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RESEARCH MEMORANDUM

EXAMINATION OF RECENT LATERAL-STABILITY-DERIVATIVE DATA

By Frank S. Malvestuto, Jr., and Richard E. Kuhn
INTRODUCTION

In the present paper attention is directed to the aerodynamic
parameters, the so-called stability derivatives, that affect the latersal
behavior of airplanes and missiles. The discussion is centered on three
important quantities CIB: the effective-dihedral derivative, CnB, the

directional~stability derivative, and Clp’ the damping-in-roll deriva-

tive. These quantities are considered for a large angle-of-attack range
at subsonic speeds. A few remarks will also be made on the sideslip
derivatives at zero 1ift in the supersonic speed range.

DISCUSSION

For the subsonic speed range, the lateral-stability derivatives
have been the subject of intensive research by the Langley high-speed
T- by 10-foot tunnel. Particular attention has been paid to the varia-
tion with Mach number in the high angle-of-attack range that is repre-
sentative of flyable attitudes of many high-speed airplanes. The
effective-dihedral and the directiomal-stability derivatives of the
three complete models sketched in figure 1 are presented in figures 2
and 3. Model I is equipped with a 30° sweptback wing of aspect ratio 3;
model II has a 450 swept wing of aspect ratio 4; and model III (repre-
senting the X-5 airplane) is equipped with a 60° swept wing of aspect
ratio 2. To the right of each sketch in figure 1 is a plot of the model
1ift coefficient against angle of attack for two available Mach numbers
indicative of the low and high subsonic speed range.

The effective-dihedral derivative CZB’ expressed here in radians,

for the three models is presented in figure 2 for the range of angle of
attack and the Mach numbers indicated in figure 1. It is important to
note the highly nonlinear variation of this derivative with angle of
attack and the pronounced effect of Mach number on these variations.
This nonlinear behavior is strongly dependent upon the separation of
flow from the wings, particularly in th? vicinlity of the tips, and
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commences at angles of attack at which these swept wings are by no means
completely stalled. Note that model I retains its positive effective
dihedral (that is, -ClB) through the angle-of-attack range and increasing

Mach number tended to increase this quantity at the higher angles.
Models II and III have the more typical variation of CZB with angle of

attack and show the decrease to zero and to negative effective dihedral
at the higher angles. Configurations having this latter type of varia-
tion of CzB and the derivative CnB’ to be discussed later, could

easily be flying at angles at which one or the other of these deriva-
tives becomes zero. These zero values of the derivatives could seriously
affect the lateral behavior of airplanes at these higher angles of attack.
The point to be observed from the data presented here is that increasing
Mach number may change the angle of attack at which these derivatives
become zero. As an illustration, the results of model II show that
increasing Mach number increases the angle at which CZB and CnB become

zero; whereas, for model III, the Mach number effect is'reversed; that is,
increasing Mach number decreases the angle of attack at which zero values
occur.

The effects of angle of attack and Mach number on the companion
derivative CnB are shown in figure 3. At the higher angles the varia-

tion of this derivative depends not only upon the tail effectiveness,
that is, the difference between the tail-on and tail-off results, but
also may be greatly influenced by the variation of the wing-body charac-
teristics. As an example, for models I and II the lncrease in the sta-
bility of the wing-body combination at the higher Mach number tends to
compensate for the reduction in tail effectiveness shown by the decrease
in the increment between the tail-on and tail-off results. For model III,
however, although the tall effectiveness remains appreciably constant up
to large angles of attack, the decrease in the stability of the wing-body
combination causes a reduction in CnB for the complete model and is the

primary cause of this reduction. It is also of interest to point out for
this model that the angle of attack at which CzB and CnB tend to zero

is approximately the same and decreases with increasing Mach number. This
similarity of the action of Mach number on CZB and CnB is not surprising

since for this model the wing-body characteristics, which in the main usu-
ally control Cl , are also the controlling influence for Cn as was

indicated previously. These results emphasize the need for having,
through the Mach range, not only proper tail effectiveness, but equally
important, proper wing-body design, incorporating satisfactory directional

characteristics.
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The effects of horizontal-tail height on the directional-stability
derivative CnB and also on the effective-dihedral derivative C; for

model I are shown in figures 4 and 5. The curves on the left of each
figure represent horizontal-tail-off data; the next set of curves are for
the horizontal tail in the low position. This arrangement is the one con-
sidered in the previous figures. The data to the right are for the hori-
zontal tall in high position. The expected increase in the directional-
stabllity derivative with the tail in the high position is clearly evident
from these results. For the effective-dihedral derivative CZB, the relo-

cation of the tail from the low to the high position produced again, as
expected, an increase in the negative value of the derivative.

There is one additional point related to the sideslip derivatives
that deserves consideration. In attempts to devise "optimum fixes" to
alleviate the pitch-up conditions for various airplanes, consideration
has also been given to the effect of these same fixes on the lateral
derivatives. The results available so far are very limited and no spec-
ific conclusion can be made. The data of figure 6, however, illustrate
for one configuration, model ITII, the effect of a leading-edge chord-
extension on the CnB and CZB derivatives. At the lower Mach number

the effect of chord-extensions in producing a linear pitching-moment
variation is clearly evident, but the effect of these chord-extensions
on the corresponding CnB and CIB derivatives are relatively insignif-

icant. At the higher Mach number, although unfortunately the available
chord-extension-on data are somewhat incomplete, the small effect of these
chord-extensions on the derivatives is stilll evident, the trend for the
higher Mach number being almost identical to that shown for the lower
Mach number. It should be remembered, of course, that CZB did not show

any pronounced breaks until angles of attack approaching stall were
reached.

So far, the discussion of the lateral derivatives for the subsonic
speed range has been directed toward the static effects. Recently, the
characteristics in steady roll of several wings at high angles of attack
in the subsonic speed range have been investigated experimentally. For
a 450 swept-wing—body arrangement, the variation of the damping-in-roll
parameter CZP with angle of attack and Mach number is shown in figure 7,

together with the corresponding lift variations. It can be seen that at
a Mach number of 0.2 the wing maintains a reasonable amount of damping
at all angles of attack up to the stall. However, as the Mach number is
increased, the damping-in-roll ability of the wing seriously diminishes
until at a Mach number of 0.91 instability in roll is indicated at an
angle of attack of 11°. Note also that this effect occurs although the
1ift is still increasing at this angle of attack. Similar effects occur
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for wings of other plan forms as indicated in figure 8. It will be noted
here that all these wings indicate a serious loss in dasmping effectiveness
in about the same angle-of-attack range. Note also that, with the excep-
tion of the unswept wing, this loss occurs although the over-all 1ift
coefficients of the wings are still increasing. For the unswept wing,

this loss in damping occurs at angles of attack corresponding to the stall,
as would be expected.

One additional important point connected with these regions of poor
demping is that the variation of rolling moment with rolling velocity may
be very irregular as shown in figure 9. Under these conditions it is
difficult to determine a representative value of the damping coefficient.
The data shown in figure 9 are for a Mach number of 0.85. The variation
of the rolling-moment coefficient with rolling velocity shown by the dashed
curve 1is representative of the linear stable slope characteristic of the
low angle-of-attack range. At an angle of attack of 11°, however, the vari-
ation is nonlinear and, in the case of the 32.6° swept wing, it is unstable
over a very wide range of pb/2V. The hysteresis shown in the data for the
unswept wing and the 60° triangular wing would certainly give rise to some
undesirable dynamic-stability characteristics and possibly complicate the
design of any automatic stabilizing equipment. The instability at small
values of pb/2V and the assoclated hysteresis loops also may have some
relationship to the wing-dropping problem.

Some consideration has been given to the use of fixes in an attempt
to reduce the loss of damping in roll. Since a loss in demping is asso-
ciated with tip stalling, which is also a contributing factor in producing
pitch-up, tests were made to determine whether devices which are known to
alleviate pitch-up would also improve the damping in roll. The effect of
a fence on the damping characteristics of the 45° swept wing is shown in
figure 10. The fences were full chord and were located at the 0.65 b/2
station. For the Mach number of 0.85, the fences delayed the pitch-up
by some 5° and decidedly improved the damping. At a Mach number of 0.91,
however, the effect of the fences on elther the damping or the pitch-up
decreased considerably. Reference 1 contains a more complete discussion
of the damping-in-roll characteristics of swept wings at high angles of
attack and high subsonic speeds. Included also in this report is a simple
procedure for estimating the load distribution in roll provided the corres-
ponding angle-of-attack load distribution is known.

The preceding discussion of the lateral-stability derivatives at high
angles of attack has of necessity been based wholly on experimental data.
This discussion has been confined to the subsonic speed range. In the
supersonic speed range, recent theoretical work applied to three complete
configurations has demonstrated the ability of theory to predict the
lateral-stability derivatives at low angles of attack. The variations of
the derivatives CZB and CnB with Mach number for these three
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configurations are shown in figures 11 and 12. The theoretical results
are presented for the complete arrangement, vertical-tall alone, and body
or wing-body alone. The experimental results, the dark circles, are for
the complete arrangement. The comparison of theory and experiment indi-
cates that the level and trend of the experimental variations are pre-
dicted by the theory. For one of these airplanes a thorough study and
prediction of all the major longlitudinal and lateral derivatives has been
made and is reported in reference 2.

CONCLUDING REMARKS

It has not been possible to consider all the recent information on
lateral-stabllity derivatives. However, a bibliography of papers con-
talning lateral-stability-derivative data has been attached. Reference 3
also contains a large number of references not included here. The fol-
lowing remarks are offered as an indication of the present general status
of the stability-derivative field.

At low angles of attack within the subsonic speed range below the
critical Mach number, it is felt that available theory permits fairly
reliable predictions of the lateral-stability derivatives.

At the higher angles of attack in the subsonic and transonic ranges,
the unpredictable, nonlinear characteristics of the derivatives stress
the necessity for determining experimentally for a particular configura-
tion the derivatives needed in the estimation of stability.

In the supersonic range at low angles of attack, combined theoretical
and experimental studies have produced useful aerodynamic-derivative data.
For the complete configurations so far considered, derivative estimates
made for these conditions have met with a good measure of success.

In the supersonic range at high angles of attack there are no data

available.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 26, 1953.
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