma accretion current and the escape

component of the 'thermionic emission current.

There are other mechanisms (Chopra 1961) in which an object

may acquire an electric charge. An effect of considerable interest

is connected with the photoelectric emission and accretion of

electrons. The photoelectric effect is important for objects on

the day side of the earth and for surfaces exposed to the sun.

In certain cases, it is comparable to, and at times may even become
¥

more significant than, the thermionic emission. We will, however,

limit the analysis of the present paper to only thermionic emission

and leave these other considerations for a subsequent paper.

The incoming plasma electron .flux and the thermionic electrons

• i
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constitute a plasma cloud with most of the contribution to the

electron density in the cloud coming from the ballistic component

of the emitted electrons, ff_nis plasma cloud screens the electric

potential on the body. An analytical expression for the density

distribution in terms of potential _o and work function w O is

obtained by solving the equations of Poisson and the conservation

of energy and momentum, iThis analytical expression is substituted

back in the Poisson equation which is then solved numerically to

yield potential distribution as a function of distance from the

surface.

It may be mentioned here that the problem considered in this

paper bears a certain analogy to the !)roblem of the exosphere.

In the exosphere problem, the particles are projected outwards

corresponding to the temperature of the base layer. One of us

(C.S. Shen) has successfully applied (Shen 1963) the present

analysis (after some modifications) to the structure of the

planetary exosphere, and has obtained an analytical expression

for the density distribution.

¥

FORMULATION OF THE PROBLEM - BASIC EQUATIONS

Let us consider a spherical object with an equilibrium

surface potential _o and surface temperature T, surrounded by
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screening charges due to thermionic emission and a rarefied

external plasma with electron density n and ion density ne/Z
e

(where Ze is the ionic charge at a temperature T). When the

thermionic emission is stronger than the plasma accretion and

the object is moving slower than the mean thermal speed of the

plasmi--6_ectrons (_107cm/sec)the pote-ntia-l--_(r)and _he

screening electron density p(r) are, to a first degree of

approximation, spherically slnmmetrical, and are given by

J

v_ _ (r) = e- Co p(r) (1)

-10
where e = 4.8 x I0 _ e.s.u, is the electron charge, eo = 1

is the permitivity of the medium, and r is the radial distance

measured from the center of the spherical body.

The screening electron density p(_) consists of three parts'

p(r) = Pb(r) + Pesc(r) + pp(r)
(2)

i

!

Here Pb(r) is the ballistic component which is due to the electrons

emitted from the surface with velocities less than the escape
v

velocity; these particles describe ballistic orbits in the electric

potential field of the body and return to the surface. The escape

component Pesc(r) is due to the electrons emitted with velocities
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exceeding the escape velocity; these particles do not return

to the charged body. The third component p(r) is due to the

accretion from the surrounding plasma. Among these Pb(r)

contributes about 90 percent to the local electron density (as

can be seen from later calculations). Also, in the steady state

condition, the escape component of the thermionic electron flux

is equal to the incoming plasma accretion flux. Therefore, to

simplify one of our later calculations, we can set Pesc(r) = pp(r).

Assuming that the electrons inside the metallic body have

velocities given by the Fermi distribution law, the number of

electrons having velocities in the range (_, v'+ dv) and hitting

a unit area of the surface (inside) is given by

I 4r_n 3 v v dv dv

j (_) = r _ r t (3)

ha e (E-Ef)/kT+I

where

E = i/2m(Vr2 + v 2)
t

w

v

and m = 9 x l0
-28 -27

g is the electron mass, h = 6.27 x i0 erg/sec

is the Planck's constant, Ef is th_ Fermi energy, and v r and v t

are the components of the velocity v in directions parallel and

_ransverse to the radius vector 5.

If we denote the velocity of the electron at the position
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(r>R), by u(r), then the principles of conservation of energy

i/2m (Ur2+Ut2) -eo (r) = i/2m (.Vr2+Vt 2) -Wo-Ef-e_ o (r)

y
where R l:_ the radius of the body.

Equations (4) and (5) yield

(s)

2 2 R 2 2 2

u = v +(i - r2)V t - -- {e(_o_C_) + Ef + Wo] (6)r r m

which provides a stringent condition for an electron emitted :

from the surface to reach the radial distance r. Only those

electrons with initial velocity 3. satisfying the inequality

2 R2 2 2 {e(¢_ovr + (1 - r2)Vt - m _) +Ef +W o] >0 (7)

can reach position r.

two categories;

i) Ballistic Component:

These electrons may be divided into

These electrons satisfy

Equation (7) and have velocities l_ess than the velocity of escape

such that

i/2mv 2 - W O - Ef < e_o (8)
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and hence describe ballistic orbits.

2) Escape Component: These electrons satisfy Equation (7)

and have velocities equal to or exceeding the velocity of escape

such that

i/2mv 2 - W - E _ e_ (9)
o. f o

and describe escape trajectories.

These classifications are important in the evaluation of

electron density and may be illustrated diagrammatically as

in Figure I. Curves I, II, and III describe equations

2
-%

v + V 2 = (m) _[Ef + W + _-e_o]
(i0)

r t o

v 2 + (i - _2)Vt2 = (2) [Ef + W O + e{_o 0 - _0]] , (ii)
r

and

2 2
v = (_)[Ef + W ] (12)r o '

f

where _ = R/r. These curves represent a circle, an ellipse

and a s_raight line in the same order and distribute the thermionic

electrons in various velocity domains.

The electrons with velocity domains external to the circle " f,

which do not return to the body.

and the straight line - region A -are the escape electrons

The electrons with velocities

/
J

!
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in the domain enclosed by the circle and the ellipse - region B -

belonq to the ballistic group with more than the necessary radial

component of the velocity to reach the position r. These el_ct_ons

are counted twice in calculating the electron density distribution

I

and make a dominant contribution to the local electron population.

_ne electrons corresponding to region C - enclosed by the ellipse

and the straight line - also belong to the ballistic group but

do not possess enough radial velocity to reach position r.

Therefore, these particles do not contribute to the local electron

density. The straight line represents the least value of the

radial velocity that an electron must acquire before it can

surmount the surface barrier. Therefore, the electrons corresponding

to region D in Figure 1 are not able to get out of the surface of

the metallic body.

i=

g

iII. ELECTRON DENSITY AS A FUNCTION OF POTENTIAL

The contribution of the thermionic electrons with the

initial (just inside the surface) velocities in the range

(Q, Q + dQ) to the electron population in a shell of radii r
¥

and r + dr is determined by the product of the corresponding

electron flux J(Q)dv and the time dt = dr/u r spent by these

elecurons in traversing th'e thickness dr of the shell. This

contribution dPth(r) is given "by
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2_ J (Q) d$ (13)dDt h (r) = _

Ur>0 Ur

which with nhe help of Equations (3) and (6) yields the

expression fo'r the thermionic component Pth(r) of the electron

density at position r,

m 3 52
Pth(r) = 4n (_) [2I 1 + 12] , (14)

where

_ v v dv dvr t r t

I1 =j J
tVrr 2+ (i__2) vt2- (2/m) [Ef+Wo+e'(o60) ] 31/2 [e[m (Vr2+Vt 2 )-2zf ]12kT+l.l

Region B (15)

,i

!

and

P_

2 j

v v dv dv
r t r t

1/2 {m (Vr2+Vt2) -2Ef _/2kT+l ]
[Vr2+ (i-_2) vt2- (2/m) {Ef+Wo+e (_o-_) _ [e "

Region A (16)

and the limits of the integrals I]_ and 12 are set in accordance

with Equations (i0) - (12) and Figure i, and the weight factors are

inserted as explained in the preceding section. Including the

contribution of the external plasma, the total electron density p(r)
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at the position r becomes

(r) = Pt'n(r) + p (r) = S_(m/h) 3 2(I 1 + I2 )P
P

(17)

On introducing the following dimensionless parameters

X 2 2/2kT ;
= mv r y2 2/2kT ; ¢ = Ef/kT= mv t

(18)

and

a = [Ef + W + e (_o - _) _/kT
O

Equation (17) reduces to

p (r) = 8u(2mkT) 3/2a2 _ _ XYdXdY

h3 j j [X2+(I__ 2)Y2_a]l/2[ex2+Yz-¢+l]
(19)

<

But,

2 2
X + Y

X2+ (l-e 2) y2-a>0

- ¢ > a - e > WoPnT >> 1

!

and, therefore, we can neglect the unity term in comparison

with the exponent_'al term in the denominator of Equation (19).

¥

Furthermore, on setting

2 (I_ 2)y2 2x + - (%A¢) = z , (20)
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and

(i - 2)1/2 (Y/X) = tan (21)

r-

i

r

in the last equation, and after some simplification, the

expression for the total electron density p(r) reduces to

p (r) = 2 (2rrmkT/h 2) 3/2e-[Wo+e (C_o-_°) ]/kT

1 - {l-(IL/r) 2]i/2e -R2e (°o-O)/kT(r2-R2)_
(22)

which is expressed as a function of the potential o(r) = _.

IV. REDUCED POISSON EQUATION

Substituting for the electron density p(r) from Equation (22)

in the Poisson Equation (i) and introducing the dimensionless

quantities

= e_/kT

and (23)

we obtain

= W/kT
o

! d_/ 2_h = i/2e-(_o-_)_l__l_(R/r)2}l/2e-(_o-_)R2/(r2-R2)_2dr\ A(kT) J
r

(24)
b
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where

A = -2 (e2/¢o) (2wm/h 2) 3/2 e-8 (25)

and the boundary conditions of the problem are

(R) = _o (26)

at r = R, and

atr= _.

(_) = 0 (27)

In some cases of interest to us, we will find that the

equilibrium potential energy e_o is much greater than the thermal

energy kT corresponding to the surface temperature T. This would

then enable us to neglect, to a first approximation, the second

v

term in Equation (24), and hence we have

v 2 9(r) = Be -x (28)

with

1/2
= , - _ . (29)B A(kT) , and X = Vo

Equation (27) is identical to the _o-called isothermal equation

which has been solved for various boundary conditions and applied

extensively to the problems pertaining to stellar structure by

Chandrasekhar (1939)..
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V. DETEP_V_INATIONOF SURFACEPOTENTIAL

The equilibrium value of the surface potential is determined

from the balance of the escape component of the thermionic

emission current and the plasma accretion current. The plasma

accretion current consists of the electron and ion components.

In the absence of a surface potential _o" the ion accretion

current is smaller than the electron accretion current by a

of the order of (me/mi)I/2. Therefore, only the relativefactor

initial magnitudes of the thermionic escape current and the

plasma electron accretion current need be considered, and the

ion accretion current may be neglected. Then, the surface

potential too is positive if the initial thermionic escape current

is greater than the initial electron accretion current. It may,

however, becom e necessary to include ion accretion in consideratio D

of the magnitude of the surfac9 potential _ , if the latter is
o

negative.

Let us first consider the case of a positive surface

potential. Then, the thermionic escape current is given by
V

Jesc = 8_R2 (m/h) 3 f] - [m (Vr2
e

Region A

vrvtdvrdv t

+ v 2) _ 2Ef}/2kTelt

_(30)

J

v
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As mentioned in Section If, the electrons in region A of

:.Igu_.e 1 must have radial and transverse velocity components

such that

and

2

v > (2/m) (El + W )r o

2 2

V r + v t > (2/m) (Ef + Wo + e<°o)

%_nerefore, the expression _or the thermionic escape component

may be rewritten as

$(2/m) (-El÷ w + e®o)o

.. _ vtdv t

Jesc : 8'_R2(m/h) 3k 2 VrdVr_ {m(Vr2 + vt2 ) 2Ef}/2kT+l
e_

JT2_f + w o) '+--e_J_Ef + wo

o0

+ _ VrdV r

v dv

o -{m(Vr 2 + vt2 ) 2Ef}/2kT+
e

_2/m) (Ef + W ° + e_o)

,y

(31)
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Once again we can neglect the unity terms in comparison

with the exponential terms in the denominators of the integrands

in Equation (31). After carrying out the integration and making

so,,_e simplifications, Equation (31) reduces to

Jesc = (4_RkT) 2(m/h 3) (l+_)e-(%0 +8) . (32)

For bodies moving slower than the mean thermal speed of

the plasma electrons, the electron accretion is symmetrical

about the bo_y, and is given by

2_ (T/Tp) 4o (33)Je - 3 _eneVeR2e

when n e and v are the nmmber density and the mean thermale

speed of the plasma electrons, and _e is the sticking coefficient

defined as the fraction of the incident electrons transferring

their charge to the body. In estimating the plasma accretion

current J we further note that the ion accretion is further
P

- (T/Tp) 4oreduced by a factor e and becomes negligibly small as

compared to the electron accretion. Hence,

• (T/Tp)
j 2_ _eneV4R 2 %0J

p e - 3 e
(34)

which, when combined with Equation (32) in the condition of

e_uiiibri_m,
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J = J , (35)
esc p

r-

yields

[I + T/Tp]_o 24._m e (kT) 2 -@
e = e = 6 x 1029 T2e-8 (36)

1 + _0 _eneVe h3 _neVe

where T is expressed in electron volts.

TZ_. on the other hand, the surface potential _o is neqative,

the ion accretion current is enhanced by a factor of el _T/Tp )
f /

I.

With I_O1 larger than a few tenths of an electron volt, the

enhancement factor e l_,ol may be large enough to counteract the

1/2
effect of the reduction factor (me/m i) so that the ion current

_ay by no means be negligible. In these circumstances, we must

include the term

J = (2n/3) n v R 2 e-(T/Tp ) 9o (37)
i qiZi i i

in calculation of J
P

In writing Equation (37) we have assumed

that the ion accretion is also sy_netrical about the body. If,

however, the speed of the body exceeds the mean thermal speed

of the plasma ions by an order of _raagnitude, the ion accretion

current (Equation (37)) is reduced by a factor of 1/2. The

corresponding electron accretion current is given by
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_eneVeR2e (T/Tp) 9o (3S)

• %

v

Therefore. the expression for the plasma accretion current ,

reduces to

Jp = Je -Ji = (2_/3)R2neVetrnee (T/Tp) 9o-,_li(m e/mi )l/2e-(T/Tp) _o] -

(39)

In the calculation of the thermionic escape current we

ma!" first remark that the negative surface potential in our

problem is only a fraction of a volt. It may also be noted that

a negative surface potential, however small, enables all the

emitted electrons to escape. Hence, the thermionic escape

current is approximately given by

Jesc = (4_RkT) 2 (m/h 3) e "A o (40)

Finally, in the condition of equilibrium (Equation (35))

Equations (39) and (40) yield

_qe e (T/Tp) _o -°qi (me/mi) i/2e- (T/Tp) _o 24n (me/h3n (kT) 2e- @. = eVe )

f
I
i

• !

,i

1029 (T 2 _" _@
-_ 6 x /neVe)e (41)

,d-
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VI. DISCUSSION

In the preceding sections, we have formulated and analyzed

the problem of the screening of the electric potential on a hot

- op3ec_ surrounded by an external plasma. It is assumed

that l) the spherical body acquires the electric potential in the

processes of the thermionic emission of electrons from the surface

of _he object and the accretion of the charged particles from the

surrounding plasma, and 2) the surface potential and the

distribution of the potential and the electron density in the

screening cloud are spherically sy_metrical about the object. The

basic requirement tO satisfy these assumptions are that i) the

surface of the spherical object is at a uniform temperature and

ii) the object is either at rest or it moves with a speed that is

•small compared to the mean thermal speed of the plasma electrons.

These requirements set restrictions on the exact application of

the results of the present analysis to actual objects in space.

The present analysis, nevertheless, provides, even in such cases

where the above-mentioned assumptions do not strictly hold, at

least an order of magnitude estimate of this phenomenon in front

of the hottest part of the object.

The applications of our analysis may be found in objects

• t
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entering a planetary atmosphere or those approaching sufficiently

close to a hot star. A space vehicle entering the earth's

atmosphere encounters siagnation temperatures of the order of 1500°}(.

o
_z_ _,_eo:'ie objects acquire surface temperatures above 1200 K.

__onization in front of the cometary heads and certain cometary

nails which is not understood as well, may be attributed in part

to the _olar heating of the metallic content of these objects.

in general, the surface temperatures of the above-mentioned classes

of objects are not uniform. Due to the variety of the types of

such objects and uncertain available data, we will not make any

attempt to apply our analysis to any specific case of the above-

mentionec space objects. Instead, we will illustrate our theory

by considering a hypothetical _pherical object heated to a uniform

surface temperature and surrounded by a plasma of electron density

l03/cm3n _ at the equilibrium plasma temperature T -- 1000°K (0.09 ev)--"
e P

_h_o values of the work function and five values of the surface

_emperature, viz.,

and

W "= 3.0 and 3.8 (electron volts)
o

¥

T = 0.02_, 0.06, 0.09, 0.13 and 0.15 (electron volts)

are considered to illustrate the influence of these parameters
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on the nature of the electron cloud around a hot object. A

common value of _'e = _i = 0.I is adopted for the sticking

coefficients. Since these surface-plasma parameters appear in

a lo_a;_it?Jaic term, any departure from this value for the

s_xlng coefficients is not likely to seriously affect our

result.

TI._ equilibrium value" of the surface potential _o is

determined by the surface temperature T, the electron density

n e, and tem_perature Tp of the surrounding plasma. At low values

of T, thermionic emission of electrons is small, and hence, the

b_-_-_nce of the electron and ion accretion currents from the

surrounding plasma establishes a negative potential _o on the

object's surface. The numerical value of _o is always a fraction

(_ 0.05) of a volt because even _xls small value of _o is large

enough to increase substantially the ion accretion current and

reduce the electron accretion current to off-set the relative

i/2

effect of the factor (me/mi)_

Table i

SU_ACE POTENTIAL OF AvMETALLIC BODY

!044°K 03
W ° = 3.8ev Tp = 0.09ev( ) n e = 1 /c.c _ = 0.i

T(ev) cQo(volt)
0.04 -0.1691

0.06 -0.1688

0.09 +0.0963

0.il" +0.4895?

0.13 +0.8430

0.15 +1.1340



-23-

At high values of T, on the other hand, a positive surface

_o_en_lal of several volts is established by the balance of

the there, ionic-emission and the electron-accretion currents;

_e ion-accretion current having been reduced to a negligible

value by the joint action of the positive potential and the

factor (me/mi)1/2 Table 1 lists values of _o corresponding

to the several values of W and T.
• O

Equation (24) can be reduced to a dimensionless

differential equation,

x2! _xd (x2 _) = AR2 (_<T)l/2e- (_o-_)[!-(l-X-2)2_I/2je- (_°-_)/<X2-1)
(42)

'" r
where X =--. The variation of potential with distance from the

R

spherical hot body of !-cm radius is calculated by solving

Equation (42), and the results are illustrated in Figures 2 and: 3.

The two curves representing the inclusion and the exclusion of

the second term inside the parenthesis of Equation (42) for the set

of parameters T = 0.09 ev, W = 3 ev and _o 5.43 are shown in
O

Figure 2, while Figure 3 exhibits the profile of the potential

distribution, with the inclusion qf the second term in Equation (42)

in the numerical calculations, for the two sets of parameters:

i) T = 0.13 ev; W = 9.8 ev; and 9o = 6.5,
O
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] i

<

anQ

' =4.0. ii) T = 0.11 ev; Wo = 3.8 ev; and _o

respectively. The variation of potential with distance has

the following characteristics:

l) The nature of the p_ozlle_:-" of the potential distribution

curve is independent of the set of the parameters used. The

w

potential falls ve_] rapidly with distance from the object,

and reduces to 1/3 of its surface value at a distance of

approximately 2.3 and 1.7 cm in Figures 2 and 3 respectively.

At a distance of about 8-10 cm the potential acquires an almost

zero value and the surface potential of the body is completely

shielded by an electron cloud of this dimension.

2) The inclusion or the disregard of the second term inside

the parenthesis of Equation (42) does not seem to matter in the

calculation of the potential distribution. It is apparently due

to the very rapid decrease of potential with distance from the

object _;hich reduces this term to a second order of exponential

in ._ - 4o thereby "making it negligible in comparison zo the

first term. _

The e!ec_ron density in the electron cloud surrounding the

body is ca_cuiated from Equation (22) by substituting in it the

values of the potential distribution obtained from the solution
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m,:u_uion (42) The results of this computation are given in

_i9"ures 4 and 5. Figure 4, like Figure 2, includes two curves,

one of these corresponds to the inclusion of the second term

inside the paten _m_ -,_,_s_s of Equation (22) while the other disregards

this term. The set of parameters used in the computation of

. ; = 5.43.these cuwves have the value T = 0 09 ev W = 3 ev; _oo

The den _ _-._y distribution curve in Figure 5 as in Figure 3,

corresponds to the sets of parameters having values

and

i) T = 0.09 ev; W
o

ii) T = 0.13 ev; W
o

' = 5.43
= 3 ev; _o

= 0.38 ev; _o = 6.5

and the numerical calculations are based on the inclusion of

the second term in Equation (22). These curves bring out the

following features of the variation of the electron density

with distance from the object:

l) There is a considerable increase of electron density

in the ira,mediate vicinity of the body.

2) The electron density decreases very rapidly with

distance from the body.

3) Unlike /J] the estimates of the potential distribution,

the _'- _ -.,,c=u_ion or exclusion of the second term within the

9=__ .....eses Equation (22) in the computations of the electron

/
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densizy appears to make a substantial difference in these

estimates (see Figure 4). The neglect of this term yields a

value for the electron density at great distances which is

higher than the ambient value. Therefore, it is necessary to

consider this term in order to arrive at the correct estimates

of the electron density.

We w&sh to thank Dr. J. Herring for helpful discussions

and Dr. H. Zapolsky for his helpful com_ments on some

mathematical aspects of the analysis.
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CAPTIQNS TO FIGURES

=.=Cure 1 - Curves Z, il and iZi are t_.e plots of v r and v t in

6_cco_-ci¢_nce w_on the Equations (12), (13) and (!4) respectively,

and defir_e therveiocity domains of the thermionic electrons.

Electrons _ _ "_ _ "----_-n ao._&_n A rorT,l uhe e scape-gro_fp]--whereas tZose in

domaf _ B and C describe ballistic orbits with sufficient and

"" respectively to reach position r.insufficient energles

Figure 2 - Plots of _(r) against r/R.

and _o 5.43.) Solid line =

(W
O

= 3ev; T = 0.09ev;

72 _ A(kT)!/2[l_{l_(._/r)2]l/2 2/ 2 2
= exp(_-{o) F (r -R )]exp(9-9o).

Dotted line = 72,_ = A(kT) I/2 exp (¢....)._o

"_ '-_ ' = 6.50.
=igU_ 3 - Solid line = W = 3.8ev; T = 0.13ev; _oO

-+_ = 4.45.mo_a line = W = 3,8ev; T = 0.!lev; ._oO

z

_-igur_ 4 - (Wo = 3ev; T - 0.09ev; and ,'_o= 5.43 )
Plots of

iog_ 0(r) against r/R. Solid line =

__ ' 1%"

p AFI-[I- (R/r) 2]i/2exp(,_-{o)R2/(r2-R2) ]exp (¢'-_o) .

Dotted line: - p = A exp(9-_o).

Figure 5 - Solid line = W = 3.Sev; T = 0.13 3v; and 9o 6.50.
0

D_t-aed line = W = Sev; T = 0.09ev; and 9o_ = 5.43. __
O
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