- ‘ 4 29
ms < d. &
MTP -AERQ-62- W
April 16, 1962 ’
N63 20193

| 5/74 - dope/

 crorge cOOVEINY 5 Ak

FLIGHT
CENTER

HUNTSVILLE, ALABAMA

i A THEORETICAL INVESTIGATION OF THE EFFECTS OF
‘ THE CONFIGURATIVE DESIGN OF A SPACE VEHICLE ON
| ITS STRUCTURAL BENDING FREQUENCIES AND AERO-

? DYNAMIC STABILITY

By

Nathan L. Beard

OTS PRICE

XEROX s jé/&
MICROFILM § /’3




GEORGE C. MARSHALL SPACE FLIGHT CENTER

MTP-AERO-62-35

A THEORETICAL INVESTIGATION OF THE EFFECTS OF

THE CONFIGURATIVE DESIGN OF A SPACE VEHICLE ON

ITS STRUCTURAL BENDING FREQUENCIES AND AERO-
DYNAMIC STABILITY

By Nathan L.. Beard
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Six space vehicle configurations are investigated to determine
their relative merits as pertaining to rigid body control characteristics
and structural bending frequencies. Rigid body theory was used to
illustrate the factors which govern the stability of a vehicle in flight.
The aerodynamic moment coefficient (Cl)’ which is one of these factors,
was determined from slender body theory. The thrust moment co-
efficient (C,) was determined for each vehicle and the ratio C,/Cy was
chosen as the control-stability parameter to be used in the comparison
of the vehicles. The bending frequency parameter chosen was fn/ 1l -
It was observed that long slender vehicles exhibit better control charac-
teristics than short vehicles with small length-to-diameter ratios, but
the short vehicles, in turn, have higher bending frequencies. For conical,
single-diameter cylindrical, and dual-diameter cylindrical vehicles with
the same approximate length, the conical vehicle exhibits better bending
and control characteristics than the other two, while the single-diameter
cylindrical is better than the dual-diameter cylindrical vehicle.

An arbitrary equation was developed for the weighted diameter,
Dy, of the vehicles, and a vehicle shape parameter was chosen. This
parameter varies nearly linearly with the structural bending frequencies
of the vehicles.
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DEFINITION OF SYMBOLS

radius of propellant,

height of propellant in tank,

gaiﬁ factor of attitude channel.

coefficient of control damping.

thrust of engine.

effective moment of inertia of total vehicle about its C.G.
radius of gyration of vehicle about C.G.
mass of vehicle.

coordinate of swivel point.

coordinate of center of instantaneous rotation.
bending frequency of the nth mode.
aerodynamic restoring moment coefficient.
thrust moment coefficient.

center of pressure.

angle of attack at C.G.

deflection of swivel engine relative to center line of vehicle.
dynamic pressure,

diameter of vehicle airframe.

diameter of base of vehicle

D/Do

normal lift coefficient.

length of vehicle.

average thickness of skin of vehicle.

weighted diameter of vehicle.

length of nth section of vehicle.

stiffness of vehicle.

mass distribution,
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SUMMARY

A vibration analysis of six space vehicle configurations was
conducted to determine the first three bending modes and their cor-
responding frequencies, Rigid body theory was used to illustrate the
factors which govern the stability of a vehicle in flight., The aerodynamic
moment coefficient (C;), which is one of these factors, was determined
from slender body theory. The thrust moment coefficient (C,) was
determined for each vehicle and the ratio C,/C;| was chosen as the
control-stability parameter to be used in the comparison of the vehicles.
The bending frequency parameter chosen was f/ ‘Cll .

It was found that vehicles with large L/D ratios exhibited higher
CZ/Cl values, or better control characteristics than vehicles with
small L./D ratios; but the short vehicles, in turn, have higher bending
frequencies. For conical, single-diameter cylindrical, and dual-
diameter cylindrical vehicles with the same approximate length, the
conical vehicle exhibits more favorable bending and control char-
acteristics than the other two, while the single-diameter cylindrical
is better than the dual-diameter cylindrical vehicle.

An arbitrary equation was developed for the weighted diameter,
Dy, of the vehicles, and a vehicle shape parameter was chosen. This
parameter varies nearly linearly with the structural bending frequencies
of the vehicles.



I. INTRODUCTION

This investigation was conducted primarily for the purpose of
obtaining information relative to the configurative design of space
vehicles with emphasis placed on obtaining larger structural bending
frequencies. It is desirable for space vehicles to have large natural
bending frequencies from the stability point of view. For instance,
when the first bending mode frequency is approximately the same as
the control or fuel sloshing frequencies, interaction between their
vibrational modes can bring about control saturation and possibly the
destruction of the vehicle; therefore, it becomes necessary to vary
certain parameters to provide a frequency gap between these modes.
The control frequency may be varied by the slection of different gain
factors agy, aj, by, and gy in the control circuit, which are functions
of time only, while the sloshing frequency can be varied by the proper
choice of the tank form and the height-to-radius ratio, h/a, where h
is the height of the fuel in the tanks. With these considerations in
mind, it is evident that the space vehicle with the higher first mode
natural bending frequency offers a more expanded or wider range from
which to choose the gain factors and h/a parameter.

The stability of a vehicle from the aerodynamic point of view
depends upon the magnitude and sign of CZ/CI' The more positive this
ratio the better is the stability of the vehicle. The thrust moment
coefficient, generally, is positive; however, when the center of pressure
is forward of the center of gravity of the vehicle, C| is negative. This
indicates that a destabilizing moment acts about the center of gravity of
the vehicle,

The following analysis of six different vehicle configurations
shows their favorable and unfavorable qualities pertaining to the
parameters mentioned above.




II. DESCRIPTION

Six vehicle configurations were considered in this analysis. Five
of these were chosen as reasonable designs for space vehicles, while
the Saturn C-1 was selected as the standard in this study. Configura-
tions 2, 3, and 5 were chosen with the same base diameter and approx-
imate length; however, the overall shape of each was varied to determine
the effects this would have on the aerodynamic stability and the structural
bending frequencies. One large L/D and one small L/D vehicle was
chosen (Vehicles 1 and 4) to contrast the stability and bending char-
acteristics. The Saturn C-1 was chosen, as configuration 0, to be
compared with the other five since it had at least one characteristic
of each vehicle. Each of the vehicles was idealized as follows:

1. The vehicles empty weight was derived only from the
structural weight of its skin,

2. The skin thickness of each’vehicle was assumed to be
constant throughout its length.

3. All of the vehicles were assumed to be constructed from
an aluminum alloy with a density of 0, 0975 pounds per
cubic inch.,

4. The length, diameter, and thickness of the five vehicles
chosen as reasonable designs were determined so as to
provide a structural weight and internal capacity equal to
that of the Saturn vehicle C-1.

5. The nose cones were given a slope identical to that of the
Saturn Vehicle (15°, half vertex angle).

6. Each vehicle was filled completely with water to simulate
fuel.

Hereafter the Saturn vehicle will be referred to as model number .
0 while the other five configurations will be referred to as model numbers
1, 2, 3, 4, and 5. These configurations are shown in Figure 2.

Since the internal volume and structural weight of each vehicle
was to be identical to that of vehicle number 0, their length and thickness
could be easily calculated from the equations for the volume and surface
areas of a cone and cylinder. This data is given in Table I.



Next, the mass distributions, empty and full were plotted as
shown in Figures 11 through 16. By using a modified Stodola method
(c. f. Reference 3) in conjunction with the IBM 7090 computer, the
following data were obtained: .

1. The deflection curves for the first three bending modes,

2. The natural bending frequencies corresponding to each of
these modes.

3. The center of gravity of the missile.

4. The mass moment of inertia about the center of gravity,

5. The total mass of the missile,

First, the three bending miodes were plotted as shown in Figures

2 through 7. The center of instantaneous rotation for each vehicle was
determined from the relation:

A T 7 T . )

where k is the radius of gyration about the vehicle's C. G. and its
square is equal to the mass moment of inertia about the center of
gravity, IC. G. > divided by the total mass, m. The distance from the
center of gravity of the vehicle to the swivel point of the engines is
denoted by )_(E.




The center of pressure, CP, is given by the relation:

2 . -

jl-_L ANX dx
Cp = "2
-L- .
22X & (2)
2
i)
where )\ = ]—)--?-[— and D(x) is the diameter of the vé'h.icle as a
o

function of x. The diameter at the base of the vehicle is denoted by Do.

The normal lift coefficient, N!', was obtained from the relation:

2 L 318 2
N = WqDofz A ): dx = —-1 D, (3)
L
2

where q is the dynamic pressure.

The aerodynamic restoring moment coefficient, Cl’ was calculated
from the relationz?

pZ L

ma N

Cl = -—-—I—-—(?—- '[L XX xdx.. (4)
C.G. -3

The thrust moment coefficient, C., was obtained from the

following equation:

5T

2 ICG.

where F is the thrust of the swivel engines. Equations 2 through 5
were obtained from Reference 2.

2

Cc (5)



For rigid body control, the equation of motion for the rotation
of a space vehicle may be written as (c.f. Reference 1)

'\P+ Cla + C,B8 = 0 (6)

providing translation and sloshing are not present, Assuming no
wind, o = ; therefore,

({: 5 Ci""* C,B = 0. (7)

The simplified control equation can be written as:

B = ao\p+ al-~v . (8)

Substituting equation (8) into (7)

\P+ C2a1~p +[C1 + Cza;[Ho = 0 ., (N

It is evident from equation (9) that, for C, negative, the
stability of the vehicle is decreased; however, as long as C| + C, is
positive, stability is insured providing C,a ;¥ 0. Since C, is always
positive, a; must be positive also for stability., For the vehicles
studied in this investigation, all values of C, are negative. This
indicates that the normal lift force, N', acts at a point forward to the
total C. G. of the vehicle and produces a nose-up or destabilizing m
moment. The fact that the Cp is located forward of the total vehicle
C.G. is due to the truncated cone and nose cone surfaces which are
also forward of the C.G. of each vehicle. This aerodynamic instability
can, however, be eliminated by using engines which can be gimballed
to produce a stabilizing moment about the vehicle's C. G. The thrust
moment coefficient C), then, is a measure of this stabilizing moment
as defined by equation (5).




It can be seen that CZ/Cl is an indication of the aerodynamic
stability of the vehicle. The greater C, and the smaller Ci, the more
stable the vehicle. To eliminate negative values of the parameter
C,/Cy; the absolute value to C; will be used as shown in Figure 1.

Also, the first bending mode frequency divided by the square root of

the absolute value of C; is graphed in Figure 1. Since large bending
frequencies are desirable from the control and sloshing point of view

and since a small value for C; is desirable, the vehicle with the larger
fll,‘l ‘Cl‘ is the more desirable vehicle, structurally and aerodynamically.
As a matter of interest, an arbitrary shape parameter (D,\?v —i—) was
chosen in an effort to linearize the natural structural bending frequencies.
This parameter is plotted against bending frequencies in Figure 4, The
weighted diameter of the vehicle, DW, was obtained from equation (10):

D 1 D 1 (D1+D2) 1 D 1

_ 1 2 1 2 3 n n
D = —% + Tt 5 T Feees T
(10)
D 1 (D. + D)
1 1 2 1 2
= 1 > + Dl 12 + — 13 +... Dn 1n

D)y
where —— is the average diameter of the nose cone, 1, is the length

of the cone, 1, is the length of the section of vehicle behind the nose
cone where D) is constant, etc. Figure 4 enables anyone to determine
the first three bending frequencies for any vehicle merely be calculating
the ng parameter; however, the weight and internal volume of the
vehicle must be the same as the Saturn used in this report.

To determine C , C_, and N', the maximum dyanmic pressure
for the C-1 trajectory was used, which is

. 2
Drax = 6.54 1lbs/in

The thrust from the swivel engines was

F = 4(188,000) = 752,000 - lbs
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‘'The following table contains the data relevant to this investigation:

TABLE I

Bending énd Aerodynamic Stability Data
Variables* | Vehicle | Vehicle |Vehicle vehicle Vehicle | Vehicle
0 1 2 3 4 5
£1 1.237 2.642 0.595 0.308 0.068 0.588
£, 2.806 5.540 1.498 0.956 0.186 1.533
f, 4.981 8.409 2.711 | 2.05 0.361 2.790
X -385.4 | -284.0 | -595.7 | -732.5 | -1149.6 | -500.0
Xy 335.7 151.8 454.9 600.9 ; 54.7 213.0
m 7160 7101 7084 | 7165 E 7150 7100
t 0.210 0.231 0.179 | 0.126 | 0.113 0.172
L 2220 1730 2940 | 3096 6798 3000
ICGX10'9 1.86078 | 1.23674 |3.88292 |4.44662 126.66419 | 4.5716
Cp -655.6 | -700.5 | -401.0 | -481.0 -3308 -1393
N 694,100 | 694,100 | 694,100 |694,100 | 147,856 | 362,133
X 674.3 613.3 920.1 847.1 | 3244.3 1287
Cy -0.232 | -0.394 |-0.0717 |-0.0752 | -0.0184 | -0.108
C,y 0.273 0.373 0.178 0.143 0.915 0.211
¢,/ ¢ 1.174 0.946 2.486 1.906 | 49.628 1.955
f>(/TEIT 2.566 | 4.207 2.220 1.124 | 0,500 1.789
X g /L -0.1736 | -0.1642 |-0.2026 |-0.2366 . -0.1691 | -0.1667
D, 195 225 172 162 [ 116 177
Dt 701 1521 310 173 ! 26 320
£ , |

P

]
*Units are in the inch-pound-second system.
XIR and C, are measured from the C.G.

of the wvehicle.




The node points for the first bending mode of each missile are

given in Table II below.

The location of each point is measured in

per cent of total vehicle length aft of the nose. Figures 2 and 3 present
the vehicle configurations in order of magnitude of their bending
frequencies and aerodynamic stability decreasing and increasing,

respectively.
TABLE II
NODE LOCATIONS

VEHICLE l1st NODE 2nd NODE

0 29. 7% 79. 7%

1 35.5% 80.9%

2 30. 6% 83.0%
3 27. 6% 83.2%

4 23. 8% 77.6%

5 28. 3% 78. 8%

TYPICAL FIRST BENDING MODE SHAPE

Yl(X)

1.0 “~

~

< lst NODE
~—~a

—
P - X
»>

NOSE

—
~ -
T e

o—

 _ _ — —— " 2nd NODE
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I11, CONCLUSIONS

The graph of C3/|Cy| shown in Figure 1 indicates that this
control-stability parameter increases rapidly after the vehicle length
exceeds 3500 inches. This can be explained by the fact that each of
the vehicles investigated has the same internal volume;therefore, its
diameter decreases with an increase in length. This length increase
decreases the normal lift force acting on the nose cone in proportion to
the decrease in the square of base diameter of the vehicle. This causes
C| to decreas~ but at the same X_ has become larger, thereby tending
to increase C). However, Xg has been increased proportionally to the
increase in X_. It should be stated that this is true only for single
diamete_r vehicles such as numbers 1, 4, and 5. Since )_(E occurs in
C, and Xp in Cy, these two effects cancel and result in C,/ ]Cll
increasing at an exponential rate.

Although it is desirable for a vehicle to have its first bending
mode frequency above the control and sloshing frequencies, which can
be achieved with short vehicles, it is also necessary that any aerodynamic
instabilities be controlled by swivel engines. The graph of fl/ “Cll
(Figure 1) illustrates the variation of this parameter with vehicle length
and allows one to choose, when compared with the CZ/ ]C,| parameter,
some compromise design between maximum bending frequency-minimum
stability, and maximum stability-minimum bending frequency. Vehicles
l and 4 are the extreme cases investigated here. For conical, single-
diameter cylindrical, and dual-diameter cylindrical vehicles with the
same approximate lengths, e. g., vehicles 2, 5, and 3,respectively, the
conical vehicle exhibits more favorable bending and control characteristics
than the other two, while the single-diameter cylindrical is better than
the dual-diameter cylindrical vehicle.

Figure 4 illustrates the variation of the first three bending modes
of each vehicle with the shape parameter, D\?v t . A linear relationship
exists for the first mode for all values of shaplé parameter while the
second mode is linear only for values of D t greater than 400, The
third mode is nearly linear for D\?vi greated~than 500. The bending
frequencies obtained for each vehicle are lower than those of an actual
vehicle designed to the length and diameters specified in this report.
This is due mainly to the way that the EI and mass distributions were
obtained (see Description). The bending frequency of vehicle number

zero is about 70 per cent of the actual frequency of SA-1 at lift-off.
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It has been found that,when the propellant sloshing mass is
located between the center of gravity and the center of instantaneous
rotation of a vehicle, its stability is endangered; therefore, it is
desirable to have these two positions located as close to each other
as possible. Generally, the sloshing mass will be located aft of the
vehicle center of gravity for first stage flight time and the center of
instantaneous rotation forward of the C. G. From Table I it is seen
that the more stable vehicles from this standpoint are, in descending
order: 1, 5, 4, 0, 2, and 3. This is evidenced by the magnitude of
}EIR/L. In general, the smaller this value, the less the probability
that an instability will occur due to sloshing, provided that the vehicle
has only one sloshing mass, i. e., that sloshing masses of all other
tanks are small in comparison to this one. It is also necessary that
the sloshing masses be equal in each vehicle for the above statements
to be true, which is not the case in the actual vehicle. For the small
diameter vehicles, the sloshing mass is small, while for vehicles with
large diameters the sloshing mass is dangerously large.
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APPENDIX A

The first three bending mode deflection curves for each
vehicle are given in this appendix,
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APPENDIX B

The mass distributions both empty and full for each
configuration are contained in this appendix.
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