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NATIONAL AERONAUTICS AND SPACE AIMINISTRATION

TECHNICAL NOTE D-1985

RECIPROCITY IN QUANTUM MECHANICS

By D. E. Bilhorn*, L. L. Foldy**, V. A. Madsen®*¥,
R. M. Thaler?t, and W. Tobocman*

SUMMARY

This report presents a new derlvation of the generalized reciprocity theorem
of guantum mechanics.

In most branches of physics, reciprocity refers to a symmetry condition on
a Green's function, whereas in quantum mechanics the term 1s used to denote a
condition on scattering amplitude or on the S-matrix. The derivation given here
relates these two points of view by first deriving a generalized symmetry condi-
tion on the quantum mechanical Green's function, and from it obteining a condi-
tion on the scattering amplitude. The reciproclty condition on the scattering
amplitude 1s given by

I-Lifit’js( 'fi:f’j) = Ujfjs’it(‘fj:fi)

The quantity fit’js is the amplitude for the reaction in which there is a col-
1ision between two bound systems 1 1in internal states t whose reduced mass
is uy and whose centers of mass are separated by the vector fi. This results
in two new bound systems Jj 1in internal states s. The state & 1is the state
reciprocal to s; i1f the Hamiltonian is time-reversal invariant, § 1s the time
reverse of the state s.

INTRODUCTION

The term reclprocity usually denotes a symmetry condition on a Green's func-
tion (ref. 1). In electrostatics, for example, the symmetry has a simple physi-
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cal interpretation because the Green's function is just the potential due to =a
point charge under a specific boundary condition. The reclprocity symmetry en-
sures that the potential is the same 1f the source and field point are reversed.

In quantum mechanics, reciprocity is usually thought of as connected with a
symmetry condition on scattering amplitudes (ref. 2). It is readily shown
(ref. 3) that, if the Hamiltonian is both Hermitlian and time-reversal invariant,
the system 1s reciprocal. There are, however, systems that are neither Hermitian
nor time-reversal invariant that nevertheless display reciprocity. For example,
the scattering from a complex optical model potential is reciprocal. A more gen~
eral reciprocity relation, which includes both this example and the usual theorem
as speclal cases, has been discussed by several workers (refs. 4 and 5).

In this report it is shown that reciprocity symmetry of the Green's function
leads directly to reciprocity of the reaction matrix. First, a generalized reci-
procity condition on the Green's function 1s obtained from the invariance proper-
ties of the Hamiltonian. Since the Green's function is a wave function due to
a polnt source, it 1s seen that, when the source is infinitely distant from the
Iinteraction region, the wave emerging from the source is plane in the vicinity
of the interaction. In the asymptotic region (r - ©), the scattering amplitude
can be ldentified as the amplitude of the outgoing wave function. (Symbols are
defined in appendix A.) Thus, the reciprocity symmetry relation for the Green's
function 1s shown to lead to a reciprocity condition on the reaction-matrix ele-
ments. A physical interpretation is, of course, that the reciprocity symmetry
assures equality of the scattering amplitude when source and detector are re-
versed.

In appendix B an alternative derivation of the reciprocity theorem is given
that makes use of formal scattering theory.

. The work reported herein was performed under the auspices of the Atomic
Energy Commission in cooperation with the NASA Lewis Research Center.

SYMMETRY OF THE GREEN'S FUNCTION (SPECIAL CASE - POTENTIAL SCATTERING)

If might be sald that a system 1s reciprocal if a source located at A pro-
duces the same signal at B as would be produced at A by that source if it
were located at B. This definition will now be applied to a nonrelativistic
one-~body guantum mechanical system characterized by the Hamiltonlan

g = 24 y(3) (1)

where p2/2u 1s the kinetic-energy operator and V(?), the potential energy, is
a multiplicative operator. In order to make the argument as simple as possible,
a spin-lndependent interaction is used. It is further assumed that V(¥) =0

for r >R (clearly, this is the conventional choice for the location of the ori-
gin of the coordinate system). For convenience, only steady-state conditions are
considered so that it is possible to use the time-independent form of the
Schrddinger equation



HY(7) - E¥(¥) =0 (2)
If there is a point source at ¥ = fA, the Schrddinger eguatlon becomes
H¥(%,,7) - E¥(%),7) = 8(F - T) (3)

where the wave function ¥(¥j,F) is a function of ¥ and depends parametrically
on the location of the source fA‘ Similarly, a source of the same strength lo~-
cated at ?B will give rise to the Schrédinger eguation

HY(7p,¥) - BY(¥p,7) = (¥ - Fp) (4)

Equation (3) or (4) is the equation satisfied by the Green's function correspond-
ing to equation (2). Occasionally W(?i,?é) will be referred to as a Green's
function.

Multiplying equation (3) by ¥(¥y,7¥) and equation (4) by ¥(F,,¥), taking
the difference of the resulting two equations, and integrating over all space
ylelds

[ [rtepme,m - U7, Py, ) ar = [¥Fpty) - Wt (8)

Thus, if the left side of equation (5) vanishes,
Y(?B’?A) = \Y(?A’FB) (6)

which is the reciprocity relation. In other words, it may be said that reciproc-
ity implies symmetry of the Green's function with respect to the interchange of
the coordinates, which clearly implies that the wave function at ?A due to a

point source at ?B is equal to the wave function at ?B due to a source of
the same strength at Tj.

If the wave function obeys homogeneous boundary conditions on some bounding
surface S, then the left side of equation (5) vanishes:

[
n

. f [up0me(z, ) - N1 TC] L

- 2 - = - = -
= EE‘ [Y(I‘B,I')Vz\lf(I‘A,r) ol \V(TA;?)VZW(?B:?)] dt

—Re

2 [ ez pwE,D - Uz, PH(ET)] - (7)

where the integration is performed over the bounding surface.



Since homogeneous boundary conditions mean that at the bounding surface

cc‘lf+B§%=O (8)

where BY/Bn is the derivative in the direction of the outward normal to the
surface, it follows immediately that L in equation (7) vanishes, and, there-
fore, that equation (6) holds.

RECIPROCITY OF THE SCATTERING AMPLITUDE
(SPECIAL CASE - POTENTIAL SCATTERING)
Equation (6) expresses the reciprocity relation in terms of the Green's
function. From equation (6), however, it is easy to obtaln a corresponding sym-

metry property that must be obeyed by the scattering amplitude. The Green's
function of interest in the present case must be of the form

REIEEE/N
HEF) = X Yacans(TT) (2)

where k = -VZuE/hz and Yscatt 1s everywhere regular. The singular term rep-

resents the spherlcal wave emanating from the source. Direct integration of
equation (3) over an infinitesimal volume contalning the point ¥ = ?A shows
that

X = 2u/4sne (10)

Asymptotically, for large values of 1, ¥ ..++(¥,,7) must have the form of an

outgoing spherical wave emanating from the scattering center (which has been
chosen to be at the origin); that i1s, for r >> R

= A~ eikr
Yooatt = F (-Ty,F) T (11)
where T 1s the unit vector ?/r. Thus, for large r
1k|P-Tp |
- - 2y € A = A ei
¥(Zy,T) ~ (2u/4nt) s+ F(-Fy,7) (r > R) (12)
BRI i

The expressions analogous to equations (9) to (12) for the source at Ty are
self-evident.

If it is assumed, for convenience, that the bounding surface 1s a sphere
whose radius p 1is very large compared with R (the range of the force), ry, and
rp, then, from equation (12)



(% %)ﬁp = ik (13)

so that L 1in equation (7) vanishes in the present case, and the reciprocity
relation, equation (6), must hold.

In the usual idealization of the scattering experiment, the source is taken
to be an infinite distance from the scattering center. The result for this spe-
cial case 1s easily obtained from equation (12). If r, >> r >> R, equation (12)
becomes

: -1
ikr lkI'A

> A | -ikr,7
¥(2,,2) = (2u/4mn?) = e A4 [(zu/4zrh2) = (14)

- A elkr
.7-( -I'A,I')

A

This limiting form of the wave function Y¥(¥,,r) satisfies the same differ-
ential equation with the same boundary conditions as the usual wave function of
time-independent scattering theory, -except for the overall factor

ikr
(2u/4nne) (e A/rA). Thus, for Ty, r >> R,

ikr

A -1
(2u/4nn?) erA T (2,,8) = £(-£),7) (15)

where f 1s the usual scattering amplitude. It is noted that the validity of
equation (14) required that r, >> r >>R. The restriction ry >> r applies
only to the source term of equation (14) and is not required for equation (15)
(see appendix C). It is necessary only to require that the source term be a
plane wave within the range of the force in order that equation (15) hold; that
is, in equation (15) it is permissible that ry ~ r.

A wave function due to another source located at FB will have the asymp-
totic form

. JJE[ T L olEr
¥(Fp,7) ~ (2u/4nh2) l—?_Tl—+ T (Fp,F) = r >> R (16)
- T

Application of the symmetry relation (eq. (6)) and the wave functions (egs. (12)
and (16)) when r,, ry>> R yields

1k|Pp=Ty| ikry 1k| ¥~y ikry
(20/4n82) S+ T( T, ,8) S = (2p/4nt) So—a— + F(-Tp,Fy) 5
/ |Tp - T4 A7BT ry / |Ty - Tl (Tpo%a A

(17)



or by virtue of equation (15)
f(k,k') = £(-k',-k) (18)

where

and > (19)

It 1s noted that the derivation of equations (17) and (18) in no way depends
on whether the Hamiltonlan of equation (1) is real. On the contrary, the treat-
ment 1s equally wvalid for a complex potential. For a Hamiltonian of the form
given by equation (1), all that needs to be assumed to obtain the result is that
V(r) is a multiplicative operator and that the boundary conditions are such as
to make the surface integral in equation (7) vanish.

Since a complex potential implies a non-Hermitian Hamiltonian, it is evident
that Hermiticity 1s not necessary in order to obtain reciprocity. This is com~
pletely analogous to the well-known result in network theory. It is quite pos-
gible for an electrical network to be dissipative and still be reciprocal. For
an electrical circuit, the crucial question is not whether there is energy dis-
sipated in a resistor, but whether there 1s a rectifier in the circuit. This is
exactly analogous to the quantum-mechanical case treated in this section. A non-
Hermitian Hamiltonian will not conserve particles, but the reciprocity theorem
may hold despite this.

RECIPROCITY OF THE GREEN'S FUNCTION

The previous discusslon suggests that, although Hermiticity and time-
reversal invarlance of the Hamiltonian are sufficient, they are not necessary for
reciprocity. A more general invariance property of the Hamiltonian that will
also encompass the results obtained in the previous section is sought. Conse-
quently, more abstract arguments than the preceding appear to be necessary. Such
an argument follows.

Consider the matrix eigenvalue equation
(E-E)Y =0 (20)
where H 1s the Hamiltonian matrix and ¥ is a column vector. KNo distinction
between position coordinates and the various discrete indices that may label the

states will be made. Now, consider the corresponding Green's function equation

(H-E)yY=1 (21)



To make equation (21) more explicit, it may be written as
(Hyigr - ESX'X”)YX”X = Byrx (22)

The Einstein surmation convention is used in equation (22). The summations are,
of course, generalized in that it is possible to sum over discrete coordinates
and integrate over continuous ones. Similarly, the generalized delta function
in equation (22) is a Kronecker delta for discrete coordinates and Dirac delta
for continuous ones.

The transpose of both sides of equation (21) 1s taken and the unitary matrix
U is introduced to obtainl

uvTuty(dT - E)ut =1 (23)
Thus, if ¥ 1is defined to be

¥ - mTut = uyP*ut (24)
and H to be

% = vatut = Mot (25)

equation (23) can be rewrltten as
YH-EB) =1 (26)
Now, if both sides of equation (26) operate on the Green's function ¥,
YH - E)y = ¥ (27)
Thus, if H has the invariance property
== (28)
and equation (21) is inserted into equation (27), the result obtalned is
¥=¥ (29)

This is the general form of the reciprocity theorem expressed in terms of the
Green's function.

If the unitary matrix U is taken to be the identity, then the reciprocity
theorem reduces to the result that symmetry of the Hamiltonian, namely,

H =g =g (30)

Lrhe following notation is used: AT  denotes the transpose, At denotes the
Hermitian conjugate, and A* denotes the complex conjugate of A. Only two of

the three symbols are needed, of course, since AT = A+*.



Implies symmetry of the Green's function
v = 9T =yt (31)

or, explicitly, H.,+ = H;ry, implies that
(32)

In a representation in which x and x' are space coordinates, equations (30)
to (32) are recognized as the result obtained earlier in egquation (6). If the
Hamiltonian is a symmetric matrix, the reciprocity relation holds, as is shown
in equations (31) and (32), which says that the wave function at x due to a
point source of unlt strength at x' is identically equal to the wave function
at x' due to a point source of unit strength at x.

SYMMETRY OF THE MATRIX ELEMENTS

For the general case when U 1s not unity, conditions on the matrix ele-

ments of H can be determined. If ¥ and ¥P are two particular state vec-
tors, HdB and Y@B are defiined as

g = (V) B8 = (V)X (18, (33)
and
Yop = (V) TP = (V) kv (48),, (34)

Equation (33) may be rewritten to read?

h=d —

Fap = (VPYTEP Y = (0P (Ut () = ()BT = iz (39)

where U 1s a unitary matrix, H 15 as defined in equation (25), and

¥ = gy (36)

Thus, i1f the Hamiltonian obeys the symmetry relation (eq. (28)), then

H@B = Hﬁz (37)
Similarly,
— oot By L B\t & _ o
Yp = () ¥(7) = (V) oy = U (38)

2The first equality in equation (35) is a consequence of the fact that V

-’.
is a column vector, so that (%) H(wB) is a scalar and is, therefore, equal to
1ts transpose.
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which according to equation (29) yields

Yo = Yig (39)

if H = H.

Equation (36) will be recognized as the general definition of an antiunitary
transformation. Familiar examples of antiunitary transformations are the time-
reversal and charge-conjugation transformations. The antlunitary transformation

—

that maps the state V& into ¥ as defined in equation (36) will map the
Hamiltonlan H into H, where H 1s defined as

T = urru’ (40)

Therefore, the reciprocity theorem 1s expressed as follows. Given an anti-
unitary transformation that maps a state Wa into wa and transforms an opera-

tor € 1into EE: then, if the Hamiltonian has the invariance property H= ﬁ+
the Green's function will possess the reciprocity symmetry Y, g = YE;.

J

It should be noted that the definition of an antiunitary transformation (un-
like that of a unitary transformation) 1s not independent of the representation
(ref. 5). To see this, it is noted that for a unitary transformation

v = Up (41)

where U is unitary and ¥ and ¢ are column vectors. Under a change of rep-
resentation generated by the unitary matrix Y, it can be seen that

V' =TU'o (42)
where

UANEIS 41 (43)

' = Y (44)
and

U’ = yuyt (45)

On the other hand, an antiunitary transformation
¥ = Up¥ (46)
under a change of representation generated by the unitary matrix Y, becomes
y'o= (Yoyt)e"* £ ule'¥ (47)

and hence, is representation dependent. Thus, in using equations (36) and (40),
it must be remembered that the choice of representation is of some significance.



If in one representation, however,

H=H" = uat*ut (48)
then in the new representation
H' = wH Tyt (49)
where
W= Yoy (50)

and the previous results, equations (33) to (40), hold with the unitary matrix
U replaced by the unitary matrix W of equation (50).

RECTIPROCITY OF THE REACTION MATRIX

In order to obtaln the reciprocity condition on the reaction matrix, it is
necessary first to rewrite the results of the section RECIPROCITY OF THE GREEN'S
FUNCTION for the case where the unit matrix is in space-spin coordinates with the
space-coordinate dependence of the wave function shown explicitly. The Green's
function equation is

(H - B)¥(e,t") = 8(e - £')1 (51)

where 1 1s the unit matrix in spin space. The reciprocity symmetry condition
can be written

HI(¢',e)ut = UTH(e,8") (52)
and
¥I(e",e)ut = ut(e,e') (53)

The unitary matrix Ut 15 restricted here to operate only on the spin com-
ponents of H and Y as is the transpose operation. The symbol § represents
the space coordinates of the system.

The complete Hamiltonian can be broken up in a number of ways corresponding
to various groupings of the particles:

H=Hi+Ti+Vl=Hj+TJ+VJ (54)

where Hy 1is the Hamiltonian for the internal motion of two groups of particles
whose centers of mass are separated by the vector ?i, T; 1s the operator for
the relative kinetic energy, and V; 1s the interaction between them. It 1is
assumed that Hy, Hj, ete. are Hermitian, although H 1tself need not be. The
wave equation for the internal motion is

(Hy - Bdog(gq) =0 (55)

10



where §i includes all coordinates £ except ?i and t 1s the state of in-
ternal motion.

Multiplying the Green's function (eq. (51)), on the right by the internal
function mit(gi) and integrating over §&; give the result

(B - D)y (5,0)) = 8(F; - #]ogy(8) (56)
where
Xit(g,Fi) =f dgi Y(nglkPit(gi) (57)

The wave function X;i plays the same role here as the Green's function ¥(7y,7)

introduced earlier. Equation (56) describes the motion of the system with a
point source in channel 1.

From equation (56) an integral equation for Xjy can be obtained by expand-
>

ik-r;
ing it in the complete orthonormal set, e 1 wit,(éi), of eigenfunctions of

Hy + Ty. For ri >>ry >> R the integral equation has the asymptotic form (see
appendix D):

’ exp(ik-tri) ~
X;£(E,7{) ~ (2ny/4nn2) ril exp(-kyF) - Fy)os(Ey)
exp(ikit.ri) N
E it,it = o
- @it'(gi) ri F 4 (-ri’ri) (58)
t’

Equation (58) has the form of an incident plane wave plus scattered waves in all
excited internal states. Because the normalization of the plane wave 1s not
wnity,

Pt 1t 2 pit,1t

(59)

eikitri

(Zui/llﬂ;ﬁz) —
Ty

is interpreted as the scattering amplitude for the process it - 1t'.

In order to study a reaction from the channel represented by 1 to a dif-
ferent channel Jj, Xj4 1s expanded in terms of elgenstates of Hj + Tj’

lk'rj cp.
J8

e (gj). The asymptotic form is

11



ik [
5 J

J
-1 (S5 2
Xit(g’ri) = rj CPjSv(gj) Zuj/éﬂﬁ
S!
X [fag” exp(-1k 5. F; - ?3)5(?;-?;)cpgsmgg)cpit(e;)] -F IS g (60)

(see appendix D). The second term in the braces gives the scattered wave in the
j channel. The first term, which is due to the source, vanishes for all bound
internal states s' if the state t 1s also bound, since the product

Y] — 1] I X ) .
S(ri - ri)¢gs,(§j)$it(§i) then decays exponentially with T¥j. Since the plane-

wave term of equation (58) does not have unit amplitude,

., it,js’
plt,ds’ o — F’ (61)

1k 4Ty

e

& (ou,/tnr?)
Tr-

1
is interpreted as the reaction amplitude for the process 1t - Js'. Arguments

gimilar to those made in the section RECIPROCITY OF THE SCATTERING AMPLITUDE
(SPECTAIL CASE - POTENTIAL SCATTERING) show that the amplitudes fit:it" ang
£it,38’ are each independent of ri, and the quantities Fit,it' apg pit,ds’

; iRy4Ts, o
therefore depend on ry through the overall constant e /ri.

In order to cbtain the reciprocity relation for the reaction matrix it i1s
necessary to multiply both sides of the reciprocity symmetry relation (eq. (51))
by a pair of bound state internal functions ~ on the left by @?t(gi) and on the
right by @jg(gé) - and to integrate over £, and gé. From the definition of
X in equation (57), it follows that

Sty e zavtese)) = fan gt e utigle,E) (62)

With the asymptotic forms for X;i and ng' appropriate for large ry, ré,

equation (62) becomes

SThe wave function @jg(gé) is the reciprocal state defined in equation (36).

12



. '
P
ik g!

d
-] - s pit,ds'(.p, 2 )T ! to. !
at} T P08 (-2, 7 )e5g 0 (85) | Ulgyg(e))
sl
ike.i7s
it 1 -
= T 1 _ — (s € wis,it'_p 2
£

The continuum terms due to the source appearing in equation (60) vanish because
of orthogonality of the @'s. On the left of equation (63) there is the integral

T ut = I o* =
chJ‘SlU CPJ-S— ngr - chjS'(p,jS BSS, (64)

and on the right

T ugte — = T — =

From equations (63) to (65) it follows that

. §
ik.srj elkitri -

which along with equation (61) gives the result

uiflt,JS(;ﬁi,fg) = ijJS’it(-fé’§i) (67)

It can easily be shown by using equation (58) that equation (67) also holds for
scattering.

It has been shown that a generalized reciprocity relation on the reaction
matrix follows directly from the reciprocity symmetry of the Green's function.
The conditions under which it holds are that (1) the Hamiltonian has the reci-
procity symmetry (eq. (28)), (2) the channel Hamiltonians are both Hermitian, and
(3) the internal states of the two colliding systems before and after the colli-
sion are bound.

Lewis Research Center
National Aerocnautics and Space Administration
Cleveland, Ohio, June 10, 1963
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Fit,it’

pit, 1t
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APPENDTX A

SYMBOLS
energy
angle dependent amplitude of 1it' component of scattered wave
scattering amplitude for process it — it'
complete Green's function
Hamiltonian
h/Zﬂ
wave numbers for E
surface integral
mass
arbitrary operator
momentum operator
distance beyond which potential 1s zero
length of radius vector from origin to some field point
bounding surface
internal states

part of H describing relative motion of system when broken into two
noninteracting parts

angle dependent part of scattered wave function
unitary matrices
channel interaction potential

source strength
wave function; Green's functlon for single-channel source

coefficlents of homogeneous boundary condition



9] generalized & function: Kronecker & for discrete coordinates and
Dirac & for continuous coordinates

€ energy of an internal state

8 reduced mass

E space coordinates of system

P radius of bounding sphere

T element of volume

® state vector

v solution of Schrddinger equation; wave function; Green's function

1 state vector

1 unit matrix

Subscripts:

i,j,k channels

scatt scattered part

Superscripts:

1,3,k channel subscripts

T transpose operation

- vector

"~ unit vector

- reciprocal

T Hermitian conjugate operation

*

complex conjugate operation

15



APPENDIX B

DERTVATION OF THE RECIPROCITY THEOREM BY MEANS
OF FORMAL SCATTERING THEORY

The reciprocity theorem can readily be derived by using the results and
methods of formal scattering theory.

Let H be the Hamiltonian of the system. The channel Hamiltonians are de-
noted by Hjy, Hj, . . . , and the channel interaction potentials by Vj,

Vj, Thus,
H=H +V; =H +Vy=... (BL)
Next, the eigenfunctions of the various Hamiltonlans are defined as
(E-H¥ =0 (B2)
and
(E - B)p = O (B3)
and the corresponding outgoing Green's functions
(E-HG=1 (B4)
and
(E - )G =1 (BS)

A well-known result of formal scattering theory is the following expression
for the scattering amplitude:

Tig = (04| Vy + V367505 (B6)
Tij is the amplitude for scattering from state P3 to state @;. An alterna-
tive expression for the scattering amplitude is

Tyy = {@1]Vy + V36V4005) (B7)

The system under discussion will be said to be reciprocal if the scatfering
amplitude has the property

Ty = T (B8)

where the state ¢T ig related to the state @i by the antiunitary transforma-
tion

p; = Upl (B9)

16



with
ut = vt (B10)

To determine under what circumstances the system is reciprocal, it is necessary
to make use of the following result:

(91]4]3) = (95]a™[0f) = (ox{ma™uT|op) (B11)

If this expression 1s compared with equations (B6) and (B7), 1t can be seen that
the system will be reciprocal if

CW—*—VEGVT
1 J 1
u(v; + et - 40 or (B12)
Ve + VoGV
L d J 1
By definition, however,
tx it Y ¥ AT
u(v, + vinj) Ul =V o+ VLGV _(1313)
where
K = vat™y’ (BL4)
Thus, sufficient conditions for reciprocity are
Fooo v )
Vi = Vi
V. =7
o d B (B15)

and

5=GJ

Conditions (Bl5) on the Green's function and the channel interaction poten-
tials are readily translated into requirements on H, H;, and Hj' From equa-
tions (B4) and (Bl4),

Il
)

HE - H) (BL6)
so that

ME -Me=a¢ (B17)
A comparison of equations (Bl7) and (B4) shows that H = H implies that & = G.

For the channel potentials,

17



(H-=H

<R
1
<
{
1

) - (- Hy)

He - H- (B18)
1 1

il

where, in accordance with equations (B3) and (B9),

S
By = UH,U (B19)
Thus, the regulrement vi = VT is =zquivalent to the requirement‘L

B = H.l*- (B20)

It 1is concluded that a system 1s reciprocal with respect to an antiunitary
transformation @ - Up. 1if the Hamiltonian of the system 1s invariant under the

transformation H - UH**U1L and the scattering connects channel states that are
eigenstates of Hermitian Hamiltonians (in agreement with the results of the sec-
tion RECIPROCITY OF THE REACTION MATRIX).

4Tt should be noted that the equality of equations (6) and (7) already re-
quires the condition of equation (B20).

18



APPENDIX C

DEPENDENCE OF THE SCATTERED WAVE ON SOURCE DISTANCE

The following is an elaboratlon on the discussion that permitted the removal
of the restriction ry >> r from equation (15), which is required for the valid-
ity of equation (14).

Adapting equation (D5) to the special case of potential scattering gives an

integral equation for (¥,,7):

1k|F-Ty | k| -7
Wzy®) - 2o le 2 s L vz uz,e)
At 'r - ?A’

ikI'A oA = .
=ikracT ikr N nL 5 o
T | [ A fdr' eI Fyn W2, 7| (o1)
Tp>>r>>R ArtRE ra T

Comparing equations (14) and (Cl) yields

T(2,5) = - 2 fd? e 1KFFy (2 ) y(7,,77) (c2)
4nh2

If a Born series expansion is valid in equation (C2), equations (Cl) and (C2Z)
yield

A 2 ’ by g o ’ ikl?’—rA’ 7 A- "
o(%,7) = - ==& ar e~ 1k Tly(fn) 2 € + ar" e~ikr-Triy(r")
4xn? el B - 2y
ik|r"-r' ik]?‘-fA!
x | dr 2“2 el —~ ]V(r') 2“2 < ... (c3)
dan® |7V - T 4rnt |7 - ?Ay

Provided that the source distance rp 1s much larger than the range of forces
R, the equation
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iklr’-rA’ 1KYy o =
e%‘ — = er e (ca)
|t - rA! A

(C4) holds within the region of integration because rp 1is taken to be much
larger than any value of r' contributing significantly to the integral. With
the equality (C4) in equation (C3), it is possible to factor out

ikr
(2p/4ﬁﬁ2)e A/rA, which is common to each term. The other factor is just the

Born series for the scattering amplitude in time-independent scattering theory.
Thus, equation (C3) reduces to

ikr

- A 2 S A A
(%, ,F) = —— (-7, ,T) (¢5)
A2 4 TA A’
Although the Born serles expansion has been used in the calculation of equa~-
tion (C5), it 1is by no means necessary for the proof. It is only necessary that,
within the range of forces, the Green's function ¥(¥,7,) have a form that is
asymptotically a plane wave plus an outgoing scattered wave. Then, since
¥(#,7,) and the usual wave function of time-independent scattering theory also
satisfy the same differential equation within the range of forces, they can dif-
fer there only by an overall constant factor. This constant is just the coeffi-
cient of the plane wave.
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APPENDIX D

DERTVATION OF THE INTEGRAIL EQUATTONS

Equation (53) can be written
(B + Ty - E)Xq(8,%]) = 8(F; - F1)ogo(Eg) - ViXq(t,rg) (D1)

In order to obtain an integral equation for X, (&,r;), it is necessary to
expand it in a complete set of eilgenfunctions of Hy + Tj:

X‘i‘t(é’rj,_) =Z fdl—gA't’(E)eik.ri @iti(ﬁi) (D2)

-t'
Using this form in equation (D1) yields

> z - AR S 1K
(Hi + Tl - E)Xlt(g,ri) = fdk(Etr + 12{1“1; - E)A_tl(k)e 1 Cplt:(él)

= 6<?j_ - ?i)cPit(gi) - ViXit(E,I‘i (D3)

Because H; 1s Hermitian, the following 1s obtained from equation (D3):

1 —iE'?i 1 ik-%, +
2y _ e - i -1
Agi(k) = NN o3 tt' T o3 fdé e ;4 ( 65 )V X4 (£,75)
€ + 5. E
Hi
(D4)
Putting this result into equation (D3) gives the equation
-ik (?]f_-l_"l)
X (8,7]) = = [ a& = Py (Es)
it =271 3 12)2 it ~i
€ + - E
1 e-i?'(?;—?i +
" - n i
- dg -8_1-;5 dk NCN cPit'(gi)(Pit'(gi)ViXi‘t<g ,I‘i) (Ds)
€tr + >m - B
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The integral over X gives the free-particle Green's function:

. =21 2
1 o emike(F-F 2uy Tl TiT
81 Kok 4xne |7y - Ty
& - B
Zui
where
kg = ¥2 (E = et)

Using this result in equation (DS) and looking at large values of r; yield

2y | LRI T1T
T

X;4(6,7;) = =
SRR Anhie lfi -

ik_txri
e " t ._,,
- E e 0 (8y) J a8 ety B F el (£ X (e FD) (07)
-tf

A different interaction term can just as well be separated from the Hamilto-
nian, in which case equation (53) can be rewrittent
(Hj + Tj)Xit<§’F£) = 8(¥; - ?i)@it(ﬁi) - Vint(é,ri) (p8)
Expanding in elgenfunctions of Hj + Tj ylelds

-

X (8T =ZBS.<E)eik'rj ?55:(85) (D)

S

Using the same procedure as before results 1n the alternative integral equation

- 1kg| 7 3-75] N )
15(8ory) = o as’ —.-ﬂ—was(gJ)cp (¢ )[( ?,o- 70, (8)

T3

- vjxit(g",ri')] (D10)
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