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RECIPROCITY IN QUANTUM MECHANICS
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R. M. Thaler +, and W. Tobocman ¢

SUMMARY

This report presents a new derivation of the generalized reciprocity theorem

of quantum mechanics.

In most branches of physics_ reciprocity refers to a symmetry condition on

a Green's function, whereas in quantum mechanics the term is used to denote a

condition on scattering amplitude or'on the S-matrix. The derivation given here

relates these two points of view by first deriving a generalized symmetry condi-

tion on the quantum mechanical Green's function, and from it obtaining a condi-

tion on the scattering amplitude. The reciprocity condition on the scattering

amplitude is given by

js_ ^ ^ _ _jfj_,i ^ ^_ifit' _-ri,rjJ = _(-rj,ri)

The quantity fit,js is the amplitude for the reaction in which there is a col-

lision between two bound systems i in internal states t whose reduced mass

is _i and whose centers of mass are separated by the vector _i" This results

in two new bound systems j in internal states s. The state _ is the state

reciprocal to s_ if the Hamiltonian is time-reversal invariant, _ is the time
reverse of the state s.

INTRODUCTION

The term reciprocity usually denotes a symmetry condition on a Green's func-

tion (ref. 1). In electrostatics, for example, the symmetry has a simple physi-

*Post Doctoral Research Associate, Case Institute of Technology, Cleveland,

Ohio.

**Professor of Physics, Case Institute of Technology, Cleveland, Ohio.

***Post Doctoral Research Associate_ Case Institute of Technology, and the

Lewis Research Center, Cleveland, Ohio.

?Associate Professor of Physics, Case Institute of Technology, and the Lewis

Research Center, Cleveland, Ohio.

CAssociate Professor of Physics, Case Institute of Technology, and Consult-

ant to the Lewis Research Center, Cleveland, Ohio.



cal interpretation because the Green's function is just the potential due to a
point charge under a specific boundary condition. The reciprocity symmetry en-
sures that the potential is the sameif the source and field point are reversed.

In quantummechanics, reciprocity is usually thought of as connected with a
symmetry condition on scattering amplitudes (ref. 2). It is readily shown
(ref. 5) that, if the _iltonian is both Hermitian and tlme-reversal invariant,
the system is reciprocal. There are, however, systems that are neither Hermitian
nor time-reversal invariant that nevertheless display reciprocity. For example,
the scattering from a complex optical model potential is reciprocal. A more gen-
eral reciprocity relation, which includes both this example and the usual theorem
as special cases, has been discussed by several workers (refs. 4 and 5).

In this report it is shownthat reciprocity symmetry of the Green's function
leads directly to reciprocity of the reaction matrix. First, a generalized reci-
procity condition on the Green's function is obtained from the invariance proper-
ties of the Hamiltonian. Since the Green's function is a wave function due to
a point source, it is seen that, when the source is infinitely distant from the
interaction region, the wave emerging from the source is plane in the vicinity
of the interaction. In the asymptotic region (r _ ¢), the scattering amplitude
can be identified as the amplitude of the outgoing wave function. (Symbols are
defined in appendix A.) Thus, the reciprocity symmetryrelation for the Green's
function is shownto lead to a reciprocity condition on the reaction-matrix ele-
ments. A physical interpretation is, of course, that the reciprocity symmetry
assures equality of the scattering amplitude whensource and detector are re-
versed.

In appendix B an ai%ernative derivation of the reciprocity theorem is given
that makesuse of formal scattering theory.

The work reported herein was performed under the auspices of the Atomic
Energy Commissionin cooperation with the NASALewis Research Center.

SYMMETRYOFTHEGREEN'S FUNCTION(SPECIALCASE- POTENTIALSCATTERING)

It might be said that a system is reciprocal if a source located at A pro-
duces the samesignal at B as would be produced at A by that source if it
were located at B. This definition will now be applied %oa nonrelativistic
one-body quantummechanical system characterized by the Hamiltonian

2_

where p2/2_ is the kinetic-energy operator and V(_), the potential energy, is
a multiplicative operator. In order to makethe argument as simple as possible,
a spin-independent interaction is used. It is further assumedthat V(_) = 0
for r > R (clearly, this is the conventional choice for the location of the ori-
gin of the coordinate system). For convenience, only steady-state conditions are
considered so that it is possib!e to use the time-independent form of the
Schrtdinger equation



_(:) - _,:(:)= o (2)

If there is a point source at _ = _A_ the Schr_dinger equation becomes

HY(rA,r) - EY(rA,r ) = 8(_ - rA) (3)

where the wave function Y(_A,_) is a function of _ and depends parametrically

on the location of the source _A" Similarly, a source of the same strength lo-

cated at _B will give rise to the Schr_dlnger equation

:(:B,:) - E:(:_,:)= s(:_- :B) (:)

Equation (5) or (4) is the equation satisfied by the Green's function correspond-

ing to equation(2) Occasionally_(_l,r_)willbe referredto as a Green's
function.

Multiplying equation (S) by :(_B,_) and equation (4) by _(_A,_), taking

the difference of the resulting two equations, and integrating over all space

yields

(s)

Thus, if the left side of equation (5) vanishes,

:(rB,r A) = Y(rA,r B) (G)

which is the reciprocity relation. In other words, it may be said that reciproc-

ity implies symmetry of the Green's function with respect to the interchange of

the coordinates_ which clearly implies that the wave function at _A due to a

point source at _B is equal to the w_ve function at _B due to a source of

the same strength at r_A.

If the wave function obeys homogeneous boundary conditions on some bounding

surface S, then the left side of equation (5) vanishes:

......... ]L = (rB,r)H_(rA,r) - _(rA,r)HY(rB,r) dT

:--_-f[*(>'W>')Ve*(ra,r)- _/(rA,_)_ _/(:aB,_)]d't-

= 2-'_'f rB'r)_JT(rA'r) - Y(rA'r)_(rB'r a_ (7)

where the integration is performed over the bounding surface.



Since homogeneousboundary conditions meanthat at the bounding surface

_Y
_+ 13_nn=0

where $Y/Sn is the derivative in the direction of the outward normal to the

surface, it follows immediately that L in equation (7) vanishes, and, there-

fore, that equation (6) holds.

(8)

RECIPROCITY OF THE SCATTERING AMPLITUDE

(SPECIAL CASE - POTENTIAL SCATTERING)

Equation (G) expresses the reciprocity relation in terms of the Green's

function. From equation (6), however, it is easy to obtain a corresponding sym-

metry property that must be obeyed by the scattering amplitude. The Green's

function of interest in the present case must be of the form

Y(FA,_) : X i?_ ?AI + Yscatt(?A,Y) (9)

where k = I----'_/2_E/_2 and Yscatt is everywhere regular. The singular term rep-

resents the spherical wave emanating from the source. Direct integration of

equation (3) over an infinitesimal volume containing the point ? = _A shows
that

x-- s_/4,_2 (1o)

Asymptotically, for large values of r, Yscatt(rA,r) must have the form of an

outgoing spherical wave emanating from the scattering center (which has been

chosen to be at the origin); that is, for r >> R

Yscatt _(-_A ,_) eikr
r

(ll)

where _ is the unit vector _/r. Thus, for large r

ikl -%l
_(_A,_ ) -_ (2_/4_{2) e

I %1
^ eikr (r >>R)+ f(-rA'r) -7-- (12)

The expressions analogous to equations (9) to (12) for the source at r_B are
self-evidgnt.

If it is assumed, for convenience, that the bounding surface is a sphere

whose radius p is very large compared with R (the range of the force), rA, and

rB_ then_ from equation (12)



_- =p 0_
(is)

so that L in equation (7) vanishes in the present case, and the reciprocity

relation, equation (6), must hold.

In the usual idealization of the scattering experiment, the source is taken

to be an infinite distance from the scattering center. The result for this spe-

cial case is easily obtained from equation (12). If rA >> r >> R, equation (12)

becomes

+ 2_/a_) e A.] f(-_A' _) (l_)
Y(r_A ,_) = (2b/4_2) rA r--_ ]

This limiting form of the _ave function _(_A,_) satisfies the same differ-

ential equation with the same boundary conditions as the usual _ave function of

time-independent scattering theory, .except for the overall factor

(z_/_{2)(ei_A/rA). Thus,for rA, r >> R,

[(2_/4_{%2 ) eikrAl'l _ (-rq,9): f(-9A,9)
rA J

(15)

where f is the usual scattering amplitude. It is noted that the validity of

equation (14) required that rA>> r >> R. The restriction rA >> r applies

only to the source term of equation (14) and is not required for equation (15)

(see appendix C). It is necessary only to require that the source term be a

plane _ave within the range of the force in order that equation (15) hold; that

is, in equation (15) it is permissible that rA_ r.

A wave function due to another source located at r_B will have the asymp-

totic form

_(rB,r ) -_ (2_/4_2) e
I{ - _BI

^. e ikr

+ _(-rB'r) -7--' r >> R (16)

Application of the symmetry relation (eq. (6)) and the wave functions (eqs. (12)

and (16)) when rA, rB >> R yields

ikI_B-_l i_ ±kI_A-_BI _ ^ i_A
^ e = (2_/4X_2) e + _r(_rB, rA) e

(2_/4_2) e + dr(-rA'rB) T I_A- _BI rA

(17)

5



or by virtue of equation (15)
/% /% A

f(k,k' ) = f(-k' ,-fO (18)

where

_=.k _A

rA

and _ (19)

r B
k' =k_

j

It is noted that the derivation of equations (17) and (18) in no ray depends

on whether the ]{amiltonian of equation (1) is real. On the contrary_ the treat-

ment is equally valid for a complex potential. For a Hamiitonian of the form

given by equation (i); all that needs to be assumed to obtain the result is that

V(r) is a multiplicative operator and that the boundary conditions are such as

to make the surface integral in equation (7) vanish.

Since a complex potential implies a non-Hermitian Hamiltonian, it is evident

that Hermiticity is not necessary in order to obtain reciprocity. This is com-

pletely analogous to the well-known result in network theory. It is quite pos-

sible for an electrical network to be dissipative and still be reciprocal. For

an electrical circuit_ the crucial question is not whether there is energy dis-

sipated in a resistor_ but whether there is a rectifier in the circuit. This is

exactly analogous to the quantum-mechanical case treated in this section. A non-

Hermitian Hamiltonian will not conserve partic!es_ but the reciprocity theorem

may hold despite this.

RECIPROCITY OF THE GREEN'S FUNCTION

The previous discussion suggests that, although Hermiticity and time-

reversal invariance of the Hamiitonian are sufficient_ they are not necessary for

reciprocity. A more general invariance property of the Hamiltonian that will

also encompass the results obtained in the previous section is sought. Conse-

quently_ more abstract arguments than the preceding appear to be necessary. Such

an argument follows.

Consider the matrix eigenvalue equation

(H - E)_ = 0 (_.o)

where H is the Eamiltonian matrix and Y is a column vector. No distinction

between position coordinates and the various discrete indices that may label the

states will be made. Now, consider the corresponding Green's function equation



To makeequation (21) more explicit, it maybe written as

(_'x" - ESx'x")_x"x = 5x'x (22)

The Einstein summation convention is used in equation (22). The summations are,

of course, generalized in that it is possible to sum over discrete coordinates

and integrate over continuous ones. Similarly_ the generalized delta function

in equation (22) is a Kronecker delta for discrete coordinates and Dirac delta

for continuous ones.

The transpose of both sides of equation (21) is taken and the unitary matrix

U is introduced to obtain I

uyTutu(H r_ - E)U t = l

Thus_ if _ is defined to be

_ = _Tut = _t*ut

and H to be

= uHTu t = UHt*U t

equation (25) can be rewritten as

Y(_ - E) =

Now, if both sides of equation (26) operate on the Green's function Y,

Y(H - E)Y =

(23)

(24)

(25)

(26)

(27)

= HT = _t* (30)

iThe following notation is used: A T denotes the transpose, A % denotes the

Hermitian conjugate, and A* denotes the complex conjugate of A. 0nly two of

the three symbols are needed, of course, since AT = A f*.

If the unitary matrix U is taken to be the identity, then the reciprocity

theorem reduces to the result that symmetry of the Hamiltonian, namely,

(29)

This is the general form of the reciprocity theorem expressed in terms of the

Green's function.

and equation (21) is inserted into equation (27), the result obtained is

=

Thus, if H has the invariance property

= H (28)



implies symmetry of the Green's function

(3i)

or, explicitly, Hxx. = Hx, x implies that

_x_' -- _'x'x (32)

In a representation in which x and x' are space coordinates, equations (30)

to (32) are recognized as the result obtained earlier in equation (6). If the

Hamiltonian is a symmetric matrix, the reciprocity relation holds, as is shown

in equations (31) and (32), which says that the _ave function at x due to a

point source of unit strength at x' is identically equal to the wave function

at x' due to a point source of unit strength at x.

SYMMETRY OF THE MATRIX ELEMENTS

For the general case when U is not unity, conditions on the matrix ele-

ments of H can be determined. If _ and Y_ are two particular state vec-

tors, H_ and Y_ are defined as

_s (_) ti¢_ *- - (_)x_'(_)x, (33)

(3s)

2The first equality in equation (35) is a consequence of the fact that

is a column vector, so that (@_)tH(_) is a scalar and is, therefore, equal to

its transpose.

8

Similarly,

and

_ (¢)x_,(#_)x , (34)

Equation (33) may be rewritten to read 2

flcs_ = (#_)t.Ht.(#_). = (U#_.)t(_t.ut)(u$_.) = (#_)t_#_= _. (35)

where U is a unitary matrix, H is as defined in equation (25), and

¢_ = u_ _- (36)

Thus, if the Hamiltonian obeys the symmetry relation (eq. (28)), then

_ = _T_ (_)



which according to equation (29) yields

if H:_.

(39)

Equation (3G) will be recognized as the general definition of an antiunitary

transformation. Familiar examples of antiunitary transformations are the time-

reversal and charge-conjugation transformations. The antiunitary transformation

that maps the state ¢_ into ¢_ as defined in equation (38) will map the

Hamiltonian H into H, where H is defined as

= U_U t (¢0)

Therefore, the reciprocity theorem is expressed as follows. Given an anti-

unitary transformation that maps a state ¢_ into ¢_ and transforms an opera-

tor O into _--, then, if the Hamiltonian has the invariance property H = H-@,

the Green's function will possess the reciprocity symmetry Y_ = T_.

It should be noted that the definition of an antiunitary transformation (un-

like that of a unitary transformation) is not independent of the representation

(ref. 5). To see this, it is noted that for a unitary transformation

where U is unitary and 9 and _ are column vectors. Under a change of rep-

resentation generated by the unitary matrix Y, it can be seen that

_' = u'_' (42)

where

¢, = y_ (43)

_, : y_ (44)

and

On the other hand, an antiunitary transformation

(46)

under a change of representation generated by the unitary matrix Y, becomes

_, = (yuyt*)_'*_ u'm'* (4v)

and hence, is representation dependent. Thus, in using equations (36) and (40),

it must be remembered that the choice of representation is of some significance.



If in one representation, however,

H = H-_ = UHt*Ut

then in the new representation

where

(_s)

_' =ws't*wf (4s)

w = _-t. (5o)

and the previous results, equations (33) to (40), hold with the unitary matrix

U replaced by the unitary matrix W of equation (50).

RECIPROCITY OF THE REACTION MATRIX

In order to obtain the reciprocity condition on the reaction matrix, it is

necessary first to rewrite the results of the section RECIPROCITY OF THE GREEN'S

FUNCTION for the case where the unit matrix is in space-spin coordinates with the

space-coordinate dependence of the w_ve function shown explicitly. The Green's

function eq_mtion is

where i is the unit matrix in spin space.

can be written

The reciprocity symmetry condition

HT({',_)U t = UtH(_,_ ') (5_.)

and

_(_ ,_)ut= ut_(_,_) (53)

The unitary matrix U t is restricted here to operate only on the spin com-

ponents of H and Y as is the transpose operation. The symbol { represents

the space coordinates of the system.

The complete Hamiltonian can be broken up in a number of _ays corresponding

to various groupings of the particles:

H = Hi + T i + V i = Hj + Tj + Vj (5,_)

where H i is the Hamiltonian for the internal motion of two groups of particles

whose centers of mass are separated by the vector _i, Ti is the operator for

the relative kinetic energy, and V i is the interaction between them. It is

assumed that Hi, Hj, etc. are Hermitian, although H itself need not be. The

wave equation for the internal motion is

(H i - Et)_it(_i) = 0 (55)

10



where _i includes all coordinates _ except _i and t is the state of in-

ternal motion.

Multiplying the Green's function (eq. (51)), on the right by the internal

function _it(_i) and integrating over _i give the result

(H - E)Xit(_,rl) = _(_i - rl)_it(_i ) (56)

where

(ST)

The wave function Xit plays the same role here as the Green's function _(_A,_)

introduced earlier. Equation ($6) describes the motion of the system with a

point source in channel i.

From equation ($6) an integral equation for Xit can be obtained by expand-

ik.r i
ing it in the complete orthonormal set, e q0it,(_i) , of eigenfunctions of

I

H i + T i. For r i >> r i >> R the integral equation has the asymptotic form (see

appendix D) :

Xit(_,_) _ (2_i/%_2) exp(ikitri), exp(-ikitr _ _i)tit(_i)

r i

E --_r A

exp(ikit'rl ) Fit,it'(_ri,ri)
- @it,({i) r i

t'

(s8)

Equation (58) has the form of an incident plane wave plus scattered waves in all

excited internal states. Because the normalization of the plane rave is not

unity_

fit,it' - Fit,it' (59)

ikitri

e
r i

is interpreted as the scattering amplitude for the process it _ it'

In order to study a reaction from the channel represented by i to a dif-

ferent channel j, Xit is expanded in terms of eigenstates of Hj + Tj,

ei_'_J 9js({j ) . The asymptotic form is

ii



Z ikjs,r.
Xit{_ _._ _i j = e J

rj

S'

Is ,,] '},, ^ " " , t " Fit. j s
× d_ exp(-ikjs,r j "_j)5(_ i -_)q0js,(_j)q0it(_ - (-_,rj) (60)

(see appendix D). The second term in the braces gives the scattered wave in the

j channel. The first term, which is due to the source, vanishes for all bound

internal states s' if the state t is also bound, since the product

5(ri_"_ ri)q0js_''t ,(_j)qDit(_i ) then decays exponentially with ri. Since the plane-

wave term of equation (58) does not have unit amplitude,

, Fit_j s'
fit,js = (61)

• T

Ikitri

e , (2.i/4_2)
r i

is interpreted as the reaction amplitude for the process it _ js' Arguments
similar to those made in the section RECIPROCITY OF _HE SCATTERING AMPLITUDE

(SF_CIAL CASE - POTENTIAL SCATTERING) show that the amplitudes fit,it' and

fit,js' are each independent of r_, and the quantities Fit, it' and Fit,j s'
• f

mkitr i
therefore depend on r_ through the overall constant e /r_.

In order to obtain the reciprocity relation for the reaction matrix it is

necessary to multiply both sides of the reciprocity symmetry relation (eq. (51))

of bound state internal functions - on the left by _Tt(_i)_ and on theby a pair

f !

right by 3 _js_j) - and to integrate over _i and _j. From the definition of

X in equation (57), it follows that

' ,ri) u _js_ D) = d_i_iTt(_j)UtXjs_,rj) (62)

!

With the asymptotic forms for Xit and Xj_ appropriate for large ri, rj,
equation (62) becomes

3The wave function _js_) is the reciprocal state defined in equation (56).

12



_j _ e ,
rj Fit, Js ' (_ri,_j)_Ts, ( _j)] f- ,

= a{i mit(_i )U* - miT'(_i)

ikit, r i
e

r i
(63)

The continuum terms due to the source appearing in equation (60) vanish because

of orthogonality of the @'s. On the left of equation (63) there is the integral

mT ,Uf_j_ d_j / T *, = _js,_j s = $ss,js
(64)

and on the right

T f _ /d_i ht U ht' = _i h*T'hT' = t_Tt' (65)

From equations (63) to (65) it follows that

ikjsr'j iki_ri

Fit,js ( ^j) ee __i, r _ ,
r.
J ri

Fj_, it (-2"j ,9i) (66)

which along with equation (61) gives the result

• A A ,_ -- A

,ifit.jS(-ri.r]) = ,jfjs.it(-9j.r i) (67)

It can easily be shown by using equation (58) that equation (67) also holds for

scattering.

It has been shown that a generalized reciprocity relation on the reaction

matrix follows directly from the reciprocity symmetry of the Green's function.

The conditions under which it holds are that (i) the Hamiltonian has the reci-

procity symmetry (eq. (28)), (2) the channel Hamiltonians are both Hermitian_ and

(3) the internal states of the two colliding systems before and after the colli-

sion are bound.

Levis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, June i0, 1963
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APPENDIXA

F.

Fit _it '

fit_it'

G

H

k_k'

L

m

O

P

R

r

S

s_t

T

U,W_Y

V

X

Xit

SYMBOLS

energy

angle dependent amplitude of it' component of scattered wave

scattering amplitude for process it _ it'

complete Green's function

Hamiltonian

h/2_

wave numbers for E

surface integral

mass

arbitrary operator

momentum operator

distance beyond which potential is zero

length of radius vector from origin to some field point

bounding surface

internal states

part of H describing relative motion of system when broken into two

noninteracting parts

angle dependent part of scattered wave function

unitary matrices

channel interaction potential

source strength

wave function_ Green's function for single-channel source

coefficients of homogeneous boundary condition

14



c

P

T

Y

i

generalized 8 function: Kronecker _ for discrete coordinates and
Dirac _ for continuous coordinates

energy of an internal state

reduced mass

space coordinates of system

radius of bounding sphere

element of volume

state vector

solution of Schr_dinger equation; _ave function; Green's function

state vector

unit matrix

i,j_k

T

t

Subscripts:

i,j,k channels

scatt scattered part

Superscripts:

channel subscripts

transpose operation

vector

unit vector

reciprocal

Hermitian conjugate operation

complex conjugate operation

15



APPENDIXB

DERIVATIONOFTHERECIPROCITYTHEOREMBYMEANS

OFFORMALSCATTERINGTHEORY

The reciprocity theorem can readily be derived by using the results and
methods of formal scattering theory.

Let H be the Hamiltonian of the system. The channel Hamiltonians are de-
noted by Hi, Hi, , and the channel interaction potentials by Vi;
Vj, .... Thus,

H = Hi + Vi = Hj + Vj ....

Next, the eigenfunctions of the various H_miltonians are defined as

and

(BI)

(v,- _)_ = 0 (B_)

(_ - _)% = 0

and the corresponding outgoing Green's functions

and

(_)

(_)

A well-known result of formal scattering theory is the following expression

for the scattering amplitude:

Tij = (_iIVi + ViGVjI_j ) (B6)

Tij is the amplitude for scattering from state _j to state @i' An alterna-

tive expression for the scattering amplitude is

Tij = <_iIVj + ViGVjI_ j) (B7)

The system under discussion will be said to be reciprocal if the scattering

amplitude has the property

(_)

where the state

tion

Tij = T-_T

q_i is related to the state

ml = u_

_i by the antiunitary transforma-

(B9)

16



with

ut = _l (too)

To determine under what circumstances the system is reciprocal, it is necessary

to make use of the following result:

If this expression is compared with equations (BG) and (BT), it can be seen that

the system will be reciprocal if

VTII_+ V.-_V_jl

u(vi + viavj)t_t = or (B12)

+ V_V r

By definition, however,

U(V i + ViGVj)t*ut = V i + VjG_ i (BIS)

where

- UAt*U t (BI4 )

Thus, sufficient conditions for reciprocity are

and

vi = vT

V. =V--
J J

G=G

(BlS)

Conditions (BIS) on the Green's function and the channel interaction poten-

tials are readily translated into requirements on H_ Hi, and Hi. From equa-
tions (_) and (_i_),

_(_ - 3) = 1 (BI6)

so that

A comparison of equations (BI7) and (B&) shows that H = H implies that G = G.

For the channel potentials,

17



Vi _ vr = (_- _i) - (i:-Hr)

1 1
(BlS)

where, in accordance with equations (B5) and (Bg),

Thus, the requirement Vi = V.--:is equivalent to the requirement 4

(Blg)

(B20)

It is concluded that a system is reciprocal with respect to an antiunitary

transformation _ _U_* if the Hamiltonian of the system is invariant under the

transformation H _UHT*U t and the scattering connects channel states that are

eigenstates of Hermitian Hamiitonians (in agreement with the results of the sec-
tion RECIPROCITY OF THE RF_CTIONMATRIX).

41t should be noted that the equality of equations (6) and (7) already re-

quires the condition of equation (B20).
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APPENDIXC

DEPENDENCEOFTHESCATTEREDWAVEONSOURCEDISTANCE

The following is an elaboration on the discussion that permitted the removal
of the restriction rA >> r from equation (iS)_ _ich is required for the valid-
ity of equation (14).

Adapting equation (D5) to the special case of potential scattering gives an

integral equation for _(rA,r):

_(r_A,9,)= 2____[ eikI_-_AI.____ /
d._!

r-r teikl -_ _,

I--J ]rA>>r>> _ 4_{_2 L\ rA e-ikrA'_ eikrr d_' e'ikr'_'V(r ')9(_A,_' )

Comparing equations (14) and (CI) yields

4_ 2 Q

(cz)

(c2)

If a Born series expansion is valid in equation (C2), equations (el) and (C2)

yield

ikl_,,_rAI)
--9"-+! _ _ ,e-lkr'rV(÷') _ e

_2 I_,_r%I . A TY

+ dr" e-lkr'r V(r ")

elkIr''-r'lV(r') _ ....
× dr' _ I_"- 7i _ I_' - %14_2 + ] (cs)

Provided that the source distance rA is much larger than the range of forces

R_ the equation
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iklr'-rAl ikr A . ^
e e Ikr A. r '

- e (C4)

j_,_%1 rA

(C4) holds within the region of integration because rA is taken to be much

larger than any value of r' contributing significantly to the integral. With

the equality (C4) in equation (C3), it is possible to factor out

(21_/4_2)eikrA/rA , which is common to each term. The other factor is just the

Born series for the scattering amplitude in time-independent scattering theory.

Thus, equation (C3) reduces to

ikr A

_(-_A,_) -- _ _ f( -r\,_) (05)
4_i 2 rA

Although the Born series expansion has been used in the calculation of equa-

tion (CS), it is by no means necessary for the proof. It is only necessary that,

within the range of forces, the Green's function 9(r,rA) have a form that is

asymptotically a plane w_ve plus an outgoing scattered wave. Then, since

9(_,_A ) and the usual wave function of time-independent scattering theory also

satisfy the same differential equation within the range of forces_ they can dif-

fer there only by an overall constant factor. This constant is just the coeffi-

cient of the plane wave.
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APPENDIXD

DERIVATIONOFTHEINTEGRALEQUATIONS

Equation (53) can be written

(Hi + Ti - E)Xit(_,r_) = 6(? i - _i)_it(_i ) - ViXit(_,r_) (DI)

!

In order to obtain an integral equation for Xit(_,ri) , it is necessary to

expand it in a complete set of eigenfunctions of Hi + Ti:

Xit(_ri) =Z fdk At,(k)e i_'_i _it,(_i) (D2)

t'

Using this form in equation (DI) yields

(H i + Ti - E)Xit(_,_i)
S/ _ (e _2k2= _ t, + _i

t r

E)At (_)e i['_i' Pit' (_i )

= 6(_ i - _)mit(_i) - ViXit(_,_ _) (D3)

Because H i is Hermitian, the following is obtained from equation (D3):

At ' ([) = l [_l--iZ'_i

_2k____2 _ [ 8_3
et, + 2_ i E

_ik,ri f _,_ i d_ e _it(_i)ViXit(_,r i
5tt, 8_3

Putting this result into equation (D3) gives the equation

-lk'(ri-r i)

Xit(_,_ ) _ L d_ e _it(_i )
_2k2

8_3 et + 2m E

/- d_' _ _ e

_8_: 3 52k 2et' + P_m E
t'

f! Ir !

_it' (_i)q°ift'(gi)viXit (_ 'ri) (D5)
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The integral over k gives the free-particle Green's function:

i/d _ e"ik'(_-_) = --2Zi eiktlr-_l-_il

]  2k2 - %1
8_3 at + -- - E

2_ i

(D6)

where

z_i (E - %)
kt : _T

Using this result in equation (DS) and looking at large values of
!

r i yield

xit({,{i) --__4_{22_ileiktl_i-r_llr_ - r_l

Z eikt,r ir i

tr

9it,(_i ) / d{" exp(-ikt,9._")giTt,(_")ViXit(_",_i) 1
(m)

A different interaction term can just as well be separated from the Hamilto-

nian, in which case equation (53) can be rewritten:

(Hi + Tj)Xit(_,r_) = 5(_ i - r-_)qoit(_i ) - VjXit(_,r_) (DS)

Expanding in eigenfunctions of Hj + Tj yields

Xit(_,r') : s_Bs,([)e i['_j _js' (_j)
(D9)

Using the same procedure as before results in the alternative integral equation

Xit (_,rj) = %_dq2_ d_

rf

iksI_j-Yjl
tf e

irj - rjl
_js(_j)$js(_j) 5(r i - ri)$it(_ i)

- VjXit(_",ri) ] (DIO)
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