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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-1949 

FLUTTER OF FLAT RECTANGUIAR ORTHOTROPIC PANELS WITH 

BIAXIAL LOADING AND ARBITRARY FLOW DIRECTION* 

By Herman L. Bohon 

SUMMARY 

A theoretical analysis is presented on the flutter of flat simply supported 
orthotropic panels at supersonic speeds. Modified piston theory is employed for 
the lateral loading. Flutter boundaries obtained by the Galerkin procedure are 
presented for square panels of various stiffness ratios with arbitrary orienta
tion of maximum panel flexural stiffness with the airstream and various conditions 
of biaxial compressive loading. 

The boundaries show that orthotropic panels are highly sensitive to small 
changes in flow angularity away from the condition of orientation of maximum 
stiffness in the direction of the stream. Further, a small change from this 
orientation can cause a change in the critical flutter mode, and there can be 
stress ratios for which very large thicknesses are required for prevention of 
flutter once the panel undergoes the mode change. The results also indicate that 
a choice of proper panel orientation should be based on an analysis which includes 
representative conditions on flow angularity and midplane loading. In addition, 
a method for determining the intersection of the linear dynamic and static stabil
ity boundaries is presented. 

INTRODUCTION 

The prevention of flutter of exposed skin surfaces of supersonic and reentry
type vehicles has become a critical design problem, as is evident from flutter 
experienced by recent vehicles operating at supersonic speeds. (See ref. 1.) 
Although numerous theoretical studies have been conducted (see ref. 2), the large 
number of parameters influencing a flutter boundary discourage comprehensive 
analytical studies. Furthermore, the experimentalists have extreme difficulty in 
isolating the various parameters in experimental investigations and, consequently, 
correlation between experimental and theoretical results is generally 
unsatisfactory. 

*The information presented herein was offered as a thesis in partial ful
fillment of the requirements for the degree of Master of Science in Engineering 
MechaniCS, Virginia Polytechnic Institute, Blacksburg, Virginia, March 1963. 
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Some of the parameters known to have a large influence on the flutter bound
ary are panel geometry, edge restraints, and midplane compressive loads. In addi 
tion, recent theoretical studies (see refs . 3 and 4) indicated large effects of 
flow angularity (in the plane of the panel) on flutter of rectangular panels, free 
of midplane loads (ref. 3), and with midplane compression and shear (ref. 4). The 
theoretical analyses, however, have considered only flat or slightly curved iso
tropic panels and, with the exception of some treatment in reference 5, no theo
retical investigations have been conducted on flutter characteristics of ortho
tropic panels. 

The use of orthotropic panels (generally corrugation-stiffened panels) is 
widespread in design of exposed- skin construction of supersonic and reentry-type 
vehicles . In general, such panels have greater load- carrying ability per unit 
weight than the conve~tional isotropic panel and thus provide a weight saving . 
In addition, the corrugation-stiffened panel is adaptable to the severe tempera
ture environment encountered at high supersonic speeds where alleviation of some 
thermal stresses is essential . 

Theoretical and experimental data depicting the flutter behavior of ortho
tropic panels are practically nonexistent and the flutter characteristics of such 
panels must, of necessity, be determined by wind-tunnel investigations. (These 
investigations are sometimes rather extenSive .) Thus, it is essential to evalu
ate the influence of parameters affecting the flutter characteristics of ortho
tropic panels. 

The investigation reported herein will show the effects of flow angularity 
and biaxial compression on the flutter behavior of unbuckled orthotropic panels. 
A four-mode Galerkin- type approximation to the solution of the governing equation 
for lateral deflections is performed for simply supported rectangular orthotropic 
panels and linearized aerodynamics from modified piston theory is employed for 
the lateral loading . The problem of proper orientation of the panel with the 
airstream will be discussed. 

SYMBOLS 

A,B parameters defined by equations (10) 

stress parameter, 

a panel length in x-direction 

parameters defined by equations (18) 

frequency parameter, 
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BR' parameter defined by equation (15b) 

b panel width in y-direction 

coefficients defined by equations ( 9 ) 

coefficients defined by equations (19c) 

Cmn Fourier series coefficients 

c speed of sound 

maximum flexural stiffness of panel 

minimum flexural stiffness of panel 

Dxy twisting stiffness of panel 

d,e,k,p coefficients defined by equations (19b) 

aerodynamic damping coeffiCient, 

1m imaginary part 

i = f-l 

j,1.,m,n,r,s integers 

dimensionless measures of inplane buckling load in x- and y-directions, 
respectively 

Inm,rs generalized force coefficient defined by equations (6) 

M Mach number 

inplane loading in X-direction, positive in compression 

inplane loading in y-direction, positive in compression 

Nx cr,Ny cr , , critical inplane loads 

Pmn rs , generalized force coefficient defined by equations (6) 

coefficients defined by equations (13) and (19b) 
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Figure 1 . - Panel geometry and coordinate system. 

mass per unit area of panel 

x 

x 

nondimensional coordinate, y/b 

q 

Re 

t 

V 

W 

x,y 

x,y 

flow angle in plane of panel, deg 

dynamic- pressure parameter, 

dynamic pressure of air
pv2 

stream, 2 

real part 

time 

flow velocity 

lateral deflection of panel 

Cartesian coordinates of 
panel (see fi g . 1) 

fixed coordinates based on 
stream direction (see 
fig. 1) 

frequency exponential 
coefficient 

Acr critical value of dynamic-pressure parameter 

AT transtability speed 

nondimensional coordinate, x/a 

p density of air 

real part of complex frequency exponential coefficient 

circular frequency 

reference frequency (see eqs . (7) ) 

Subscripts: 

j,Z,m,n, r,s integers 
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ANALYSIS 

An analysis of the governing equation for flutter of orthotropic rectangu
lar panels with one surface exposed to supersonic flow is presented. The panel 
geometry and coordinate system are shown in figure 1. The panel has a length a 
in the x-direction (direction of maximum stiffness) and width b in the y
direction (direction of minimum stiffness). The flow direction in the plane of 
the panel is at an arbitrary angle A measured with respect to the direction of 
maximum panel stiffness. The effects of constant inplane loads are included and 
small deflections are assumed. 

For small-deflection thin-plate theory the governing equation for vibrations 
of orthotropic panels .subjected to supersonic flow over one surface is 

Ow 2q Ow 
pc ot - 13 ox (1) 

where Dx and Dy are the flexural stiffnesses in the x- and y-directions, 

respectively; Dxy is the twisting stiffness; Nx and Ny are constant inplane 

loads, positive in compression; and y is the mass per unit area of the panel. 
The last two terms on the right-hand side of equation (1) represent the linearized 
lateral air forces given by modified piston theory. That is, the Mach number M 
in the last term on the right-hand side of equation (1) is replaced by ~,where 

13 ::: VM2 - 1. 
sound, and q 

In these terms, p is the density of air, 
is the dynamic pressure. 

c is the speed of 

After transformation of the loading term to the panel coordinates and non
dimensionalization, equation (1) becomes : 

(2) 

where 

are: 

x 
~ ::: - and 

a 
The boundary conditions for a simply supported panel 
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w(O,~,t) = w(l,~,t) = w(S,O,t) = w(S,l,t) = 0 

A solution to equation (2) for these boundary conditions will be obtained by the 
Galerkin procedure as follows. Let the lateral deflection of the panel be repre
sented by: 

w = Re L L (Cmn sin IIlJ1:S sin nrcT)) ea.t 
m n 

(4) 

where a., in general, is complex. This equation satisfies the boundary conditions 
term by term and the coefficients Cmn are arbitrary. Substituting equation (4) 
into equation ( 2 ), multiplying by sin rrcs sin src~, and integrating over the panel 
yields the following set of equations for the coefficients Cmn: 

j 1 

(m4 - m2An - Bn)Cmn + 14 L L ,,(cos A)Lmn,rsCrn 
rc r=l s=l 

a -
" -(sin A)Pmn rsCms = 0 

b ' 

6 

(m = 1, 2, 
n = 1, 2, 

---------

j; 
l) 

(5) 
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2 1( Dx 

(J.)r = ,.,)} 

pc 
ga = )'(J.)r 

In equations (7) (J.)r is the lowest in vacuo frequency of a simply supported 
semi- infinite plate and ga is the aerodynamic damping coefficient. A four-mode 
solution to equation (5) has been obtained with the use of two terms of the sine 
series of equation (4) in both the x- and y-directions (m = 1,2; n = 1,2). For 
a nontrivial solution, the determinant of the coefficients of Cmn must equal 
zero; thus, for j = 2 = 2, 

j where 

bl 
8 " cos A 
:3~ 

§. :b.... cos A 
3 1(4 

b2 

- §. ~ :6.... sin A 
3 b 1(4 

0 

0 §. ~ ..Jl. sin A 
3 b 1(4 

b l = 1 - A - B 

b 2 = 16 - 41\: - 13 

8 a" . A - - - Sln 
3 b 1(4 

0 

0 8 a " sin A :3 b 1(4 

b3 §. :6.... cos A 
3 1(4 

8 " cos A b4 - --
3 1(4 

b3 = 1 - A - B + 6(~)2 Dxy _ 3(~)2~y Ny - 5 (~)2 DyJ 
b Dx b [' Ny,cr b Dx 

b4 = 16 - 41\: - B + 24(~)2 Dxy - 3(~)2~y ~ - 5(~)2 DyJ 
b Dx b L Ny,cr b Dx 

= 0 (8) 
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and 

13 = (~)2rKy i _ (~)2 DyJ 
b [Ny)cr b Dx 

(10) 

In equations (9) and (10)) 
buckling loads 
expressions: 

Nx cr and 
) 

Kx and Ky are dimensionless measures of the inplane 
Ny)cr) respectively) defined by the following 

Expansion of the determinant (eq. (8)) results in the following equation 
in A: 

where 

(11) 

(12) 

No attempt has been made to reduce the expressions of equations (13) and the nota
tion was adopted purely for convenience. It should be noted that for a speci
fied panel) a/b) Dx) Dy) and Dxy are constants) and) by equations (10)) A 
is seen to be a measure of the inplane load in the x-direction. Further) B is 
a function of the frequency coefficient ~ and the inplane load in the 
y-direction. 

In the absence of damping) equation (12) can be solved by assuming simple 
harmonic motion; that is) let ~ = ~) where ill is the circular frequency. Then 
the critical value of A for flutter occurs when two roots ill of the frequency 
parameter 13 become equal or coalesce. (See refs. 6 and 7.) For values of A 
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to and including Acr) all roots ill of the frequency parameter are real. For 
A > Acr, the pair of roots of ill that coalesce become complex conjugates and, 
thus, the panel has at least one unstable mode of oscillation. 

A method for the solution of equation (12) when aerodynamic damping is 
included is presented in references 6 and 8. This method will be outlined in the 
following discussion for the purpose of determining the flutter criterion and to 
develop equations from which numerical results for orthotropic panels at flow 
angle A will be obtained. 

Let the frequency ceefficient ~ and, consequently, the frequency parameter 
B be complex; that is, let 

where ill is the circular frequency. Then, solving for ~ from the last of 
equations (10) yields 

~=1jr+1m 

where 

(14) 

(15a) 

(15b) 

Equation (15a) may be examined to see what condition on ga is required to make 
1jr vanish. For specified values of ga the panel motion is stable if 1jr is 
negative and unstable if 1jr is positive. (See eq. (4).) Therefore, for flutter 
(1jr> 0) equation (15a) gives the following condition on ga (refs. (6) and (8)): 

-2 
Br g 2 -> a 
~I 

(16) 

When the conditions for the panel on the threshold of instability (1jr = 0) 
are considered) equation (16) requires that 

Substituting 
sions for % 

~ = 1m into the last of equations (10) gives the following expres
and ]3r: 
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~ = (§: )2fKy ~ _ (~)2 Dy
] + (~)2 

b L Ny) cr b Dx (.l)r (18) I 

I 
Equations (14) and the condition on ga (eq. (17)) permit rapi~ and direct solu- I 
tion of equation (12). Substituting the last of equations (14) into equation (12) 1 
results in the following real and imaginary equations which must be satisfied I 
identically for the determinant of equation (8) to be zero: I 

Re: Q(~S + ~~ - 2(~t ii/Gos% + (~)2sin2A](~S + So + iir4 
- kii/ = 0 ! 

1m: (~S = e\ -p 

where 

and 
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So = bl b2b3b4 

p = (bl + b 2)b3b4 + bl b2 (b3 + b4) 

d = (~)2(bl + b 2 + b3 + b4)[COS
2
A + (~tsin2~ 

k = ;;1(;;2 + ;;3 + ;;4) + ;;2(;;3 + ;;4) + b3b4 

e = bl + b 2 + b3 + b4 

bl = 1 - A - BR 

;;2 = 16 - 4A - BR 

(19a) 

(19b) 

(19c) 



The dynamic-pressure parameter A can be eliminated between the real_and_imag
inary parts of equations (19a). This will result in an equation in A, BR' and 

A and 
( 'C::r )2. BI or an equation in ~ Then for a specified stress condition and 

BR or ( 'C::r )2 for specified values of ga, the value of ~ for flutter is obtained; 

the last of equations (19a) is then used to determine the critical value of r-, . 

Representative values of ga 
ence 6 for stressed, semi-infinite 
simply supported isotropic panels; 
flutter boundaries. It is assumed 

were used in calculations presented in refer
isotropic panels and in reference 8 for square, 
these results showed negligible effect on the 
that similar effects are obtained for simply 

supported orthotropic panels also. It should be noted, however, that aerodynamic 
damping may not be negligible for clamped panels and for long narrow panels. In 
this investigation numerical results will be obtained from equations (19a) only 
for the case in which ga approaches zero. Equation (17) shows that when ga 

is vanishingly small flutter occurs for BI ~ O. Thus, equations (19a) reduce to 

and 

P 
d 

(20 ) 

(21) 

It should be remembered that neglect of ga is the same as omitting the 
first-order time-derivative term of equation (1). Then, the linearized air 
forces in equation (1) reduce to the Ackeret value and (see, for example, ref. 7) 
a variety of combinations of A, A, and BR correspond to simple harmonic 

motion. These conditions are given by solution of equation (20) alone. However, 
Simultaneous_solution of equations (20) and (21) specifies only those values of 
A, A, and BR for which the circular frequency ill of harmonic vibration is on 

the verge of becoming complex; hence, the panel is on the verge of becoming 
dynamically unstable. _Eliminating A from these equations gives the following 
equation in terms of BR and A only: 

( 22) 

Thus, for a given ~alue of A and flow angle A, equation (22) is solved directly 
for the value of BR for which flutter will occur. Then, substituting this value 
of BR into equation (21) gives the value of A for flutter. 
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Reduction of Equations at Flow Angles of 00 and 900 

At the extreme flow angles of 00 and 900 the solution to equation (22) can 
be simplified further. Substitution of equations (18) into equation (22) results, 
after considerably rearranging, in the following: 

sin
2
A ~(b1 + b2 + b3 + b4) ~lb4(b2 2 

+ b3
2
) (b1 + b4) 

+ b2b3 (b1
2 

+ b42)(b2 + b3~ + ITb1 + b2)b3b4 + b1b2(b3 + b4~ J = 0 

Thus, for flow angles of 00 or 900 , only the parenthetical quantities of the first 
and second terms, respectively, are retained. It is immediately apparent that in 
either case the equation has two distinct roots and one double-valued root. By 
definition, each root represents the conditions on the threshold of instability. 
However, for the double-valued root the physical significance is not obvious but 
will be discussed in a later section. For flow angles of 00 or 900 , equating the 
appropriate parenthetical terms of equation (23) to zero and substituting into 
equation (21) for p and d greatly reduce the labor of calculating the cor
responding flutter values of A. For A = 00 the following equations result: 

(24 ) 

and 

( 26) 

12 

I 
) 
I 

I 

i 

--------~ 



Thus, for a given value of A, all flutter values of BR are obtained from the 

first of equations (24) to (26); and the lowest corresponding flutter value of A 
obtained from the last of equations (24) to (26) is termed Acr' 

Equations similar to equations (24) to (26) are obtained for a flow angle of 
900 . When the same procedure as before is followed, the parenthetical quantities 
of the s~cond term from equation (23) result in the following equations for eval
uating BR and A corresponding to flutter: 

(28) 

and 

It is worth noting here the modes that enter into the equations for A. For 
A = 00 , equations (24) show that the parameters bl and b2 are sufficient to 

determine AI; these parameters are seen to be functions of modes associated with 

the coefficients Cll and C21 only (see eq. (8)) and, thus, modes with n = 1 

are independent of modes with n = 2. The equation for Al (eqs. (24)) reduces 

to equation (16) of reference 7 for isotropic panels where the modes associated 
with the coefficients Cll and C21 were used. Likewise, from equations (25) 

A2 is seen to be a function only of the modes associated with the coefficients 
C12 and C22; however, equations (26) are related by all four modes. Parallel 
conditions exist for A = 900 , as seen from equations (27) to (29). 

Critical Buckling Loads 

The foregoing equations for flutter of stressed panels are valid only to the 
point of buckling; hence, it will be useful to consider the buckling characteris
tics of orthotropic panels. The buckling characteristics are functions of the 
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length-width ratio alb and the stiffness ratios DyjDx and Dxy/Dx . The range 

of stiffness ratios for this investigation will be limited to those appropriate 
to corrugation-stiffened panels (corrugated sheet with a single cover sheet) . 
The lower limits of this range have been taken from reference 9 in which several 
different geometrical $hapes of corrugations were considered . The minimum values 

D D 
found for the stiffness ratios were ~ = 0.15 and ~ = 0 . 0002. Arbitrary 

upper limits on 
D 

the stiffness ratios 
D 

which will be used in subsequent calculations 

are ~ = 0.50 
Dx 

and "::Jl... = 0.02 . 
Dx 

The equation for the critical buckling loads at zero airspeed) in terms of 
length-width ratio and stiffness ratios, is obtained directly from equation (5) 
by setting A = ~ = 0 and is 

Buckling coefficients for several buckling modes are plotted in figure 2 for a 

square panel (a = b) with stiffness ratios 
D Dy 
xy = 0.15 and -- = 0.0002 . In the 

Dx Dx 
figure the coordinates are the dimensionless coefficients Kx and Ky which are 

related to the critical inplane loads Nx)cr and Ny)cr by equations (11). The 

lines represent the variation of the buckling coefficients for various stress 
ratios NyjNx and the numbers on the lines denote the buckling modes which cor-

respond to the m and n terms in the series expansion (eq. (4 ) ). Calculations 
were made to include the first buckling mode for all compressive stress condi
tions; but) for clarity) some of the higher intermediate modes have been omitted. 
For Nx = 0 (Kx = 0), the lowest buckling mode corresponds to the coefficient 
C18; as Kx is increased) several values of Ky/Kx or Ny/Nx result in equal 

N 
choices of buckling modes. At a stress ratio ~ = 0.3 the buckling mode can be 

Nx 

associated with either Cll or C12; for stress rat~os less than this value, the 
buckling mode corresponds to Cll ' It is interesting to note that for Ky = 0 

(Ny = 0)) Kx = 1.3 at the point of buckling; thus, for the specified panel con

ditions ) the orthotropic panel has only slightly better load- carrying capability 
than a pinned-end column with the equivalent stiffness Dx' The insert in fig-

ure 2 shows the variation of the buckling coefficients with Ky extended into 

the region of tension and will be referred to in later discussion. 
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RESULTS AND DISCUSSION 

As is seen from equations (20) 
and (21), flutter solutions are 
dependent on four basic parameters: 
the dynamic-pressure p~rameter A, 
the stress paramet~r A, the fre
quency parameter BR' and the flow 

angle A. For the unstressed panel, 
these parameters are, in turn, 
dependent on the length-width ratio 
alb and the panel stiffness ratios; 
for flutter of a stressed panel, the 
stress ratio Ny/Nx and the criti-

Nx cal stress parameter Kx must 
Nx cr , 

also be specified. To explore in 
detail the effects of each of the 
variables on panel flutter would 
indeed be a lengthy process and, in 
fact, unwarranted in a four-mode 
analysis. It will be useful, how
ever, to illustrate some of the more 
important effects of the various 
parameters on flutter characteris
tics of orthotropic panels. Thus, 
in the subsequent sections numeri
cal results are presented only for 
a square panel (a = b) for several 
conditions of flow angularity, 
stiffness ratios, and inplane loads. 

a ; b 
°xy/ Ox=0 .1 5 

Oy/ Ox =0 . 0002 

y,n 

tmNx 

1 I I T 11 x , m 
f-- a --j 

1. 2 

0 . 8 
m, n= 1 , 1 

o 0 . 4 

Ky 

-2 

-4 

-6 

0 . 8 

Kx 

m, n= I, I 

1.2 

6 8 

I, "---

1.6 

Figure 2.- Critical combinations of direct 
biaxial-load coefficients for flat simply 
supported orthotropic panel for selected 

1l2Dx 
m,n and with no airflow. Nx cr = Kx - 2-; , a 

Effects of Flow Angularity on Flutter 

The effects of flow angularity on flutter of orthotropic panels are shown 
in figure 3 where values of the dynamic-pressure parameter 
the frequency parameter BR for values of the flow angle 

A 
A 

are plotted against 
of 00 , 20 , and 900 . 

The calculations were made for Nx = Ny = 0, a = b, Dxy 
Dx 

= 0.15, and 

Dy = 0.0002. 
Dx 

The results shown in figure 3 were obtained from solutions of the 

real and imaginary parts of the flutter determinant (egs. (20) and (21)). The 
loops shown by the solid curves are solutions of equation (20) and represent 
the variation of the panel frequencies with airflow. Note that for A = 0 the 
four values of BR correspond to the four natural frequencies in a vacuum (for 

vanishingly small values of damping) for the assumed modes; these modes are 
indicated by the Cmn terms at the base of the loops in figure 3. The dashed 
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Figure 3.- Influence of airflow on panel fre
quency parameter BR for flow angles of OOJ 

20
J and 90°; associated emn are indicated 

for ,,= O. a = b; Nx = Ny = 0; 
Dy Dxy 
Dx = 0.0002; n;- = 0 .15 · 

24 

curves correspond to solutions of 
equation (21) and, thus, the inter
sections of the dashed curves with 
the solid curves specify the values 
of A and BR for whi ch the real 

and imaginary parts of the flutter 
determinant are identically satis
fied. The values of A and BR 

at these intersection points are 
obtained directly from equation (22). 
It is interesting to note that mini
mization of A with ~espect to the 
frequency parameter BR from equa-

tion (20) leads directly to equa
tion (21). Therefore, solutions to 
equations (20) and (21) always inter
sect wherever the frequency loops 
(solid curves) in figure 3 have zero 
slope. Thus, the contention of 
Hedgepeth (ref. 7) that flutter is 
imminent at coalescence of panel fre
quencies (under the assumption of 
zero aerodynamic damping) is further 
substantiated. 

At the extreme flow angles of 
00 and 900 (figs. 3(a) and 3(c), 
respectively) the intersections of 
the solid curves and dashed curves, 
denoted by Al' A2' and A3' are 

readily obtained from equations (24) 
to (26) for A = 00 and from equa
tions (27) and (28) for A = 900 . 

The lowest such value of A is the 
critical value for flutter (denoted 
Acr), provided that for values of 

A > Acr the corresponding values of 

BR become complex (hence, a mode of 

instability). Note that in fig-
ure 3(a) (A = 00 ) there is a value 
of A < Acr for which two values of 

~ are equal. The flutter solution 

at this intersection is given by the double-valued roots noted previously (see 
eq . (23)), and the corresponding values of BR and A are obtained from equa-

tions (26). On the basis of the present analYSiS, this point is not clearly 
shown to be a point of instability because, for l~rger values of A, the cor
responding roots ill of the frequency parameter ~ remain real. Additionally, 
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in reference 4 it is reasoned that the modes at this intersection which are 
associated with the coefficients Cll and C12 will not couple aerodynamically 

at precisely zero flow angle. However, the solution at this point is degenerate 

and a linear instability of the form te~t is entirely possible. In any event, 
the system is shown to verge on instability; however, the appropriate variable 
is not A but the flow angle A itself, as will be shown presently. At a flow 
angle of 20 (fig. 3(b)) the frequency loops have separated and an actual coupling 
of the Cll and C12 modes is apparent. Furthermore, there are four intersec
tions of the real and imaginary parts of the determinant, and, thus, four bound
ary points between stability and instability. The lowest critical value of A 
occurs at the point labeled (c) and the system is unstable until A is increased 
to a_value corresponding to point (a). Now, however, there are again four roots 
of BR, all real, and all modes of oscillation are stable. Thus we have the odd 
result of a stable region between the values of A at pOints (a) and (b), above 
and below which the panel is unstable. For increases in A above the point (b) 
there will always be at least one mode of instability. 

The flutter boundary for all flow angles between 00 and 900 (for zero stress) 
is shown in figure 4. In the regions below the boundary in figure 4 all four 

4 

2 

o 

Unstable 

15 

a =b 
N =N =0 

D~yiDx = O. 15 
o /0 =0 . 0002 y x 

30 

y 

45 6 0 

1\. degrees 

r-- a-----j 

f------1T 
b 

'~l 
x 

75 

Figure 4.- Stability boundaries of orthotropic panel for arbitrary flow direction. 

90 
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roots of the frequency parameter BR are real and, thus, the panel is stable; 

in the region designated as unstable, at least two roots of BR are complex con

jugates and an unstable mode of oscillation exists. The boundaries labeled (a), 
(b), and (c) in figure 4 correspond to the points (a), (b), and (c), respectively, 
in figure 3(b). The stable region between boundaries (a) and (b) is shown to 
shrink rapidly with an increase in flow angle and disappears at approximately 
A = 70 • At small angles A the boundaries (a) and (c) approach each other as 
the flow angle is decreased and they become coincident at exactly 00 • Hence, the 
frequency crossing (fig. 3(a)) given by the double-valued root of equation (23) 
has at least neutral stability (for ga = 0) at a flow angle of 00 ; however, the 
panel becomes unstable for any increase in flow angle, no matter how small. This 
bounded region of stability accounts for the apparent abrupt change in mode and 
the discontinuity in flutter boundaries shown in references 3 and 4 for isotropic 
panels of length-width ratios less than 1.0. 

The practical significance of the stable region between boundaries (a) and 
(b) is somewhat difficult to assess. Such bounded regions of stability may exist 
for many orthotropic panels wherein the streamwise stiffness Dx is considerably 
greater than the cross-flow stiffness ny. The size of the region appears to be 

dependent on the proximity of the frequency of the lowest antisymmetric mode (C12) 
to the first natural frequency (Cll). Although the bounded stable region shown 

in figure 4 is small, the existence of such a region could result in scatter of 
experimental data of investigations where the flow angle is not considered. On 
the other hand, such a stable region appears to be of little consequence to the 
designer as this region diSSipates rapidly with flow angle (at least for the 
orthotropic panel considered), and the lower curve (c) becomes the critical sta
bility boundary. 

The flutter boundary labeled (c) in figure 4 shows a pronounced effect of 
flow angle. For the stiffness ratios considered, the critical value of the 
dynamic-pressure parameter at A = 900 is only 6.8 percent of the value of 
boundary (c) at zero degrees. Thus, there appears to be a marked advantage of 
orienting the maximum panel flexural stiffness in the direction of the stream. 
However, the flow angle may be expected to vary in flight, with variations up to 
300 not unreasonable for lifting reentry-type vehicles. Inasmuch as such an 
orientation away from an initial orientation of 00 would reduce Acr by 86 per-

cent, the practical value of initial orientation of maximum stiffness in the 
stream direction is open to question. 

The variation of Acr with flow angle for changes in the stiffness ratio 
Dxy/Dx is shown in figure 5. The curves were obtained for an unstressed panel 

with ~; = 0.15, 0.30, and 0.50 and with Dy = 0.0002. Only the most critical 
Dx 

boundaries corresponding to curve (c) from figure 4 are shown; the lower curve is 
reproduced from figure 4. As can be seen from figure 5, increases in stiffness 
ratio Dxy/Dx with constant Dy/Dx indicate a general increase in Acr over 

the entire range of flow angles. 

18 



4. 

o 15 

a=b 
N =N =0 

x Y 
Oy/ Ox =0 . 0002 

y 

I '-11. 

_______________________________ OXy/DX 

0.50 __ ====~~~~~:::~_-_-_-_-_-_-_ _:_-_-_ -_ -_ -_ -_ -_ -_ 0 . 30 
0.15 

30 45 60 75 90 

1\. degrees 

Figure 5.- Variation of critical dynamic-pressure parameter with flow angle for various stiffness 
ratios Dxy/Dx . 
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The variation of Acr with flow angle for changes in the stiffness ratio 

DyjDx is shown in figure 6. The solid curves are reproduced from figure 5 and 
D 

correspond to the stiffness ratios of xy = 0.15 and 0.50. The dashed curves 
Dx 

represent the effects of an increase in the value of the stiffness ratio Dy/DX 

from 0.0002 to 0.02. As can be seen from figure 6, only small increases in Acr 

are realized for the rather substantial increase in ny/Dx. For example, for the 
D 

curves corresponding to ~ = 0.15 at A = 900
, 

Dx 

D 
a stiffness ratio of -l = 0.02 

Dy Dx 
resulted in an increase in A only 1.3 times the value for Dx = 0.0002. Thus, 

for the range of stiffness ratios considered, the flexural stiffness Dy is seen 

to have little effect on the flutter boundary. 

Effects of Inplane Loads at Various Flow Angles 

Recent experimental investigations (see refs. 10 to 14) and theoretical 
studies (refs. 4 and 15) on isotropic panels have revealed that panel suscepti
bility to flutter increases with application of compressive inplane loads and 
that generally the most susceptible condition occurs for the panel on the verge 
of buckling or at the transition from a flat-panel flutter boundary to a buckled
panel flutter boundary. Thus, calculations have been made to determine the 
effects of uniform inplane loads at arbitrary flow angles for the panel stiffness 

Dy Dxy 
ratios of -- = 0.0002 and --- = 0.15. Before various loading conditions are 

Dx Dx 
considered, however, it would be useful to examine the geometrical relationship 

of the basic flutter parameters con-

20 

a, b tained in equation (20). 
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Figure 7.- Characteristic surfaces and asso
ciated flutter boundaries. 

Vibration and buckling rela
tions.- Solutions of equation (20) 
result in smooth surfaces which will 
be called "characteristic" surfaces. 
Such surfaces are shown in figure 7 
on a plot of the flutter paramet~rs: 
dynamic pressure A, frequency BR, 

Nx and stress Kx The charac-
Nx cr , 

teristic surfaces shown pertain to 
the panel oriented at zero flow angle 
and Ny = O. A similar surface 
representing a two-mode solution is 
discussed in the appendix; however, 
some additional comments about the 
four-mode results are warranted here. 
The intersection of the surfaces in 
the zero A-plane shows variations of 



the panel in vacuo frequencies with stress. Planes of constant stress show the 
effects of airflow on the frequencies. Note that for zero stress) the character
istic surfaces trace the frequency variation as shown in figure 3(a). As pointed 
out in the discussion of figure 3) the roots of equation (22) locate the flutter 
points. Thus) for given stress conditions the solutions obtained result in the 
lines along the ridge of the characteristic surfaces and at the intersection of 
the two surfaces. Note from figure 7 that the character of the double-valued 
root observed at zero degrees is preserved for the stressed panel. For exactly 
zero flow angle) the flutter boundary corresponding to Acr is on the ridge (in 

planes of constant stress) of the lowest loop (see fig. 3(a)) and is shown in 
figure 7 as the solid line) whereas the intersection (dashed line) represents 
conditions on the verge of instability with variation of A. 

The intercept of "the characteristic surfaces with the zero frequency plane 
is shown by the loops in figure 7 for BR = 0 (for the panel conditions repre-

sented by fig. 7) BR = -0.0002 when ill = 0). These loops indicate the effects 
of air forces on the static buckling loads. The flat-panel flutter boundary is 
valid to its intersection with a postbuckled flutter boundary; this intersection 
always lies above the intersection of the flat-panel flutter boundary and one of 
the buckling loops. (See ref. 15 and the appendix.) Thus) the latter intersec
tion) which will govern the termination of the flat-panel flutter boundaries to 
be presented in later sections) may give a conservative estimate of the flutter 
speeds. Solution for the termination points is very simple and is illustrated 
in the appendix for a two-mode analysis. For the four-mode analysis presented 
herein) the termination points are obtained directly from equations (21) and (22) 
for arbitrary flow angle) when the frequency ratio illjillr is set equal to zero 

in the expression for (eqs. (18)); equation (22) is solved for Kx Nx 
Nx cr 

) 

which is substituted into equation (21) for Acr. 

flow angles (A = 00 and 900 ) the reduced equations 
rapid evaluation of the termination points. 

Similarly) at the extreme 

(eqs. (24) to (27)) permit 

The peaks of the buckling loops represent the conditions wherein loss of 
stable) static) buckled equilibrium occurs and) hence) is termed the "transtabil
ity" flutter speed. (See ref. 16 and the appendix.) As can be seen from fig
ure 7) the termination points are somewhat removed from the peak of the loop. 

The appearance of the characteristic surfaces for flow angles other than 
zero degrees may be visualized with the aid of figure 8) in which the buckling 
loops are shown for A = 00 ) 20 ) and 900 ) and with reference to the frequency 
loops shown in figure 3. The loops in figure 8 were obtained from equation (20) 
for Ny = 0 and Kx = 1.3. The intercepts of the critical flutter boundary with 

the loops) indicated by the circles) were obtained from equation (22) and/or the 
corresponding reduced equations for A = 00 and 900 • The dashed curves are por
tions of the corresponding critical flutter boundaries projected on the dynamic
pressure--stress plane. 

Figure 8(a) corresponds to the buckling loops shown in figure 7 and indi
cates the difference in the transtability value and the termination point. In 
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figure 8(b)) for A = 20 ) the charac
teristic surfaces have separated as was 
the case shown in figure 3(b)) and the 
flutter boundary now corresponds to that 
initially represented by the frequency 
crossing. As noted previously) the 
separation of the frequency loops low
ered the critical value of the dynamic
pressure parameter for flutter of the 
unstressed panel (see) for example) 
fig. 4); however) as can be $een in fig
ures 8(a) and 8(b)) at the termination 
point the frequency separation results 
initially in an increase in the value 
of the dynamic-pressure parameter. In 
figure 8(c)) for A = 900) the buckling 
loops and) thus) the characteristic sur
faces) have degenerated into two inde
pendent surfaces. 

Stability regions of a flat panel 
with inplane load. - Before the effects 
of inplane loads on flutter boundaries 
for a panel at arbitrary flow angles 
are considered) it would be interesting 
to investigate the effects of inplane 
loads on the bounded stability region 
shown in figure 4. The stability 
regions resulting from application of 
an inplane load Nx for flow angles 
of 00 and 20 are shown in figure 9. 
The calculations were made for stiff-

ness ratios of 
Dxy 

= 0.15 and 
Dx 

~- 0.0002 and for Kx = 1.3· The 
Dx 
solid curves correspond to solutions 
for a flow angle of 00 ) whereas the 
dashed curves and the upper solid curve 
represent solutions for a flow angle of 

Figure 8 . - Influence of airflow on buckling loads 
for flow angles of 0° , ~, and 90° . Ny; 0; 

20 . The upper solid curve labeled (b) 
represents the flutter boundary at pre
cisely zero degrees; the lower solid 
curve represents the frequency crossing 
shown in figure 7. The curves labeled 
(a ) ) (b ) ) and (c) show the variation of 

ure 
the 
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D D 
Kx ; 1 · 3; -l ; 0.0002; DXY ; 0.15· (Dashed 

Dx x 
lines represent portion of flutter boundary.) 

the respective flutter points from fig-
3 (b) with application of inplane load . The termination points (denoted by 
circles ) correspond to the points shown in figure 8(b) for A = 20. 
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Figure 9. - Stability boundaries of flat panel with inplane compression for flow angles of 0° and 2°. 
Circles represent termination points. 

As can be seen from figure 9) for A = 20 the small stable region exists 
over the entire flat - panel boundary. As the flow angle approaches 00 ) the dashed 
curves (a) and (c) approach the lower solid curve and the unstable region dis
appears. As the flow angle is increased above 20 ) the boundary (a) approaches 
the boundary (b) and) thus) the stable region disappears . Boundaries (a ) and (b) 
were noted previously to coincide (for Nx = 0 ) at a flow angle of 70 . 

The results shown in figure 9 could be of particular significance in experi
mental panel flutter investigations since t he unstable region bounded by curves 
(a) and (c) could exist for only a slight devi ation of flow angle from the true 
zero position . Thus) wind- tunnel investigations of a stressed panel could con
ceivably result in two distinct flat - panel flutter boundaries or) if not clearly 
delineated, could show up as apparent scatter in the data . 
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Effects of inplane load Nx at various flow angles.- Numerical solutions 

Nx to equation (22 ) obtained for various values of ----- (to the termination point) 
Nx cr 

) 

and for flow angles of A = 0°} 50) 100} 45°, and 900 are shown in figure 10. 
The calculations are based on Ny = 0 (Ky = 0)) for which Kx = 1.3 is obtained 

from figure 2. For Nx = 0) the values of the dynamic-pressure parameter at the 
different flow angles are those shown by the curve in figure 4. The boundary cor
responding to A = 00 is reproduced from figure 9 for comparison with boundaries 
at other flow angles. The dashed line) representing the frequency crossing) is 
also shown since this boundary signifies the beginning of the unstable region as 
A is increased. At A = 00 ) Acr decreases linearly with increasing values of 
Nx . As the flow angle is increased) however) the flutter boundary is seen to be 
less dependent on the inplane load. At A = 900 the flutter boundary is inde
pendent of loading, inasmuch as the direction of inplane loading is at right 
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Figure 10.- Flutter boundaries as functions of inplane load Nx for various flow angles. Circles 
represent termination points . 
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angles to the direction of flow . A 
similar result was obtained in refe r
ences 7 and 15. It should be noted 
that a small stable region exists 
above the curve fo r A = 5° (see 
fig. 4); however) this region is 
omitted here for simplicity. 

Effects of stress ratio Ny/Nx .

Flutter boundaries have been obtained 
Ny 

for stress ratios of -- = 0.15 a nd 
Nx 

0.3 at flow angles of A = 00
) 5°) 

and 900
• For stress ratios greater 

than 0.3) higher mode buckling result s 
(see fig. 2); thus) more modes would 
have to be used in the analysis. The 
flutter boundaries are shown in fig
ure 11 where the dynamic-pressure 
parameter is plotted against the stress 

parameter Kx~. Figure ll(a) 
Nx cr 

) 

shows the boundaries for A = 0°) fig
ure ll(b) for A = 50) and figure ll(c) 
for A = 900 • The stress ratio for 
each curve is shown on the figure; the 

Ny 
boundaries for -- = 0 are reproduced 

Nx 
from figure 10. In figure ll(a) a 
single boundary is obtained for all 
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Figure 11 .- Flutter boundaries as functions of 
str ess ratio Ny/Nx for flow angles of 0°) 

5°) and 90° . Circles represent termination 
point s . 

4 

values of Ny/Nx) but the value of Acr at the termination point is different fo r 

each stress ratio. Thus) as was noted previously) the loading normal to airstream 
Ny does not change the position of the flutter boundary but simply determines the 
l ocation of the termination point. The value of Acr at t he termination point 

for a stress ratio of zero is only 30 percent of the value for no stress and 
represents a large increase in panel thickness for prevention of flutter. The 
addition of Ny raises the termination point and) thus at A = 0°) appears to be 

beneficial. (It should be noted that an increase in Ny/Nx is not necessarily 

beneficial; see) for example) ref. 17.) However) the opposite is true for any 
other flow angle) as is shown by figures ll(b) and ll(c). Increases in the stress 
ratio result in decreases in the value of Acr for flutter until) at a stress 

ratio of 0.3) the value of Acr at the point of buckling goes to zero. The fact 
that Acr becomes zero is a result of the change in critical flutter modes (see 
fig. 3) associated with the separation of the characteristic surfaces. See) for 
example) the buckling chart shown in figure 2; at a stress ratio of 0.3 the panel 
has an equal choice of buckling modes (ell and C12)) and) because these modes 

coalesce for flutter (for flow angles other than zero degrees)) any increase in 
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A results in flutter. The condition of zero A, or infinite thickness, would 
probably be circumvented if nonlinear effects were considered. The phenomenDn 
of infinite thickness for prevention of flutter is discussed in detail in refer
ence 17. As noted previously) the change in critical flutter mode occurs instan
taneously with a change in flow angle from the zero position; thus, the condition 
of infinite thickness exists over practically the entire range of flow angles. 

Several conditions of midplane compression have been considered, but no men
tion has been made of effects of midplane tension. In general, tension is con
sidered beneficial in the alleviation of panel flutter. However, this may not 
always be true if panel buckling is possible. Consider, for example, the case 
in which Ny is negative (tension) and Nx is in compression with the panel 

oriented at zero flow angle. Note from the insert on the buckling chart (fig . 2 ) 
N 

that for a stress ratio of ~ = -0.77 the panel again has an equal choice of 
Nx 

buckling modes (Cll and C21). Note also from figure 3(a) that these two modes 

are critical for flutter at precisely A = 00 ; therefore, it can be concluded 
that again Acr becomes zero for flutter. Calculations show that the flutter 
boundary for negative Ny is actually an extension of the boundary in fi g-

ure ll(a ) where Acr continues to decrease linearly for negative increases of 
the stress ratio Ny/Nx . 

CONCLUDING REMARKS 

A theoretical analysis for flutter of flat rectangular simply supported 
orthotropic panels is presented . The lateral loading is obtained from modified 
piston theory aerodynamics . Numerical results (obtained for zero aerodynamic 
damping ) are presented for arbitrary panel orientation with the airstream and 
for various conditions of biaxial compressive stress. The panel is oriented such 
that a flow angle of zero degrees corresponds to the direction of maximum panel 
flexural stiffness alined with the stream . All calculations are based on a panel 
length- width ratio of 1 . 0 . 

The results for an unstressed panel show that for prescribed stiffness 
ratios, representative of corrugation- stiffened panels) the panel oriented with 
the maximum flexural stiffness in the direction of the stream provides greatest 
resistance to flutter . However, flutter characteristics of orthotropic panels 
are found to be highly sensitive to variations in flow angularity from this 
orientation . Thus, the practical value of orientation of maximum stiffness in 
the direction of the stream is open to question. In the range of stiffness 
ratios considered, changes in the stiffness ratio Dxy/Dx were found to be 

effective in changing the flutter boundary; however, a large range of the stiff
ness ratio DyjDx was found to be rather ineffective on the flutter results. 

Any deviation of the panel from the position of precisely zero flow angle 
was found to cause a change in the critical flutter mode . For small values of 
the flow angle, this mode change resulted in a region of stable oscillations 
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bounded completely by an unstable region; thus, the odd result that an increase 
in the airspeed may render an unstable panel stable . The bounded stable region 
was preserved with the inclusion of compress i ve inplane loads and resulted in 
two distinct flat - panel boundaries (in a small range of the flow angle from the 
zero position). Such characteristics could cause considerable discrepancy in 
experimental data if not taken into account . In addition, as a consequence of 
the change in critical flutter mode, fo r certain stress ratios, panels which 
require a finite thickness at buckling when oriented at zero flow angle require 
infinite thickness for all other flow angles . Thus, it is apparent that certain 
stress ratios must be avoided in design . 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va ., J une 6, 1963 . 
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APPENDIX 

A METHOD FOR DETERMINING THE INTERSECTION OF DYNAMIC 

AND STATIC STABILITY BOUNDARIES 

Experimental and theoretical investigations (see refs. 10 ~d 15) have shown 
that the most critical condition for flutter of a panel subjected to compressive 
inplane loads occurs at transition from the unbuckled to postbuckled flutter 
boundaries. A method for estimating the critical flutter speed at transition (in 
absence of a large-deflection analysis) is based on the transtability analysis 
introduced in reference 16; this analysis considers only the static buckling 
behavior of a panel (or beam) in the presence of supersonic flow. This approach 
has been shown to give a good approximation to the flutter speed for infinitely 
wide buckled panels (see ref. 18) and has been applied to three-dimensional iso
tropic panels in references 7 and 17. 

The results of a recent large-deflection dynamic analysis of finite isotropic 
panels} presented in reference 15} indicate that the critical flutter speed at 
termination of the flat-panel flutter boundary may} in different cases} lie above 
or below the transtability speed and} thus} the transtability speed may be noncon
servative. In no case} however} did the large-deflection flutter boundaries lie 
below that critical speed defined by the intersection of the flat-panel dynamic 
boundaries with the static stability boundaries. Hence} the critical speed at 
this intersection is used in this paper to terminate the flat-panel flutter bound
aries. The method for obtaining the intersection of the dynamic boundary with the 
static stability boundary is presented in this appendix and the mathematical 
expressions are shown to be as simple as those for the transtability speed. The 
approach differs from the transtability concept in that the panel frequencies are 
retained in the equations and} thus} it permits a traceable relationship between 
the vibration} flutter} and buckling characteristics in the presence of supersonic 
airflow. 

For purposes of simplicity} only a two-mode analysis will be made; that is} 
j = 2 and 2 = 1 (see eq. (5)). Further) simple harmonic motion is assumed} 
such that ~ = im} and damping is negligible (ga ~ 0). Then for a zero flow angle 
(A = 00 ) the flutter determinant can be written} in the present notation} as 
shown: 

where 
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bl 1 - A BR l 
b2 = 16 - 4:A ~ l A ISc 

Nx 2 (~t ~y (A2) --- -
Nx,cr I 

(~)j ~ (at~ Ny b Ky Ny,cr (~)2 ~J + 

Note that the frequency parameter BR contains the eigenvalue 
( (l)

(l)r )2. The solu-

tion to equation (Al) in terms of the frequency parameter ~,after some 

rearranging, is 

17 5A ± 3 
2 2 

Solutions to equation (A3) result in a 
characteristic surface like that shown 
in figure 12 on a plot of the three 
basic flutter parameters: dynamic pres-

sure A, frequency ratio (~)2 , and 

stress A. Figure 12 is intended for 
illustrative purposes only; hence, the 
numerical values of A and A are 
unimportant. However, the two- mode 
representation as shown is limited to 
panel configurations and stress condi
tions for which buckling occurs in the 
first mode. Additionally, it should be 
noted that_the stress is not necessarily 
zero for A = O. 

The intercept of the surface with 
the zero A-plane shows the variation 
of panel frequencies with stress . The 
values of A at which the frequencies 
become zero correspond to the two static 
buckling loads for the assumed modes. 
Planes of constant stress show the vari
ation of panel frequencies with airflow . 
Coalescence of the frequencies consti
tutes dynamic instability (for zero 
damping) and, hence, flutter (ref. 7), 

( {~)2 since the eigenvalues - r become 

(:A _ 5)2 _ (16A)2 
9rr4 

A 

4 • 7T 

o 

II 
\ 

\ 
\ 

(A3) 

A 

Figure 12 .- Characteristic surface relating 
vibrations, buckling, and flutter . Trace 
in zero frequency plane shows variation 
of buckling load with airflow. 
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complex for values of A above the peak of the frequency loop. Thus, the flat
panel dynamic boundary is represented by the solid ridge line of the character
istic surface . The intercept of the characteristic surface with the zero fre 
quency plane, represented by the trace in the AA-plane, shows the variation of 
the panel buckling loads with airflow. This trace represents the static stability 
boundary and results when the frequency is set equal to zero in equation (Al); 
thus, the role of the eigenvalue is transferred to A. Above the peak of the 
static boundary the loads disappear and, hence, from transtability considerations 
no stable, static buckled configuration exists. Thus, the peak of the static 
boundary (through which the plane labeled (b) in fig. (12) passes) constitutes 
the transtability speed AT . The intersection of the dynamic boundary with the 

static boundary (denoted Acr, and through which plane (c) passes) represents 
the value of A for which the flutter frequency becomes zero, or, on the basis 
of small-deflection theory, Acr corresponds to buckling in the flutter mode . 
As seen from figure 12, Acr is less than AT . 

The procedure for obtaining Acr is straightforward. Inasmuch as dynamic 
instability results when the frequencies coalesce or become equal, it is seen frou l 
equation (A3) that for flutter the radical term must always be zero. Hence, 

and thus equation (A3) becomes 

=: 17 5A 
2 

(A4) 

(A5) 

Equations (A4) and (A5) are completely general and, thus, locate the flutter 
boundary for specified values of A; equation (A4) is identical to that obtained 
in reference 7. Then the values of A and Acr at the intersection of the 
dynamic flutter boundary with the static stability boundary is obtained by setting 

( !I~ )2 the frequency ratio -r equal to zero in the expression for (eqs. (A2)) 

and by substituting the result into equations (A4) and (A5). 

It is of interest to note the relationship between ~ and Acr; the differ

ence in these values is dependent on the boundary conditions on inplane loads . 
Consider, for instance, the case in which the panel is loaded by Nx only 

( (
(1),2 ) 

(Ny =: 0). From equation (A2), BR i s a constant for my) =: 0 , and, hence, 

subst i tuting A from equation (A5) into equation (A4) yields 

(A6) 
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and the corresponding value of ~) as shown in reference 7) is 

Thus) ~ is 25 percent greater than Acr . On the other hand) if the loading is 

reversed (Nx = 0)) the flutter boundary is independent of the loading and, hence) 

AT = Acr and is given by equation (A4) . 

The equations developed to obtain Acr ( eqs . (A4) and (A5)) are readily con
verted to the form used in the text . Equation (A5) is seen to be the sum of the 
diagonal terms of equations (A2 )j that is) 

(AB) 

Further) upon substitution of ~ f r om equation (A5) into the equation for b l 
from equations (A2)) equation (A4 ) can be written as 

Equations (AB) and (A9) are seen to be identical to equations (24) of the text . 
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