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ABSTRACT

A three-region static _(F) curve is calculated from two empirical

hyperbolic functions that use five material parameters; very close agree-

ment with experimental data is obtained in a practical range of applica-

tion. After the limitations of a leg model are pointed out, the

inelastic-switching parameter p of a tapered leg is calculated as a

function of material properties, geometry, and flux level; this param-

eter is useful for practical multipath cores whose legs usually vary in

width. Based on a parabolic model for p(_), average p of a constant-

width leg and a tapered leg are calculated and plotted vs. flux change;

these plots are applicable to circuits involving partial or full switch-

ing. Flux-division ratio D between two legs in parallel vs. MMF drive

NI, applied to a third leg in series, is calculated in terms of leg

parameters for a general case, and then s_mplified to special cases,

e.g., unloaded core, or NI _ _. For relatively low NI, leg parameters

are improved by considering the nonlinearity of the function peak _ vs.

F. For relatively high NI, the effect of leg dimensions on D is ex-

pressed more directly. In view of tile complexity of the analysis, the

agreement with experimental data, especially in the no-load case, is

quite good. Experiments were also performed in order to study flux

division in a nonsaturable core. Modification of the parabolic switch-

ing model to account for variation of the dynamic threshold with flux

for low MMF results in closer agreement with experimental _(¢) data.

Problems in dete,rm_nation of leg dimensions are discussed relative to

two cores that were designed for flux-division experiments. A new model

is proposed for tile process of slow flux switching in a core having a

re-entrant shape. Laboratory techniques for determination of switching

parameters are presented, and examples are given. The unsetting effect

is measured as a function of applied MMF; the results are in full agree-

ment with the qualitative analysis in a previous report.
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PREFACE

This is the second report on flux switching in multipath cores. In

the first report, all available published and unpublished material re-

lated to this subject was organized and evaluated, and new material was

added. Conclusions were drawn about areas that needed further investi-

gation. An attempt is made here to fill some of these gaps. Since this

report is a direct continuation of the first report, reference toHeport 1

is made frequently in order to save space. The reader is advised to

have Report 1 on hand; otherwise the chain of reasoning in many occasions

will be hard (or even impossible) to follow.

The material in this report is divided into two sections: The first

section contains theoretical calculations; the second section covers

mainly experimentation and discussion of measured data versus the cor-

responding theory. It is recognized that in some cases this division

of a topic may be a nuisance. However, since part of the material in

Sec. I has not yet been verified experimentally, and since part of the

material in Sec. II stands alone and part is related to a theory devel-

oped in Report 1, this classification was chosen.

All equations are written in the MKS system of units. However, the

numerical values of some quantities are given in other metric units for

convenience as to their size. In most of these cases, only a decimal

change is required to convert to MKS units. For example, flux values

are given in CGS maxwells, which can be converted to MKS webers by mul-

tiplying by 10 -e wb/maxwell.

Section I is divided into four parts. Parts A, B, and C deal with

leg models and switching parameters and are intended to improve and

extend our analytical tools in dealing with flux switching in multipath

cores. In Part A, realistic functions for static ¢(F) are calculated.

In Part B, the concept of a leg model is extended to a variable-width

leg and the inelastic-switching parameter p of a tapered leg is calcu-

lated. In Part C, calculation of average p, which was developed in

xix



Report 1 only for A@. = 2¢r, is extended to the case where _¢may vary

continuously from zera to 2¢ r. Part D contains analytical calculation

of the flux-division phenomenon that was described in Beport 1 with no

explanation. Due to the lack of switching models of a leg in a partially-

switched state, a saturable core (e.g., a shaped MAD), rather than a

nonsaturable core (e.g., the Laddlc) is assumed. Part D is by far the

most significant part of Sec. I.

Section II is divided into five parts. In Part A, material prop-

erties are of concern, and since these properties can be best measured

by testing a toroidal core, all the experiments in Part A are performed

on a toroid. In Part B, interest is focused on the geometrical properties

of a leg and, in particular, on how to divide a multipath core into legs

and how to determine the leg dimensions in doubtful cases, such as when

the division into legs depends on where NI is applied, or when the

switching path does not follow the leg contour. Part C contains test

procedure and laboratory techniques for measurement of leg parameters,

which are affected by both the material properties and the geometrical

properties. In Part D, flux division in a nonsaturable core is studied

experimentally; experimentation and machine computation of flux division

in a saturable core are described and compared. _ Finally, in Part E, the

unsetting effect, which was described in Beport 1, is verified experi-

mentally.



I CALCULATIONS

The objective of this section is twofold. In Parts A, B, and C, we

shall extend our analytical tools by calculating the following: a real-

istic static _(F) curve, ineiastic-swltching parameter p of a tapered

leg, and average p for partial or full flux switching of a constant-width

leg and a tapered leg. In Part D, we shall employ the parabolic model

for p to analyze flux division in a saturable core.

A. MODELS FOR STATIC ¢(F) CURVE

In a previous report 1. (hereinafter referred toas Report 1), vari-

ous models for the static relation between B and H were described. One

of these models [Beport 1, Fig. 4(b)ili, p. 4] approximates this relation

by straight lines, which are horizontal in saturation and sloping between

saturation levels. Based on this model, the static ¢(F) t curve of a

toroidal core was calculated by integrating B from r = r i to r = r o (cf.

Report 1, pp. 36-39). We would first like to extend this calculation

to a constant-width leg (cf. Report l, p. 18). The drawback of this

model stems from the assumption that B(H) is piecewise linear, when in

fact B(H) is nonlinear. Our main objective is to calculate ¢(F) from a

more realistic B(H) function.

I. ¢(F) BASED ON Pxzczwls_ LI_ZARIZZD B(H)

The piecewise linearized B(H) curve between saturation levels

[Fig. 4(b)ili, Report I, p. 4] for H max _H _H ®in is described by

2B r

B = -B r + (H - H "in ) (I)
Hm.x - Hmin

References are listed on p. 153.

The term'q_-F" in Report 1 ig replaced by the term"_b(F) N in order to emphasize that _ is s function

of F. Similarly, "BOT) H will be used instead of"B-H, m The difference between the terms ststic"curve"

and static "loop" in trivial. A static "curve" i8 a portion of s atatic"Ioop," end is obtained by

vnryin$ H (or F) in one direction, so that no hysteresis is recorded. The term"_oF curve n in Report l

(cf. p. 45) stands for resldusl (or peak, if so specified) flux. Thia will be preceded by"T-microsecond,"

e.g., "20-/_aec qb(F) curve. °



Consider a leg such as shown in Fig. ]9 of Report I (p. 18) of constant

width _, height h, angle a and edge lengths Ii and lo' and assume that

an MMF F is applied along the leg. At a radial distance x from the

inner edge,

F
H - -- (2)

l

where, following Eq. (26) of Report 1 (p. 18),

_o -- li

l = Ii + ax = Ii + .x (3)
W

Substituting Eqs. (2) and (3) into Eq. (1), we obtain the relation

where

and

_I -- m t tB(F,x) (4)
F:., _ F:in a 2

J

] +_x
£_

Fmini = Hmin/i ' (5)

F_°x, - Hm°Xl_ (6)

The ¢(F) curve is obtained by integrating B(F,x) over the leg cross

section, i.e.,

dp = h f" B(F,x)dx (7)
0

The flux state in each of the five segments (Fig. 39, Report 1,

• H max is shown in Fig. I. The bound-p 38) for the case where IoH min < Ii

aries corresponding to each segment are indicated by dashed lines. In-

tegrating Eq. (7) over these boundaries, we get the same relations between

¢ and F as expressed by Eqs. (57) through (62) of Report 1 (p. 39), except

that 2_r i and 2_r ° are replaced by l_ and lo, so that F mln and F m_xi i are

as given in Eqs. (5) and (6),



and

L i

lo

= u

l i

hB l i

_max _ Fmin 0_
i i

(8)

(9)

+B,

0
X W

wBt i i -B,

/q_ t

-B,

_\ Eq,(4)

X W

\

| _.
0 _

X W

-B r

_o) SEGMENT I (b) SEGMENT 2 (c) SEGMENT :5 (d) SEGMENT 4 (e) SEGMENT 5
It I - ]1_- IQO

FIG. I STATIC FLUX STATES FORLINEARIZEDB(H) MODEL

2. @(F) BASED ON HYPEBBOLIC MODELS FOR B(H)

A hyperbolic model for B(H) in negative saturation was proposed in

Report I (p. 19). According to this model,

H
+ (I0)

B _ B, - Br - (B*s - Br) H - H _°fl

where H ° and Bss are empirical material parameters [replacing Parameters a

and B e in Beport 1 (p. 19)]. This model describes the static B(lt) for

H _ ftth, where Hth is the threshold value of H above which inelastic

switching takes place.



For H _ Hth, the following hyperbolic model is a good approximation.

H-H

B =- B = -B r + (B + B r) q + _oft (11)
H - //

where Hq and H a are material parameters.

The plots of these hyperbolic models for the material B(H) are shown

in Fig. 2. The intersection point, Point P, represents the transition

from the region of elastic switching to the region of inelastic switching;

hence, H at Point P is the threshold field //th" By equating Eqs. (10)

and (11), we find that

1 tt - _ - 8 + H,Hq (12)
Hth =

AS Y MPTOTES -

ASYMPTOTE J

I
iI
tl
,I

Ho H

FIG. 2 HYPERBOLIC MODELS FOR STATIC B(H)



where

Br

s a + Hn + -- (Ha + Hq - Hn ) (13)
It = H + Hq B,

Note that the plots in Fig. 2 describe only the material contribution to

B. By equating B u - _0H in Eq. (11) to zero and B r, we obtain expressions

for the coercive field H and for H :
c

a.n d

B_

+ _ (Hq - H )H e = Hq B n
$$

(14)

(B + B_)Hq - 2B H
H = (15)

r B s - Br

The hyperbolic models for B(H) [Eqs. (10) and (ll)] are used in

Appendix A to calculate a static @(F) curve of a constant-width leg.

The resulting expressions, Eqs. (A-3), (A-6), and (A-7), describe static

¢(F) in three regions'of F: F _ Hthli, Hthli _ F _ Hthla, and Hthlo _ F.

For low-threshold ferrite material, if ]FI is lower than, say 1% of

B sli/_o, some terms in these expressions are negligible. These negli-

gible terms include the so-called air flux and, in the region Hthl i

F _ Hth/o, the elastic flux change in the leg section that has not

switched inelastically. By ignoring these terms, Eqs. (A-3), (A-6), and

(A-7) are reduced to the following expressions:

for F < H l
-- th i'

¢ = (lo - li)H F In H l - B hw ; (16)

5



for Hthli <_ F <_ Hthl o,

(

hw(B • + B )Hq L_H_hck = (l,- l_)n,,

and for H thlo < F,

¢ = (Zo-Z_)H Zo- Z, +F 1 _ i Zn HZ,/j-Bh_ (1S)

Equations (16), (17), and (18) hold for a large practical range of

F. We have assumed this range to be ±0.01(B s/i/_0) so that B.i r is

less than 1% of B . For cores to be described in Sec. II, this amounts

to about 50 times Hthlo . Beyond this range, the air flux becomes in-

creasingly significant.

For IFI >> Hthl o, Eqs. (A-3) and (A-7) may be approximated by

and

where

and

¢ = -¢,, + ¢0i, (19)

¢ = ¢,, + _.ir ' (20)

_,, = B hw (21)

hw_° l(u )_air = Flo - l i In (22)

The term Cair stems from the flux density _0 H in the cross-sectional

area hw of the leg,



Experimental verification for Eqs. (16), (17), and (18) will be

given in Sec. II-C-3.

3. SUMMARY

Two empirical hyperbolic functions have been proposed for describing

the static B(H) curve, requiring five material parameters: Bjm, B v, Ho,

and H . The first function, Eq. (10), covers the region of negative
Hn' q

saturation, and includes the parameters Bss, B v, and H a . The second

function, Eq. (11), covers the nonsaturation region as well as the re-

gion of positive saturation, and it includes the parameters Bss, B r , H n , and

H . Based on these functions, the static _(F) curve was calculated by
q

integrating B over the leg cross section. This curve is composed of

three portions that are described by Eqs. (16), (17), and (18). Calcu-

lated and measured ¢(F) curves will be compared in Sec. II-C-3.

B. TAPERED LEG

Switching models for a constant-width leg were developed in Ref. I.

In some commercially available multlpath cores, leg widths are not con-

stant. For example, the widths of the inner legs (Leg 2 and Leg 3) in

a three-hole MAD [Report I, Fig. l(b), (p. 2)] are variable. Another

example is the Transfluxor, which is an unshaped three-leg core, similar

to the core in Fig. 123 of Report 1 (p. 126). In the Transfluxor, all

three legs vary in width. The question is, what are the switching param-

eters of a variable-width leg, and in particular, how do these parameters

differ from those of a constant-width leg? The answer tothis question is

not an easy one. The objective in this section is to discuss the factors

that are involved in this problem and to propose a partial solution for

a simple case, namely, to calculate the inelastic-switchlng coefficient

p of a tapered leg. Before we examine a variable-width leg, it is ap-

propriate to discuss further the limitations of a leg model in general,

_.e., limitations that apply to both constant-width and variable-width legs.

I. LEG-MODEL LIMITATIONS

The difficulty in defining the boundaries of relatively short legs

was regarded in Report ] (p. 3) as a limitation on the leg model. The

leg model has additional limitations that will be discussed as follows:



(1) A given F is applied across a leg of edge lengths l i and

l o. Let us denote the variables associated with the short
and long edge by subscripts i and o, respectively. Since

I i < lo, H i > H ° and, hence, AB i > AB o, This means that
the flux switching is not uniformly distributed. A leg
model should account for such a nonuniformity by assuming

a model for B versus H, and integrating the variation in B

across the leg width. In Report 1, this was accomplished
for the static characteristics (pp. 36-39) and for the

elastic-switching model (Report 1, Appendix B, pp. 187-188).
This was also done in Part A of this report in calculating

a static _(F) curve, based on hyperbolic models for B(H).

On the other hand, variation in B across the leg is not
accounted for by the inelastic-switching parabolic model*

- p(F - F 0) " pp 1 - (F - F 0) (23)

In order to account for such a variation, the parabolic

model for inelastic switching should be first written in

terms of B and H, rather than ¢ and F, i.e.,

•, _(H- _o) " _p - (H- Ho)

where, following Eq. (49) in Report 1 (p. 30),

(24)

2B r
1.6_

_P S
(25)

* In Report l, the parabolic model for p was written as p = pp[l - (¢/q_r)2]. As pointed out in Report 1

(p. 28), this model implies the absurdity of infinite switching time for _ to reach a peak value, unless

the initial flux level is assumed to be--_br0, slightl, above-qb r . where _r0 <_r" Experi.ental obser-

vation 2 also indicates that the initial value of p is slightly above zero. In the present report, we

modify the parabolic model into p = pp[1- (¢/¢s)2], where Cs >¢r (note that Cs _ Css )" The value of

Cs is so determined as to yield good fit within • range of excess MMF of application, say up to 5F O, In

this way, the initial flux level, denoted by _0' could be assumed to be -Or' This assumption is sup-
. , 3

ported by the appreciable size of domains of reversed magnetlzetlon (positive domains) at the static

state of ¢ = "<_r" Additional refluement is based on our assumption that inelastic switching is preceded

by elastic switching (c/. Report i, p. 14), end therefore the initial flux level ¢0 might be above-_b r,

especially when e high F with a short rise time is applied.



Equation (24) should then be integrated across the leg
width. Calculation of this sort for a toroidal core can be

found in Ref. 2, but the results are too complicated to be

practical. With the use of a modern computer-programming

language, such as ALGOL or FORTRAN, this complicated model

may become useful.

(2) Due to the nonlinearity associated with the parabolic

model, Eq. (24), the nonuniformity in B distribution across

the leg cross section becomes worse prior to the time when

Bi(t) passes through zero. To understand this, suppose
that the leg is initially at negative saturation, and a

constant MMF F is applied across the leg. As explained in

(1) above, AB i >AB , and, hence, B. > B o, Substitution
of the condition B.°> B into Eq. (½4) results in Bi > B,'

| o

which, in turn, causes AB i to exceed AB° even further.

This nonlinear process continues untll _i reaches peak

(when Bt = 0). Beyond this point, B i decreases; the peak

of the factor [1 - (B/B,)2], i.e., unity, moves radially
outwards as time progresses. This peak reaches the outer

edge when [1 - (Bi/B) 2] is less than unity. By this time,
the parabolic model has tended to equalize the distribution

of B across the leg cross section, as compared with the

time when B i - 0. Thus, if a leg is initially at negative
saturation and a positive MMF switches the leg to a par-

tially switched state where B_ is around zero, the distribu-
tion of B across the leg cross section is nonuniform (B i > B o )

for two reasons that are embedded in Eq. (24). The first

reason is the factor (H - H0); the second reason is the

factor [1 - (B/B,)_]. The second reason causes B to become
more uniform at a later time during switching.

(3) In describing a leg model, it is assumed that the distri-
bution of B' appearing at a leg junction is uniform. The

validity of this assumption depends on the path of flux
closure in the rest of the core. If, for example, the leg

under discussion is shunted by a short and wide leg, this

assumption may be misleading. In this case, a higher change

in B would occur in the inner edge of the shunting leg, so

that the distribution of B at the leg junctions would be

highly nonuniform.

(4) The leg model ignores flux leakage due to pole distribution

on the surface of the leg. We know, however, that an asym-

metric position of MMF drive will cause a pole distribution

on the leg surface (see Beport 1, pp. 128-138), and hence

flux leakage will result. As concluded in Beport 1, cal-

culation of the leakage flux is too complex a problem to be

practically worthwhile. If a leg is very long and thin, the

flux leakage may make the leg model invalid.

9



Additional limitations on the model for a variable-width leg are

discussed next.

2. ADDITIONAL MODEL LIMITATIONS OF A VARIABLE-WIDTH LEG

Consider a variable-width leg of constant thickness h. ]'he maximum

residual flux level of the whole leg is equal to BrA min, where A min is

the constricting cross-sectional area. Throughout the leg, except at

the constricting region, the leg is partially switched, i.e., [_1 < Cr'

Depending on its history, this state may Ke soft (see Report l,

pp. 25-26 and pp. 48-50). The higher is the previously applied MMF, the

larger the number of domains of reversed magnetization is, and the softer

the state is. Unless previously driven slowly, a variable-width leg is

most likely to be in a soft state; here is where difficulties lie. These

difficulties stem from our lack of sufficient information about this

complex state, and are listed as follows:

(1) We have discussed previously the general limitations of a

leg model from the point of view of nonuniform distribution

of B, assuming that the leg is initially in a hard (satu-
rated) state. Some portions of a variable-width leg, on

the other hand, are left in a soft state even after a CLEAR

pulse. These portions are likely to be found along the

longer switching paths of the leg. However, the soft state

is characterized by a lower threshold; hence a lower H is

needed for a given change in B. This factor, therefore,
opposes the original effect of the path-length ratio in

makingAB i >_B o. The extent to which this factor makes B
more uniform is still to be found.

(2) Static characteristics of a variable-width leg depend di-

rectly on soft threshold. We need to know more about soft
threshold before we can calculate the static _(F) loop of a

variable-width leg.

(3) Elastic-switching models have been proposed in Report ]

(pp. 18-23) for a leg in saturation (i.e., I_1 > _r), but

not for a partially-switched leg. Here, again, the fact

that a variable-width leg is unsaturated (unless biased by

very high MMF, in which case surface poles should be ac-

counted for) prevents us from calculating elastic switching.

(4) Consider the parabolic model for inelastic switching in a

constant-width leg, Eq. (23). In looking for a similar

model for a variable-width leg, we encounter the difficulty

of the dependence of F 0 on tile softness of the state.

10



Thus, the only switching parameter of a variable-width leg left to

be calculated at this time is the inelastic switching coefficient p. In

order to calculate p of a varlable-width leg, we must first determine the

equi-F lines and flow lines. The general solution to this problem is very

complex; however, solutions in some special cases are feasible. As an

introduction to the problem, let us first consider a variable-width leg

made of l_near material.

3. VARIABLE-WIDTH LEG OF LINEAR MATERIAL

For linear material, the relation

B = _H (26)

holds, where the permeability _ is constant. The problem of determining

the distribution of B and H is a classical two-dimensional field problem

that may be solved by graphical, numerical, and (sometimes) analytical

methods. An excellent coverage of this topic can be found in several

textbooks. 4,5

In linear material, reluctance _ is defined as

F
. -- (27)

¢

It should be emphasized that the term reluctance is entirely different

from p or p-1 The units of reluctance are (turn2/ohm second), whereas

the units of p are (ohm/turn2).

Since our prime interest in this work is focused on nonlinear square-

loop material, rather than on linear material, it is felt that a detailed

calculation of _ of a variable-width leg should be deferred to an appendix.

A general expression for _ of a leg, whose boundaries can be described by

orthogonal curvilinear coordinates, is derived in Appendix B. Examples

of typical problems are also included in this appendix.

4. p OF A TAPERED LEG

We now come back to the original problem, and assume a square-loop

ferromagnetic material. Calculating p for a variable-width leg of gen-

eral shape is much more complex than calculating _, because of the

11



dependence of p on B [Eq. (24)]. Suppose that the effect of the flux-

closure path on the distribution of B at the leg junctions is negligible.

If H were invariant along each equi-F line, then, following Eq. (24), B

would be uniformly distributed across the leg width, and the calculation

of p would become much simpler. This condition is satisfied in the case

of a tapered leg. Calculation of p for a leg of this shape is our

next goal.

RII- 311_6- II

FIG. 3 A TAPERED LEG

The top view of a tapered leg of constant height h is shown in

Fig. 3. The leg edges, A-B and C-D, are orthogonal to the leg ends,

A-C and B-D. The geometry of the leg may be expressed in terms of three

parameters: angle fl, small radius r , and large radius r b (the leg

length is equal to r b - r). We shall assume that the band near the

constricting end A-C is not driven far into saturation.

We now divide the leg into curvilinear squares. The equi-F lines

fall on concentric circles and the flow lines are radial. The radial

lines meet at the center of the circles, Point 0. Each curvilinear

square is the top view of a leg element of thickness h, length dr, width

rdO, and cross-sectional area hrd_. Multiplying Eq. (24) by hrdO, and

substituting It = dF/dr, we get

I2
!

i
$

|



dr (dF - Hodr) (28)

The term (dF - Hodr) is the excess MMF applied to the leg element, and

the term BhrdO is the resulting _ in the element. Following the rela-

tion @ = pF x, p of the leg element, denoted byAp, is

hrd_Q _ _B2 )Ap = _p dr B 2
$

(29)

The inelastic-switching coefficient of a larger are-shaped leg element,

obtained by moving the previous element at a constant value of r from

0 - 0 to 0 = fl, is

r

_p = JZ Ap = _phfi (30)
o dr

Note that B and B of Eq. (29) have been multiplied by the cross-sectional

area, hflr. Since the whole leg is composed of a series of such elements,

the over-all p of the tapered leg is

1 2_ph/3

_1
r _P In

The value of ¢, of the leg is determined by the constricting area, i.e.,

¢, = B hr°fl (32)

Substituting Eq. (32) into Eq. (31), we obtain

13



Pt

2_h#

In

°

rb

(33)

We conclude that for a give n _,, pt is proportional to the angle _. We

also conclude that Pt is symmetrical with respect to _, reaching a peak,

Ptp' at ¢ = 0. The expression for Pt of Eq. (33) can be written in a

more general form as a product of Pt_ and some function _t that describes

the variation of p with (_/_s). Thus,

Pt " Pip " _t
(34)

where

Ptp

_phfl
(35)

and

_t

rb

In
2

,

(36)

Let us now compare these results with p of a constant-width leg that

has the same value of _s and comparable dimensions: the same height h,

width w - _r a (the constricting width of the tapered leg), and length

[ = r b - r a , For this constant-width leg, following the relations

pp . _pA/l and p = pe[1 - (_/_)2], we obtain

p -- pp ' (37)

14



where

and

_p h_
pp ffi (38)

r b
1

?

- 1 - (39)

Equations (37), (38), and (39) could also have been derived directly

from Eq. (33). Referring to Fig. 3, let us imagine that both ro and r b

increase indefinitely, while at the same time r b - r ° = I and raft = w are

kept constant. Substitution of the resulting relation (rb/r ,) = ! + (l/w)_

into Eq. (33), and letting f _ 0, we obtain (using l,'Hospital's rule)

Eqs. (37) through (39). Note that the tapered leg has become rectangular.

In comparing Eq. (35) to Eq. (38), and Eq. (36) to Eq. (39), since

r b > ro, we conclude that (ptp/pp) > 1 and that (_t/_) _ 1; thus, (pt/p) > l

for any value of ¢/_s" A more detailed comparison of these parameters is

shown in Figs. 4, 5, and 6. In Fig. 4, calculated p,p and pp (both in units

z.5_ t I I I I I I I _]"_

2.0 _-- -_ 4

t.phB pp

1.0--- 2

°'_i- pp -'

o I I 1 I 1 I I I o
0 I 2 3 4 5 6 7 8 9

rG RA-3696-16Z

FIG. 4 EFFECT OF rb/r o ON f_p AND pp
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m
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0.5 1.0

FIG. 6 _t/_vs" _/¢_s WITH rb/r ° AS A PARAMETER
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of _ph_) and the ratio ptp/pp are plotted versus rb/r a. In Fig. 5, cal-

culated _t (for various values of rb/r a) and _ are plotted versus @/_s"

In Fig. 6, the ratio _,/D is plotted versus _/_s' with rb/r _ as a parameter.

5, SUMMARY

The inelastic coefficient p of a leg, which is a proportionality

factor in the expression for _(F), is a product of two factors. The first

factor, pp, is a function of the material properties and the geometry of

the leg. The second factor, 7, is a function of the normalized flux level

and, if the cross-sectional area of the leg is not constant, also a func-

tion of the leg geometry. If the constricting end of a tapered leg re-

mains unchanged as the other end is enlarged, then flux switching becomes

easier and Pt increases. This increase in Pt is manifested by the in-

crease in both Pip and Wt"

C. AVERAGE VALUES OF p

]. INTRODUCTION

Average values of p were calculated in Report I (pp. 28-31). The

only reason for using an average, constant value of p is to simplify cal-

culations where p is involved. As indicated in Beport l (p. 54), the use

of average p instead of p(_) may be a good approximation only whenA_ is

calculated, not _(t) or _(t), because calculation of A_ involves time

integration of _(t).

Two kinds of average p were distinguished in Report l: time-averaged

p, p [Eq. (C-7), p. 192], and flux-averaged p, P_.,v [Eq. (C-]I), p. 192].

From here on we shall retain the symbol p, but replace P@.ev by Pay for

the sake of brevity. Our first goal will he to examine the meanings of

and p,v, and consider their usefulness.

In Report 1, we calculated p and Pa_, assuming a complete switching.

In many applications, flux switching is only partial, i.e., the flux varies

from a CLEAR state to some final value _I between-_r and +_s" In these

cases, an average value of p is not constant, but rather a function of _f"

Our second objective is to calculate the average p for a leg whose flux

level varies from -_r to _f, assuming a parabolic switching model for the

material [Eq. (24)]. We shall perform this calculation for a constant-

width leg and a tapered leg.

17



2, p AND Pa v

Suppose that an MMF pulse F of an arbitrary shape is applied along

a leg in the positive direction. The resulting inelastic flux change

is_ = _/ - _0' where ¢0 is the initial flux and _t is the final flux.

The inelastic-switching coefficient p varies during the switching of ¢.

In an attempt to average p overAff, we consider two kinds of averaging

process: (1) averaging p itself, and (2) averaging the inverse of p.

The flux-averaged p is defined as

l : zd¢P.', = A,_
(40)

The flux-averaged (l/p) is defined as

tx¢

AT -0

(41)

We now want to determine which of these average quantities may be applied

in calculation of flux switching. Following the basic definition of p

[cf. Eq. (23)], _ = pf=, where Rex (= F - F 0) is the excess MMF over the

dynamic threshold. Based on this relation,

a¢

o

(42)

where T is the switching time. Note that if the switching is time-llmited

(as opposed to flux-limited), then r is the time during which F > F O.

its dimensions, the term _rFexdt is called "excess charge-turns,"Because of

or in short, "excess charge." Combining Eqs. (41) and (42),
_l

T

1 l F dt (43)

a¥ "o

18



Thus, in order to compute A¢ that results from a drive of a given amount

of excess charge, we have to use the flux-averaged value of (I/p),

Eq. (4l). On the other hand, the flux-averaged p [Eq. (40)] does not

relate Fex to the resulting change in _. We, therefore, conclude that

(I/p)a, (and not p.,) is the useful average value for calculation of p.

In Report 1 (Appendix C), p was calculated for switching from

¢0 = -¢r to Cf = +_r due to a constant F. Examination of Eq. (C-B)

[Report I, p. 192] leads to a more general definition of p, i.e.,

= _¢ (44)

,7 Fexdt
0

A comparison between Eq. (43) and Eq. (44) reveals that I/p = (I/p), .

Following Eq. (41), we conclude that

_ _¢
p -- (45)

r,¢

o

In Report 1, p was called "time-averaged p," yet Eq. (45) indicates that

is the inverse of the flux-averaged (l/p). We observe, however, that

Eq. (44) may be written as

A_ = PFexT (46)

where Fex is the time-averaged Fex. For this reason we shall continue to

call p"time-averaged p," although its evaluation will be based on Eq. (45).

We have concluded that p, not p.,, is the useful parameter. However,

if p does not vary too much during switching, then to a rough approxima-

tion, ]/P,v _ (I/P)a," Under this condition, p may be approximated by

p,, (cf. Report 1, p. 29).

3. /9 OF CONSTANT-WIDTH AND TAPERED LEGS

We shall now use Eq. (45) in order to calculate p of a constant-wldth

leg and p of a tapered leg (to be denoted by pt). But first, let us
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rewrite Eq. (45) in terms of normalized flux u, where u = _/¢ . In ad-

dition, initiai value of u, u 0 (= _0/¢s), and final value of u, u/

(_ _i/_,), will be spelled out. Thus, Eq. (45) is rewritten as

_ u[ -u 0
P " (47)

u 0

Eq. (23)]

a. CALCULATION OF

The parabolic model for p of a constant-width leg is [cf.

p = pp(1 - u 2)

Substitution of Eq. (48) into Eq. (47) gives

(48)

_ uy - u 0

P " Pp (49)
tanh -1 uf - tanh -1 u 0

Let us examine Eq. (49). For -u 0 = ui = u r (= Cr/_,), Eq. (49) is re-

duced to p = ppur/tanh -1Ur, which, as expected, is identical with p for

similar switching conditions [Report 1, Eq. (43), p. 28]. For u 0 =

uf = -u r (no inelastic switching), Eq. (49) is reduced to p = pp(1 - u_)

by using L'Hospital's rule; this result agrees with the parabolic model

for p [Eq. (48)], in which u = -u . We note that p _ 0 as u I _ 1. This

can be explained by referring to Fig. 30, Report l, and to Eq. (44). As

u¢ l r _ m and sinceA_ is finite p _ 0

;2 0 = --U r .

In most cases, a leg is initially in a CLEAR state, so that

Under this condition, Eq. (49) is modified to the following.

__ U[ + U r

P = P_ (49a)

tanh -1 u! + tanh -1 u r

2O



Note that p(u[) reaches a maximum. Assuming that u r (= _r/_,) = 0.9,

7/Rp vs. uf (= _//_,) is calculated from Eq. (49a) and plotted inFig. 7.

A maximum value of (p/pp) = 0.695 is reached at u[ _= 0.55. Since

u 0 = -at, there is no physical meaning to the plot where u/ < -u r,

hence,the region -1 _ u/ _ -0.9 is marked by dotted line.

-I.(

I I I I jO.8 I I I 1

/
0.7
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-- 0.4
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--0.2

_t
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--0.1

I I I 1.... l I I !
- 0.8 - 0.6 - 0.4 -02 0 O.Z 0.4 0.6 0.8 1.0

IJ_ll RA - 3GIlG - 16

FIG. 7 _/pp vs. _bf/_ s FOR A CONSTANT-WIDTH LEG

The value of u r in Eq. (49a) must be known a priori in order

to calculate p. Unfortunately, u r may vary (around _0.9) among dif-

ferent materials. The effect of u r on p is shown in Fig. 8, where p/pp

is plotted vs. u I with u as a parameter. As u r increases from 0.80

to 0.98, the maximum value of (p/pp) decreases from 0.79 to 0.53 in the

range 0.48 5 uf 5 0.7. Where dotted lines are drawn, the calculated

curves have no physical meaning.
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AS A PARAMETER (Constant-Width Leg)

b. CALCULATION OF Pt

Substltution of Eq. (33) into Eq. (47) (of. Appendix C) results

in the following expression, assuming that a 0 = -u r .

Pt = 2_.h_ (50)
uf + a r

(_ + Uf)C+Uf(l - u/)l-Uf(c + Ur)C+Ur(1 - tlr)l-ur
In -- t-.f( )c-u 1".

uf) 1 + t_t)]+"f(c - u r "(l + u r) r

where

r b
c =

t"
(z

As uf -' 1, Pt _ 0 (due to infinite switching time).

-u o = u/ = a r , Eq. (50) is reduced to

For the case in which
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U

C--II 1

u) _(I "[" U r )

and for u r = 0.9 it is further reduced to

1. a_ph_
p, - (50b)

/n [0.2344 (c + 0"9)¢+°'it(c - o:91::;

Let us check Eq. (50) by letting r a _ _ and r b _ _ in such a way that

l (= r b - r a) and w (= r°fl) are kept constant. Substituting c = 1 + (l/w)fl

into Eq. (50) and letting fl _ O, the use of L'Hospital's rule results in

Pt being equal to p of a constant-width leg, Eq. (49), as expected.

Assuming that a r = 0.9, pt/Ptp versus _f/¢, is calculated from

Eq. (50) and plotted in Fig. 9 for different values of c (= rb/r ). As

c increases, pt/Ptp increases due to the increase of _t with c (cf. in

Fig. 5).

tp

_=0.9 --0.2

I I I,, I I I I I
-I.0 -0.8 - 0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

#t

FIG. 9 _/Ptp vs. Ct/_ WITH rb/r° AS A PARAMETER (Tapered Leg)
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4. SUMMARY

Compared with flux-averaged p (denoted by pay), time-averaged p

(denoted by p) is essentially the inverse of flux-averaged (l/p). In

calculation of A_ due to an excess charge J Fexdt, p (and not p,v) is
0

the useful parameter. If p does not change by a relatively large amount

during switching, p may be approximated by p, .

Calculated plots of p/pp vs. _//_s of a constant-width leg are shown

in Fig. 8 for various values of Cr/_ . Calculated plots of pt/ptp vs.

¢f/_s of a tapered leg are shown in Fig. 9 for various values of rb/r ,.

D. FLUX DIVISION IN A SATURABLE CORE

l. INTRODUCTION

The problem of flux division 6 (see Report 1, pp. 75-85) is briefly

as follows: Magnetomotive force NI is applied to one leg in a three-leg

core, and the resulting_ in the driven leg is divided into the other

two legs. Experimental data show that the ratio between the net amounts

of A¢ in the two legs is far from being equal to the inverse of their

path-length ratio. The question of why this is so and how to calculate

.such a division of flux in various types of multipath cores presents

itself.

Multipath cores may be classified by whether or not all legs in the

core can be brought to a saturation residual state, i.e., to _ = ±_r'

We shall thereby distinguish between saturable and nonsaturable cores.

Two extreme cases of such a classification are the Laddic and the shaped

MAD (see Report ], Fig. 1, p. 2).

In the Laddic, all legs have equal cross-sectional area; thus, it

is impossible to have residual states of o Cr in all legs simultane-

ously. For example, if in two legs of a two-hole Laddic (Report 1, Fig. 1,

p. 2) ¢ = Cr, then in the third leg, ¢ = 0. To illustrate another ex-

ample refer to Fig. 94 of Report 1 (p. 99), in which a three-hole Laddic

is shown. Although ]_l = ¢_ in Legs 1, 2, 3, and 4, Leg = (comprised of

the two horizontal middle legs) is in a demagnetized state of _ = O.

Note that the flux level in Leg m (or the third leg in the previous ex-

ample) may certainly be other than zero, but then [¢1 g _r in the other

legs. We thus conclude that it is impossible to bring a Laddic (of any
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number of holes) to a residual state in which all legs are in a CLEAR

state, I_l = _r" A Laddic is, therefore, a nonsaturable core. The

leg(s) in a partially-switched state of I_] ¢ Cr may have a soft thresh-

old, which is a complex phenomenon (cf. Report 1, pp. 48-50). Since

flux division is highly dependent on soft threshold, calculation of flux

division in a Laddic is a rather difficult task. Experimental data on

flux division in a two-hole Laddic was reported in Refs. 6 and 7, but no

attempt was made to explain this phenomenon.

In a MAD (later, Fig. 42),leg cross sections are so shaped that it

is possible to bring all legs to a CLEAR state, I_l = _r" This shaped

MAD is, therefore, a saturable core. With no legs initially in a soft

state, the analysis of the flux division is easier than in the case of

a Laddic. Calculation of flux division in a saturable core was first

reported in Ref. 8, but was incomplete for the following reasons (cf.

Report 1, pp. 153-154): First, a square-root parabolic model for p was

used; although leading to simpler mathematics, this model is less ac-

curate than the parabolic model for p. Second, it was unjustifiably

assumed that H in each leg is constant during the switching time. Third,

rather than being solved for, the values of H in the two parallel legs

were included as parameters in the final expression for flux division;

"furthermore, the applied MMF to the third (main) leg and the parameters

of the third leg were completely ignored. Fourth, no experimental veri-

fication was given.

Our objective here is to calculate flux division in a three-leg core

as a function of leg parameters (assuming a parabolic model for p) and

applied MMF, and to compare this calculation with experimental data.

Lacking flux-switching models for a leg initially in a soft state, we

cannot at the present time analyze flux division in a Laddic. We shall,

therefore, narrow our scope in this report to calculate flux division in

a saturable core whose legs are initially in a CLEAR state. However, in

order to be more general, we shall assume that the output leg is loaded

by resistance R L across NL turns; flux division in an unloaded core would

later be determined as a special case of (N_/R L) = O.

2. ASSUMPTIONS

The analysis of the flux division is based on the following assump-

tions (see Fig. 10):
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FIG. 10 FLUX DIVISION IN A SATURABLE THREE-LEG CORE

(l) The core is saturable. Thickness h is common to all

legs, and w 3 = w 4 = w /2; hence

Cr. = 2¢r3 = 2¢r4 -_ 2¢r (51)

(2) Resistance R L loads Leg 4 across N L turns.

(3) The core is initially in a CLEAR state, i.e.,

¢. - 2¢r ' ¢3 = ¢4 " -¢r

(4) Tile SET current pulse, applied to N turns on Leg m, is

rectangular and of amplitudeI andduration T so adjusted

that the resulting flux change in Leg m, A¢,, is equal to

2¢ r. _his assumption of time-limited switching could have

been eliminated by assuming that N[ was applied to Leg ]

of a five-leg core, as in Fig. 102(a) of Report ] (p. 107).

Such an alternative assumption would make the calculations

more complicated without helping to understand the mecha-

nism of flux division. We prefer, therefore, to maintain

the assumption that N[ is applied to Leg m and is adjusted

both in magnitude and duration to yieldA_. = 2¢r.]
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(5) Since flux division is defined in terms of residual

flux, we shall neglect the difference betweenACE during

the rise of I andA_ during the fall of [, and consider
only inelastic switching.

3. CALCULATION OF FLUX-DIVISION RATIO

The method of calculating the flux division (ACs/A¢4) is outlined

as follows. An electrical-clrcuit analogue is drawn, and node and loop

equations are written. The parabolic model for p, p = pp[1 - (¢/¢s)2],

is employed in the equations for _ of each leg. In this way, _4 gets

to be smaller than as not only because l 3 < 1 4 (and hence H 4 < H3), but

also because P3 > P4 during most of the switching time as a result of

¢3 being higher than ¢4" The flux division is expressed in terms of the

final flux level of Leg 3, ¢3f" The remainder of this calculation is

devoted to solution for ¢3f and to expression of ACs/A¢4 in terms of NI

and the leg parameters.

Based on Assumption (5), only the inelastic parameters F 0 and p of

each leg are considered. The general electrical-circuit analogue for the

loaded core in Fig. 10 (cf. Fig. 37, Report 1, p. 35) then becomes simpler,

because all the "capacitors" are omitted. Since only the SET time is of

interest, the electrical-circuit analogue is further simplified by omitting

redundant components (cf. Report 1, Fig. 37, p. 35) as shown in Fig. 11.

Since in an electrical-circuit analogue MMF is treated as "voltage" and

is treated as "current," the SET MMF, NI, appears as a "voltage source"

Nxf
+

."- Fore

FIG. 11

- p.;,

3F03

r • .r

-T2NL

NL' : R'--'L"

+...J._

" _4"T'_ I P4 I

"1-"--_'--'T _ F04

WA - 3SgE- IE9

ELECTRICAL-CIRCUIT ANALOGUE

FOR A DRIVEN LOADED CORE
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in series with Leg m, and the back MMF, Nti L, appears as a "voltage drop"

across a "resistance" N_/R L in series with Leg 4. A special case is that

of no load on Leg 4, i.e., N_/R L = 0; this case can be obtained by l'etting

either RL = _ (open circuit) or N L - 0 (no coupling).

One node equation and two loop equations are written by inspection

of the electrical-circuit analogue, Fig. ll, as follows.

¢. = ¢3 + _4 , (52)

and

N[ = F + F 3 , (53)

F 4 = F a --- q54 (54)

Using a parabolic model for p [cf. Eq. (23)],

2¢, /
, (55)

and

_3 = P3p - (F3 - Fo3) (56)

_94 = P4p I1 _ (F 4 - F04) (57)

Equations (52) through (57) contain six unknowns: _.' _3' _4' F , F 3,

and F 4. Although these unknowns can be solved for, there is no need for

these solutions in calculating the flux division, as will be shown next.

Let flux-division ratio be defined as

A_ 3
D = (58)
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whereat 3 and Z_b 4 are the inelastlc changes in flux in Legs 3 and 4,

respectively. Since both of these legs are initially at _b = -_br,

and

_¢3 " ¢3t + Cr

where subscript f denotes final flux level.

Assumption (4),

(59)

(60)

Following Eq. (52) and

2_r (61)

From the substitution of Eqs. (59) and (60) into Eq. (61), we con-

clude that

¢3f ffi -_4f (62)

Typical variations of _ versus F of the three legs during the SET time

are plotted in Fig. 12, superimposed on the corresponding static _(F)

loops. These plots illustrate why ¢3f " -¢4f' as stated in Eq. (62).

Substituting Eqs. (59), (60), and (62) into Eq. (58), the flux-division

ratio is found to be

(J)3f
I +_

4,
D ,= (63)

¢3s
1 ----

Cr

Our next objective is to calculate _3f"

During the switching time T, _3 changes from -¢r to ¢3! (cf. Fig. 12).

Following Eq. (56),

¢3/

d_b3

-¢r - _TJ

j.r (F3 _ Fo )dt (64)
• P3p 0 3
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After integration, we get

- ta.h(-_-) _
e T- 1

eY.+ 1

in which

T = 2

(65)

(66)

Substitution of Eq. (65) into Eq. (63) gives

D
eT-_

z

1 - _e T

(67)

in which

_r

] -- __

_r

1 +--

(68)

Calculation of T is performed in Appendix D. It is shown there that

where

T = p - q In 8 (69)

and

-,o.-,o,,(+,\ RL //p3"pC" (NI q_ q_. /
p = (70)

(NI - Fom)(,03p + ,04p) - Fo4P4p - Fo3/:)3p

(N[ - Fo.)(/:)3p + p4p) - Fo4,04p - Fo3P3p

(71)
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Note that the expressions for p and q have the same denominator. The

value of q is independent of N_/R L and can be determined directly from

Eq. (71), but the expression for p [Eq. (70)] includes the still-unknown

term ¢_1/_ . By combining Eqs'. (65) and (69), we obtain

dP31 (p- q ln $)= tanh
¢, 2

(72)

After q is determined, substituting Eq. (72) into Eq. (70) results in a

transcendental equation in p. A numerical solution for p can be obtained

without any difficulty.

Substitution of Eq. (69) into Eq. (67) results in the final expres-

sion for the flux-division ratio:

e P - 8q +1
D = (73)

_q-_eP

in which _ is expressed in Eq. (68), p is expressed transcendentally in

Eqs. (70) and (72), and q iS expressed in Eq. (71).

The larger the load N_/RL is, the smallerA¢4 is, and hence D be-

comes higher. Mathematically, for the same values of NI and core param-

eters, if N_/B L increases, then p [Eq. (70)] increases as well; hence,

ep increases. An increase in ep causes D [Eq. (73)] to increase because

of an increase in the numerator and a decrease in the denominator.

4. FLUX-DIVISION BATIO UNDER SPECIAL CASES

The general expression for D [Eq. (73)] will now be reduced under

special cases.

a. UNLOADED CORE

As explained before, if either N L = 0 (no coupling) or R L =

(open circuit), Leg 4 is unloaded. Substituting (N_/R L) = 0 into Eq. (70),

we find that p = 0. Recall that q is independent of N_/R L. The ex-

pression for D [Eq. (73)] is then reduced to
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1 - _q+l
DNL ffi (74)

where 8 and q are expressed in Eqs. (68) and (71), respectively.

b° D _ co

When _4 _ 0 and _3 > 0, D _ _. This condition is physically

mi"/lmax is large enough, NI may be so adjusted asrealizable, since if 1 4 3

to cause inelastic switching to occur in Leg 3 only. SinceA_3 +A_4 = 2_,

and3¢ 4 = 0, thenA¢ 3 = 2_r; hence, following Eq. (59), ¢3f = ¢,' and

therefore, p [Eq. (70)] is zero. Substituting D _ _ and p = 0 into

Eq. (73) results in q = 1. By equating q [Eq. (71)] to unity, the value

of NI for which D _ _ is found to be

P3__£ + F04 Q + P3p (75)NID_ = F°" - F°3 Prop _.p)

The expression for N[o. _ [Eq. (75)] is obviously not a function

of the loading factor, N_/B t. This stems from having p, the only param-

eter where N_/B t has an effect, be equal to zero. The physical inter-

pretation is rather simple:_ IfA¢4 = 0, the presence of a load on Leg 4

is irrelevant; hence, the magnitude of N_/R t has no effect. We also

notice that NIo_ _ is not a function of 8 (since q is not a function of 8).

c. NI ""

It was reported 6 that the flux-division ratio in a Laddic core

approaches an asymptote as NI _ _. Let us now calculate the asymptotic

value of D [Eq. (73)] for a saturable core.

As NI _ _, p and q [Eqs. (70) and (71)] are reduced to the

following:

PNI_
Nt P3pP4p _br

= 2--

+p ¢. _./_L P3p 4p

(76)
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and

q N l-co

'°3p - P4p
= (77)

Pgp + P4p

After q_l_® is determined, Eq. (72) is substituted into Eq. (76) and

PNI-_ is solved for transcendentally. The values of pNI_ _ and qNI_ are

then substituted into Eq. (73) to calculate DNI_ _.

The larger the load N_/R L is, the larger is pNl. _ [Eq. (76)];

hence, following Eq. (73), the larger is DMt, _. The lowest DMt, ® is

obtained when the core is not loaded. In the no-load case, p = 0 and

q_l-® [Eq. (77)] is substituted into Eq. (74) in order to calculate the

asymptotic value for D#L, i.e.,

1 - s( P3p+P4p ]

DsL,_r-_ = (78)
_( P 3p-P 4p

P3p+P4p / _

d. _ _ 1

Following Eq. (68), if (0r/O ,) _ 0, then S _ 1. Before deter-

mining how D would be affected by the condition 8 _ 1, let us examine

the physical meaning of having (0r/0 ,) _ O.

Our analysis has been based on the assumption that initially

O= _ -20_ and ¢ 3 = 04 - -O r. In calculatingAO of each leg, the para-

bolic model p = pp[1 - (0/0,) 2] was employed. Suppose that O_ is replaced

by ¢r_ B, where ¢_e _ is an arbitrary residual flux level, so that initially

0, = -20re s and 0 3 = O 4 = -¢_e." If this initial state were obtained by

slow, gentle switching, calculation of ¢ in each leg may still follow Eq. (23).

Under this condition, our analysis still holds, except that _ [Eq. (68)]

is modified by replacing 0 r by Or_s; hence, $ _ 1 when (0r_8/0 ,) _ 0.

Modifying Assumption (4), AO. = 2Ore _. The physical interpretation of

the condition (0_/O_) _ 0 is, therefore, as follows: All legs switch

by a very small amount near the demagnetized state of O = 0, and hence

the inelastlc-switching coefficient p of each leg remains practically

constant at its peak value, as illustrated in Fig. 13. Mathematically,
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FIG. 13 p/pp vs. _OF EACH LEG WHEN _ --' 1

each of the bracketed terms [] - (_./2_.)2], [l - (_3/_.)2], and

[l - (_4/¢=) 2] in Eqs. (55), (56), and (57), is replaced by unity.

We now want to derive an expression for D under the condition

that 8 - 1. The transcendental solution to Eq. (D-21), as (_r/_,) - 0,

yields _ - O. Derivation of D from Eq. (67) and Eq. (D-21) is then

based on L'Hospital's rule, which gives

a 3 + a 2 + 2a 1
lim D =

(q_r /C_s )'O (2 3 - a 2

where al, a2,

thus,

and a 3 are expressed in Eqs. (D-IT), (D-18), and (D-19);

DS- l =

r'O3p

;_p/[] + (;4pN_/RL)]

(N[- Fo -Fo3)P. p + (Fo4- Fo3)D4p/[] + (P4pN2/RL)]

(N[ - Fo. - Fo4)P. p + (Fo3 - Fo4)p3p

(79)
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=

It can be shown by simple calculation that Eq. (79) would re-

sult if constant p was assumed in the original equations [Eqs. (55)

through (57)], i.e., if p= = p,p, P3 = P3p' and P4 = P4p"

By equating the denominator of Eq. (79) to zero, the asymptotic

expression for NI, for which DS. I _ _, is determined. This expression is

identical with the expression in Eq. (75), as expected, since the latter

was shown to be independent of _.

In the no-load case, (N:/R L) - 0, and Eq. (79) may be reduced to

= fP3p_ (NI- F0,- F03)p,p + (Fo4- Fo3)p4p (80)

DNL ,_-1 \P4p] (NI - Fore - Fo4)Pu p + (F03 - Fo4)P3 p

When NI _ _, Eq. (79) may be reduced to

P3P [1 + (p,pN_/Bt)] (81)
D _"1 ,NI "_ - P4p

In the no-load case, Eq. (81) may be further reduced to

P3p

P4p

In conclusion, following Eq. (79), D$_ 1 vs. NI is a hyperbola

whose two asymptotes are defined by N[ = NIn_ _ [Eq. (75)] and by

D = Os_l,ur_ _ [Eq. (81)].

Let us summarize what we have found so far. D versus NI has

been calculated in terms of leg parameters. We have seen that for a

given value of N[, D decreases if the loading factor N_/R L decreases,

reaching minimum when tile core is unloaded, i.e., when N:/R L = 0. The

asymptotic value of NI, for which D -' _, was found to be independent of

N_/R L or $. 'lhe asymptotic value of D as N[ _ _ decreases when NZ/R t de-

creases, reaching minimum when tile core is unloaded. This asymptotic

value of D for N[ _ _ also decreases as 5 increases, reaching minimum

when $ ' 1, i.e., when in each legA_ is very small around _ = O, and
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FIG. 14 D vs. NI IN THREE CASES

/9 = pp = constant. All this is summarized graphically in Fig. 14 (assum-

ing that the leg parameters are known)by sketching D versus NI in three

cases: N_/R L > O; N2/RL = O; and $ -' l in the case of N2/RL = O.

5. EFFECTS OF LEG DIMENSIONS

Up to the present, calculation of flux division has been based on

the leg parameters F0m, F03, F04, P=_, P3p, and P4p" Our next problem

is to determine these parameters. Since the three legs are of the same

material, the leg parameters differ from each other only because of dif-

ferences in leg dimensions. Determination of the effect of the leg

dimensions on D, a problem that was first introduced in connection with

the Laddic, 6 amounts, therefore, to determination of the effect of the

leg dimensions on the leg parameters. Before we determine this effect,

let us improve our inelastic switching models in the region of low F.

Part B.

a. LINEAR AND NONLINEAR REGIONS OF B VERSUS H
P

Material inelastlc-switching properties have been discussed in

Following Eq. (24), when B = 0, B reaches a peak value of

/_p = _p(H - //o) (82)
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A typical plot of Bp versus H is shown in Fig. 15. This plot

is divided into two regions that have a common boundary at H = fiB: a
t;

linear region for H _ H 8, and a nonlinear region for flo H H _ H e . Since

the parameters H 0 and _p in Eq. (82) are assumed constant, Eq. (82) de-

scribes only the linear region of Bp versus H, where H H He. The ex-

trapolated linear region intersects the H axis at fl = H 0 with aslope of _p.

The nonlinear region of Bp versus H may be approximately

described by the following function:

lr

Bp = K(H - Ho )v (83)

Equation (83) follows the formulation _ = b(F - F0 )l/a3 described else-

where. 9 For a given value of H, Bp(H) may be modified to a form similar

to Eq. (82), i.e.,

t

O
O

FIG. 15 13 vs.H
p
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I

Bp = _p (ft - It'o) (84)

t t

where H 0 is the intersection with the H axis and _p is tile slope of the

tangent to the nonlinear portion of Bp versus It, as shown in Fig. 15. Notethat
I

H 0 and _p may be looked at as a special case of H_ and. _p in which Bp

versus H is linear, Equating dBp/dH of Eq. (83) to dBp/dH of Eq. (84)

gives

t _t

_p = Ku(H - Ito )v-z (85)

Substituting the expression for B
P

Eq. (84) gives

/

[Eq. (83)] and _p [Eq. (85)] into

I ,) ,0H o = It ] _ _ + u (86)
v 12

Inelastic switching may also occur for H _ H_. itowever, the

parabolic model for _ [Eq. (24)] does not hold for this region of slow

switching. Further investigation is needed in order to determine models

for such a slow inelastic switching,

b. GEOMETRICAL RELATIONS

We now introduce leg dimensions in order to describe inelastic

in terms of _p versus F rather than Bp versus H. Integrationswitching

of B across a leg cross section could not be expressed by a closed form.

Because of this mathematical difficulty, we shall ignore the variaffons

of H and B across the leg. Replacing I1 by F/l (for the sake of brevity,

the symbol l By is replaced by l) and Bp by _p/A, Eqs. (82) through (86)

versus F isare transformed into the following: The linear region of p

described by

Cp -- pp(F - F o) (87)

where

A

pp = (=p -_- (88)

and

F o = llol (80)
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The nonlinear region of @pversus F is described by

where

and

JI

qbj, = _(F - Fo )v (90)

A
k = K -- (91)

II II

F o = Hol (92)

For a given value of F, _p(F) may be described alternatively by

where

and

_p = p_(F - F' o) (93)

t II

pp = ku(F - Fo )_'-1 (94)

II

, (1F o -- F - +--
v

(95)

The relations between the leg parameters can now be derived.

These relations may later be used to express D as a function of the leg

dimensions. Let us refer the leg parameters to one of the legs, e.g.,

to Leg 3. If the legs to be compared operate in their respective linear

regions of _p versus F, then, following Eqs. (88) and (89),

A,l 3 l 3

P.p = P3p A3l ' = P3p 2- (96)[m

A 4 13 l 3
-- -- -- , (97)

P4p P3p A3 14 P3p 14

4O



and

m

Fo. -- F03 l a

1
4

F04 = F03 13

(98)

(99)

If the legs to be compared operate in the nonlinear regions of _p versus

F, then, foIlowlng Eqs. (91) and (92),

. -_- -- _.3 2 , (100)_" = _'3 A \ I�

and

_4 = _3 "_z 14] = _'3 "_4 ' (101)

l .

" (102)" F" -- ,
F0= = 03 13

Z 4
tl Ir

F°4 = F°3 _3 (103)

Before the relations between the leg parameters are substituted

into the expressions for D, we need to derive the conditions that deter-

mine whether each leg operates in the linear or nonlinear region. This

derivation is performed next.

C. VABIATIONS OF N IN EACH LEG

Suppose that the cross-sectional areas of Legs m, 3, and 4, as

well as the lengths of Legs m and 3, are fixed, but the length of Leg 4

is varied. We shall first assume that 1 4 _ la, and examine two extreme

= • _ m We shall assume thatcases: In Case a, l 4 13, in Case b, l 4 •

Leg 4 is unloaded, since loading Leg 4 has essentially the same effect

on flux division as increasing 1 4 of an unloaded core, s and thus the

case of loaded Leg 4 (of finite length) lies between Case a and Case b.
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When 14 = l 3 (Case a), Legs 3 and 4 in parallel appear as a

slngle leg whose cross-sectional area is equal to A . In this case, the

applied NI would divide uniformly along all legs, and H 3 = H 4 = H .

When 14 _ _ (Case b), the core is essentially composed of

Leg m and Leg 3 in series. Substitution of pp = _pA/l, F = HI, and

F O = Hol into Eqs. (55) and (56) yields expressions for _= and _3"

These expressions are equated, since _. = _3' yielding the following

relation:

H= - H 0

.3-.0A.i
(104)

It is evident from Eq. (104) that the relationship between H= and H 3 is

affected by the cross-sectional areas of Legs m and 3, but not by the

lengths of these legs. Substituting the relations (A3/A =) = ]/2,

_= - -2_r +A_=, and _3 = -_r +_3 = -_r +_= into Eq. (I04), we get:

II3 - IIo
= - (105)

2 I (fA_' _r) 2

As switching progresses in time, A_. varies from zero to 2_ r. The curve

(H - Ho)/(H 3 - H o) versus (A_,/2_,) [Eq_ (105)] is plotted in Fig. 16,

assuming that (_r[_s) = 0.9 [hence (4_./2_,) = 0.9 corresponds to

_ = 2_r]. Note that the curve is below unity during the whole switch-

ing time, and that it reaches a peak of _0.735 when A_=_ 0.4q5 = 0.444_r,

i.e., when Leg m completes about 22.2% of its total switching.

It was shown previously that in Case a (where l 4 = /3 ) ,

H= = H 3 , and hence (li= - Ito)/(H 3 - H 0) = 1. The plots of (11 -Ito)/(H 3 - H O)

versus (A_,/2ff_) in the two extreme cases are compared in Fig. 16. Any

intermediate case of l 3 < 14 < _ would result in a plot that lies between

these two plots. Thus, if 14 > [3' then H < [t 3 throughout the switching time.
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From the way (H - Ho)/(H 3 - H o) versus (A_./2¢_) varies in

Fig. 16 as 14 is decreased from _ to l 3, it may be deduced that if 14

is decreased below 13, the ratio (H - Ho)/(H 3 - H o) would rise above

unity. Suppose now that Leg 3 and Leg 4 interchange functions, and we

plot (H - Ho)/(H 4 - H o) versusA¢./2¢ . Then, the curve above unity

will correspond to l 3 < 14. Applying this observation to our previous

case in which 13 < 14, we infer that H > H 4. In conclusion, for any

value of NI large enough to switch flux inelastically in a three-leg satu-

rable core (A 3 = A 4 = A /2), if 14 > la, then H a > H > H 4 during the

whole switching time. Since H a > H > H 4 at any instant of switching

time, we deduce that H3 > H. > H4' where H indicates a time-averaged

value of H over the switching time T.
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These inequalities are of interest, but additional information

about the magnitude of H in each leg relative to H 8 (Fig. 15) is needed

in order to determine the region of operation. Since calculation of in-

stantaneous H in each leg and its effect on D is quite involved, we shall

simplify the problem by replacing H by H. Calculation of H3' H,' and H4

(assuming that Leg 4 is unloaded) will be done next.

With no load on Leg 4,

j T F3dt
o

F3 = F4 ffi T (106)

Substitution of the expressions for jr F3dt [Eq. (D-12)] and T [Eq. (D-14)]-
0

into Eq. (106) gives

- + F +(NI Fo.)p.p 04p4 p F03P3 p
F3 = F4 = (107)

Pap + P3p + P4p

Since F = NI - F 3, then F = NI - F3; hence, F can be obtained by sub-

tracting _3 [Eq. (107)] from NI. Following the relation H = F/l, we

calculate H3 = F3/13 ' H4 = F4/14 ' and H = F/l. Each of these H values

may be compared with HB, Fig. 15, in order to determine whether operation

occurs in the linear portion of Bp versus H (or _p versus F). It should

be emphasized that the conclusion drawn by this step is only an approxi-

mation, because the instantaneous value of H was replaced by its time-

averaged value, H.

It was shown previously that if 13 < I¢, then H3 > _. > H4"

Therefore, if H 4 > HB, then all three legs operate in their respective

linear portions. This condition is satisfied when NI _ NI8¢, whereNfB4

is the value of N[ for which (F4//4) = H 8. Under this condition, the

relations between the leg parameters follow Eqs. (96) through (99), and

by equating H A [Eq. (107)] to Hsl,, we find that

NIB4 = Hsl ¢ 1 + + (108)
2 l 3
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As NI is reduced below NI84, H4 < Ha' Hs > Ha' and H. remains above H 8

until NI reaches NIa_, when Hu becomes equal to H B. A further reduction

in NI to NIB3 lowers H3 to H B, and if NI < NIB3, then H < H8 in every

leg. Calculation of NIa_ and NIa3 is more complex than calculation of

NIB4, because of the dependence of some or all the leg parameters on the

F values [Eqs. (94) and (95)].

To summarize, there are four regions of NI:

(1) NI _ NIa4, where H3 > _ > H4 _ Ha'

(2) NIB4 _ N[ _ NIB= , where H3 > _ _ Ha _ if4'

(3) NIB_ > NI > NIB3, where H3 _ Ha _ H. > H4'

(4) NIs3 _ NI, where H8 LH3 > H. > H,'

In calculating D versus NI, the parameters of each leg will be assumed

pp and F o [Eqs. (88) and (89)] if H_ H s, but if ff < Ha, then the param-
f t

eters to be assumed are pp and F 0 [Eqs. (94) and (95)]. Computation of

this type is extremely tedious when done manually, but is quite simple

when performed on a computer. We notice, however, that in the region

where NI _ NIB4, all leg parameters are constant; hence, calculation of

D in this region should be simpler, as we shall see next.

d, D VERSUS (14/1 3 ) F0_ NI > NIB4

If NI > NIB4 [Eq. (108)], then the leg parameters pp and F 0

[Eqs. (88) and (89)] are independent of NI. These leg parameters differ

from each other only because of variation in dimensions, as expressed in

Eqs. (96) through (99). Our objective now is to substitute Eqs. (96)

through (99) into the previous derivations in order to express D versus

leg-length ratios in a more direct fashion.

The general solution, Eqs. (70) through (73), remains unchanged,

except that the expressions for p and q are reduced to the following.

2_p 1 1 +
R t 4 t, N I d,b dps /

p = (109)

l_ Fo3 ( l l.)1 + 2+--+--
l 4 N_T l 3 14



and

I 3

1

14
q _ (110)

1 + 2+--+
l 4 NI l 3

We shall now examine several special cases.

When the core is unloaded, Eq. (ll0) is substituted into

Eq. (74) directly in order to calculate D#L.

For N[ _ _, substitution of the relation (p4s/p3p) _ (13/l 4)

[Eq. (97)] into Eqs. (76) and (77) gives

and

PNt-_ = l 3 _b _b / (111)
1 +

14

1
3

1
1

4

(112)
qNx-_ 13

1+--
14

Substituting Eq. (72) into Eq. (111) resuits in a transcendental equa-

tion in PNt-_" A numerical solution for P_t-_ can be obtained without

any difficulty. The values of PNt-_ and qsr-_ [Eqs. (111) and (112)]

are substituted into Eq. (73) in order to compute DNI__. For the no-load

case, Eq. (78) becomes

[2]
1 -- _ I-'_3//4)

DNL.Nr_ = (113)

-(13/14) 1
i+(13//4 )
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For the case of S _ 1, substitution of Eqs. (96) through (99)

into Eqs. (79), (80), (81), and (81a) results in the following expressions:

2 -F03 1 +_ 1 +p3p l_R-_ +F°3 l2

Os. 1 = , (114)

2N/ _-Fo3 2 + --l3 + --l

( lF°3 2 + " +
2 NI 13

D#L' s'] = l3 F03 l= l ' (115)

2 /, N/ ( 2 +- +-)l3 l,

and

J

- + P3p Bt (116)Ds-] ,Mr_ 13

!
4

m

DNL, 8--.I ,Nir-oo l (117)
3

Note that only Eq. (117) yields the value of D that was expected when

the problem of flux division was first introduced. 6 But one should

recall that Eq. (117) was derived assuming no variation of p with flux

in every leg, a condition valid only for small variations of @ around

ffi0 in each leg, as was shown in Fig. 13.

6, SUMMARY

An analysis of flux division ratio D in a loaded saturable core has

been developed, assuming that w 3 = w 4 = w /2 and that A@= = 2@ r. The

calculation of A_ in a leg was based on a parabolic model for p. The

final expression for D [Eq. (73)] is a function of three terms:

3, which depends on the ratio of _r tO _,; q, which is a function of

the inelastic-switching parameters of each leg and SET MMF N[; and p,
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which is a function of the leg parameters, NI, N_/B t, and _r/@s, Compu-

tation of a general case involves a transcendental solution for p

[Eqs. (70) through (72)]; if, in addition, NI is low, the six leg param-

eters are determined by an iteration process that involves calculation

of F in each leg and the nonlinearity of Bp versus fl. In the no-load

case, the computation is simpler, because p = 0; hence, no transcendental

solution for p is needed. The expression for D in the no-load case is

given in Eq. (74), and if, in addition, N[ _ _, this expression is re-

duced further, Eq. (78). It was shown in connection with variation of

leg parameters with NI that, since A > A 3 = A 4 and l 3 < 14, then

H a > H > H 4 during the whole switching time. The effect of 14/l 3 on

D is manifested indirectly by affecting the relative magnitudes of the

leg parameters. Only in the no-load case, when NI is large enough to

switch Leg 4 in its linear region, can the effect of 14/l 3 on D be ex-

pressed directly [Eqs. (74) and (ll0)]; e.g., Eq. (113) forD_L asNI _ _.

The validity of this analysis will be checked in Sec. II-D by

comparing computed and measured D versus N[ for various load values.

E. CONCLUSIONS

The objectives in this section may be classified into two cate-

gories: switching models (Parts A, B, and C) and the application of

nonlinear switching models to the analysis of flux division (Part D).

In an attempt to improve our tools in dealing with switching prop-

erties of a constant-width leg, the static @(F) curve was calculated

from assumed two hyperbolic B(H) functions, one for H _ Hth and the other

for H _ ftth. These hyperbolic functions are superior to the common

linear approximation of B(H) [cf. Report 1, Fig. 4(b), p. 4], and were

chosen simply from experimental observation. It is well recognized that

analytic derivation of such models, based on some fundamental rules in

physics, would be more elegant. However, until such models are derived

analytically, having these empirical hyperbolic models is better for

certain engineering purposes than having no models at all.

Most of our switching models of a leg assume that the leg width, or

rather cross-sectional area, is constant. Practical multipath cores, on

the other hand, include variable-width legs. A typical example is the

Transfluxor. Another example is the shaped MAD (see later, Fig. 42, p. 96)
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whoselegs around the minor apertures, especially the inner ones, are

variable in width. Calculation of switching parameters for a variable-

width leg of an arbitrary shape is very complex. For this reason we

have simplified the problem by calculating p (a very important switch-

ing parameter in common application) of a tapered leg as a function of

geometry and flux level. Approximating half of the main leg in a

Transfluxor, or Leg 3 in a MAD, by a tapered leg is more accurate than

by a constant-width leg. Calculation of p of a tapered leg has, there-

fore, practical applications.

Average p which is constant in time is useful when_@ is calculated.

In Report 1 (pp. 28-30), p and p_, of a constant-width leg were calculated

only for full switching, i.e., for _@ = 2_ r , In analyzing analog circuits,

where ¢ changes from -@r to an arbitrary level _t' there is a need for

the average p as a function of @f" We have shown that po. = (1/4@)?¢pd@
__ -- 0

and p = A_/[Ja¢(l/p)d_] and that p, not p,,, is the useful parameter for
0

calculatingA@. For this reason we have calculated families of p versus

_[/_s, with @r/@, as a parameter for both a constant-width leg and a

tapered leg. The point where p/pp reaches maximum is the point where we

can get the maximum_¢ per unit of DRIVE excess charge-turns.

No attempt has been made to use the expression for p in order to

calculate flux division in a saturable core. However, inspection of the

plot of p/pp versus @?/@_ (cf. Fig. 7) reveals the essential mechanism

associated with flux division. Since 13 < 14, then F03 < F04 and

P3p > F4p; hence, _¢3 > _ @4" This, in turn, calls for p3/P3p to be

larger than p4/p4p, which serves as another reason for A @3 to exceed

A@4. It is this factor that complicates the dependence of D on 14/l 3

and yields higher values of D than expected by simple considerations

that ignore the parabolic relation between p and 4.

We shall see in Sec. II-D how calculated D versus NI compare with

measured data. This analysis will be extended in the future to a non-

saturable core, such as a I,addic, once we have better switching models

for a leg that. is initially in a partially switched state.
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II EXPERIMENTATION £ND DISCUSSION

The purpose of this section of the report is to verify experimentally

and discuss some of the theory and calculation of Report 1 and Sec. I of

this report. In Part A, some measurements of toroidal core switching

properties are presented and discussed. Part B treats the design and

geometrical considerations of two multipath cores that are to be used for

experimentation on flux switching in multipath cores. The two final core

designs, one saturable and the other nonsaturable, are also given in this

section. In Part C, test procedures for obtaining the switching parameters

of a leg are described in general, and an example is given using one of the

designed cores. Experiments on flux division are described in Part D,

using the two designed cores. The results for the nonsaturable core are

compared with the published data on flux division in a Laddie (cf, Report 1

pp. 75-80). The results for the saturable core are compared with the anal-

ysis of flux division developed in Sec. I-D of this report. Finally, in

Part E, tile phenomenon of unsetting effect (cf. Report 1, pp. 96-99) is

verified experimentally.

A. PROPERTIES OF TOROIDAL CORES

Most of the magnetic material properties can best be determined by

choosing a simple geometry so as not to introduce superfluous complications.

Thus, toroidal cores are used when material properties are to be studied.

I. EFFECT OF SWITCHING RATE ON STATIC _(F) CURVES

One of the fundamental properties that is needed is the static qb(F)

curve. The technique for obtaining this characteristic consists of using

a positive dc MMF to set the core, and a negative rectangular pulse° super-

imposed upon tile dc MMF, to clear the core, as shown in Fig. 17(a) with

Switch Sw open. The dc MMF acts during a time T between CI.EAR pulses.

Thus, for a low repetition rate (e.g., 60 cps), ¢(F) is essentially the

static ¢(F) curve. Tile flux change is measured during tile CLEAR pulse,

since the high CLEAR MMF produces a _b(t) of short duration and high ampli-

tude, which is easy to integrate in order to determineA¢. The setting

begins at the time when the magnitude of the CLEAR pulse falls below the
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dc MMF. The fall time of the CLEAB pulse is typically of the order of

0.1 _sec to 1 _sec, so that the dc SET MMF effectively comes on relatively

fast. It was questioned whether this short rise time of the SET MMF

significantly affects the resulting static ¢(F) curve. There was no

particular reason to expect a difference, but there was also no assurance

that no difference existed. The following experiment was performed to

see if there was any difference in the static ¢(F) curve obtained with a

short rise time compared with a very long rise time.

The static ¢(F) curve of a MAD, treated as a toroid, was determined

for two different conditions. The first condition was the usual one de-

scribed above. In the second condition, Switch Sw was closed, so that

the 100-turn winding, which is in series with a diode, would constitute

a short-circuited winding during the SET time, and an open-circuited

winding during the CLEAB time. Alternatively, one could have increased

the fall time of the CLEAB pulse, but this would have required a modifi-

cation of the pulser. The current induced in this 100-turn winding slowed

down the switching rate during the SET time by an appreciable amount. A

comparison between the MMF's andA_'s versas time in the two cases is

shown in Fig. 17(b). An additional comparison of the two cases is made

in the ¢-F plane in Fig. 18. The resulting two static ¢(F) curves are

shown in Fig. 19. These curves are in agreement with each other for

values of F below the midpoint of the upper knee. Above this point, the

curve for Sw closed is about 2.7% lower. It is not known presently

whether this small difference is due to the difference in the switching

rates, or due to an unaccounted-for experimental error. The extra wiggle

in the steep part of Fig. 19 is a result of the existence of minor aper-

tures in the MAD. It is concluded that the ¢(F) curves taken with Sw

open (without the diode) can be considered as being essentially static.

2. TESTISG BLANK DISgS

Special multipath cores, which were to be used in a study of flux

division (to be described in Part D), were ultrasonically cut from _-inch

diameter Telemeter Magnetics T-5 ferrite disks. To ensure that no exces-

sive radial variations in material properties existed in these disks,

they were individually tested as toroids of very high OD/ID ratio before

the cutting process. This was done by recording a l0 #sec ¢(F) curve of

each disk (each disk had a 0.050-inch-diameter hole in the center through

which the SET and CLEAB windings could be wound). Disks having a sharp
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radial variation in coercivity, resulting in a _b(F) curve with a kink in

the steep part of tbe curve, were rejected.

3. MODIFICATION OF THE PABABOLIC MODEL

The parabol_c switching model,

where

¢ = p(F - F o) , (118)

(119)

agrees with experimental data at high F values, but is poor at low values

of F _.e., F slightly greater than the lower knee of the static ¢(F)

curve]. This is evidenced both by the static _(F) loop, which does not

have vertical sides as is assumed in the model, and by the Cv(F) curve,

which is not linear at low F values, as is assumed by the model. It would

be valuable to know for what reasons the model does not agree at low F

values, at least pbenomonologically, and what approach one might use in

modifying the model to obtain better agreement. For these reasons, ex-

perimental ¢(¢) curves of a thin ring were examined for each of several

constant F values. Oscillograms of these experimental _{_) curves can

be obtained by the technique described in Appendix G. The thin ring had

an OD/ID ratio of 1.06 and was made of a low-threshold ferrite (Telemeter

Magnetics T-5). The ¢(¢) curve obtained from Eqs. (118) and (119) for

constant F is parabolic and is, therefore, symmetrical in ¢. The experi-

mental ¢(¢) curves were symmetrical (except for the initial spike) at

high F values, but very asymmetrical at low F values, with the peak to

the left of the center of A¢. One possible way of accounting for this

asymmetry is to consider F 0 [Eq. (118)] to be some appropriate function

of ¢. F 0 must increase as ¢ varies from -Dr to ¢, in order to shift the

peak of the ¢(¢) curve to the left. Such an F0(_) variation also results

in a static _(F) loop whose sides are not vertical, but have finite posi-

tive slopes. This is observed experimentally even for very thin rings. It

is possible that the effects of radial variations of H resulting from an

OD/ID ratio significantly greater than unity can also be accounted for by

an appropriate F0(_) function. Since the final value of ¢ attained for

each constant value of F is described by the static ¢(F) curve, it is

likely that the inverse of the static ¢(F) curve is a reasonable approxi-

mation for F0(¢) , especially toward the end of the switching.
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An attempt was made to account for the F0(¢) variation by assuming

that F 0 is equal to d of the static ¢(F) curve (cf. Report 1, Fig. 9,

p. 8). It is also assumed that the initial value of ¢, ¢0' was equal

to -¢r" The resulting calculated ¢(¢) curves, which contained a constant

pp, yielded a nonlinear _(F) function that was still different from the

experimental Cp(F) curve. Therefore, to obtain a reasonable comparison

of computed and experimental ¢(¢) curves, pp was assumed to be nonconstant

with F and its value calculated for each value of F by equating the com-

puted and experimental Cp. The resulting calculated and experimental ¢(¢)

curves are shown in Fig. 20 for. three values of F. The values of pp are

also given in Fig. 20. The ¢(¢) curves are plotted normalized to ¢,, whose

value is obtained from the experimental static ¢(F) curve [Fig. 21(a)] at

5F O, or F = 7.5 ampere-turns. Also shown in Fig. 21(a) are the values of

F corresponding to the ¢(¢) curves of Fig. 20. This static ¢(F) curve is

the one that was used for the F0(¢) variation in computing the ¢(¢) curves

of Fig. 20. Note that if F 0 had been assumed constant [i.e., the static

¢(F) loop had vertical sides], then the ¢(¢) curves of Fig. 20 would all

terminate at ¢/¢_ = 1. The experimental Cp(F) curve for this core is

shown in Fig. 21(b). Note that the values of F in Fig. 20 are in the very

nonlinear regiQn of this Cp(F) curve. The initial spike observed in the

calculated ¢(¢) curves o£ Fig. 20 is a result of the low values of F 0 ob-

tained from the static ¢(F) curve near ¢ = -_r [see Fig. 21(a)].

It is Concluded that the parabolic model can be significantly im-

proved for low F values by considering variation of pp with F and varia-

tions of F 0 with ¢, but that some disagreement still persists. The next

step in the modification is the determination of analytical functions for

pp(F) and F0(¢). The major disadvantage of the modification of the para-

bolic model is, of course, the added complexity, which in some cases may

not be justified. It may be helpful for some cases to introduce Pv(F),

but not F0(¢). In this case, pp(F) can be determined from the Cp(F) curve,

as was done in Sec. I-C.

4. SUMMARY

The effect of switching rate during the setting time of the static

¢(F) experiment was found to be very small (cf. Fig. 19). Blank disks,

from which multipath cores were cut (for use in the flux-division experi-

ments), were selected on the basis of their ¢(F) property. Experimental
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¢(¢) curves of thin ferrite ring are compared with curves calculated from

the parabolic model (Fig. 20), with the following modifications: The F 0

of the parabolic model is assumed to be a function of ¢. This F0(_) func-

tion is approximated by the inverse of the static ¢(F) curve. The values

ofpp in the parabolic model were assumed to be some function of F and are

determined by equating calculated and measured peak ¢ values.

B. GEOMETRY CONSIDERATIONS OF MULTIPATH CORES

As discussed in Report l, p. 1, a multipath core can be divided into

legs; each leg is characterized by appropriate switching models. Assuming

uniform material, the switching properties of the legs differ from each

other only due to variations in geometry. Unfortunately, the geometry of

a leg is sometimes not well defined. We wish to discuss this problem in

connection with the design of two multipath cores that were used for ex-

perimental verification of phenomena associated with core geometry in

general, and flux division in particular. The design and analysis of these

two cores involved a number of geometrical considerations that will now be

discussed.

1. DESIGN CONSIDERATIONS

a. SATURABLE AND NONSATURABLE CORES

Two three-leg cores were designed for the flux-division ex-

periment. The first core was intended for use in measuring flux divi-

sion in a nonsaturable core. With this core, we checked and supplemented

the experimental data on another core (Laddlc) that was reported in the

past. 6J We also hope to use these data for comparison with future

analysis. The second core was saturable and served to verify experi-

mentally the analysis of flux division developed in Sec. I-D. Both cores

were ultrasonically cut from ferrite disks of constant thickness.

b. CROSS-SECTIONAL AREA OF h LEG

One of the most important geometrical properties of a leg to

consider is the variation of its cross-sectional area or, if the thick-

ness is constant, the variation of its width. There are many problems

associated with the description of flux switching in a variable-width

leg. These problems were discussed in Sec. I-B-2. Because of these

problems, the experimental work on flux division was performed on
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multlpath cores that were specially designed so that each leg had constant

width for as much of its length as possible. Once flux division for such

cores is well understood and predictable, there is a possibility of under-

standing flux division in less ideal cores.

C. JUNCTION PBOBLEMS

Ideally, the legs of a multlpath core should have dimensions

that are uniquely defined, irrespective of tile switching paths in the

core. These switching paths are determined not only by the location of

the drive windings, but also by the amplitudes of the drive currents.

Each leg should have a well defined short edge of length I i, (cf. Fig. 19,

Report 1, p. 18), tong edge of length lo, and cross section of area A.

In addition, the midpaths of all legs should meet at nodes, or junction

points, from which the values of I a* may be obtained [actually for very
l0

thick legs, a path somewhat inside of the mldpath should be chosen,

because of the difference between 1/(/_*) and (1/I)'*]. These ideal con-

ditions are assumed by the leg model, but cannot be realized physically.

However, by designing cores that minimize the junction problems and by

making suitable approximations in the determination of leg dimensions,

the leg model can still be very useful. The alternative to using the leg

model, i.e., solving the non-llnear field problem, is a very complex

problem. In order to minimize junction problems, the junction volume

should bemade as small as possible, so that the percentage of a leg

dimension that is ambiguous is minimized. This is done primarily by

making the ratio of leg length to width, I/w, as high as possible.

However, a high I/w ratio has the problem of flux leakage when a lumped

drive winding is used. As a compromise, a value of I/w _ 18 was chosen

for the longest leg. Fillets should be avoided, since they also increase

the junction volume. In designing a multipath core for which all legs

have the same width, there are two advantages in having the three legs

radiate from the junctions at approximately equal angles from each other:

First, flux leakage is minimized; second, the location of the junction

node is less dependent on where switching takes place.

d. LEG CONTOUR

The presence of sharp inside corners in a leg is not desirable

because of leakage flux that bypasses the corner (Report 1, Fig. 106,

p. 109). For this reason, unnecessary sharp corners were eliminated in

the core designs.
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e. FINAL CORE DESIGNS

The nonsaturable core, Core N, and the saturable core, Core S,

were designed on the basis of the above discussion. The dimensions of

these cores are shown in Fig. 22. Note that Core N has three legs of

the same width, whereas Core S has two legs of the same width and a third

leg of twice that width.

2. DETERMINATION OF l_, lo, AND l "v

In order to'obtain the switching parameters of the legs in the cores

under discussion, we must first determine the dimensions l_, I o, and l *v

of each leg. However, the exact dimensions of each leg depend upon the

paths of switching. To illustrate the problem, consider Core N and com-

pare the case when the drive is on Leg 1 with the case when the drive is

on Leg 2. The values of li and I o of each leg are different in these two

cases, as shown in Fig. 23. These particular choices of dimensions in-

volve compromises and approximations, some of which will be discussed in

the next part.

3. FLUX SWITCHING IN A CORE HAVING A RE-ENTRANT SHAPE

Discussion of the topic of this section requires the use of termi-

nology that first must be defined.

A switching llne in a magnetic core is a line at every point of

which the vector M is tangential. A switching path in a magnetic core

is a group of switching lines.

The leg length I min is determined by the line along which inelastic

switching first occurs in a cleared leg (¢ - -¢r) as the MMF is slowly

increased from zero. The leg length l max is determined by the line along

which inelastic switching last occurs as the MMF continues to increase

slowly. Thus, I min and l m'x are determined by lines that may or may not

follow the short and the long edges of the leg, as will be illustrated next.

Consider a core having a re-entrant shape, such as obtained by removing

Leg 1 of Core N [cf. Figs. 22(a) and 24]. Assume that this core is ini-

tially well cleared in a clockwise sense, and that a dc current is applied

to the winding on Leg 3 as shown in Fig. 24. The magnitude of this current

is slowly increased until switching just begins in Leg 2. The initial

switching line will be the shortest closed line linking the drive winding,
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• i, is equal to the length ofi.e., Line A-B-C-D-A in Fig. 24. Thus, 12

Line C-D-A, whereas li2 is the length of Line C-F-A. As the current is

increased further, flux will be switched along lines that are longer than

Line A-B-C-D-A, e.g., Line G-H-I-J-G. The longest switching line con-

tinues to expand as the current is increased untll it touches the left-

hand surface of Leg 2, Point T. As the current is increased still further,

the longest switching line must cross over the previous switching lines,

as illustrated in Fig. 24 by Line K-L-M-N-K. The final switching line

will resemble Line O-P-Q-R-S-O. The net result is that I_ i* is smaller

than 1i2 and l_ °x is larger than Io2. Thus, the static ¢(F) curve for

this core would not be as steep as the static ¢(F) curve that would be

calculated by using I i and l ° in Eqs. (16), (17), and (18).

M!

LEG 2

LEG 3

RA-3696-155

FIG. 24 SWITCHING LINES IN A CORE HAVING A RE-ENTRANT SHAPE
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Consider Point E in Fig. 24. Since the core was initially well

cleared, the magnetization _1 followed the contour of the core. Thus, the

initial magnetization at Point E can be represented by the vector M i in

Fig. 24. When the MMF is increased just enough to establish switching in

Line A-B-C-D-E-A, M changes from initial value M i to an intermediate

value M 2 . The vector difference AM is parallel to M, which is tangential

to the switching Line A-B-C-D-E-A. Whenever M at a point in a magnetic

material changes direction by an angle other than 180 ° , some transverse

switching is occurring and M at that point is non-parallel to M. In the

absence of bulk anisotropy, this transverse switching must be accompanied

by a transverse H field. The source of such an H field is, in general,

made up of two components: the applied H, and the H due to div M (effec-

tive magnetic pole density), which develops on the surfaces and inside the

magnetic material (see Heport 1, p. 128; also Ref. 11), The properties

of transverse switching need further investigation.

The above description is intended only to present the problems in

understanding the switching in a core, such as the one of Fig. 24, and

to estimate the location of the switching lines for slow switching. If,

instead of the slow switching, fast switching is produced as a result of

applying a relatively high-amplltude rectangular current pulse, then dif-

ferent switching lines would be obtained because switching would be oc-

curring simultaneously, though at different rates, throughout the entire

core. Several other examples in which the re-entrant shape is also en-

countered are the following:

(1) Driving on either Leg 2 [see Fig. 23(b)] or Leg 3 of Core N

involves switching in the series combination of Legs 2 and 3,

which has a re-entrant shape.

(2) In determining /i3 inside the junction of Fig. 23(a), the
problem is mixed with the junction problem.

(3) The re-entrant shape also occurs in Legs 2 and 3 of the multi-

aperture core shown in Fig. 97(a), (p. 102) of Report l.

The detailed process of switching in a core as in Fig. 24 is diffi-

cult to determine, even for slow switching. However, if the shape of the

core is made more re-entrant, as in the core shown in Fig. 25, and the

material is assumed to have a static B(H) loop with vertical sides, then

a simple model for slow switching can be proposed. This model has the

zone pattern shown in Fig. 25, which provides magnetization closure and

crossover switching paths (i.e., switching paths which cross over from
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FIG. 25 SWITCHING PATH CROSSOVER ZONES IN
A CORE HAVING A RE-ENTRANT SHAPE

Arrows Indicate Directions of M

one edge of the leg to the other edge), For a closer examination of these

zones, refer to Figs. 26(a), (b) and (c). The dashed lines in these fig-

ures represent the zone boundaries. Note that the relative directions of

the magnetization M and the zone boundaries are such that no magnetic poles

exist at any of the zone boundaries (cf. Report 1, p. 122). The switching

paths are identified by arrows in Fig. 26(c). Each switching path is bound

by a dashed line and a dash-dot line. Note that the switching path could

not pass diagonally through the rectangular zone without establishing new

zone boundaries within the existing zone. Figure 26(c) also illustrates

the motion of the zone boundaries. Consider the three points, Pl' P2' and

P3 in Fig. 26(c). The initial M, M_, the final M, MI, and several inter-

mediate values of M at each of these points are shown in Fig. 26(d). The

physical mechanism of the switching required at Points P2 and P3 has not

been thoroughly investigated. The vector M/ at Point P2 is parallel to

Mi at Point P3" Note that as the zone boundary moves past Point Pl, M

switches by 180 °, whereas at Points P2 and P3' M switches by less than

180 °. 51aterial at a point near the rectangular zone switches first as

at Point P2 and later finishes switching as at Point P3' resulting in

a net 180 _ switching after both zone boundaries have passed the point.
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Also notice that the vectors AM, which are parallel to M have the same

directions as the zone boundaries. Based on the definition of a switching

path, these zone boundaries coincide with the switching paths. The zone

boundaries at a later time in the switching process are compared in Fig. 27

to the ones obtained earlier. The angle O that the boundary of the rectan-

gular zone makes with the edge of the core will be determined for a partic-

ular core shape by minimization of the total magnetic energy of the system.

This includes primarily zone-boundary energy and magnetostatic energy,

which results from both the applied H and the H due to the existence of

magnetic poles. For different angles O, the relative widths of the

switching paths near PointsP2 and P3 in Fig. 26(c) will be different. Also,

the angle between the initial and final direction of M at Points P2 and P3

in Fig. 26(d) will be different. These two effects change with O in such

a way as to provide the required continuity of ¢ in the switching path,

and also to divide ¢ equally between the two branches of the switching

path.

FIG. 27 COMPARISON OF CROSSOVER ZONES EARLY

AND LATE IN SWITCHING

The extension of this zone model to materials whose static B(H) loops

do not have vertical sides results in a configuration in which all of the

material between two zone patterns (the shaded regions in Fig. 27) is in the

process of switching. These two zone patterns then represent the initia-

tion and completion of switching.

This switching path crossover zone model has not been verified ex-

perimentally. It represents a first attempt at describing the details

of crossover switching.
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4. MACHINING OF MULTIPATH CORES

The multipath cores were ultrasonically cut from 0.050-inch thick

ferrite disks. The ultrasonic too] was machined with a three dimensional

pantograph from an enlarged (32x) plastic and metal pattern. This tech-

nique, although quite workable, has several problems. The major problem

is the development of a taper in the cross section of a core leg. This

problem is not easily remedied, and is most pronounced for very thin legs.

Another problem stems from inaccurate dimensions. A leg width can easily

be off by 0.05 mm, unless special care is taken in designing and construc-

ting the ultrasonic tool. Cores N and S, used in the experiments of this

report, have dimensions that are within ±0.010 mm of the design dimensions

shown in Figs. 22 and 23. This accuracy was accomplished with consider-

able difficulty.

5. SUMMARY

The various considerations involved in designing two cores for ex-

periments of flux switching in multipath cores are discussed. The most

significant of these considerations is the junction problem. The two

final core designs are shown in Fig. 22.

The problems associated with determining the leg parameters li, Io,

and l'" are considered, and an illustration of the different results

corresponding to two different drive conditions on Core N (Fig. 23) is

given.

The terms switching line and switching path are defined, and then

used in examination of switching on cores having re-entrant shapes.

Only a crude picture is given for switching in one core (Fig. 24), where-

as a model is proposed for describing switching in a second core (Fig. 25).

C. I)ETE1_MINATION OF LEG PARAMETEBS

A number of leg parameters must be determined for each leg of a

multipath core so that switching models can be used to describe the

switching phenomena (such as flux division). If the material parameters

are known, these leg parameters can generally be calculated from the leg

dimensions; however, typically there are significant variations in mate-

rial parameters from core to core (and even from point to point within

a core), ]herefore, it is desirable that tne leg parameters be determined on the

same core that is used in the experiments. The particular disks from which
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Cores N and S were cut are believed to have had some radial variations

in threshold. It is difficult, however, to measure leg parameters sepa-

rately for each leg of a core. As a compromise, the material parameters

were experimentally determined for two legs in series (comprising the

closed path needed for the experimental measurements); these same material

parameters were then used to calculate the leg parameters for each leg of

of the same core. Material variations from core to core were thus ac-

counted for, but material variations within a core were neglected.

This section describes experimental techniques for determination of

the required leg parameters. The details of the experimental measurements

are included in Appendix H.

1. PARAMETERS TO RE DETERMINED

A list of leg parameters is given in Table I, together with the mate-

rial parameters from which these leg parameters are determined and the ex-

periments from which the material parameters are determined,

Table I

DETERMINATION OF SWITCHING PARAMETERS

EXPERIMENTS MATERIAL LEG PARAMETERS
PARAMETERS OR PROPEHTY

(1.) Static _(F)

(a) elastic flux f Bss

switching
Ha

(b) inelastic (and elastic)
flux switching

f Br

Hn

tlq

B s

Static ¢(F)

(2.) _p(F)

_p

Ho

K

II'o

V

Fo

F'o
I/
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_. CLOSED PATH FOB TESTINC

The basic experiments listed above must be performed on a closed

magnetic path. Thus, some closed path in the multipath core must be

chosen and flux switching in any other paths must be blocked. One way

in which this blocking can be accomplished is by putting a short-circuited

winding around the legs in which no switching is wanted. For example, the

parameters of Core N [Fig. 22(a)] were determined by choosing Legs 1 and 2

for the closed path and putting a short-circuited winding on Leg 3.

Similarly, for Core S [Fig. 22(b)], Legs 3 and 4 were chosen for the closed

path and Leg m was linked by a short-circuited winding. If possible, this

closed path should have the same cross-sectional area over its entire length,

otherwise the determination of material parameters would become more in-

volved and less accurate (cf. Report 1, pp. 109-112).

Blocking ¢ in the legs where no switching is wanted may present a

problem because of the resistance and leakage inductance of the short-

circuited winding. The effectiveness of a short-circuited winding for

preventing switching in a leg, if the leakage inductance of the winding

is neglected, is a function of N2/R, where N is the number of turns of

the winding and R is its internal resistance. Assuming that the avail-

able aperture is filled with the short-circuited winding, R is approxl-

mately proportional' to N 2, so that the effectiveness of the short-circuit

is not significantly dependent upon the number of turns used in the winding.

On the other hand, if the resistance of the winding is assumed to be zero

and the effect of leakage inductance of the winding is calculated, the

pertinent quantity is N2/L. The leakage inductance is approximately of

form N2KI[In(K2v/N) -K3], where KI, K2, and K 3 are constants, so that a

winding of one turn that fills the aperture is better than a multiturn

winding that also fills the aperture. Additional factors in favor of a

single turn are (a) a better filling factor, and (b) the possibility of

using a copper strap, heavier than the wire inside the aperture, in order

to complete the short-circuited turn and thereby lower the resistance and

leakage inductance. The short-circuited turn might also be made by immer-

sing the leg to be blocked in mercury or some other liquid conductor.

When performing the experiments, it is a good idea to check for flux

switching in the blocked leg by putting a sense winding on it. Another

possible means of blocking a leg in which no switching is wanted is the

physical removal of the leg. This means requires either that the flux
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division experiments be done before the leg is removed for the determi-

nation of leg parameters, or that two separate cores are used, in which

case they must be known to have the same magnetic properties.

3. STATIC ¢(F) EXPERIHENT

The static ¢(F) experiment consists of two measurements:

(i) Measurement of the total flux change (inelastic plus

elastic) from negative remanence to any intermediate

level up to positive saturation.

(2) Measurement of the elastic flux switched from negative

remanence toward negative saturation.

In the first measurement, the core is set with a positive dcMMF and cleared

with a negative MMF pulse whose amplitude is sufficient to attain a repro-

ducible residual state. The flux change is measured during the CLEAB pulse,

since the high CLEAn MMF produces a H(t) of short duration and high amplitude,

which is easy to integrate. In the second measurement, the dc MMF is removed

and the amplitude of the CLEAR pulse is varied. The test procedure for ob-

taining the static ¢(F) curve is outlined in Appendix H.

The resulting static ¢(F) curve is then used to determine the material

parameters Br, Bss , Ho, H n , and Hq (cf. Fig. 2, Sec. I-A). First, B r is de-

termined from

B hw (120)

Next, Eq. (16) is used to determine Bs, and Ho from the second experiment.

This. can be done either by using two experimental points, or by the method

of least mean squares using all of the experimental data. For most appli-

cations, Eqs. (17) and (18) can be used instead of the more complicated

Eq§. (A-6) and (A-7) for tile determination of H n and Hq. This can be done

either by using two appropriate experimental points, one for Eq. (17) and

the other for Eq. (18), or by the method of least mean squares using all

of the experimental data from the first static ¢(F) curve.

Once the material parameters Bss , B_, Ha, Hn, and Hq are determined,

llth is calculated from Eqs. (12) and (13), and then the static H(F) curve

can be computed for any leg of the same material by applying these param-

eters and the leg dimensions to Eqs. (16), (17), and (18).
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As an example, the computed B(H) curves of Core N are shown in

Figs. 28(a) and (b), and experimental and computed static _(F) curves of

Legs I and 2 of Core N in series are compared in Figs. 28(c) and (d).

The values of the material parameters are given in Fig. 28.

The agreement between the measured and the calculated static ¢(F)

curves is very good, except where 0 < F < Hthl i and where IF] > 10 Hthl •
o

The agreement for 0 < F < 0.37 AT is not good because of some inelastic

flux switching that is neglected by the model. For [F[ > 5 AT, the com-

puted curve (even if _olr is included) has poorer agreement with the ex-

perimental data than for [FI < 5 AT. If the experimental data were fitted

for the range of values -100 _T < F < 0, then the value of Bss obtained

would be larger than the value required to obtain good agreement for

Hthlt < F _ 10Hthl i • We thus conclude that for the range of F values

most frequently used in computer applications, the static ¢(F) curve may

well be described by Eqs. (16), (17) and (18).

The material parameter B s is obtained from the experimental static

_(F) curve by choosing the value of Cs to be at about five times F 0. Thus,

B hw (121)

From this value of B s, one can calculate the _, value for any leg by using

the h and w of the leg.

4. qbp (F) EXPERIMENT

The qbv(F) experiment consists of setting, and clearing the core with

rectangular pulses and measuring the peak qb as a function of the SET pulse

amplitude. The test procedure is outlined in Appendix H. As discussed in

Sec. I-D-S, the resulting experimental 4pp(F) curve is described by Eq. (87)

in the high-F linear portion, and by Eq. (90) in the low-F nonlinear
11

portion (cf. Fig. 15). The nonlinear approximation defines A., F0, and z/.

Which of these approximations is used depends upon the accuracy needed,

the range of F for which the parabolic switching model is to be used, and

the degree of complexity one can handle for a particular application.

From these experimental parameters (which apply to the entire closed mag-

netic path) the corresponding material parameters can be calculated by

using Eqs. (88) and (89) or Eqs. (91) and (92). These material parameters

can then be used to calculate the leg parameters for any other leg of the core.
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A numerical example can be found in Fig. 35, where measured and calcu-

lated Cp(F) of Legs 3 and 4 of Core S are compared.

5. SUMMARY

The parameters which need to be determined for each leg were sum-

marized in Table I, together with the corresponding material parameters

and also the two experiments used to determine these material parameters.

The requirement of choosing a closed path in the core to be tested and

the problem of preventing flux switching in all other paths were treated.

Both of the two experiments, the static ¢(F) experiment, and the Cp(F)

experiment, are presented and the process of using the experimental data

to obtain the parameters for any leg of the same core is discussed.

D. FLUX DIVISION

I. INTRODUCTION

In dealing with flux division, we distinguish between a saturable

and a nonsaturable multipath core. As explained in Sec. I-D-I, all the

legs of a saturable multipath core can be brought simultaneously into

saturation residual state of ¢ = ±¢r, whereas in a nonsaturable core,

at least one leg is unsaturated. Flux division in a saturable core was

analyzed in Sec. I-O. Due to the lack of switching models for a leg

initially in a partially-swltched state, flux division in a nonsaturable

core has not been analyzed. Experimental data on flux division in a non-

saturable core (the Laddie) was described when the problem of flux divi-

sion was first introduced. 6

In this part, we first show results from extending the experimental

investigation of flux division in a nonsaturable core. Second, verifi-

cation for the analysis of flux division in a saturable core (Sec. I-D)

is given by comparing measured and computed plots of D versus NI for

various load levels. Along with this verification, the effects of

various factors (such as Cr/_,, leg parameters, load levels, and 14/13)

on D are investigated.

2. FLUX DIVISION IN A NONSATURABLE Cone

a, EXPERIMENTATION

The nonsaturable core used in the experiments on flux division

was Core N [Fig. 22(a)], whose three legs are equal in cross-sectional
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area, but different in length. As explained in Part B-l, this three-leg

core was especially designed and fabricated for the experiment on flux

division. The manner of dividing Core N into legs and the lengths of

these legs are given in Fig. 23.

In order to obtain a reproducible initial state, Core N was

heated to slightly above its Curie temperature for about two minutes. In

this way, the entire core was brought into a uniformly demagnetized state

before any measurement was performed.

First, MMF N[ was applied to Leg 1 [Fig. 23(a)], and the re-

sulting ¢1' ¢2' and ¢3 were sensed and integrated. With no load on either

leg, the experimental setup was similar to the one shown in Report 1,

Fig. 72(a), p. 75. The bipolar SET and CLEAR current pulses were equal in

amplitude and duration (5 microseconds). As NI was monotonically increased

from zero, residualA¢i, A¢2, andA¢3 were measured as a function of NI,

using the flux-reference technique (c[. Appendix F). The same procedure

was then repeated with the NI drive applied to Leg 3.

b. BESULTS

Plots of measured _¢1' A¢2' and A¢ 3 versus NI are shown in

Fig. 29. Figure 29(a) is for NI applied to Leg 1, and Fig. 29(b) is for

NI applied to Leg 3. Corresponding plots of flux division ratio versus

NI are shown in Fig. 30.

Oscillograms of ¢1' ¢2' ¢3 and NI for the case of drive on Leg 1

are shown in Fig. 31 for NI = 0.7 AT, and in Fig. 32 for NI = 3.0 AT.

These oscillograms were taken at a temperature of 2Q°C and repetition rate

of 500 cps. The waveforms of _1' ¢2' and ¢3 during the SET time for the

case of NI = 3.0 AT are shown in Fig. 32(a), an enlargement of.¢ 3 during

the SET time is shown in Fig. 32(b), and the waveforms of ¢1' ¢2' and ¢3

during the fall time are shown in Fig. 32(c).

These experimental data will now be discussed.

C.

(1)

DISCUSSION

In examining Fig. 30, the inaccuracy of the&¢ measurement

should be considered. ]'he flux change in each leg was

measured by means of the flux reference (cf. Appendix F),

whose error is less than ±0.1 maxwell turns. The lower NI

is, the smaller is tile measuredA@ in the longer leg; hence,the
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(2)

(3)

higher is the error. Thus, when NI is applied to Leg 1,

at N[ = 0.592 AT, A_2/A_b 3 reaches a peak of 82.3 +_:_

(i e the error is less than +33.6 %); however for• ", -20.0 '

NI = 4.138AT, (bqb2/Aq53) = 11.91 +0.16, (i.e., the error

is less than ±1.34%). When NI is applied to Leg 3, at

NI = 0.794 AT, A¢2//_¢ , reaches a peak of 10.7 +1_._,

+_0 %). however, for(i.e., the error is less than_ 7 '

NI = 2. 914 AT, (Aqb2/Aqb 1) -- 3.08 +- 0.12, (i.e., the error

is less than ±3.9%). These errors for the low values of

NI could have been decreased by increasing the number of

turns of the sense windings on the longer legs. This im-

provement was made in measuring the flux division in Core S,

as will be shown later.

It is hard to compare our experimental data with the data

in fiefs. 6 and 7 because we do not know what material was

used for fabrication of the Laddic reported on in Refs. 6

and 7. There is, however, similarity between the plots of

A_b2and/X_b 3 for the ratio of 13/l 2 = 3, which is common to

Ilefs. 6 and 7 and Fig. 29(a), except for the following.

In fiefs. 6 and 7 [see also Report 1, Fig. 72(b), p.75], /_gb 2

andA¢ 3 versus NI is less curved and rises with a higher

slope than in Fig. 29(a). This difference might have been

caused by tile use of material of higher threshold and

squarer B(H) loop in Refs. 6 and 7. Another difference be-

tween these sets of data is that in Fig. 29(a), Aqb 2 and A¢ 3

versus NI )lave small but finite slope at high values of

NI (say, above 2 AT), whereas in Refs. 6and 7, Aq5_ andAq53

are essentially constant in this range of NI.

In the plots of D versus NI for leg ratios of 3 and 1.5

(Fig. 30), we observe that in each core, D reaches a peak

at some relatively low value of NI. In order to understand

what causes this peak to occur, let us refer also to

Fig. 29(a), where NI is applied to I.eg 1. As NI is increased

from zero, there are slight inelastic flux changes in all legs

until at around NT = 0.4 AT, H in Legs 1 and 2 reaches tile

threshold value. A further increase in N[ causes an appre-

ciable inelastic Aqb in Legs 1 and 2, t)utA¢3 hardly increases,

since H 3 is below the (soft:) threshold. In this region of
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(4)

(5)

N[, therefore, A¢2/A¢3 increases with NI. As NI exceeds

_0.6AT, I13 exceeds the (soft) threshold, andA¢ 3 increases.

For values of NI above 0.8 AT, A¢ 1 andA¢2 start to level

off due to saturation, but A¢ 3 continues to rise. This

calls for a decrease inA¢2_q53. Thus, at a value of NI

somewhere between 0.6 AT and 0.8 AT (Fig. 30), A¢2/A¢ 3

reaches a peak. A similar mechanism causes the peak in

A¢2/A¢I versus NI in the case where N[ is applied to Leg 3

except that since 13 > ll, this peak is reached at a value

of N[ higher than when Nrl is applied to Leg 1.

The oscillograms of _2 and _3' (Figs. 31 and 32), are

similar to the ones in Ref. 7, except that in nef. 7 these

oscillograms were not extended to the fall time. As in

Ref. 7, ¢3 becomes negative (while NI is still on) if NI

is high enough. The explanation for this phenomenon can

be found in Report 1, pp. 77-80.

The waveshapes of ¢1, ;2' and ;3 during the fall time of

NI were predicted in Report 1 [Fig. 75(b), p. 79]. Com-

paring peak values of ¢ in Beport 1,. I;3,1 > 1¢2. t, whereas

in the oscillograms of rig. 32(c), 1¢3,1 < This

disagreement stems from the following reason: Prediction

of the waveforms was based on the assumption that since

Leg 3 is in a soft state and Leg 2 is in a hard state, the

slope _ = (d¢)e/dF in Leg 3 is higher than in Leg 2. Such

an argument is correct but incomplete; there is an addi-

tional factor, i.e., Leg 3 being longer than Leg 2, which

acts in an opposite direction. Which factor is predominant,

depends on the circumstances. Apparently, the factor of

leg-length ratio is predominant in Fig. 32(c), whereas in

Fig. 75(b) of Report 1, the soft-state factor was assumed

predominant. Based on this point, and since (d¢)e/dF

varies during the fall time, instead of comparing _02 and

and ¢p3' we should have comparedAce 2 andACe3 during the

fall time. When this comparison is made in Fig. 32(c), we

find that 1A¢,3 I > IACe2t, which agrees with the basic as-

]umptions made in Report 1 in predicting the waveshapes of

¢ in the three legs.
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3. FLUX Dxvlslo_ IN A SATURABLE CORE

a. EXPEHIMENTATION

Core S [Fig. 22(b)] was designed and fabricated specially for

measurement of flux division in a saturable core. The manner of dividing

this saturable core into Legs m, 3, and 4 and the dimensions of these legs

are also shown in Fig. 22(b).

The experimental setup followed the one shown in Fig. 10, p. 26.

Leg 4 was first unloaded. The core was cleared to a negative remanent

state (not shown in Fig. 10). A current pulse of amplitude I and duration

T was then applied to an N-turn winding on Leg m in the SET direction, and

the net flux change in Leg m, A¢=, was measured. The magnitudes of I andT

were adjusted untilA¢= was equal to 2¢ r, which is the maximum possible

inelasticA¢ in Leg 3 (or Leg 4). For each pair of values of I and T that

yieldedA¢, = 2¢ r, the values of_¢3, A¢4' and I were recorded.

This procedure was repeated for three values of load:

(1) N L = 2, R L = 1.02 ohm, i.e., (N_/R t) = 3.926 T2/ohm.

(2) NL = 1, R t = 0.093 ohm, i.e., (N_/R L) = 10.66 T2/ohm.

(3) NL = 2, B L = 0.1 ohm, i.e., (N_/B L) = 40.00 T2/ohm.

b. HESULTS

The resulting plots ofA_ 3 and_¢4 versus NI are shown in

Fig. 33 for the four values of N_/R L. The corresponding plots of D will

later be compared with calculated plots.

Oscillograms of ¢=, ¢3' _4' and NI are shown in Fig. 34 for the

case of NI = 0.8 AT and Leg 4 unloaded. These oscillograms were taken at

a temperature of 29°C and a repetition rate of 60 cps. Note that

NI _ 0.8 AT is below the minimum value of NI that enablesA_= to be equal

to 2¢r, as is evident from Fig. 33(a). These oscillograms were taken in

order to explain a phenomenon associated with peaking of D in a saturable

core, as will be discussed later.

Our next objective is to compare measured and calculated plots

of D versus NI. In order to calculate these plots, we first must deter-

mine the leg parameters.
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C. LEG PARAMETERS 

The inelastic-switching leg parameters were measured in the 

same manner as described in Part C-4. Leg m (Fig. 22(b)] was wrapped by a 

short-circuited winding, and Legs 3 and 4 in ser1es were tested as a 

single-leg core. The measured peak ¢, ¢p34' is recorded versus the ap

pi i e d MMF, F 3 4 ' in Fig. 35 . 

By extending the linear portion of ¢p34 versus F34 (dashed line 

In Fig. 35), it is found that FOH = 0.85 AT and PHp = 0.75 ohm/T2. 
Following Fig. 22(b), the leg dimensions are as follows: l:T = 16.fl45 mm, 

l;T = 5.040 mm, l:T = 8.960 mm; A3 = A4 = (A. /2) = 0.665 mm 2
• Substi

tuting l;; = l;v + Z;v = 14.000 mm and AH = A3 = A4 = 0.665 mm 2 into 

Eqs. (88) and (89), we find that Ho = 60.6 AT/ m and ~ p = 15,800 ohms/(T2m). 

Substituting the leg dimensions and the values of Ho and ~ into Eqs. (88) 
• p 

and (89), the leg parameters in the li near region of ¢ versus F are found 
p 

to be as follows: Fo. = 1.0227 AT, F03 = 0.306 AT, F04 = 0.544 AT, 

p. p = 1.246 ohms/T 2 , P3p = 2.083 ohms / T2
, and P4p = 1.172 ohms/T 2

• 

The nonlinear portion of ¢p 34 versus F34 , (Sec. I-O-5-b) 1S ap

proximated by the solid line in Fig. 35. With reference toEq. (90), p. 40, 
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k34 = 0.5 ohm/(TV+]Av-]), F_34 = 0.55 AT, and v = 1.3. Substituting the
ts

values of 134"* and A34 into Eqs. (91) and (92), we find that H0= 39.3 AT�m,

and K = 10,520 ohms/(TV*lAV-lm2-v). IIence, the leg parameters in the non-

linear region of _p versus F are as follows: F"0, = 0.662 AT,

" _ , # _ . , ! gF03 0 198 AT, Fo4 0 352 AT, and in units of ohms/T2"3A 0"3 _, = 0.357

_3 = 0.855 and _4 = 0.405.

These values of parameters were then employed in computing D

versus NI for various load levels, co be discussed next.

d, COMPUTED D VERSUS MEASURED D

Computation of flux-division ratio D versus applied MMF NI was

based on Eqs. (70) through (73). The ratio _r/_, was measured (cf.

Part C-3) and found to be slightly larger than 0.9, and was rounded to 0.9.

Later, we shall examine the effect of _r/_ s on D. The computation of D

was performed on the Burroughs 220 computer, using the ALGOL programing

language.
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For a given value of N_/R L and for each value of NI, the com-

putation steps are described as follows: Initial numerical values of

the parameters of each of the three legs are assumed to be F 0 and pp.

These six parameter values are substituted into Eqs. (70) through (72)

in order to solve for p transcendentally. Switching time T[Eq. (D-14)],

is then evaluated and substituted into Eq. (D-12) in order to determine

F3' which is then substituted into Eq. (D-4) in order to determine F .

The expression

(122)

is then used to determine F4 [Eq. (122) is obtained by substituting
7

_4 =Aq_4/T = (qbr + dP41)/T = (qbr -q531)/T' Eqs. (60) and (62), into

Eq. (54)].

For each leg whose parameters p, _ and F o are known, s,hstitu-

tion of F into Eqs (94) and (95) yields the first approximation for the

' and ' These six leg parameters replace the initialleg parameters pp F 0.

values of leg parameters, and the same computation steps are repeated.

This procedure is repeated several times until one of the variables,

e.g., F3' has changed by less than 0.1% in the last cycle. The values

of p and q in the last cycle are substituted into Eq. (73) in order to

compute D.

Corapl, ted plots of D versus NJr for various values of N2L/ttl. are

compared in Fig. 36 with experimental data. The accuracy of the experi-

mental measurement is lower as Nr becomes smaller, since when Aqb 4 becomes

smaller, the noise level is more significant. The error inA@_ due to the

noise level in the flux-reference (cf. Appendix F) is less than :tO.1/N o

maxwells, where N* is the number of tl, rns of the sense winding. For the

cases of (N_./III) = 0, 3.926, 10.66, and 40.0, N_ on I.eg 4 was equal to 2,

20, 10, and 20, respectively.

e .

(1)

D I SCUSS I ON

The calculat.f'd I)versus NI (Fig. 36,) is far from coin-

tiding with the measured curves. Ilowever, in view of the

complexit) of flux division, these results are neverthele._s
ancouraging. The m,'as_lred I) decreases as NI increases
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(2)

above, say, 1.3 AT, until, at a certain value of NI, D
reaches a minimum. (No such minimum is reached in the

no-load case for NI below 5.0 AT.) The computed D versus

NI for the loaded case also has a minimum point that be-

comes more pronounced as N_/R L increases (see also Fig. 39
later). When we first computed D versus NI, we assumed

constant F and p. in each leg, and the resulting curves
0 e 2

were monotonically decreasing for all values of NL/R L.
Since the effect of the curvature of _ versus F was ac-

counted for in computing the curves inPFig. 36, it may be
concluded that the minimum of D versus NI is associated

with the nonlinearity of _p versus F. Since the assumption
of constant F^ and p is valid for high values of NI, the

• • P •

effect of lnc_udlng the nonlinearity of_p versus F is not

to raise D at high values of NI, but rather to drop D at

the low v lues of N[. We may conclude, therefore, that
for values of N[ larger than N[ at the minimum point, D

rises and approaches an asymptote as NI _ _.

The main discrepancy between the computed and measured
curves is around the low values of NI, where the measured

D reaches maximum. Obviously, the analysis in Sec. I-D

does not account for the mechanism that causes D to reach
maximum. This phenomenon is explained qualitatively as
follows. There is a minimum value of NI (1.1 AT in this

case), below whichA¢, < 2¢ r, even if T _ _. Around this
low value of NI, flux switching follows a certain sequence.

First, flux switching occurs essentially only in Legs a

and 3, because H 4 < Hth. Toward the end of the flux

switching in Leg 3, F 3 increases because Leg 3 reaches the
wing of the static _(F) curve near saturation, while Leg m

is near a demagnetized state. Such a redistribution of NI

into higher F 3 and lower F follows the requirement that

6, = 63 and the fact that A= > A 3. The increase in F 3

(=F 4 in the no-load case) increases F 4 beyond the static
threshold value of Leg 4, and Leg 4 is then able to switch

inelastically. Leg 4, therefore, switches only after

Leg 3 completes most of its switching. This conclusion is

verified experimentally in Fig. 34, where NI was chosen be-

low 1.1 AT in order to emphasize the delay in 64 relative

to 63 . Coming back to the plot of D versus NI, as NI is
increased beyond 1.1 AT, the pulse duration T must decrease

in order to keep4_, = 2_r. Such a decrease in T will de-

crease4_A(because when NI is cut off, Leg 4 is still
switching), but hardly affect 4¢ 3 (because Leg 3 has already

completed switching). The amount dropped in 4¢ 4 is equal to

the amount raised inAC3, because 4¢ 3 +4¢4 = 2_r = constant.

Such an increase in4¢ 3 results from the increase in NI.

This increase inA¢ 3 and decrease inA¢ 4 explain why

D(= 4¢3/4¢4) increases with N[. These variations inA¢3

andA¢ 4 can be seen in Figs. 33(a) and (c). In Fig. 33(d)

the load is so high, that It 4 does not exceed flth, hence
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this phenomenon does not occur. It is not understood why
this phenomenon was not observed in Fig. 33(b). As NI in-

creases further, it becomes high enough to switch all legs

simultaneously, as assumed in our analysis, and D decreases
with NI. At tile transition between the region where D in-

creases with NI and the region where D decreases with NI,
D reaches its maximum value. Note that this mechanism is

entirely different than the mechanism that causes D to
reach maximum in Core N, as discussed previously. In fact,

since all legs in Core N have the same cross-sectional area,

the phenomenon described here cannot occur in Core N.

(3) The measured value (¢r/_,) = 0.9 [hence, following Eq. (68),
= (1 - 0.9)/(1 + 0.9) = 0.05263] was used in order to

compute D versus NI, Fig. 36. One may wonder how sensitive

D is to ¢r/¢,; in other words, how crucial is the measure-

ment of ¢r/¢ . To answer this question, D versus NI in the
no-load case was computed for various values of ¢r/¢,,

ranging from 0.86 to 0.96. The resulting plots are shown

in Fig. 37. We conclude from these plots that, considering

the agreement between calculated and measured D versus NI

in general, determination of ¢_/¢, need not be within tight
tolerances.

(4) In computing D versus NI, Fig. 36, variation in leg param-
eters with NI were accounted for. ttowever, in doing so,

the computation was much more complex than if the leg parameters

were constant. In several cases, the accuracy of the results

may be sacrificed somewhat in order to simplify the computa-

tion procedure. To have an idea of how much accuracy is

sacrificed by such an assumption, D versus NI in the no-load

case was recalculated, assuming constant leg parameters ob-
tained from the linear portion of B versus H. The resulting

curve is compared in Fig. 38 with t_e measured curve and the
f t

curve whose calculation was based on assuming that F 0 and pp
of each leg varies with NI. As expected, assuming constant

F^ and p in each leg for low values of NI results in a sub-u p
stantial error, but for medium and high values of NI, such

an assumption is certainly justified. To get better agree-

ment at the low values of NI, yet to keep the computation

simpler, the _p vs. F might be piecewise linearized into
two regions.

(5) For future reference, the effect of the load on D versus NI

was recalculated for a wider range and rounded values of
2

N_/B L.. These curves are shown in Fig. 39. Note how the
manxmum point of D becomes more pronounced as N_/R L increases.

(6) The assumption of _ _ 1 was examined in the analysis,
Sec. I-D-4-d; it corresponds to the assumption that in each

]eg, p - pp = constant. Accounting for variation in leg
parameters with N[, DnL versus NI for $ _ 1 was computed from
Eq. (80). The resulting plot is compared in Fig. 40 with com-

puted D_L versusNI, assuming that _ = 0.05263, i.e., _/_, = 0.9.
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(7) The effect of 14/l 3 on the asymptotic value of D as NI _

is shown in Fig. 41 for various values of p4p/(R_/Nl).
Assuming that (¢r/¢,) = 0.9, these plots were calculated
from Eqs. (111), (112), (72), and (73). At a first glance,

these plots look suprisingly linear, whereas in fact they
are nonlinear. In order to understand why these plots ap-

pear linear, let us first examine the no-load case. By

differentiating the expression for DNt. NI_ _ [Eq. (113)]

with respect to 14/l 3, the slope s of D_L,NI_ _ versus
14/l 3 is found to be

dDtcL'tcI-°_ (Y) , (123)s = d(14/la) = 2(-ln 5) 1 -8 82 5 -y _ 8 _ 2

where

y - (123a)
l 4

1 +--
l

3

Expressing 8 -y and 8 r in Eq. (123) by infinite series, we
obtain

s = -In5 --

28 (y inS)3 (y ln_)5
ln8 + + + ...

3! 5!

(124)

For 14/l 3 >> 1, lY In 81 << 1, hence s, Eq. (124), may be

approximated by

1 - 52
s = (125)

2_(-In 5)

Since 52 << 1, Eq. (125) may be simplified further to the

following:

s = (126)
28(-ln 8)

It is evident from Eq. (125) or Eq. (126) why DNt.tcr_o o
versus 14/l 3 may well be approximated by a straight line
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of a slope s which depends only on 8. In Fig. 41,

8 = [1-(_,/_,)]/[1+ (_r/¢,)] = (1-0.9)/(1+0.9) =0.05263.

Thus, for (14/l 3) >> 1 in the no-load case, Eq. (126)
yields s _ 3.22, which agreeswell with the correspond-

ing plot in Fig. 41. For the cases where Leg 4 is
loaded, the plot appears even more linear. The mathe-

matical interpretation is complicated by the transcend-

ental equation for PNI-_' Eq. (111). ttowever, it was
shown 8 that loading Leg 4 has essentially the same

effect on D as increasing 14/l 3 of an unloaded core.
Hence, the expression in Eq. (126) is even a better

approximation for s than in the no-load case, and the

plots are more linear.

4. SUMMARY

Flux division in a nonsaturable core was measured (Figs. 29 and 30),

and oscillograms of ¢ waveforms (Figs. 31 and 32) were studied. These

data are compared with previous treatments of this subject. 6'7'1 Flux

division in a saturable core was measured (Fig. 33) and compared with

calculated plots (Fig. 36) for four load values. Plots of D versus NI

are also calculated, assuming switching parameters obtained from a non-

linear Cp versus F curve (Fig. 35), under the following conditions: no

load with various ¢r/_, values (Fig. 37); various load values (Fig. 39);

and 8 _ 1 in the no-load case (Fig. 40). Also, assuming constant switching

parameters, D versus NI in the no-load case (Fig. 38), and D versus 14/l 3

for NI _ _ (Fig. 41) were calculated.

E. UNSETTING EFFECT

1. INTRODUCTION

The unsetting effect was described in Report 1 (pp. 96-99). This

effect is a special case of a more general phenomenon, according to which

elastic A¢, A¢_, in a leg driven far into saturation will cause an appre-

ciable inelasticA¢ in (at least) two other legs. This phenomenon stems

from the availability of two inelastic-switching paths, one for the rise

and the other for the fall ofA¢ e in the leg in saturation. Upon termi-

nation of the drive pulse, the legs of the core were shown (cf. Fig. 93,

Report 1, p. 97) to be left in a "stressed" state, i.e., a residual H

field, sustained by magnetic poles near the leg junctions, remains in

each leg. Due to variations in air-flux linkage, a tight winding on the

driven leg minimizes the unsetting effect. Our objective now is to
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verify experimentally the variations in ¢ and F predicted under two con-

ditions (Fig. 93, Report 1, p. 97): a positive drive on Leg 3, and a

negative drive on Leg 4.

2. EXPERIMENTS

A commercial core, AMP Core No. 395813-1, was chosen for the experi-

ment. The core dimensions are shown in Fig. 42. Three small apertures

were ignored, and a fourth one was identified with the small aperture in

Fig. 92, Report 1, p. 97. From the core dimensions in Fig. 42, the aver-

age leg lengths are found to be as follows: lE*'• = 14.8 mm; li" = 1.1 mm;

l_" = 2.45 mm. The core parameters are as follows:

H c = 39.0 AT�m(=0.49 oe); S = 63.7 (AT/a)_sec(=0.8 oe _sec);

2¢r3 = 2¢r4 = Cr• = 21 maxwells; and F 0 = 0.72 AT (around the major aperture).

Experimental verification of the unsettlng effect was performed in

two separate experiments. The drive windings in both experiments were

wound tightly as shown in Fig. 92 of Report i (p. 97) (instead of sepa-

rate Nj and N H windings, a single winding with N s turns was wound on

Leg 3). In addition, a two-turn sense winding was wound on each leg.

R

0.10
0.61

I'----- z

i

1.00

E*A -TIE*i- lit

FIG. 42 DIMENSIONS OF THE CORE USED

FOR THE UNSETTING EXPERIMENT

AMP Incorporated, Core No. 395813-1;

Dimensions in ram;
Tolerance _' ±0.025ram
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The conditions for the two experiments were similar, except for the SET

state. In the first experiment, the SET MMF was relatively small, so

that the unsetting of Legs n and 3 was caused by pure elastic flux

switching in Leg 4. In the second experiment, the SET MMF was high

enough to cause some inelastic setting (supersetting effect) in Leg 4,

as indicated by Point E in Fig. 93 of Report 1 (p. 97). The results of

the first experiment are in the form of oscillograms and the results of

the second experiment are in the form of plots.

In the first experiment, the number of turns of the drive windings

(Fig. 92 of Report 1, p. 97) were: N c = 7, N s = 1, and N ffi 10. The

drive currents were 2 #sec long, and their amplitudes were: I c _ 3A,

Is = 3A, and [ = 12A and 20A. Oscillograms of the drive currents and

the resulting changes in ¢ during the CLEAR, SET, and UNSET phases are

shown in Fig. 43, for the two values of unsetting MMFs, NI = 120 AT,

and NI = 200 AT. These oscillograms are in agreement with Fig. 93 of

Report 1 (p. 97).

In the second experiment, the number of turns were N c ffi 7, N s ffi 2,

and N = 14. The drive currents were 2 #sec long; the CLEAR and SET

currents were kept constant (NcIc = 25 AT and NsI" = 6 AT), and CurrentI

was varied. For each value of N[, _ was integrated andS¢, relative to

the CLEAR state, was measured at three different times (see Fig. 93,

Report 1, p. 97): after I S is removed (Point E), during the application

of I (Point G), and after I is removed (Point J). The flux measurement

was made by means of tile flux-reference (cf. Appendix F). The resulting

curves are shown in Fig. 44. These results will now be discussed.

3. DISCUSSION

Let us now compare the experimental results in Fig. 44 with the

variations in ¢ and F of each leg, which were predicted in Fig. 93,

Report 1, p. 97. In general, Fig. 44 agrees with the predicted varia-

tions of ¢ in each leg. There are, however a few points that should be

discussed. In order to facilitate this discussion, let us establish the

following nomenclature: Let P and Q stand for any point in Fig. 93,

Report 1, p. 97. Then, A_ie represents the flux change of Leg j (j = m,

3, 4) from the CI,EAR state (Point A, _ = -¢r/) to Point P; ¢1e represents

the flux level of Leg j at Point P; andA¢i(p_q ) represents the flux change

of Leg j from Point P to Point Q.
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After the CLEAR MMF is removed, the core is set via Leg 3. Due to

the supersetting effect (cf. Report 1, pp. 93-94), A¢,E > 2¢r3 (E 21

maxwells), A¢3 E = 2¢r3, and A¢4g > 0. The experimental A_E of the three

legs agree with what had been anticipated except for the following:

Since NmI m was maintained constant (6 AT), A¢_ of each leg was expected

to be independent of NI. Instead, A_ag andA¢4 E have a slight droop as

N! increases. This droop could not be explained until we found that the

_urrent pulser that had been used in this experiment had a low dc leakage

current. This current increased from 1 to 15 ma as we increased the

number of pulser channels that were connected in parallel. Instead of

recording new data with the dc MMF cancelled, we decided to use the data

because the effect was small, and because the main purpose of the experi-

ment was to measure A_j and A¢4j, which, as will be shown later, are not

influenced by the dc MMF. Furthermore, we shall interpret the data in

considerable detail because of the interesting phenomena associated with

the dc leakage currents in the experiments.

The resulting dc MMF (i.e., N times the dc leakage current) of up to

0.21 ampere turns caused Points A [Fig. 97(b), Report 1, p. 97] to be

biased away from the CLEAR state. This dc bias pushed Point A of Leg 4

down and Point A of Leg 3 up (in order to balance the elastic drop in ¢4),

resulting in Cs being clamped to the static loop above -¢r3" (The

effect on ¢, was negligible due to the relative length of Leg m.) The

abscissa Of Leg j (j = m, 3, 4) in Fig. 44 corresponds to the biased

Point A, not to ¢ = -¢r/" SET MMF pulse, NaIs, is applied next. Because

of the higher initial ¢3A' the resultingACa(A_c ) is smaller than the

corresponding flux change without the dc MMF. This causesA¢_(A_c} , and

henceA¢,(A_e), to be smaller as well. Due to the dc MMF, ¢3 relaxes to

Point E slightly higher than without the dc MMF (causing ¢4_ to be lower).

There are, therefore, two opposing effects of the dc MMF on A¢3(__E). No

net effect could be detected experimentally. This is evident from

Fig. 44(b), whereA¢3tA__) is constant in NI (N[ varies with the dc

leakage current). An additional drop in ¢_ and ¢4E was caused during the

interval between the I s and I pulses by the combined dc MMF of the leakage

current in the N(=14) turns on Leg 4 and the Nc(=7) turns on Leg m. This

combined dc MMF of up to 0.315 AT acted against a soft threshold around

the major aperture. Given sufficient time (as was the case in the experi-

ment), some of the inelastic flux that had been set into Leg 4 due to the

supersetting effect was switched back via Leg m.
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Compared with the case of no de MMF, _4E is lower, thus _¢4(e_c) ]

is smaller because of a smaller inelastic switching. This results in

less unsetting of Leg m, i.e., _¢=(g_j)] becomes smaller. It was found

experimentally that &_,(s-a) was independent of the de MMF. This may be

explained by the fact that the de MMF decreases bothACm(A_&) and

_¢=(g_j)[. During the fall time, as Current I drops to the de leakage

level, ¢4 rises from Point G to Point J, which is slightly lower than in

Fig. 93(c) (Report 1, p. 97); hence, ¢3j is slightly higher.

We therefore conclude that Point J of each leg is hardly affected

by the de leakage in the pulser. Based on this conclusion, the curves

in Fig. 44 were plotted as follows. For each leg, A¢1 (resulting from

the CLEAR pulse) was plotted first; _¢(t_j) was then used to plot A¢_,

and&¢(K_G) was used to plot ACG"

The plots of A¢,j and A_3i' Figs. 44(a) and (b), show the magnitude

of the unsetting effect. For example, Leg 3 in a SET state can be de-

magnetized (i.e., ¢_ dropped from +¢r3 to zero) by driving Leg 4 by

NI = 128 AT (which is about 178 times F 0 around the major aperture).

For NI = 242 AT (=336 F0), A¢3j = 5.2 maxwells, thus 75% of 2¢,3 wasunset.

4. FALL-TIME EFFECT

The effect of winding position on the unset flux was discussed in

Report 1 (p. 99). It was shown there that the tighter the drive winding

is, the smaller is the amount of unset flux.

The amount of unset flux is also influenced by the fall time of the

drive current. This stems from the fact that Leg 3 is unset inelastically,

and inelastic switching requires a longer time than elastic switching. If

the fall time is too short, the (fast) elastic switching in Leg 4, being

unable to close fully through Leg 3, would close partially through the

surrounding air. This would result in a creation of pole distribution

near the leg junctions. The polarity of the poles is similar to the one

in Fig. 87(c) of Report 1 (p. 92). These poles act on Leg a in the posi-

tive direction, and on Legs 3 and 4 in the negative direction. As a re-

sult, the excess H in Leg 3 would increase, enabling Leg 3 to switch

faster. However, if the (soft) threshold in Leg m is exceeded, a portion

of the elastic_¢4 is steered into Leg m in the positive direction, and

the pole density would decrease. The net result is a decrease in the un-

set flux in both Leg a and Leg 3. In conclusion, the unsetting effect is
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expected to be smaller as the fall time becomes shorter (below some thresh-

old value). This conclusion has not yet been verified experimentally.

_. SUMMARY

The unsetting effect, which has been described in Report l, is veri-

fied experimentally (Fig. 43). After the tested core is cleared, Leg 3

is set by a fixed SET MMF, and this is followed by applying a variable

negative NI to Leg 4. After the removal of a relatively high NI, the

core is left in a state commonly obtained by a relatively low NI through

the major aperture. Additional effects due to leakage dc current in the

driver pulser cause the set flux in Legs m and 4 to be slightly lower

than without the leakage current. These effects are explained and taken

into account in plotting the experimental data in Fig. 44.

Since the unsetting of Leg 3 during the fall of the drive current/

involves inelastic switching, the duration of the fall of I influences

the amount of the unset flux. The shorter the fall time is, the smaller

is the unsetting effect.

F. CONCLUSIONS

In discussing and evaluating the results of much of Sec. II, it has

been assumed that the magnetic properties of a core, or a leg of a core,

are determined by integrating the corresponding material properties over

the x coordinate (cf. Report l, Fig. 19, p. 18) of the leg. This assump-

tion is invalid if the material properties at one x value in the leg are

affected by the process of switching or the magnetic state at other x

values in the leg. For example, if the material of a toroidal core has

a large magnetostriction constant, then a partially switched annular

region of the core (where IBI < Br), which is not free to change its

dimensions, may produce a stress that can change the material properties

in other regions of the core. However, we have no experimental evidence

to support such an effect, and further investigation is needed.

The ¢(F) testing of blank ferrite disks before the ultrasonic cutting

of cores is an easy means of detecting disks having relatively abrupt

radial variations in material B(H) property, and of making comparisons

between disks. Even though ¢(F) testing cannot guarantee that a disk is

entirely free of material variations, it is valuable for detecting ap-

preciable nonuniformity.
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Two possible modifications of the parabolic switching model were

examined numerically in Sec. II-A-3. One accounted for pp(F) variations

and the other for F0(_) variations. Analytical functions have not been

given for pp(F) and F0(_); this remains to be done in the future. Modi-

fication of the parabolic model is needed primarily in the slow-switching

range. On the basis of @(@) curves for a thin ring of OD/ID = 1.06, the

result of performing these two modifications numerically was examined.

It is concluded that some discrepancies still exist, but that very sig-

nificant improvements do result. In some cases it may be desirable, for

simplicity, to include only the pp(F) modification. This results in

the same modification used in Sec. I-D-5, except for tile terminology,

I I

i.e., pp and F 0 are functions of F.

The discussion of flux switching in a core having a re-entrant shape

makes use of the concept of a switching line. This concept is also useful

in discussing switching in other types of non-toroidal cores. Single-

aperture cores with re-entrant shapes can be divided into two classes.

In cores of the first class, the shortest closed line that can be drawn

inside the core and around the aperture does not touch the outer edge of

the core. In cores of the second class, this shortest closed line touches

the outer edge of the core. The discussion on slow flux switching in the

first class (cf. Part B-3) is not detailed; it only presents the general

configuration of the switching lines. The discussion of the second class

includes a proposed model, which is called the switching crossover zone.

This model, although self consistent, is intended only as an example of

the kind of switching that may occur. The validity of the concepts pre-

sented in discussing re-entrant shaped cores rests upon two assumptions:

(1) that zone boundaries actually exist and have approximately

the properties described in Report ], pp. 119-128, and

(2) that the static B(H) loop of the ferrite material has

vertical sides. It is hoped that the basic concept of
the crossover zone model will be useful in studying re-

entrant shaped cores made of ferrite having more realistic

static B(H) properties.

The section on design considerations was specifically concerned with

the design of two cores to be used for experimental studies of flux

switching in multipath cores. The basic goal was to design two cores

that would exhibit as few superfluous phenomena as possible. These

considerations may not be applicable to the design of cores for optimum
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performance in a practical circuit. The final designs are not necessarily

the best that could be achieved. For example, in determining li, I ° and

lav of each leg of Core N after the core was cut, the problem of the re-

entrant core shape was first realized. Thus, the design of Core N could

be improved by making Leg 2 straight instead of slightly curved.

The hyperbolic B(H) model, which was used to obtain the static _(F)

equations in terms of core dimensions and material parameters, is experi-

mentally checked for a core made of Telemeter Magnetic T-5 material [cf.

Fig. 28(c)]. The disagreement in ¢ for -5Hth/° < F < + 5Hth/° is reason-

ably small, when compared to Cr" However, the disagreement in ¢ from

-_r up to ¢ corresponding to F = Hthl ° is about 50% of the measuredA¢

[cf. Fig. 28(d)]. This means that the hyperbolicBe(ft) function, which

fits the purely elastic switching region -co < H < 0, does not describe

B(H) properly in the region 0 < H < Hth. It is evident that this region

is characterized not only by elastic switching (as assumed by the model),

but also by inelastic switching (of the same order of magnitude as the

elastic switching). If it becomes important to describe B(H) accurately

in the region 0 < H < Hth , then an additional function will have to be

introduced. Evaluation of the hyperbolic B(It) model in describing the

static B(H) properties of other materials has not been made.

The analysis of flux division was based on two factors: variation

of p with _, and the nonlinearity of p and F 0 at low values of F in each

leg. From the comparison between calculated and measured D versus NI,

it seems that these two factors are major contributors to the phenomenon

of flux division, llowever, there are other factors (not accounted for

in our analysis) that introduce errors to the calculated plots, especially

when slow switching is involved in Leg 4 or all legs. These factors are:

(1) A small amount of inelastic flux change at a field lower
than the threshold value,

(2) ]'he limitations of the parabolic model of pin describing

at low F, even if the nonlinearity of B versus H is ac-
counted for, and P

(3) Elastic flux change during the rise time of N[ may differ
from the elastic flux change during the fall time of NI.

Inclusion of these factors in the analysis is bound to yield better re-

sults, but this involves establishment of additional switching models.

Rather than improving the analysis of flux division in a saturable core,
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we feel that our next step should be to establish switching models for

a soft state, so that we can analyze flux division in a nonsaturable core.

Experimental verification was given which clearly substantiated the

existence of the unsettlng effect and gave the magnitude of the effect

for a particular core. Calculations of this magnitude, based on geometry

and material properties, remains to be done.
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APPENDIX A

CALCULATION OF STATIC _(F) CURVE

The objective is to calculate a static _(F) curve of a constant-width

leg; the calculation is based on the suggested hyperbolic models for B(H)

[Eqs. (10) and (11)] in saturation and between saturation levels. This

calculation is done by substituting Eqs. (2) and (3) into Eqs. (10) and

(11) in order to derive B(F,x), which will then be integrated from x • 0

to x = w [Eq. (7)].

For H _< Hth, B is equal to

F _0 F
+ (A-l)

Be = -Br - (Bss - Br) F - Ha(l i + ax) l i + ax

For H _ Hth, B is equal to

F - Hq(l i + ax) _o F
r , + (A-2)

B_ = -B + (B + Br) F - H (l i + ax) I i + ax

In deriving the expressions for _(F), three regions of F are dis-

tinguished: F _ liHth, liHth _ F _ IoHth, and loHth _ F.

1. F _ /iHth

For this region of F, H < Hth throughout the leg cross section, and

only Eq. (A-l) is valid. By substituting Eq. (A-l) into Eq. (7) and

integrating from x = 0 to x = w, we obtain the following expression:

Fh • Br F Ho l o

In tZO¢ • H° r },
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2. liHth < F <_ lofltl '

Tile leg cross section is divided into two sections: In the inner

section, H > Hth, and in the outer section, H < Hth. Let x t be the

distance from the inner edge to the boundary between the two sections.

At x = xt, H = HLh, hence Eqs. (2) and (3) yield

xt (X h

In the section where 0 _ x _ xt, Eq. (A-2) is valid; in the section

< x < w, Eq. (A-l) is valid. Therefore, Eq. (7) becomeswhere x t _ _

Z W

¢ = h[J t Bu(F,x)dx + j B (F,x)dx] (A-5)
0 x t

After substituting Eqs. (A-l) and (A-2) into Eq. (A-5) and integrating,

we get the following expression:

H 2
n

[,f,-"-.ll

Lr-".z, 1

(Bs s + Br )Hq [lo

HnHt h + t20 In I (B , + B r )Hq l i 1_ -- +Br
h Hn a o3 (A-6)

3. loHt h --< F

Here H > Hth throughout the leg cross section, and only Eq. (A-2)

is valid. After Eq. (A-2) is substituted into Eq. (7), and integration

is performed from x - 0 to x = w, the following expression is obtained:

Fh F (B, s_+ Br ) (Hq - H )

L IF.

(A-7)
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APPENDfX B

RELUCTANCE OF A VARIABLE-WIDTII LEG OF LINEAR MATERIAL

Let a point in space be described by rectangular coordinates (x,y,z),

and by orthogonal curvilinear coordinates (uz,u2,u3). There is a func-

tional relation between x, y, and z and u 1, u 2, and u 3 It can be shown 5

that an element of distance is expressed by

3ds = 2 gii(du_) 2
=1

(B-l)

where

gii 2 (B-2)

Since we have assumed a leg to have a constant thickness h, our problem

is two dimensional, and Eqs. (B-l) and (B-2) are reduced to

where

and

gll

g22

= \3ul / + \"3ul/

= (3u21 \3u2/

(B-4)

(B-5)

Now consider a variable-width leg whose boundaries follow the direc-

tions of some orthogonal curvilinear coordinates a 1 and u 2. In Fig. B-l,

the edges of such a leg are defined by u 2 = u2a and u 2 = u2b, and the

ends of the leg are defined by u z = ula and u I = u:s, where u2_, u2b,

Ula , and uzs are all constants.
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The leg is now divided into curvilinear squares of length VglldU l

and width Cg22du2 that, together with thickness h, define leg elements.

The length and width of each curvilinear square vary in such a way that

the MMF drop along the leg element, ltCglldUl , and the flux through it,

BhVg22du2, are identical for all the leg elements. By plotting these

curvilinear squares, one gets the equi-F lines along the u 2 direction

and the flow lines along the u l direction. The reluctance of every leg

element defined by a curvilinear square is the same, and following

Eqs. (26) and (27), is equal to

HCg I ] du l l Cg ] 1du ]
A_ = = (B-6)

Bhvg22du 2 _h _, g22du 2

The reluctance of 8_ of a larger leg element, defined by two adjacent

equi-F lines, is the inverse of the integral of the inverse of AR, i.e.,

du 1
8R = (t}- 7)

u2b

tth I _ du2

u2a

The reluctance of the whole leg is obtained by integrating bl_ along the

leg; hence,
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1
=

Ib
du

I

I --- du

le u2a

(_-8)

Let us now apply Eq. (B-8) to three examples.

Example I--A toroid of inner radius r_ and outer radius r o.

llere, u l _ O (U la = 0; u lb = 2_); u 2 _ r (u2, = r i ", u2b = r o )',

x = r cos O; and y = r sin O. Following Eqs. (B-4) and (B-5), gll = r

and g22 = 1" Thus,

1

_h

2_

dO

I ° 1 dr

0 rt

or

1 2_
R = (B-9)

_zh r o

in(:,)

Example 2--A tapered leg (see Fig. 3) of length r b - r a and angle 2.

Itere, u ! _ r (ula = r ; ulb = rb); u 2 _ 0 (u2_ = 0; u2b = fi);

x = r cos 0; y = r sin O; gll = ]; g22 = r2 Thus,

1

_zh

r b
dr

Z _ dO

r 0
a

115



or

1
- (B-IO)

_h

Example 3--A transfluxor-like leg, Fig. B-2, defined by angle a and

eccentric circles of radii r a and r b and eccentricity e. It can be

shown 5 that the circles can be described by bicylindrical coordinates

(7,0) that are related to the rectangular coordinates according to

and

a sinh
x = (B-]I)

cosh _ - cos 0 '

a sin 0

Y = cosh _ - cos O ' (B-12)

where a is a scale factor which is related to r , r b and e as follows:

0

_" 0

FIG. B-2 TRANSFLUXORLEG
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A flow line follows a circle of radius

a

r = (B- 14)
[sinh 771

with a center on the x axis at adistance

d = a coth _ (B-15)

from the origin. By varying 9 from _a to _b (_a > 9b ), the circles ex-

pand and move to the right, i.e., the radii increase from r° to r b and

the centers move from x = do to x = d b,

A constant-F line, perpendicular to the flow lines, follows a circle

of radius

a
fr = (B-16)

[sin O[

with center on the y axis at a distance

d' ffi a cot O (B-17)

from the origin. The leg ends are thus sections of circles defined by

letting 8 = ±a in Eqs. (B-16) and (B-17).

In order to calculate _, let us divide the leg into two symmetrical

half legs, one above the x axis and one below it. The width of each half

leg varies as O varies from _ to ±a. The total _ is twice that of one

of the half legs. For the top half leg, u 1 _ 8 (ul° = _; Ulb = a);

u 2 _ B (u2o = _a; u2b ffi Vb). Following Eqs. (B-4), (B-5), (B-11), and

(B-12),

2

( / )gl I = g22 = cosh - cos 0
(B-18)

The total _ is then

± I
/zh fn s d_/

7T _a
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or

I 2(_ - a)
= -- (B- 19)

p.h "r]°- "r]6

Substituting Eq.'(B-14) into Eq. (B-19),

1 2(7r - a)
= --. , (B-20)

sinh -1 -sinh-I

where a is expressed in terms of r a, r b and eccentricity e in Eq. (B-13).

As a final note to the problem of finding R in general, suppose

that the leg boundaries are not amenable to analytical expression. In

a case like this, we shall have to resort to numerical or graphical ap-

proximations. 4's The smaller the curvilinear squares are, the more

accurate is the approximation, but this makes the process more tedious.

It is better to start with large curvilinear squares so as to have a

feel for the general trend, and then reduce their size step by step.

Suppose we end up with n I x n2 curvilinear squares, each with the

same length ratioAll/A l 2 (subscript 1 corresponds to the direction of

flow lines along the leg; subscript 2 corresponds to the direction of

equi-F lines across the leg). The total _ is, then,

1 Al_ n 1
= (B-21)

/_h A 12 n 2
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APPENDIXC

CALCULATION OF Pt

The expression for-p(ut) in general [Eq. (47)] is

uf-u o
. (c-l)

,.u!

a 0

The expression for Pt was shown to be [c/. Eq. (33)]

2_p h,e (c-2 )
Pt =

c 2 -u 2

1

where c = rb/r , and a = _b/qb. Substituting Eq. (C-2) into Eq. (C-l),

u! - a0
Pt = 2_ph/3 (C-3)

"/

In da
1 u 2

u 0

The integrand in the denominator of Eq. (C-3) can be written as

c -u 2 )
In

1 u2
= In (c + a) + In (c - u) - In (I + a)

- In (l -a) (C-4)
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Hence,

In c du
1 u 2

(c + u) In (c + u) - (c - u) In (c - u)

- (1 +_ u) In (1 + u)+ (1- u) In (1 - u)

or,

In du = In ........ (C-6)
1 u2 u)c-"(l + a)z+u

After substituting the limits of integration u0 and u/ into Eq. (C-6),

Eq, (C-3) gives

u/-u° (C-7)

e ¢-UO l÷u 0 1(c + of) *"I(1 - uf)z-_f(c - u o) (1 * u o)In c-u!
(c- ul) (I + uf)

l+"/(c+ Uo)_+"°(l - So)X-"o

Substitution of a0 = -u r into Eq. (C-7) results in Eq. (50).
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APPENDIX D

CALCULATION OF FLUX-DIVISION PARAMETERS

The six basic equations for calculating flux-division ratio D are

Eqs, (52) through (57). Two of these equations have already been employed

in the text. Equation (52) was used in order to show that _3f. = -_41

[cf. Eq. (62)]. Equation (56) was used to derive Eqs. (65) and (66)

which, when combined, become

f_3t

tanh_l(__s ) P3pdpt\

T

(D-l)

.T

Equation (D-l) includes two unknowns, T and _ F3dt; hence two more equa-

tions are needed. These two equations will be derived from four of the

basic equations that have not been used yet: Eqs. (54) and (57) will

lead to one equation, and Eqs. (53) and (55) will lead to the other.

For the sake of convenience, let us rewrite Eqs. (54), (57), (53),

and (55) in this order.

F4 = F3 q_4 ' (1)-2)
Rt.

(D-3)

and

NI = F + F 3 , (!)-4)
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Substituting the expression for F 4 [Eq. (O-2)] into Eq. (D-3) results in

F3 - F°4 (O-6)

p4p[1 - (¢4/¢,)2] _L

i

i

4

i

Hence

4_4/

I{ '
j_4,r p4_,[l_ (¢p_/¢,)2]

N_} 5T+- de = (F 3 - Yo4) dt
/It. o

(D-7)

After integration and substitution of ¢4/ = -¢3t [Eq. (62)], Eq. (D-7)

yields

¢' [tanh-'( Cr _- tanh-'( Cal )3 N_ jrp.----_L \ ¢, ] \ ¢, + "_t (¢r - ¢31 ) = 0 F3dt - F°4T

(D-B)

Equation (D-8) is the second of the equations needed to solve for _3f/¢,.

The third equation will be derived as follows.

Following Eq. (D-4),

for F_dt _' NIT - Jor F dt
(D-9)

Following Eq. (D-5),

-2_ r

_m

2
¢.

. _,o.T); (D-IO)
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hence,

jr F dt = Fo T ÷ tanh -1 (D-11)
0 • P=p

Substituting Eq. (D-11) into Eq. (D-9),

2°.jr F3dt = (NI - F0,)T tanh- 1
0 P=¢ _s (D-12)

Equations (D-l), (D-8), and (D-12) will now be employed to solve

for T [which is equal to 2 tanh -1 (@3f/@,)]. Substituting the expression

for tanh -l (@3f/@,), Eq. (D-l), into Eq. (D-8), we get

T

P4p-- tanh-l _ss +--/_L (¢r -q53/) = + P4p /)0 F3dt - F°4 F°3--Pgp T

(D-13)

Substitution of Eq. (D-12) into Eq. (D-13) yields an expression for T:

24_ tanh -1 + 1 + +-- (_b -q53 )
P,p P4F/J RL • t

T ffi (I)-14)

(N[ Fo,) (1 + p3p) P3p_ __ _ F04 - F03
P4p P4p

Subtracting Fo3T from both sides of Eq. (D-12), and substituting the

.r 3T) into Eq. (D-l) results inresulting expression for (J F3dt - F 0
0

_s Pap

(D-15)

Substitution of the expression for T [Eq. (D-14)] into Eq. (D-15) results

in the expression
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(J)3f q_, 02 4>.

a 3

, (D-16)

in which a l, a 2, and a 3 depend on core parameters and N[ as follows:

N_P4p

a I ffi BL P3p (N[ - Fo. - F03 )
(o-17)

and

(12 ffi (N[-Fo.j)(p3p-p4p) 4 Fo4P4 p (1 + 2P3Pl
p=p/-Fo3P3 p ( 1

• a 3 = (NI - Fo,)(p3p + p4p) - Fo4P4p - F03P3p

e

(D-18)

(D-]9)

Equation (D-16) is transcendental, and _3f/_. is solved for numerically

after the coefficients al, a2, and a 3 have been evaluated. Following

Eq, (68),

_r

II In . = - I.. In

2 dp, 2
] -- --

(D-20)

Substituting Eq. (O-20) into Eq, (D-16) and multiplying both sides by 2,

or,

2al c_. 4p. / - a2 In

T = , (D-21)
a
3

T = p - q In $ , (D-22)
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in which

and

/
p = , (D-23)

a 3

a 2

q = _ (D-24)
a

3

After substituting the expressions for a 1, a 2, and a a [Eqs. (D-17) through

(D-19)], Eqs. (D-22), (D-23), and (D-24) are identlcal with Eqs. (69),

(70), and (71), respectively.
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APPENDIX E

SECOND-ORDER INTEGRATOR

The measurement of flux changes or observation of _(t) waveforms

requires the use of an integrator. The commonly used R-C integrator has

the problem of _ntegrator droop. One way of overcoming this problem is

to add a'signal that is approximately equal and opposite to the error of

the R-C integrator. 2'_ This error-correcting signal can be obtained by

integrating the output of the R-G integrator with another R-C integrator,

OEAR I

SENSE

_,_tf(N TURNS }

i'

"__AIC

ADDITION

C2 _-_ e2

IIA -3111 -I1|

FIG. E-I SECOND ORDER R-C INTEGRATION

as shown in Fig. E-1. The wlde-band preamplifier has a high input im-

pedance (=1 megohm) and a low output impedance (less than 100 ohms).

The outputs Ke t and e 2 can be added algebraically in a dual-trace

oscilloscope preamplifier. Assuming that Capacitors G 1 and G 2 are

initially discharged, the following differential equations illustrate

the principle of operation:

and

= e :dt , (E-l)
Ke] R1C] RICI

e 2 = e ldt e dt
R2C2 R2C2 2
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l __ 

By making RIC I R 2C2 and adding Eqs. (E-l) and (E-2), we obtain 

Ke I + e 2 (E-3) 

Note that the amplified error of the first integration, -(K/ R IC 1 )I e ldt , 

has been cancelled by the output of second integration, except for a 

second-order error, - J (l / R
l
C

l
)e

2
dt. The ma in signal, which contains the 

first-order error, is Ke l , and the error-correcting signal is e 2 . A com

parison of experimental integrals for a · first-order and a second-order 

integrator is shown in Fig. E-2. The valu e of Re for this figure i s 

300 J..Lsec. 

Further correction can be obtained by adding more stages, providing 

a means is available for adding three or more signals that have a common 

ground. 

Great er accuracy may also be achieved by slightly overcorrecting the 

error with a second-order integrator. This can be accomplished either 

by making R 2C2 < RIC l or by having unequal gains in the two chann e ls o f 

the preamplifier in which addition is accompli shed . The second-order 

integral In Fig. E-2 was not overcorrected. 

- SECOND-ORDER , Ke , + e2 

- FIRST-ORDER , Ke , 

OUTPUT 

INPUT, e -:;;== 
TIME----+-

RP- 3696 - 201 

FIG. E-2 OSCILLOGRAM COMPARING FIRST-ORDER AND SECOND-ORDER INTEGRATION 
RC = 300 J..Lsec; Time Scale = 50 J..Lsecimajor div. 
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APPEND IX F

FLUX REFERENCE*

The flux reference is an instrument for measuring either remanent or

total magnetic flux switched by a current pulse.

reference overcomes the problems of

The use of the flux

(1) Not having a fixed flux standard

(2) Integrator droop

(3) Amplifier gain variations and nonlinearities

(4) Oscilloscope cathode-ray-tube distortions

(5) The tedious job of accurately reading signal deflections

on the oscilloscope.

The flux reference consists basically of a standard core which is

switched (from negative to positive remanence) simultaneously with the

core to be measured, and a special integrator that integrates and sums

(algebraically) N¢ of the standard core and the unknown N_. The standard

core has many separate sense windings that can be connected in series in

order to cancel out the EMF due to the flux switching in the tested core.

The circuit is shown in Fig. F-l(a). The component values given in this

figure are the values for the flux reference that was built in this

laboratory, and are included only as an example. Potentiometer B 4 gives

a continuous fine variation of the flux reference output.

The B-C integrator consists of two resistors, B 1 and B2, feeding

into the same capacitor C. If Capacitor C is discharged at t = 0, then

at t = t o the output e c is given by

t O e O

e c = _-_ (e t a + e )dr - BC-- ecdt
0 0

(F-l)

Developed by E, K. Van De Riet of Stanford Research Institute.
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FIG. F-] FLUX REFERENCE
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where est d is the output EMF from the standard core, e u is the unknown

EMF whose time integral is to be measured, and B is the total resistance

on each side of C. The quantity est d is given by

e t a = (N + P4)¢.ta , (F-2)

where N is the number of turns connected on the standard core, P4 is the

relative setting (0 _ P4 _ 1) of Potentiometer R4, and @std is ¢ of the

standard core. The value of R is

R = R 1 + R4P4(1 - P4) = R 2 + R 3 + RsP5(1 - Ps) (F-3)

t o t o

If a positive e dt is to be measured, then Jo eatadt must be negative,

and N and P4 are adjusted so that e c = 0 at t = t O . Under this condition,

Eq. (F-l) reduces to

The quantity f
0

t o

e tddt is obtained from Eq. (F-2), i.e.,

t o

Jo eAtadt = (N + P4)A_batd , (F-5)

where A fstd is known from having calibrated the standard core. The term

2ft°ecdt is the error in the measurement. Note that the error is pro-
0

portional to the net area under the ec(t) curve between the times t = 0

and t = t o [cf. the flux sum waveform in Fig. F-2]. This net area can

be reduced to zero by adjusting the timing of the fIux-reference SET

pulse relative to the SET pulse of the core to be measured, thereby

eliminating the integrator droop problem. The area under the ec(t)

curve for t > t o is of no concern. The effective time constant of this

integrator is RC/2, as shown by the coefficient of the last term in

Eq. (F-l). Potentiometer R 5 is ganged to Potentiometer R 4 (R 5 = R4;

Ps = P4 ) in order to equalize the time constant variations (as P4 varies)

for both inputs to the R-C integrator. The maximum time-constant varia-

tion [cf. Eq. (F-3)] with P4 is about ±0.2%. tlowever, as long as both
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DRIVE
CURRENT
PULSES

TIME

FIG. F-2 FLUX AND CURRENT WAVEFORMS IN MEASURING INELASTIC A¢
BY FLUX REFERENCE

time constants vary together, no error is introduced. The time constant

of the two inputs are made exactly equa$ by switching S 1 and S 2 to their

lower position and adjusting R 3 to give zero output [cf. Eq. (F-3)].

Second-order integration could be used, thereby reducing the accuracy

to which the plus and minus areas of the ec(t) curve must be made equal.

Even without second-order integration, the areas need only be crudely

nulled. This can easily be judged by looking at ¢(t) on the oscilloscope.

The standard core, which is a 30-50 mil ferrite memory core, is

connected to another identical core (_¢e-cancellation core) so as to

cancel the elastic flux changes of the standard core during SET time

[see Fig. F-l(a)]. The edges of these cores were rounded so that wiring

short-circuits could be avoided. After the 42 turns were wound, the

cores were potted for permanency of wire placement, and placed in a

small temperature-controlled oven to remove problems due to temperature

variations. The temperature was set well above ambient, so that auto-

matic temperature control by heating only could be employed. The oven

heater operates from a 28 v dc source.
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The R-C network in the CLEAR winding serves to increase the CLEAR

pulse fall time to about 1 #sec in order to eliminate the possibility

of unsetting due to ringing.

The CLEAR and SET pulses required for the flux reference can be

generated either externally or internally, so long as the pulse timing

can be properly adjusted. An internal pulse source, of course, makes

for a simpler experimental setup and reduces the possibility of errors

for routine experimental measurements.

The units of the flux reference are not standard units of webers

or maxwells, but need to be calibrated in some such standard units.

This calibration process must be very carefully done, unless only rela-

tive flux values are to be measured. The instrument used in this labo-

ratory was calibrated by carefully photographing the _(t) waveform of

the flux reference and measuring its area. The resulting calibration

factor was: one unit = 3.64 maxwells (or 0.0364 v _sec per turn) ±1%.

The noise level typically limits the precision to within ±0. l maxwell.

The maximum capacity is 110 maxwells.

The actual use of the flux reference to measure the flux switched

by a particular drive pulse consists of three steps. First, the flux

reference is adjusted to obtain a null on the oscilloscope. Second, the

time delay of the flux reference drive pulse is adjusted untll the flux

sum waveform has approximately equal positive and negative areas. (In

some cases, the first step may need to be repeated.) Third, the flux

value is read from the dials of the flux reference.
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APPENDIX G

TECHNIQUE FOR OBTAINING ¢($)

Automatic tracing of _(@) can be accomplished by feeding the

signal to the vertical axis of an oscilloscope and the integral of @(t)

on the horizontal axis. The integration of _(t) to obtain ¢(t) for the

horizontal signal can .satisfactorily be accomplished by the use of

second-order integration (see Appendix E). The circuit is shown in

Fig. G-l(a). The _ preamplifier is used to introduce a time delay that

is equal to the time delay obtained in the _ preamplifier. FigureG-l(b)

shows the timing of the pulses, and Fig. G-l(c) shows the resulting _(@);

the numbers correspond to the numbers on the ¢(t) curve in Fig. G-l(b).

The line segments 4-5, 7-8, 11-12, and 14-1 in Fig. G-l(c) are a result

of integrator droop. They are exaggerated in the figure for clarity.

Since the CRT beam spends a relatively large amount of time on the seg-

ment 14-1, this portion of the trace is overly bright. A Z-axis pulse

is used to eliminate this and other undesirable portions of the trace.

By the use of multiple exposures, the function F(_) can be superimposed

upon an oscillogram of _(¢), thereby indicating the part of _i¢) for

which F(¢) is constant.
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APPENDIX ft

TEST PROCEDURES FOR DETERMINATION OF LEG PARAMETERS

Step-by-step laboratory test procedures for determination of leg

parameters, as discussed in Sec. II-C, are described as follows.

1. STATIC <P(F) EXPERIMENT

The circuit diagram is shown in Fig. H-1. Inductor L is an air core

inductor, which serves to block any current that results from Ns_ during

the CLEAR time. The flux change can be measured either by means of the

L

CLOSED MAGNETIC PATH

OF CORE

FLUX

Ns _ REFERENCE

OSCILLOSCOPE

H PRE-

AMPLIFIER __]

CLEAR PULSE ..-,Qo,-.J,

FIG. H-1 STATIC¢(F) EXPERIMENT

flux reference (cf. Appendix F) or by means of a second-order integrator

(cf. Appendix E). The test procedure is outlined as follows.

(1)

(2)

MIXED INELASTIC AND ELASTIC FLUX SWITCHING

Select a closed magnetic path in the core to be tested

(cf. Sec. II-C-2), preferably composed of uniform cross-
sectional area.

Block all other paths by means of a short-circuited

winding (cf. Sec. II-C-2).
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(3) Connect the circuit as shown in Fig. tt-1, and adjust

the repetition rate of the CLEAR pulse to about 60 cps.

Be sure that the de SET winding has a low enough re-

sistance so that the SET winding would not heat the

core for large values of Ia¢.

(4) Establish an NcI c that is sufficient to give a repro-
ducible remanent state by making the pulse duration long

enough (e.g., 10 _sec) and the amplitude high enough. If

theA_ observed for a value of N Id¢ slightly beyond

threshold changes as NcI c is increased (say, by a factor

of 2), then the initial value of NcI c is insufficient.

(5) Record NA_versus N Id¢, adjusting NCI c at each point

such that the quantity (NcI c - N Id¢) remains constant
(cf. Figs. 17 and 18). MeasureA¢ at its peak value during
the CLEAR pulse.

(6) Be sure to take a point for N Idc = (1/2)NcI c so that
the location of @ = 0 on the graph can be determined, as
will be shown later.

b*

(1)

(2)

(3)

ELASTIC FLUX SWITCHING

Remove /de"

Make NCI c equal to the value used in Part a above to
clear the core initially.

Record NACversus NcI c for Nc[ c varying between zero and
the value used in Part a above. Measure N_¢at its peak

value during the CLEAR pulse. Record N_and No[ c as
negative quantities.

C,

(1)

DATA PROCESSING

Shift the origin by subtracting from each NA@value

(assumed positive) of Part a one half of the N_¢value

obtained for N Iae = (1/2)NcI c. The resulting differ-
ences are the corresponding N¢ values.

(2) Divide these values of b_b by N and multiply by the cali-
bration factor of the flux reference or the second-order

integrator to obtain ¢ in conventional units (e.g.,

maxwells or v _sec per turn).

(3) Plot these ¢ values versus F, where F is NsIac of Part a(5).
This curve will fall in the first and fourth quadrants of

the graph.

(4) Determine _r from this graph by reading I@1 for F = 0.
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(5) Divide each of the NA_values of Part b(3) by N and

multiply by the calibration factor of the flux refer-

ence, or the second-order integrator.

(6) Subtract from each of these negative A_values the

value of _r determined in Part c(4).

(7) Plot these negative _ values versus F, where F is Nc[ c

of Part b(3). This curve will fall in the third quadrant

of the graph.

Determination of the static _(F) curve is now completed. If neces-

sary, a static _(F) loop may be drawn by adding a curve that is symmetrical

with respect to the origin.

2. Cv(F) EXPERIMENT

The circuit diagram is shown in Fig. H-2. The mercury choppers and

the calibrated dc voltage references in this figure serve to measure the

SET pulse amplitude and the peak switching voltage N_ conveniently and

accurately. The choppers superimpose on the oscilloscope both the signal

(SET pulse or N_) and the dc reference voltage. The reference voltage

can then be adjusted to be equal to the pulse amplitude or the peak N_,

SET PULSE I= OSCILLOSCOPE
MERCURY CHOPPER TIME BASE

0

60 cps

CLOSED MAGNETIC PATH

OF CORE "_
/

CLEAR PULSE

O

MERCURY cHOPPER

CALIBRATED dcVOLTAGE REFERENCE

CALIBRATED dc
VOLTAGE REFERENCE

FIG. H-2 q_p(F) EXPERIMENT

INPUT A

INPUT B

2-
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and its value read from the dials of the voltage reference. This pro-

cedure eliminates such problems as cathode-ray-tube distortion, time

variations of the base line, parallax with the graticule, time varia-

tions of the oscilloscope vertical amplifier gains, and inaccuracy in

reading the values from the graticule. Care must be taken to avoid

distortion of the signal in passing through tile chopper. The calibra-

tion resistor B must have a very low L/B ratio and an accurately known

resistance value. Tile chopper technique described here can also be used

to measure the CLEAR pulse amplitude in this experiment and both the

SET and CLEAR pulse amplitudes in tile static _(F) experiment, The test

procedure is as follows.

(1) Select a closed magnetic path in the core (cf. Sec. II-C-2).

(2) Block all other paths (cf. Sec. II-C-2).

(3) Connect the circuit as shown in Fig. tl-2.

(4) The rectangular SET pulse should have a short rise time,

so that most of the switching occurs while [ is constant.
The SET pulse duration is not critical, so long as it is
sufficient to allow _ to reach its peak value.

(5) Establish an NcI c amplitude that is sufficient to give a
reproducible remanent state. If the _(t) observed for a

given value of NsI s is changed significantly as NcI c is

doubled, then the initial value of Nc[ c is insufficient.

(6) Record N_p versus N I s. Do not take _ readings for NsI

larger than about 80% of the value forPwhich _p begins t_
occur during the rising portion of the SET pulse.

(7) Divide the N_p values by N and plot _p versus F, where F
is NsI _ .
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INDEX

Air flux, 6

Analysis of flux division, see
Flux division analysis

Average values of p, 17-24
_, 17-19

Pay' 17- 18

_(¢/), 19-22

_(¢1) plots, 21-22

_t(_l), 22-23, 121-122

_t(¢t) plots, 23

B(H) curve, static, see Static B(H)
curve, model of

B(H) loop, static, l

Blocking flux switching in leg, 71-72

Dimensions, legs:
effect on flux division, 45-47
effect on switching parameters, 37, 39-41
of nonsaturable core, 59
of saturable core, 59

Disks, testing of, 53-55

Division of flux, see Flux division

Drive, effect on leg dimensions, 61, 63

Electrical circuit analogue for flux
division, 27

Experiment of:
flux division, n'onsaturable core, 76-80
flux division, saturable core, 83-88
static _(F), 72-76, 149-151_

unsetting effect, 95-I01

@p(F), 73, 76, 151-152

Coercive field, 5

Computation procedure of flux division,
45, 87

Constant-width leg:
flux in, 2

geometr_, 2
p, of, o, 14-16, 39-40

_(¢f), of, 19-22

Contour of leg, 60

Core:
machining, 60
nonaaturable, 24-25, 59
of re-entrant shape, 61, 64
saturable, 24-25, 59

Core, tested:
MAD, static ¢(F), 53-54
MAD, unsetting effect, 96-101
nonsaturable, flux division, 61-63,

69, 76-82
nonsaturable, static _(F). 72-75
saturable, flux division, 61-62, 69,

83-90

saturable, Legs 3 and 4 of, _.(F) 76,
85-86 --

thin ring, ¢(¢), 56-57

thin ring, @p(F), 56, 58
Corvilinear squares, 12

Design considerations of experimental
cores, 59-62

unction problem, 60
eg contour, 60 '

leg cross section, 59-60

Fall time, effect on:
flux division, 101-102
flux-reference measurement, 141

Flux:
effect on p, 14-16

final, effect on _ and Pt' 20-23
in constant-width leg, 2
vs. t_4F, static, 2-3, 5-6, 109-110

Flux density:
nonuniformity of, across leg, 8-9
vs. H, inelastic, time rate of. 8, 37-39
vs H, static, see Static B(H) curve,

model of

Flux division:
in Laddic, 24
in loaded core, 25-26
in MAD, 25
in nonsaturable core, 24-25
in saturable core, 24-25
problem of, 24
soft state, effect of, 25

Flux division analysis, 25-48
assumptions, 25-27
basic equations, 2B
calculation, general, 27-32, 125-129
calculation, method of, 27
circuit, 26
computation procedure, 45
definition of, 28
electrical-circuit analogue, 27
H variation in each leg, 41-43

in each leg, 44-45
NT regions vs. linearity of switching

parameters, 44-45
parameters, 31
summary, graphical, 37
¢(F) variations in each leg, 30
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Flux division, analytical expressions for:

D - _, 33

eneral, 32, 45

eg-dimensions effect on, 37, 45-47
NI " _, 33-34, 46

unloaded core, 32-33, 46

8 - I, 34-36, 47

Flux division in nonsaturable core, experi-

mental, 76-80

comparison with Laddic experiment, 81

discussion, 77, 81-82

maximum D, 81-82

measurement accuracy, 81

oscillograms, 79-80

procedure, 76-77
results, 78-79

Flux division in saturable core, experi-

mental, 83-88
dlscusslon, 87-90

effect of load, 88

leg.parameters, 85-86
maxlmum D, 88-89

oscillograms, 85

procedure, 83
results, 84, 88

Flux division in saturable core, compu-

tation of:

effect of linearity of leg model, 90-91
effect of load, 88, 90, 92

effect of leg-length ratlo, 93-95

effect of Cr/¢s, 90-91

for 8 _ l, 90, 92

procedure, 45, 87

Flux measurement:

second-order integrator, 133-134
flux reference, 137-141

Flux reference, 137-141

Flux switching:
blocking, 71-72

closed path for, 71

models, inelastic, see Inelastic

switching models

Geometry of leg:
constant-width, 2

effect on inelastic-switching

parameters, 40-41
tapered, 12

Hyperbolic model for B(H), 3-4

Inelastic-switching models:

average values of, 17-24

effect of geometry on, 40-41
effect of ¢ on, 14-16

linear Bp(H), 37

linear Cp(F), 39

nonlinear _ (H), 38-39
p

nonlinear _p(F), 40

of constant-width leg, 8
of material, 8, 37-37

of tapered leg, 14

of tapered leg, calculation of, 14-17

parameters of, 8, 37-41

parameters of, experimental determination

of, 73, 76, 151-152
under low field, 38-41

Integrator, second order, 133-134

Junction problem, 60

Laddic, 24
flux division in, 81

Leakage dc current in unsetting-effect
experiment, 99-101

Leg:
constant width, see Constant-width leg

dimensions of, see Dimensions, legs

eometry of, see Geometry, leg
engths, 61-63

lengths, effect on flux division, 45-47,
93 _5-

parameters of, see Parameters, leg
static ¢(F) curve of, see Static ¢(F) curve

tapered, see Tapered leg

Leg model limitations

general, 7-9
of variable-width leg, i0

Linear material, 11

Linear region of:

p(H), 37

Cp(F), 39

Load in flux division:

circuit, 25-26
effect of, 88, 90, 92

Machining of multipath cores, 60

MAD:

saturable, 25

static ¢(F) of, 53-54

unsetting-effect in, 96-I01

Magnetization switching in re-entrant
core, 65-68

Material parameters:

experimental determination of, 69-70,

72-74
of inelastic _ (H) linear region, 37-38

p

of inelastic B (H) nonlinear region, 38-39
P

of static B(H) curve, 3-4
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Model:

leg, limitations of, 7-9
parabolic, for _, 8, 37-39
parabolic, for p, 8, 39-40
static B(H), hyperbolic, 3-4
static B(H), linearized, 1-2
static _(F) 2-3, 5-6, 109-110

variable-width leg, limitation of,

Modified parabolic model for slow
switching:

for material, 38-39

for leg, 40, 55-56

10

Nonlinear region of:

Bp(H), 38-39

_p(F), 40

Nonsaturable core, 24-25
dimensions of, 59

soft state in, 25

Oscillograms:
first and second order integration, 134
flux division, nonsaturable core, 79-80

flux division, saturable core, 85
unsetting effect, 98

Parabolic model for:

_, 8, 37

_, for low H, 38-39
p, 8, 14-15, 39, 55-56
p, for low F, 40, 55-56

Parameters, leg, 70

effect of geometry on, 40-41
experimental determination of, 70-71,

_5-86, 147-152

linear region of, 39

nonlinear region of, 40

test procedure, 147-152

Parameters, material, see Material

parameters

Path for leg-parameters experiments, 71

Peak inelastic-switching coefficient:

pp, 8, 14-15

Ptp' 14-15

Re-entrant shaped core, 61, 64
model for slow switching in, 61o69

Reluct ance_ 11

Reluctance of toroid, 115

Reluctance of variable-width leg:

general, analytical, 113-115
general, graphical, 118
tapered leg, 115-116
Transfluxor, I16-118

Saturable core, 24-25
dimensions of, 59

Saturation flux for:

inelastic-switching model, 8
static @(F) model, 6

Saturation flux density for:

inelastic-swltching model, 8
static B(H) model, 3

Soft state:
effect on flux division, 25
in nonsaturable core, 25
in variable-width leg, I0

Squares, curvilinear, 12

Static B(H) curve, hyperbolic model for, 3-5

coercive H, 5

for H _ Hth, 4

in saturation, 3
material parameters, 3-4
threshold H, 4

Static B(H) curve, linear model of, I-2

Static B(H) loop, l

Static _(F) curve, experimental:

discussion, 73

effect of switching rate, 51-53

procedure, 72

results, 72-75

Static _(F) curve model, calculated from:

hyperbolic B(H), 5-6, 109-110

linearized B(H), 2-3

Switching coefficient, B

Switching, inelastic model, see Inelasti_

switching model

Switching line, 61, 64, 68

Switching path, 61, 64, 68

Tapered leg, 7, 12
curvilinear squares in, 12

geometry of, 12
reluctance of, I15-I16

Pt' calculation of, 11-17

Pt' expression for, 14

Ptp' 14-15

Ptp' effect of rb/r a on, 15

_t(_f), 22-23, 121-122

Tests of:
disks, blank, 53-55

leg parameters, 147-152
static _(F), 149-151

_p(F), 151-152

Threshold H, 4

Toroid:

properties of, 51-53
reluctance of, 115

Transfluxor, reluctance of, 116-118

158



INDEX

Unsetting effect:
description of, 95
effect of fall time on, 101-102

Unsetting effect, experimental:
discussion, 97-102
effect of leakage direct current in

driver, 99-101
oscillograms, 98
procedure, 96-97
results, 97-99
tested core, 96
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