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RESEARCH MEMORANDUM 

EXAMINATION OF RECENT I.ATERAL-STABILITY-DEBIVkTIVE DATA 

By Frank S .  Malvestuto, Jr., and Richard E. K u h n  

INTRODUCTION 

In the present paper attention is directed to the aerodynamic 
parameters, the so-called stability derivatives, that affect the lateral 
behavior of airplanes and missiles. The discussion is centered on three 
important quantities Czp, the effective-dihedral derivative, k,, the 
directional-stability derivative, and Cz , the damping-in-roll deriva- 
tive. 
at subsonic speeds. A few remarks will also be made on the sideslip 
derivatives at zero lift in the supersonic speed range. 

P 
These quantities are considered for a large angle-of-attack range 

DISCUSSION 

For the subsonic speed range, the lateral-stability derivatives 
have been the subject of intensive research by the Langley high-speed 
7 -  by 10-foot tunnel. 
tion with Mach number in the high angle-of-attack range that is repre- 
sentative of flyable attitudes of .many high-speed airplanes. 
effective-dihedral and the directional-stability derivatives of the 
three complete models sketched in figure 1 are presented in figures 2 
and 3. 
model I1 has a 450 swept wing of aspect ratio 4; and model I11 (repre- 
senting the X-3 airplane) is equipped with a 60° swept wing of aspect 
ratio 2. 
lift coefficient against angle of attack for two available Mach numbers 
indicative of the low and high subsonic speed range. 

Particular attention has been paid to the varia- 

The 

Model I is equipped with a 300 sweptback wing of aspect ratio 3; 

To the right of each sketch in figure 1 is a plot of the model 

The effective-dihedral derivative Czp,  expressed here in radians, 

for the three models is presented in figure 2 for the range of angle of 
attack and the Yach numbers indicated in figure 1. It is important to 
note the highly nonlinear variation of this derivative with angle of 
attack and the pronounced effect of Mach number on these variations. 
This nonlinear behavior is strongly dependent upon the separation of 
flow from the wings, particularly in the vicinity of the tips, and 
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commences a t  angles of a t tack a t  which these swept wings a re  by no means 
completely s ta l led .  Note t h a t  model I retains  i t s  posi t ive effect ive 
dihedral t h a t  is ,  

Mach number tended t o  increase this quantity a t  the higher angles. 
Models I1 and I11 have the more typ ica l  var ia t ion of 

attack and show the decrease t o  zero and t o  negative effect ive dihedral 
a t  the higher angles. Configurations having t h i s  l a t t e r  type of varia- 
t i on  of C z  and the derivative CnP, t o  be discussed l a t e r ,  could 

easi ly  be f ly ing  a t  angles a t  which one or the other of these deriva- 
t ives  becomes zero. These zero values of the derivatives could seriously 
a f f ec t  the l a t e r a l  behavior of airplanes a t  these higher angles of attack. 
The point t o  be observed from the data presented here is  tha t  increasing 
Mach number may change the angle of a t tack a t  which these derivatives 
become zero. A s  an i l l u s t r a t ion ,  the resu l t s  of model I1 show t h a t  

become increasing Mach number increases the angle a t  which 

zero; whereas, f o r  model 111, the Mach number e f fec t  i s  reversed; tha t  is, 
increasing Mach number decreases the angle of a t tack a t  which zero values 

% 

through the angle-of-attack range and increasing 
-czP) ( 

C with angle of 
2 P  

P 

c28  and CnP 

occur. 

The e f fec ts  of angle of attack and Mach number on the companion 
derivative 

t i on  of t h i s  derivative depends not only upon the t a i l  effectiveness, 
that is, the difference between the ta i l -on and t a i l -o f f  resu l t s ,  but 
a l so  may be greatly influenced by the variation of the ving-body charac- 
t e r i s t i c s .  As an example, for  models I and I1 the increase i n  the sta- 
b i l i t y  of the wing-body combination a t  the higher Mach number tends t o  
compensate f o r  the reduction i n  t a i l  effectiveness sham by the decrease 
i n  the increment between the ta i l -on and ta i l -of f  resu l t s .  
however, although the t a i l  effectiveness remains appreciably constant up 
t o  large angles of attack, the decrease i n  the s t a b i l i t y  of the wing-body 
combination causes a reduction i n  Cn f o r  the complete model and i s  the 

primary cause of t h i s  reduction. It i s  also of i n t e re s t  t o  point out fo r  
t h i s  model t ha t  the angle of a t tack a t  which C z  and C, tend t o  zero 

i s  approximately the same and decreases with increasing Mach number. T h i s  
s imilar i ty  of the action of Mach number on C and Cn i s  not surprising 

since f o r  this model the wing-body character is t ics ,  which i n  the main usu- 
a l l y  control C are also the controll ing influence fo r  Cn as w a s  

indicated previously. 
through the Mach range, not only proper t a i l  effectiveness, but equally 
important, proper wing-body design, incorporating sat isfactory directional 
characterist ics.  

are  sham i n  figure 3 .  A t  the higher angles the varia- 
CnP 

For model 111, 

P 

P P 

P 

l P 9  P 
These r e su l t s  emphasize the need fo r  having, 

. 
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The ef fec ts  of horizontal- ta i l  height on the d i rec t iona l -s tab i l i ty  
derivative Cn and a l so  on the effective-dihedral derivative C f o r  

model I are shown i n  figures 4 and 5 .  
figure represent horizontal-tail-off data.; the next set of curves are f o r  
tne horizontal t a i l  i n  the low position. This arrangement i s  t'ne one con- 
sidered i n  the previous figures. The data t o  the r igh t  are f o r  the hori-  
zontal  t a i l  i n  high position. 
s t a b i l i t y  derivative with the t a i l  i n  the high posi t ion i s  c lear ly  evident 
from these results. For the effective-dihedral derivative C the re lo-  

cation of the t a i l  from the low t o  the high posi t ion produced again, as 
expected, an increase i n  the negative value of the derivative.  

P 
The curves on the l e f t  of each 

The expected increase i n  the direct ional-  

IP , 

There i s  one additional point re la ted t o  the s ides l ip  derivatives 
t h a t  deserves consideration. In attempts t o  devise "opthum f ixes"  t o  
a l l ev ia t e  the pitch-up conditions f o r  various airplanes, consideration 
has a l so  been given t o  the e f fec t  of these same f ixes  on the lateral 
derivatives.  
i f i c  conclusion can be made. The data of f igure 6, however, illustrate 
f o r  one configuration, model 111, the e f f ec t  of a leading-edge chord- 
extension on the Cn and C z p  derivatives. A t  the lower Mach number 

the e f f ec t  of chord-extensions i n  producing a l inea r  pitching-moment 
var ia t ion i s  clear ly  evident, but the e f f ec t  of these chord-extensions 
on the corresponding Cn and C derivatives are r e l a t ive ly  insignif-  

icant .  A t  the higher Mach number, although unfortunately the available 
chord-extension-on data are somewhat incomplete, the small ef fec t  of these 
chord-extensions on the derivatives i s  s t i l l  evident, the trend f o r  the 
higher Mach number being almost ident ica l  t o  t h a t  shown f o r  the lower 
Mach number. It should be remembered, of course, that C 2  d id  not show 

any pronounced breaks u n t i l  angles of a t tack approaching stall were 
reached. 

The resu l t s  available so far are very l imited and no spec- 

P 

P IP 

P 

So far, the discussion of the lateral derivatives fo r  the subsonic 
speed range has been directed toward the s t a t i c  e f fec ts .  
character is t ics  i n  steady r o l l  of several wings a t  high angles of a t tack 
i n  the subsonic speed range have been investigated experimentally. 
a 45O swept-wing-body arrangement, the var ia t ion of the damping-in-roll 
parameter C 

together with the corresponding l i f t  variations.  It can be seen that a t  
a Mach number of 0.2 the wing maintains a reasonable amount of damping 
a t  all angles of attack up t o  the stall. However, as the Mach number i s  
increased, the damping-in-roll ab i l i t y  of the wing seriously diminishes 
u n t i l  at  a Mach number of 0.91 i n s t ab i l i t y  i n  roll is  indicated a t  an 
angle of a t tack of 11'. Note also that t h i s  e f fec t  occurs although the 
l i f t  is  s t i l l  increasing a t  this angle of attack. Similar e f fec t s  occur 

Recently, the 

For 

with angle of attack and Mach number i s  shown i n  f igure 7, 
IP 
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f o r  wings of other plan forms as indicated i n  figure 8. 
here that a l l  these wings indicate a serious loss  i n  damping effectiveness 
i n  about the same angle-of-attack range. 
t i o n  of the unswept wing, this loss occurs although the over-all  l i f t  
coefficients of the wings are s t i l l  increasing. 
t h i s  loss  i n  damping occurs a t  angles of a t tack corresponding t o  the s ta l l ,  
as would be expected. 

It w i l l  be nGted 

Note a l so  that, with the excep- 

* 

c 

For the  unswept wing, 

One additional important point connected w i t h  these regions of poor 
damping i s  t h a t  the variation of ro l l i ng  moment with ro l l i ng  velocity may 
be very i r regular  as shown i n  figure 9. Under these conditions it i s  
d i f f i c u l t  t o  determine a representative value of the damping coeff ic ient .  
The data shown i n  f igure 9 are  f o r  a Mach number of 0.85. The var ia t ion 
of the rolling-moment coeff ic ient  with ro l l i ng  velocity shown by the dashed 
curve is  representative of the l i nea r  s tab le  slope character is t ic  of the 
low angle-of-attack range. 
a t ion  i s  nonlinear and, i n  the case of the 32.6' swept wing, it is  unstable 

unswept wing and the  60° triangular wing would cer ta inly give r i s e  t o  some 
undesirable dynamic-stability character is t ics  and possibly complicate the 
design of any automatic s tab i l iz ing  equipment. 
values of pb/2V and the associated hysteresis loops a l so  may have some 
relationship t o  the wing-dropping problem. 

A t  an  angle of at tack of 1l0, however, the var i -  

l over a very wide range of pb/2V. The hysteresis  shown i n  the data fo r  the 

The i n s t a b i l i t y  a t  sma,l1 

Some consideration has been given t o  the use of f ixes  i n  an attempt 
Since a loss i n  daurping i s  asso- t o  reduce the loss  of damping i n  r o l l .  

c ia ted w i t h  t i p  s t a l l i ng ,  which i s  also a contributing fac tor  i n  producing 
pitch-up, tests were made t o  determine whether devices which a re  known t o  
a l lev ia te  pitch-up would also improve the damping i n  r o l l .  The e f f ec t  of 
a fence on the dmrping character is t ics  of the 4 5 O  swept w i r a  i s  shown i n  
f igure 10. 0.65 b/2 
s ta t ion .  For the Mach number of 0.85, the fences delayed the pitch-up 
by some 5 O  and decidedly improved the damping. 
however, the e f f ec t  of the fences on e i the r  the damping or  the pitch-up 
decreased considerably. 
of the damping-in-roll character is t ics  of swept wings a t  high angles of 
a t tack and high subsonic speeds. 
procedure fo r  estimating the load d is t r ibu t ion  i n  r o l l  provided the corres- 
ponding angle-of-attack load d is t r ibu t ion  i s  known. 

l 

The fences were f u l l  chord and were located a t  the 

A t  aMach number of 0.91, 

Reference 1 contains a more complete discussion 

Included also i n  this report  i s  a simple 

The preceding discussion of the l a t e r a l - s t a b i l i t y  derivatives a t  high 
angles of a t tack has of necessity been based wholly on experimental data. 
This discussion has been confined t o  the subsonic speed range. 
supersonic speed range, recent theore t ica l  work applied t o  three complete 
configurations has demonstrated the a b i l i t y  of theory t o  predict  the 
l a t e ra l - s t ab i l i t y  derivatives a t  low angles of attack. The variations of 
the derivatives C and Cn with Mach number f o r  these three 

In the 

IP P 



configurations a re  shown i n  figures 11 and 12. 
are  presented for  the complete arrangement, ve r t i ca l - t a i l  alone, and body 
or  wing-body alone. 
the complete arrangement. 
cates that the leve l  and trend of the experimental variations a r e  pre- 
dicted by the theory. For one of these airplanes a thorough study and 
prediction of all the major longitudinal and l a t e r a l  derivatives has been 
made and is  reported i n  reference 2. 

The theoret ical  resu l t s  

The experimental resu l t s ,  the dark c i rc les ,  are  fo r  
The comparison of theory and experiment indi-  

CONCLUDING REMARKS 

It has not been possible t o  consider a l l  the recent infomation on 
l a t e r a l - s t a b i l i t y  derivatives. However, a bibliography of papers con- 
ta ining la teral-s tabi l i ty-der ivat ive data has been attached. Reference 3 
a lso  contains a large number of references not included here. The f o l -  
lowing remarks are  offered as an indication of the present general status 
of the s tabi l i ty-der ivat ive field. 

A t  l o w  angles of attack within the subsonic speed range below the 
c r i t i c a l  Mach number, it is f e l t  that available theory permits fairly 
re l i ab le  predictions of the  l a t e ra l - s t ab i l i t y  derivatives. 

A t  the higher angles of attack i n  the subsonic and transonic ranges, 
the unpredictable, nonlinear character is t ics  of the derivatives stress 
the necessity f o r  determining experimentally f o r  a par t icu lar  configura- 
t i on  the derivatives needed i n  the estimation of s t a b i l i t y .  

In the supersonic range a t  low angles of attack, combined theore t ica l  
and experimental studies have produced useful aerodynamic-derivative data. 
For the complete configurations so far considered, derivative estimates 
made f o r  these conditions have m e t  with a good measure of success. 

In  the  supersonic range a t  high angles of a t tack there are no data 
available.  

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., A u g u s t  26, 1933. 
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