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FOREWORD

This handbook has been produced by the Space Systems Division of the
Martin Company under Contract NAS8-5031 with the George C. Marshall Space
Flight Center of the National Aeronautics and Space Administration. The
handbook expands and updates work previously done by the Martin Company
and also incorporates, as indicated in the text, some of the work done
by Space Technology Laboratories, Inc. and Norair Division of Northrop
Corporation under previous contracts with the George C. Marshall Space
Flight Center.. The Orbital Flight Handbook is considered the first in
a series of volumes by various contractors, sponsored by MSFC, treating
the dynamics of space flight in a variety of aspects of interest to the
mission designer and evaluator. The primary purpose of these books is to
serve as a basic tool in preliminary mission planning. In condensed form,
they provide background data and material collected through several years
of intensive studies in each space mission area, such as earth orbital
flight, lunar flight, and interplanetary flight.

Volume I, the present volume, is concerned with earth orbital
missions. The volume consists of three parts presented in three separate
books. The parts are:

Part 1 - Basic Techniques and Data
Part 2 - Mission Sequencing Problems
Part 3 - Requirements

The Martin Company Program Manager for this project has been
Jorgen Jensen; George Townsend has been Technical Director. George
Townsend has also had the direct responsibility for the coordination
and preparation of this volume. Donald Kraft is one of the principal
contributors to this volume; information has also been supplied by
Jyri Kork and Sidney Russak. Barclay E. Tucker and John Magnus have
assisted in preparing the handbook for publication.

The assistance given by the Future Projects Office at MSFC and by
the MSFC Contract Management Panel, directed by Conrad D. Swanson, is
gratefully acknowledged.
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I. INTRODUCTION

The material within the manual is arranged in
three major areas and these areas are further
divided into related discussions. The classifi-
cation of material is as follows:

Basic Techniques and Data--Chapters II
through V.

Mission Sequencing Problems--Chapters VI
through IX.

Requirements--Chapters X through XIII.

These areas encompass most of the material in
the field of earth orbital mechanics. The intent
in all of these discussions is to provide analytic
relationships which define the problem, and to
augment these discussions with an error analysis
and graphical or tabular data. In some of the
material, however, the number of variables is
so large that it is not practical to present graphi-
cal data; in others, the problem is so involved
that it is not possible to obtain analytic solutions
(such investigations were conducted numerically).
In all cases, however, the prescribed purpose
has been achieved without sacrificing the scope
of the investigation.

A brief resume of some of the more important

features of these chapters is presented in the
following paragraphs.

I, PHYSICAL DATA

The material in this chapter reviews some of
the work published by R. M. L. and by W. M. Kaula
for the purpose of presenting a set of constants
necessary in the computation of trajectories.
Appendix B extending this data is an internally
consistent set of constants developed by Dr. H.

G. L. Krause.

The chapter then discusses other geophysical
factors which can affect the selection of an orbit.
Included in these discussions is material on the
radiation environment, the meteoroid environ-
ment and the upper atmosphere and its variability.

The chapter concludes with a discussion of the
measurement of time, distance, mass, etc. This
portion of the chapter contains tables constructed
for the purposes of making the transformation of
units as simple and accurate as possible.

III. ORBITAL MECHANICS

The discussions of this chapter present the
basic central motion trajectory equations to be
used in the balance of the text. Relations de-
fining the 3-D motion are developed and a large
number of identities and equations are presented
for elliptic motion. These equations (numbering
in excess of 400) are followed by approximately
75 series expansions of the time variant orbital
parameters with arguments of the mean anomaly,
the true anomaly, and the eccentric anomaly. The
chapter concludes with a discussion of the n-body
problems.

IV. PERTURBATIONS

Special and general perturbation techniques
are discussed, and the results of several general
perturbation theories are catalogued and compared.
This presentation provides the reader with the in-
formation necessary to evaluate the theories for
each individual application and with an awareness
of the subtle differences in the approaches and
results.

V. SATELLITE LIFETIMES

The material of this chapter presents in suc-
cession discussions pertaining to the aerodynamic
forces in free molecular flow, to analytic approxi-
mations for use in determining the lifetime of
satellites in circular orbits in a nonrotating atmos-
phere, and, finally, to decay rates in a rotating
oblate atmosphere. Where possible, analytic ex-
pressions have been obtained, but accuracy has
not been sacrificed for form, and extensive use
has been made of numerical computation facilities.
Here again, however, attention to detail revealed
several nondimensional decay parameters and made
it possible to make these computations more effi-
ciently.

VI. MANEUVERS

The general problem of orbital maneuvering
is approached from several directions. First,
the case of independent adjustment of each of the
six constants of integration is presented both for
the case of circular motion and elliptic motion.
Then the general problem of transferring between
two specified terminals in space is developed.
These discussions, like those of the other chapters,
are fully documented.

The chapter concludes with a discussion of the
effects of finite burning time, of the requirements
for the propulsion system to accomplish the pre-
viously described maneuvers, a discussion of the
error sensitivities, and a discussion of the sta-
tistical distribution of errors in the resultant
orbital elements.

VII. RENDEZVOUS

Rendezvous is broken into two basic phases
for the purpose of the discussion in this handbook.
The first of these phases contains the launch and
ascent timing problems, the problems of maneu-
vers and of the relative merits of direct ascent
versus the use of intermittent orbits or rendezvous
compatible orbits. The second phase is the dis-
cussion of the terminal maneuvers. Included in
this final section are the equations of relative
motion, a discussion of possible types of guidance
laws, and information necessary to evaluate the
energy and timing of the terminal maneuver whether
it be of a short or long term nature.




VIII. ORBITAL DEPARTURE

The problem of recovering a satellite from
orbit at a specific point on earth at a specific time
is essentially the reverse of the rendezvous prob-
lem, and the approach taken here is the same.
First, an intermediate orbit is established which
satisfies the timing constraints, then the maneuver
is completed by deorbiting without requiring a
lateral maneuver. For cases where this approach
should prove impractical, data for a maneuverable
re-entry is also presented.

The presentation progresses from the timing
problem to the analyses of the intervals between
acceptable departures, the finite burning simu-
lation of the deorbit maneuver, and the error
sensitivities for deorbiting.

IX. SATELLITE RE-ENTRY

Once the satellite leaves orbit it must penetrate
the more dense regions of the atmosphere prior
to being landed. This chapter treats analytically
and parametrically (i.e., as function of the re-
entry velocity vector) the various factors which
are characteristic of this trajectory: Included
are the time histories of altitude, velocity and
flight path angle; also included are the range
attained in descent, the maximum deceleration,
the maximum dynamic pressure, and equilibrium
radiative skin temperatures, as well as a dis-
cussion of aerodynamic maneuverability. Thus,
this chapter makes it possible to analyze the tra-
jectory all the way from launch to impact in a
reasonably accurate manner before progressing
to a detailed numerical study of a particular vehi-
cle flying a particular trajectory.

X. WAITING ORBIT CRITERIA

The balance of the book treats problems as-
sociated with the flight mechanics aspects of
specific missions. However, these are some
problems which are not of this nature but which
can influence the selection of orbits. (The radi-
ation environment etc., of Chapter II is an example
of this type material.) Accordingly, Chapter X
presents some information pertaining to the solar
radiation heat level, and to the storage of cryo-
genic fluids. This information is treated only
qualitatively because it is outside the general
field of orbital mechanics and is itself the subject
for an extensive study. The material is included
however, because of the requirement for fuel in
many of the discussions of maneuver outlined in
the rest of the text.

I-2

XI. ORBIT COMPUTATION

The discussions of this chapter tie many of the
previous chapters together since all trajectories
to be of value must be known. The discussions
progress from the basic definitions of the basic
coordinate systems and transformations between
them, to the determination of initial values of the
six constants of integration, to the theory of ob-
servational errors, and finally to the subject of
orbit improvement. In this process, data is pre-
sented for most of the current tracking facilities
and for many basic techniques applicable to the
various problem areas (e.g., orbit improvement
via least squares, weighted least squares, mini-
mum variance, etc.). The chapter concludes with
a presentation of data useful in the preliminary
analysis of orbits.

XIO. GUIDANCE AND CONTROL REQUIREMENTS

The discussions of this chapter relate the
errors in the six constants of integration to errors
in a set of six defining parameters. This 6 x 6
matrix of error partials has been inverted to ro-
tate the parameter errors to errors in the ele-
ments. The result is that it is possible to pro-
gress from a set of parameter errors at some
time directly to the errors in the same parameters
at any other time. This formulation has proved
itself useful not only in the study of error propa-
gation but in the analysis of differential corrections
and the long time rendezvous maneuver.

Also included in the chapter is information
related to problems of guidance system design,
the attitude disturbing torques and the attitude
control system.

XIII. MISSION REQUIREMENTS

The purpose of this chapter is to present many
problems which directly affect the selection of
orbits for various missions and experiments.
data include satellite coverage (both area and
point), satellite illumination and solar eclipses,
solar elevation above the horizon, surface orienta-
tion relative to the sun, sensor limitations (e.g.,
photographic resolution considerations, radar
limitations), and ground tracks. Thus, giveh a
particular mission, one can translate the accompa-
nying requirements to limitations on the orbital
elements and, in turn, pick a compromise set
which best satisfies these requirements (when the
radiation environment, meteoroid hazard and radi-
ation heat loads have been factored into the selec-
tion).

The




II. PHYSICAL DATA

SYMBOLS

Semimajor axis of the instantaneous
elliptical orbit

Eccentricity of the instantaneous ellipti-
cal orbit

Hisutening = (Requatorial - Rpolar) o
Requa’corial
Universal gravitational constant

Inclination of the instantaneous elliptical
orbit

Coefficients of the potential function

Solar gravitational constant = G
me

Latitude

Coefficient of the lunar equation
Mass

Mean anomaly of epoch

Number

Probability

Legendre polynomial of order n
Radius

Radius of action (Tisserand's criteria)

t

b
U

%l

® 0 A

i

Coefficient obtained from t distribution
Potential function

Mean of a sample of size n
Gravitational constant for a planet=Gm

p

Mean of population from which sample is
taken

Parallax = ratio of two distances

Variance of population from which sample
is taken

Estimate of the variance assuming the
parent popul?ion is normal
2 1

A

'(Xi i §)2
Orbital period

Longitude of the ascending node of the
instantaneous elliptical orbit

Argument of perigee of the instantaneous
elliptical orbit

Subscripts
Lunar
Solar
Earth

Planet




INTRODUCTION

In the study of trajectories about the earth,
factors defining the trajectory must be accurately
known. Since these factors fall into two areas:

Astronautical constants
Geophysical constants

each of these general areas will be investigated.

In addition, information which is not of a flight
mechanics nature but which can effect the selection
of orbits will also be presented. This type of in-
formation includes:

Radiation hazard data (all types)
Micrometeoroid data
Shielding data.

Finally, information necessary to convert this
data from one set of units to another will be pre-
sented. This discussion goes beyond unit con-
version, however, to include a review of time
standards and measurement. This review is ap-
plicable to the material presented in all of the
chapters which follow.

A. ASTRONAUTICAL CONSTANTS

Three noteworthy articles dealing with the
constants which define the trajectory of a mis~
sile or space vehicle have been published within
the past two years. These articles are:

""Analysis and Standardization of Astro-
Dynamic Constants' by M. W. Makemson,
R. M. L. Baker, Jr., and G. B. Westrom,
Journal of the Astronautical Sciences, Vol.
8, No. 1, Spring 1961, pages 1 through 13.

"A Geoid and World Geodetic System

Based on a Combination of Gravimetric,
Astrogeodetic and Satellite Data' by W.

M. Kaula, Journal of Geophysical Research,
Vol. 66, No. 6, June 1961, pages 1799
through 1811.

""On a Consistent System of Astrodynamic
Constants' by H. G. L. Krause, NASA
Report MTP-P&VE-F-62-12, Marshall
Space Flight Center, 12 December 1962.

The first paper reviews measurements of
heliocentric, planetocentric and selenocentric
constants; the second treats the determination
of the geocentric constants by statistical methods
using the gravimetric, astrogeodetic and satellite
data. The work reported in these papers is
excellent and will not be reproduced since it is
readily available. Rather the published data
will be summarized and the best values selected
for use in trajectory analysis. It is felt that
this step is necessary because (1) there are
small inconsistencies in the data, and (2) there
is no mention in the first article of a method of
analysis or an approximate confidence interval.
""Confidence interval'' will be used here to in-
dicate that the sample interval brackets the true
mean some prescribed percentage of the time.

The discussion of these constants will be
followed by a presentation of desirable data
which is obtained from the constants and tables
of conversions relating these quantities to the
corresponding quantities in other sets of units.
This latter set of tables is particularly important
since there is much confusion as to the meaning
of generally used units and the accuracy of the
conversion factors.

Dr. Krause' s paper, which is presented as
Appendix B to this volume by consent of the
author, presents a slightly different set of con-
stants. This results from the fact that the
approach taken was to produce an internally con-
sistent set of constants based on the author's
adopted values of the independent quantities
rather than to accept the slight inconsistencies
resulting from the development of '"best values"
for each of the quantities. It is noted, however,
that in nearly every instance Dr. Krause's
values differ from those quoted in this section
by a quantity less than the uncertainties quoted
in this chapter. Thus, the two approaches seem
to complement each other.

1. Analysis of Constants

Although Baker's exact analytical procedure
is not known, his results indicate a process
similar to the following:

(1) Collect all available data pertinent to
a particular quantity.

(2) Obtain the mean and standard deviation
of this sample

n
= -1 .
== i

i=1

n

200 =2
GX_—HZ(xi %)

i=1
2 _n-1 2
o = o

X

(3) Throw out all points deviating from
the mean by more than one standard
deviation.

(4) Recompute the mean and standard
deviation.

Assuming that the various pieces of data are

of roughly the same accuracy (this assumption
is necessary since the uncertainties quoted for
the number are inconsistent) and that there is no
uniform bias to the determinations, this procedure
will result in a reasonable estimate for the
quantity and its uncertainty, provided that the
sample size is sufficiently large. However,
there is no guarantee that the estimate will be
reasonable for small samples. A general feel
for the maximum number of random, unbiased
determinations required for a specified accuracy
of the resultant analysis can be obtained from
Tchebycheff' s inequality.
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= an estimate of the minimum
sample size.

Since the general accuracy of the determina-
tions is quoted to about 1 to 5 parts in
104 and since the standard deviations are of
the same order,

n;‘ ~ —(1—15—155 s =

or

n* & 10K P = 90%
100K P = 99%

Y

where K is a constant of proportionality.
Because the sample sizes are generally smaller
than 10, it may appear that the confidence level
for the quoted constants will be less than 90%
but probably greater than 80% for most but not
all of the constants. This, however, is not
true as will be shown in the following para-
graphs.

Tchebycheff' s inequality provides a general
feel for the concept of assigning a probability
of correctness to the quoted value of any of the
discussed constants. However, the question
arises as to the definition of the number K;
moreover, even if K is defined, the estimates
are in general too conservative. For this
reason, the method described below will be
utilized.

Assuming once again, that the samples come
from a normal distribution, the probability P
that a given value will fall in a quoted region
about the mean is

P ’:i-ag < u'<§+a£:|= P.
VI VIT

However, care must be taken because the

quantities p’and ¢ used in this expression are

the mean and variance of the true population,
1

not the estimates of p!, X = = X,

=5
. (xi -X)
and O, o —— While these

estimates may be utilized there is no assurance

for the correctness for any but the large sample.

The solution to this problem is found in the "t"
distribution

This distribution involves only p' and the data
X5 and is of n - 1 degree of freedom. Since this

distribution is also tabulated it is possible to
write

P(-tb<t<tb) = S_t f (@ n-1)dt=P=1-b
b

and convert the inequalities to obtain

§<xi -92

Ton(m =)

o x+t

b

The coefficient ty is called the b percent level

of t and locates points which cut off b/2 percent
of the area under f(t) on each tail (f(t) is sym-
metric about t = 0).

() —>=

Y t=0 Y%

Thus, the problem of defining the probability of
correctness which can be assigned to a quoted
constant is one of defining tb Since in all the

work to be discussed 1o variation will be quoted,

tb times the radical can be defined as o . This

assumption results in an estimate of the probable
correctness of the quoted constant which is a
function only of the number of data points.

tb = n-1

At this point it is possible to refer to a table of a
cumulative t distribution and obtain the estimate
of the confidence level for a given value of ty

(i.e., a specified sample size). However, since
this solution requires nonlinear interpolation,
the confidence levels have been plotted as a func-
tion of the sample size in Fig. 1. These data
will be utilized for all estimates to be made in
this section.

In view of the facts that the original measure-
ments do not agree to within the probable errors

quoted for the experiments and that the confidence

levels for the results are reasonable, this pro-
cedure appears to be the most attractive means
of resolving the confusion associated with these




constants until more and better data can be ob-
tained. This is not meant to imply that Baker's
data should be used as presented because in
several cases his constants deserve special
attention. In any event, when superior data be-
come available they should either be weighted

n —
(x.-x)
heavil [:§ obtained from 0 = 5\ —2—1
i 5 ——/1 O
i= i

or utilized in preference to any other value.

Kaula's data will not be reviewed specifically
because it is included in the analysis which fol-
lows. However, in the discussion of the geo-
centric constants, special note will be made of
the agreement of Kaula's data with Baker's
and that obtained by the criteria outlined above.

2. Heliocentric Constants

a. Solar parallax

Planetary observations and theories of
planetary motion permit precise computation
of the angular position of the planets. Although
angular measurements are quite accurate, no
distance scale is readily available. Attempts
to resolve this problem have led to the compari-
son of large, unknown interplanetary distances
to the largest of the known distances available
to man, the equatorial radius of the earth. In
the process, solar parallax was defined as the
ratio of the earth's equatorial radius to the
mean distance to the sun from a fictitious un-
perturbed planet whose mass and sidereal
period are those utilized by Gauss in his com-
putation of the solar gravitation constant (i.e.,
one astronomical unit). This definition renders
unnecessary the revisions in planetary tables
as more accurate fundamental constants are
made available, since the length of the astro-
nomical unit can be modified.

In the broadest sense, the solar parallax is
the ratio between two sets of units: (1) the
astronomical set utilizing the solar mass, the
astronomical unit and the mean solar day, and
(2) the laboratory set (cgs, etc.).

Before reviewing solar parallax data obtained
from the literature, it is worthwhile to consider
the means of computing the values and their un-
certainties.

The first method, purely geometric, is
triangulation based on the distance between two
planets, between a planet and the sun, etc. One
such computation was made by Rabe following a
close approach of the minor planet Eros. The
second method is an indirect approach based on
Kepler's third law (referred to in the literature
as the dynamical method). The third method
employs the spectral shift of radiation from
stars produced by the motion of the earth.
Perturbations on the moon produced by the sun
constitute a fourth means of computing solar
parallax to good precision provided that the
ratio of the masses of the earth and moon is
well known. A fifth approach utilizes direct
measurements of distance between bodies in
space obtained from radar equipment.

Other approaches have also been advanced,
but the five listed constitute the most frequently
employed.

Table 1 presents the adopted value of solar
parallax (from Baker) along with the unweighted
mean of the data and the mean of the adjusted
sample. (Special note is made that the value
adopted by Baker corresponds most closely to
that of Rabe which has been widely utilized
during recent years.) The corresponding value
of the astronomical unit is also presented.

TABLE 1
Solar Parallax
Uncorrected | Adjusted
Adopted | Mean and Mean and
by Standard Standard
Baker Deviation Deviation
Solar parallax | 8.798+ 8.7995% 8.8002+
" |(sec) 0.002 0.0049 0.0024
Astronomical | 149,534 149.507+ 149, 495*
it (106 Jern) 0.03 0.083 0.041
Confidence ? 99% 929,
level

The data in Table 1 show reasonably good
agreement between the various estimates.
However, it is interesting to note that the adjusted
mean moved away from the value adopted by
Baker. This behavior is undesirable but was not
unforeseen because of the limitations of the
method and the fact that more of the measure-
ments were situated in this direction. However,
most of the reported measurements were made
before 1945 and the general trend during subse-
quent years has been toward slightly lower values
of the solar parallax. If it is assumed that this
trend reflects increased accuracy in the measure-
ments (resulting in part from the availability of
radar data), and if the more recent measure-
ments are weighted by the time of determination
(since the uncertainty in the various measure-
ments is much larger than the quoted error in the
experiment), a value of solar parallax of 8. 7975 sec
£ 0.0005 is obtained. This value is almost ident-
ical to Baker's which, as was noted, agrees with
that of Rabe (generally accepted by those perform-
ing astronomical computations). For this reason,
and for consistency in calculations by various
groups within industry and the government, Baker's
value of the solar parallax should be used. How-
ever, his assignment of probable error in this
constant apparently is too large in view of the
agreement of these data. A maximum uncertainty
of £ 0.001 is more realistic.

b. Solar gravitational constant

In 1938 it was internationally agreed (IAU 1938)
that to maintain the Gaussian value of the solar

gravitational constant (KS2 = Gmg where G =

Universal gravitational constant) in spite of
changes in the definition of the sidereal year
and the mass of the earth, the astronomical unit
(AU) would be modified when necessary. Thus
the solar gravitational constant has remained,




K = H
S T
3/2
x AU
= 0,017, 202, 098, 95 e YO
day
where
ag = 1AU
™ = 365.256, 383, 5 mean solar days
m = solar mass = 1
(0]
)
s ratio of earth mass to solar mass
© = 0.000,002,819

This value of KS is accurate to its ninth signifi-

cant figure by definition. The precision in this
determination is contrasted to the accuracy of a
determination in laboratory units from the fol-

lowing equation

2 _
K S Gmo
where
G = the universal gravitational constant

in the cgs or English system of
units (mass in same system).

Utilizing even the most accurately known
values of G and m (obtained from Westrom) the
result is accurate only to its third place.

KSZ = {[6.670 (1 £0.0007) 10'8]
[1 9866 (1 +0.007) 103:{‘}
K, = 1.511 (1 +0.0005) 1013 em3/2 /sec

The evaluation of Ky in laboratory units using

the solar parallax proves equally as inadequate
since the uncertainty is large. When the adopted
value indicated in Table 1 is used, KS is found
to be

K, = 1.1509 (1 £0.00015)10 13 cm3/ 2/ sec

It is thus advantageous to compute in the
astronomical system of units, converting only
when necessary. This procedure assures that
the results will become more accurate as better
values for the astronomical unit are obtained
and produces a much lower end figure error due
to round-off.

3. Planetocentric Constants

a. Planetary masses

Planetary masses are significant in comput-
ing transfer trajectories to the planets and tra-
jectories about these bodies. The two most

common methods of determining planetary mass
are by the perturbation actions on other bodies
or by observations of the moons of the planet.

While the accuracies of the two approaches differ,

each involves such complex functions as near-
ness of approach, mass of the planets, size and
number of moons, etc., that no general conclu-
sion can be made as to the superiority of one to
the other.

Table 2 presents data reduced from deter-
minations of the mass of each of the planets in
terms of the solar mass, the related mass in
kilograms, and the probable uncertainty in the
measurement. In addition, since the number of
points in the sample varies from planet to planet,
this quantity is noted along with an estimate of
the confidence level for the result.

In each case shown in Table 2 the results ob-
tained with the adjusted sample approach those
of Baker to within the uncertainties quoted for
the masses and are practically identical. How-
ever, it should be noted that the uncertainties
quoted for these masses are different at times.
This discrepancy is believed to result from the
somewhat arbitrary handling of the limits in the
reviewed reference. On the basis of the data
available, it seems more proper to use the
standard deviation, as obtained from the adjusted
sample, rather than Baker's value.

b. Planetary dimensions

While the physical dimensions of the planets

have no effect on the trajectories of interplanetary

vehicles and the dimensions are generally
smaller than the uncertainty in the astronomical
unit, the constants must be known for self-con-
tained guidance techniques and for impact and

launch studies. For these reasons the best shape

of the various planets will be discussed.

Table 3 presents equatorial and polar radii
and a quantity referred to in the literature as
the flattening which is defined to be

£ = Regua’coria.l -REolar

equatorial

The table also presents comparisons of various
data, the number of points in the sample and an
estimate of the confidence level.

The sample size for the planet Uranus is
questioned because Baker references only one
source for this planet and that is a weighted
average of several determinations. In the tabu-
lation on Mars, note should be made of the
excellent agreement on the best value of the
radius given by the statistical approach and by
Baker, and of the slight discrepancies in the un-
certainties of the radius and in the best value
of the flattening. Therefore, it is once again
proposed that Baker's value of the radii and
flattening (with one exception) be utilized but
that the uncertainty obtained via statistics be
associated with this number. The exception
exists in the case of Mars for which it is pro-
posed that 1/f be 75 * 12, rather than Baker's
value (150 * 50) since this estimate is consistent
with the data.




TABLE 2

Planetary Masses

Planet Quantity of Interest Adopted by Baker Uncorrected Sample Adjusted Sample

Merecury Solar mass/mass of Mercury 6,100, 000 = 50,000 6.400, 000 = 630, 000 6,030, 000 + 65, 000
Mass of Mercury in kg 0.32567 x 1024 0.31041 x 1024 0. 32945 x 1024
Sample size 4 4 3
Confidence level - 81% 70%

Venus Solar mass /mass of Venus 407,000 = 1,000 406, 200 = 1,900 407,000 £ 1, 300
Mass of Venus in kg 4.8811 x 102% 4.8907 x 10%* 4.8811 x 1024
Sample size 8 8 6
Confidence level - 97% 92%

Earth~Moon | Solar mass/earth-moon mass 328,450 = 50 328,500 + 100 328,430 = 25
Mass of earth-moon in kg 6.04841 x 1024 6.04749 x 1024 6.04878 x 1024
Sample size 6 6 4
Confidence level - 92% 81%

Mars Solar mass /mass of Mars 3,090, 000 = 10,000 3,271,000 + 795, 000 3,092,000 % 12, 000
Mass of Mars in kg 6.04291 x 1024 0.60733 x 102 0.64250 x 10%%
Sample size 6 6 4
Confidence level - 92% 81%

Jupiter Solar mass/mass of Jupiter 1047.4 £ 0,1 1047.89 = 1,87 1047.41 + 0,08
Mass of Jupiter in kg 1.89670 x 1027 1.89581 x 1027 1.89670 x 1027
Sample size 8 - 8 4 -
Confidence level - 97% 81%

Saturn Solar mass /mass of Saturn 3500.0 = 3 3497.3 £ 4.5 3499.8 £ 1,7
Mass of Saturn in kg 0.56760 x 1027 0.56804 x 1027 0.56763 x 1027
Sample size 4 = 4 - 3 o
Confidence level - 81% 70%

Uranus Solar mass/mass of Uranus 32,800 + 100 22,810 = 60 -——-
Mass of Uranus in kg 87.132 x 10%% 87.093 x 1024 e
Sample size 2 2 — -—-
Confidence level - 50% -

Neptune Solar mass /mass of Neptune 19, 500 = 200 19,500 = 200 ---
Mass of Neptune in kg 101.88 x 10%% 101.88 x 1024 —
Sample size 3 3 ---
Confidence level - 70% -—-

Pluto Solar mass/mass of Pluto 350, 000 = 50, 000 333,000 £ 27, 000 -
Mass of Pluto in kg 5.6760 x 1024 5.9658 x 1024 _—
Sample size 3 3 scc
Confidence level - 70% i

Underlined digits are questionable
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TABLE 3

Planetary Dimensions

Adjusted Sample

Planet Quantity of Interest Adopted by Baker Uncorrected Sample

Mercury Equatorial radius (km) 2,330 £ 15 2, 39539 2o soRt T
1/t 2 ? ?
Polar radius (km) ? ? 2
Sample size 4 4 3
Confidence level 2 81% 70%

Venus Equatorial radius (km) 6,100 = 10 6,154 = 100 6,108 % 12
1//% ? ? 2
Polar radius (km) ? ? ?
Sample size 6 6 3
Confidence level ? 92% 70%

Mars Equatorial radius (km) 3,415 5 3,370 4T 3,414 £ 12
kb 150 '+ 50 108.4 £ 54 %5+ 12
Polar radius (km) 3,392 £ 12 3,346 = 55 3,403 = 12
Sample size 9 9 5
Confidence level ? 98% 88%

Jupiter Equatorial radius (km) 71,375 + 50 11, 3754 +:20 -
1/f S Uy €9 (0 0 1552 01 -—-
Polar radius (km) 66,679 + 50 66,679 = 50 -—
Sample size 2 2 -—-
Confidence level ? 50% -—-

Saturn Equatorial radius (km) 60,500 £ 50 60,160 + 480 -
1175 10.2 = ? 10,2+ 2 =
Polar radius (km) 54,569 = 45 54,262 = 450 ---
Sample size 2 2 -—-
Confidence level 1 50% ---

Uranus Equatorial radius (km) 24,850 £ 50 24,847 £ 50 ---
1v/f ? 14 % 9 %% o
Polar radius (km) ? 23,072 = 50 -
Sample size ? ? ==

Neptune Equatorial radius (km) 25,000 + 250 24,400 + 2100 -—-
1/f 58.5 £ 2 58.5+ ? =
Polar radius (km) 24,573 + 250 23,983 + 2000 =
Sample size 2 2 -
Confidence level ? 50% ---

Pluto Equatorial radius (km) 3,000 = 500 2,934 = 500 -———
1/f ? 2 ---
Polar radius (km) 2 i ---
Sample size 1 1 -
Confidence level 2 20% -

*Equatorial radius for Venus includes the distance from the surface to the outer boundary
of the dense atmosphere.

s#From K, A. Ehricke's book "Space Flight Trajectories. "

=%




As was the case with some of the planetary
masses, there was insufficient data available
to allow for refining dimensional computations
for all planets. Even where such computations
were possible the confidence level of the re-
sultant quantity was low.

c. Planetary orbits

Because the motion of a planet about the sun
approximates an ellipse for relatively long
periods of time, it has become standard practice
to express the paths in terms of an ellipse with
time-varying or osculating elements. To assure
that the terminology is familiar, the six ele-
ments (or constants of integration) necessary
to determine planetary motion are defined below.

(1) Planar elements

(1) Semimajor axis (a)--This element
is a constant, being one-half the sum
of the minimum and maximum radii.
Element (a) is also a function of
radius and velocity at any point.

(2) Eccentricity (e)--This element is re-
lated to the difference in maximum
and minimum radii and is used to
express a deviation in the path from
circularity.

(3) Mean anomaly of epoch (MO)-—-This

element (referenced to any fixed
known time) defines the position of
the orbiting body in the plane of
motion at any time.

(2) Orientation elements

(1) Argument of perigee (, )--This is
the angle measured in the orbital
plane from the radius vector defining
the ascending node to the minimum
radius.

(2) Orbital inclination (i)--This angle
expresses rotation of the orbital
plane about a line in the ecliptic

(or fundamental) plane.

(3) Longitude of the ascending node (£2)--
This is the angle measured in the
fundamental plane from a fixed ref-
erence direction to the radius at which
the satellite crosses the fundamental
plane from the south to the north,

These osculating elements obviously are of
primary importance in the computation of inter-
planetary transfer trajectories. Thus, the
procedure for obtaining these elements will be
reviewed; then the values of the elements will
be presented. It is assumed only that a table
of the time variation of acceleration is available.
One such table is presented in Planetary Coord-
inates 1960 to 1980 available through Her Majesty's
Stationery Office.

This reference quotes position and accelera-
tion components in ecliptic rectangular coordin-
ates. The most direct transformation is thus
via the vectorial elements P, Q and R (where F

points toward perihelion, Q in the direction of

the

true anomaly equals 90° and R completes the

right handed set). The computation proceeds as
follows: First the velocity components at the
instant are computed. This is accomplished by
numerical integration of the acceleration com-
ponents rather than by differenttation of the

pos

ition data in order to obtain better accuracy.

Sums Function Differences
Argument 2nd 1st (Acceleration) [ 1st 2nd 3rd 4th
t ” x
-2 -1 -2 %5
& x 33 % 372
o 2
t g 6 “x 1 X 4 6"x 1
1 o 30
6 X_1/2 6x_1/2 & X_1/2
o 90 4
to 13 Xy X & X & X
1 o 30
& X2 e &%) /2
o 2.
tl 13 X Xy & xy
e e
OB 8%3/2
t2 x2 J

Thus,, at the argument t

0

S 1 -1 1 .o 11 3
X-WKS [/.16 X-Tgu6X+7—2-0—p6X-...]

where

W = the interval between points in mean solar
days

K Gaussian constant

8 3/2

pox = 1/2 @;-1/2 + 65:'1/9

3 30 3
ué"x =1/2 Gx_1/2+6 x1/2>

and similarly for y and z
Now

r2 = x2 4 y2 + z2 (evaluated at to)

2 2

viex?+y?ag

H=x;(+yy+zz

1

a=—> (1)
2/r - G

esinE=H/J: (2)

ecosE=er-1 (3)
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Jl-e2<§= ;%sinE+\7a1/2

+(cos E - e)

P = ;%cosE+\7a1/2 sin E
And finally
sinisin @ =R, (4)
sinicos 2 =-R_cos € - R_sin € (5)
y 4
cosi=R_cos € -R_sin e (6)
z &

And
(1 = cos i) sin (v = Q) =1Pycos €

=B sin € - Qx (7

(1 £cosi)cos (wx) == chos €

+ sine + P 8
Qz X ®
where: € = obliquity of the ecliptic of date given
~ below:
t =1960 € =23°26'40.15" sine =0.39786035 cos € =0.91744599
1962 23°26'39.21" 0.39785618 0.91744780
1964 23°26'38.28" 0.39785201 0.91744960
1966 23°26137. 34" 0.39784784 0.91745141
1968 23°26'36.40" 0.39784368 0.91745322
1970 23°26'35. 93" 0.39783951 0.91745503

Equations (1), 2) and (3) define a, e and E (analo-
gous to M) at the selected epoch. Then Egs (4)
through (8) define the orbital planes and the quad-
rants of the three orientation elements.

Data for these six elements is presented in
Tables 4 and 5. These tables present each of the
six elements for a two-year period and the re-
gression and precession rates of the nodal angle
and the argument of perigee, respectively. These
data are accurate to the last quoted digit for the
quoted epochs and provide reasonably good ac-
curacy when linearly interpolated. In order to
maintain precision in such computations it is nec-
essary to have the elements evaluated at much
smaller time intervals.

4, Geocentric Constants

a. Potential function

The potential function of the earth (i.e., the
relationship between potential energy and position

relative to the earth) is not simply - GTmEBas is

assumed in most Keplerian orbit studies because
this approximation assumes that the mass is
spherically symmetric. This assumption is suf-

ficiently accurate for many preliminary studies
but is not valid for precise orbital studies. For
this reason it is general practice to expand the
potential function in a series of Legendre polyno-
mials. The coefficients of this series may then
be evaluated from satellite observation. -

Since the perturbations in the motion (i.e.,
deviations due to the presence of the terms in-
volving mass asymmetry of the earth) are very
sensitive to the uncertainties in the coefficients
of the resulting potential function, one form of
this function will be presented and discussed.
The form selected, because of its simplicity and
the fact that it was recently adopted by the IAU
(1961), is that of J. Vinti of the National Bureau
of StAndards. The coefficients of other generally
used expansions will be related to this set in later
paragraphs.

1. 2 1 (;R)n P_ (sin L)

n=2

c
1
|
HIE

where
u = gravitational constant = Gm@
Jn = coefficients
R = equatorial radius of the earth
r = satellite radius
Pn (sin L) = Legendre polynomials
L = instantaneous latitude

The first few terms of this series are:
u=-# [1 -;E(g)z (3sin’ L - 1)
-fzg (§)3 (5 sin3 L - 3 sin L)
- ‘_Ig (?)4 (35 sin? L - 30 sin® L + 3)
- jai ({})5 (63 sin® L - 70 sin® L + 15 sin L)

J 6
_"6 (R 6 .
. (r_) (231 sin’ L - 315 sin~ L

+ 105 sin2 L -5) ]

As is immediately obvious, this function contains
the potential function for a mass spherically sym-
metric earth and a series of correction terms re-
ferred to as zonal harmonics. The odd ordered
harmonics are antisymmetric about the equatorial
plane (L = 0) and the even ordered harmonics,
symmetric. This function was introduced merely
to aid in the discussion of the factors affecting
motion in geocentric orbits; therefore, the func-
tion as a whole will not be discussed further but
its coefficients will be treated.




TABLE 4
Mean Elements of Inner Planets

(from American Ephemeris, 1960, 1961, 1962;
referred to mean equinox and ecliptic of date,)

Epochs: 1960 September 23,0 = J.D. 243 7200, 5
1961 October 28,0 =J.D, 243 7600.5
1962 December 2,0 = J,D, 243 8000,5
i o P a Ly
Planet Year (deg) (deg) (deg) (AU) e (deg)
Mercury 1960 7.00400 + 1 47,86575 + 325 76.84441 + 426 0. 387099 0.205627 152, 303
1961 7.00402 + 1 47,87873 + 325 76,86145 + 426 0. 387099 0.205627 349, 237
1962 7.00404 + 1 47,89171 + 325 76.87849 + 426 0. 387099 0.205627 186.171
Venus 1960 3.39424 + 0 76.32625 + 247 131.01853 + 385 0, 723332 0,006792 108,652
1961 3.39425 + 0 76.33611 + 247 131.03394 + 385 0,723332 0.006791 29,504
1962 3.39426 + 0 76.34597 + 247 131,04934 + 385 0,723332 0.006791 310, 356
Mars 1960 1.84993 + 0 49, 25464 + 211 335. 33609 + 504 1,523691 0.093369 62.572
1961 1.84992 + 0 49, 26308 + 211 335.35625 + 504 1.523691 0.093370 272,180
1962 1.84991 + 0 49, 27153 + 211 335.37641 + 504 1,523691 0,093371 121,789

*Plus variation per 100 days.

**The large differences between the mean anomalies at epoch are due primarily to the shift in the epoch and
not to perturbations.

; = w+Q
TABLE 5
Osculating Elements of Outer Planets
(from American Ephemeris, 1960, 1961, 1962;
referred to mean equinox and ecliptic of date.)
i Q :: a Mo

Planet* Date (deg) (deg) (deg) (AU) e (deg)
Jupiter 1960 Jan, 27 1. 30641 100. 0560 12,3279 5,208041 0.048,335,1 249, 7967

1961 Jan, 21 1, 30626 100, 0651 13,2393 5,203825 0.048, 589, 9 278.7932

1962 Jan, 16 1.30616 100.0725 13,2614 5.,203520 0,048,459, 7 308.6768
Saturn 1960 Jan, 27 2,48722 113, 3161 92.1031 9.582589 0.050, 548, 4 188.9699

1961 Jan, 21 2.48718 113. 3273 90, 7422 9.580399 0.051, 145, 6 202.4677

1962 Jan. 16 2,48714 113, 3385 89. 3436 9.581007 0,051,778, 3 216, 0551
Uranus 1960 Jan, 27 0.77236 73.7218 172,5311 19.16306 0. 046,906, 5 329, 2259

1961 Jan, 21 0,77222 73.6971 172,8809 19.13202 0,045, 282, 3 333.0587

1962 Jan. 16 0.77221 73.6942 172. 3515 19,11431 0.044,112,4 337.7453
Neptune 1960 Jan, 27 14417329 131, 3233 25,9372 30.23803 0.003,139,4 191, 3613

1961 Jan, 21 1,77325 131, 3709 22.4739 30.17541 0. 005, 351, 5 197, 0665

1962 Jan. 16 1.77318 131.4144 26,5510 30.09783 0.007,911,7 195,1770
Pluto 1960 Jan., 27 17.16644 109. 8642 223.8342 39.52392 0.251,35532 316.9810

1961 Mar, 2 17.1705% 109, 8943 224, 3400 39.38437 0. 249, 400, 9 317.9194

1962 Jan, 16 17.16791 109. 8958 224,5629 39.29379 0.247,695, 2 318.8914

*Osculating elements are given for every 40 days for Jupiter, Saturn, Uranus and Neptune, and for every
80 days for Pluto.

~
w = wt+tQ

II-10




Since the earth is almost spherically sym-
metric, the Jn are all small compared to one (as

will be shown later); thus, the prime factor af-
fecting motion is the gravitational constant, pu,

which is defined directly from Newtonian Mech-
anics as Gm@' Data for this constant were not

presented in the referenced paper (Baker) though
a value was adopted. For this reason a review
of some of the more recent determinations was
made and a comparison constructed (Table 6).

Baker's value corresponds to that of Herrick
(1958) and no data were found which ascribe an un-
certainty or confidence level to this value. The
value corresponds very closely to mean of the ad-
justed sample; for this reason an estimated un-
certainty would be +0.00004.

While Herrick's value appears valid, a better
estimate in view of the work done by Kaula would
seem to be Kaula's value (or the mean of the ad-
justed sample which is the same). It is proposed,

therefore, that the value of u be 1.407648 - 1016

+0.000035-1016 £t3/sec? or 398,601.5 + 9.9 km®/

secz. The selection of this constant, which is
obviously related to the mass of the earth-moon
system (previously adopted), does not produce
large inconsistencies due to the fact that the con-
version between solar mass and earth mass is ac-
curate to only four places, and to this order the
two answers agree.

The remaining coefficients, Jn‘ are related

to the earth's equatorial radius, the average ro-
tational rate of the earth, the gravitational con-

stant, and the flattening of the earth. For this
reason, it is clear that the arbitrary selection of

a set of constants will result in slight numerical
inconsistencies. However, these uncertainties

are small and of the same order as the uncertainty

in the numerical values of the J,. Data for the J |

are presented in Table 7.

Baker's values of the J correspond almost

identically to those of the adjusted sample while

Kaula's do not for J4, J5 and J6. No satisfactory

TABLE 6 |
Gravitational Constant for the Earth

Date ft3 /sec2 Author
1957 1.407754 x 108 Elfers (Project Vanguard)
1958 1.407639 Herrick
1959 1.40760 Jeffreys
1959 1.40771 O'Keefe
1960 1.407645 Department of Defense (see Baker)
1961 1.40765 Kaula
Adopted by Unadjusted Adjusted
Baker Sample Sample
Gravitational con-
3 2 16 16 16
stant (ft” /sec”) ;1.407639 x 10 1.407666 x 10 1.407648 x 10
(km3/sec2) 398,599.9 398,606.6 398,601.5
Uncertainty (1) + 9 +0.000050 x 106 £0.000035 x 106
(2) + ? +14.2 +£9.9
Sample size ? 6 5
Confidence level ? 92% 88%
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TABLE 7
Coefficients of the Potential Function

Baker Kaula Uncorrected Sample | Adjusted Sample
I, 1082.28 x 108 | 1082.61x 107 | 1082.396 x 10°® | 1082.303 x 1078
o (J,) +0.2x 1076 +0,06 x 1078 +0.241 x 1076 +0.185 x 10°°
Confidence level ? ? 98% 95%
i -2.30x 1078 -2.05% 1078 -2.39x 1076 -2.39x 1076
o (J,) +0.20 x 1076 +0.10 x 1078 +0,23 x 107° +0,23 x 1078
Confidence level ? ? 98% 90%
T -2.12x 1078 1,43 % 1076 -1.82x 106 -2.03x 1076
o (1) +0.50 x 1078 £0,06 x 1078 +0,35 x 1070 +0.24 x 1078
Confidence level ? ? 98% 92%
5 -0.20x 1078 -0.08x 1078 -0.25 x 1078 -0.19 x 1075
o (Jy) +0,1 x 1075 +0,11x 1078 +0.16 x 1076 +0,08 x 1078
Confidence level ? % 92% 88%
I 1.0x 1078 0.20 x 1078 0.68 x 10768 0.83 x 1078
o (Jg) +0.8 x 1078 £0.05x 1078 +0.29 x 1070 +0,10 x 1078
Confidence level % ? 81% 70%

reason was obtained for this difference, though
it is believed that the data utilized by Kaula in the

determination of J4, J5 and J6 may have been

biased. This conclusion is strengthened slightly
by the fact that the results of Kaula for these three
constants are somewhat below the majority of the
other independent determinations. Even if the un-
certainty in these three values is increased an
amount sufficient to include all values, no appre-
ciable change will be noted in the computation of
trajectories, since the numbers are very small
compared to unity and are even small compared

to J2.

It is proposed that the values adopted by Baker
be accepted without change. This procedure seems
justifiable on the basis of the data and has the ad-
vantage that the set is presumably consistent.

This advantage is not clear cut since, even though
the Jn's are interrelated, the uncertainties in the

values are relatively large.

At this point Vinti's set of coefficients will be
related to those utilized by other authors. Rather
than discuss each potential, however, the poten-
tials will be tabulated for comparison. Then, the
coefficients of the various terms will be equated.
This data is presented in Tables 8a and 8h.
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b. Equatorial radius and flattening

The average figure of the earth is best repre-
sented as an ellipsoid of revolution (about the
polar axis) with the major axis the equatorial
diameter. Obviously this model is not exact;
however, the accuracy afforded is generally ade-
quate when computing the ground track of a satel-
lite, determining tracking azimuths, etc. For
this reason the best values for the parameters of
the ellipsoid are desired. These data are pre-
sented in Table 9 in the form of values of the
equatorial radius and flattening (previously de-
fined) along with polar radii, also for each pair of
values.

Although the discrepancies in the sets of data
shown in Table 9 are minor, they are sufficient
to justify the selection of one particular set.
Based on the data reviewed, it is felt that the
data of Kaula is probably slightly superior to the
remaining values. This conclusion is strength-
ened by the good agreement between Kaula and
some of the more recent standards. While this
is by no means conclusive proof, the fact indi-
cates a wide degree of acceptance. For this
reason, an estimate of the confidence level would
be greater than 90%.
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TABLE 8a
Potential Functions Found in the Literature

(Kork, J "First Order Satellite Moitons in Near Circular Orbits About
an Oblate Earth'' Martin Company (Baltimore) ER 12202, January 1962)

Author

Potential function

Vinti

Jeffreys

Kozai

Brouwer

O'Keefe, Eckels, Squires

Roberson

Garfinkel

Krause

Sterne

Herget and Musen

Struble

Laplace

Proskurin and Batrakov

Baker
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TABLE 8b

Comparisons of Constants Used in
Potential Functions

Vinti J2 J3 J4 Recommended
Laplace -B,/R? -B4/R® -B,/R*
Jeftreys 25 H -& D
A A
' 2 A 3 8 Ay
Kozai i~ Ag/R - =T
R
2% K
2 3 8 X4
Brouwer -A,/R -
5 3 I R
” 3 4
O'Keefe, Eckels, Squires | -A,, o/uR®  -Ag, o/uR®  -A,, o/uR
R. E. Roberson 24 None -8y
Garfinkel 2% /R? None k' /R
Struble 29T None -2 D
2 8 Ky
Krause 2k2/R None iy ?
Sterne & None None
R
Herget and Musen 2k, /R? None -k /R
2 8
Proskurin and Batrakov -1 None -m D
W. deSitter kS None A K
. 3 bi:3

Equatorial Radius and Flattening

Uncorrected  Adjusted
Baker Kaula Sample Sample
Equatorial radius (km)| 6378, 150 6378.163 6378.215 6378. 210
+0, 050 +0,021 +0,105 =0, 045
1/f 298. 30 298, 24 298,27 298, 27
+0, 05 +0,01 +0, 05 +0,03
Polar radius (km) 6356. 768 6356, 777 6356.831 6356.826
I 1 +0. 050 +0,021 +0,105 =0, 045
= Req (1 T )
Sample size 9 ? 10 7
Confidence level 2 ? 98% 95%

5. Selenocentric Constants

The determination of the lunar mass has been
made from the lunar equation (involved in the
reduction of geocentric coordinates to those of
the barycenter, i.e., the center of mass of the
earth-moon system), through the evaluation of
the coefficient, L., defined to be

g
m™
Ll = mQ o
m sin ™
T ke (
m
]
where

ﬂ‘ is the lunar parallax (i.e.,

R@ equatorial )
average lunar distance

Since there are no lunar satellites whose orbits
can be used in determining lunar mass, the calcu-
lations for the most part have been based on ob-
servations of Eros at the time of closest approach.

The method consists of finding the solar and
lunar parallaxes, comparing the observed positions
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of Eros when nearest the earth with an accurate
ephemeris, fitting the residuals to a smooth
curve that has the periodicity and zero points of
the lunar equation, and using the curve to im-
prove the adopted value of L.'. Once this is ac-
|
complished

— is evaluated from the previous

equation. Thus, the first step in the evaluation
of the lunar mass is the evaluation of the lunar
parallax or equivalently the lunar distance.

Baker presents data for the lunar distance
evaluated by several different methods. These
data have been used to produce Table 10.

TABLE 10

Lunar Distance

Adopted Uncorrected | Adjusted

by Baker Sample Sample
Lunar distance (km) 384, 402 384, 402.6 384, 401.6
Uncertainty (km) +1 +2.6 +1.1
Lunar parallax (rad) 0,016, 592, 4 0,016, 592,4 (0,016,592, 4

(sec) 3422, 428 3422, 428 3422, 428
Uncertainty (rad) +0.000, 000, 1 +0.000, 000, 1 (+0. 000, 000, 1
(sec) +.021 +.021 +.021

Sample size 6 6 5
Confidence level ? 92% 88%

The data of Table 10 all agree very well and
exhibit no inconsistencies of the type shown in
other data. For this reason it is believed that
Baker's value should be utilized as it is quoted
in Table 10. It is interesting to note that the
value of the lunar parallax and its uncertainty
were the same for all of the evaluations.

The next step in the evaluation of the lunar
mass is the determination of the best value of
the coefficient of the lunar equation. Once again
several values are available, each determined by
different individuals at different times. The re-
sults of the analysis of these data are presented
in Table 11.

TABLE 11
Coefficient of Lunar Equation

Adopted Uncorrected Adjusted

by Baker Sample Sample
Coefficient L'(sec) 6.4385 6.430 6.4381
Uncertainty (sec) +0,0015 +0, 005 +0,0016
Sample size ? 8 6
Confidence level ? 97% 92%

Once again good general agreement is noted. It
is proposed, therefore, that the value of L.' be
6.4385 £ 0.0015 with a confidence level of about

90%. With this value of L' and that of lunar
parallax adopted in Table 10, the best value of
m
the quantity ®  is found as
By
m e ) ™ 1 .
mq sin qu iy
_ 8.798 8.7981 . _
= p.0Te5Y2  6.4385 - L = 81.357




The estimate of the uncertainty is obtained by
differentiating this equation with respect to 7

and L'. It is not necessary to differentiate with
respect to Tr(( since this constant is known to a

much higher precision.

=8l . (Pe ar, » s
Sl " \mg Y\ =
q q o
= 82,357 (0.0015 _ 0.001
= 0.0098
m
Thus the best value of the quantity = 181815357
(4

+ 0.010 with a confidence level of approximately
90%. This value was obtained using Baker's data
and is contrasted to his adopted value of 81.35 +
0.05. Since the uncertainty of Baker's value
seems inconsistent, it is proposed that the value
and uncertainty developed here be utilized.

The remaining information required pertains
to the figure of the moon. The figure of the moon
is best represented by a triaxial ellipsoid with
the radii of lengths a, b and ¢ where a is directed
toward the earth, c is along the axis of rotation
and b forms an orthogonal set. Very little data
are available for these lengths. Some informa-
tion, however, is presented in:

Alexandrov, I, ""The Lunar Gravitational
Potential'' in Advances in the Astronautical
Sciences, Vol. 5, Plenum Press (N. Y.),
1960, pages 320 through 324.

This reference gives data for determinations of
the dynamic dimensions and the methods of com-
putation as:

Adopted by
Baker

Free
Libration

Forced
Libration

Semiaxis a(km) [1738.67 + 0.07 1738.57 # 0.07 1738.57 £ 0,07

Semiaxis b(km) |1738.21+0.07 1738.31#% 0,07 1738.31 % 0.07

Semiaxis c(km) |1737.58 £ 0,07 1737.58 £ 0.07 1737.58 = 0.07

There is no reason to assume a value other than
that of Baker due to the general lack of data.

6. Summary of Constants and Derivable Data

Because several values have been discussed
for each constant, there is need to combine in one
table the best value, its uncertainty and approxi-
mate confidence level. This is done in Table 12.
Note is made of the source of each number given.

In addition to a tabulation of constants, there
generally exists a requirement for data which
are easily derivable from this more basic data.
Table 13 presents the mass, the gravitational
constant (1 = Gm) and the radius of action* in
metric, English and astronomical units. Table 14

275

*Tisserand's criteria, r* =d (%) where d

is the average distance between the two bodies,
m is the mass of the smaller body and M is the
mass of the larger body.
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presents the geometry of the planets in metric
and English units, and Table 15 presents surface
values for the circular and escape velocities and
for gravity.

B. ASTROPHYSICAL CONSTANTS

In the previous section certain of the astro-
nautical constants were reviewed. The purpose
of this section is to include other factors affecting
the trajectory. Accordingly, atmospheric models
and density variability will first be discussed.
The discussions will then be oriented toward the
definition of other factors which must be con-
sidered in satellite orbit selection such as the
radiation and meteorid environments.

1. Development of Model Atmospheres for
Extreme Altitudes

In November 1953 an unofficial group of
scientific and engineering organizations, each
holding national responsibilities related to the
requirement for accurate tables of the atmosphere
to high altitudes formed the ''Committee on the
Extension of the Standard Atmosphere' (COESA).
A Working Group, appointed at the first meeting,
met frequently between 1953 and the end of 1956.
This committee developed a model atmosphere
to 300 km based on the data available at that time.
This model was published in 1958 as the "U. S.
Extension to the ICAO Standard Atmosphere, "
(Ref. 1).

At the time of the development of this standard
only two methods of direct measurement of upper
atmosphere densities were available:

(1) High altitude sounding rockets.

(2) Observations of meteor trails.

Both methods have severe limitations in the
interpretation of the measured data. First, the
rocket made only short flights into the upper
atmosphere and.the density measurements were
made mostly inside the rocket's flow field, not
in the undistrubed free stream. Second, meteors
were visible only in a small range of altitude (85
to 130 km) and their aerodynamic characteristics
contained too many unknowns (unsymmetrical
shapes, loss of momentum by evaporation of
melting surface layers, etc.).

The extent of the limitations of the rocket and
meteor trail data became evident with the launch-
ing of the first satellites. The orbital periods of
the first Sputnik indicated that the densities of the
upper atmosphere were off by approximately an
order of magnitude.

The Smithsonian 1957-2 atmosphere (Ref. 2)
was developed based on the density estimates
from the decay histories of the Sputnik satellites.
This standard was soon superseded by the ARDC
1959 Model Atmosphere (Ref. 3). Up to about 50
km this atmosphere was the same as the U.S.
extension to the ICAO Standard Atmosphere.
Above that altitude some IGY rocket and early
satellite data were used. Since all these data
were obtained during the period of maximum



TABLE 12
Adopted Constants

Approximate
Confidence Level
Best Value Uncertainty (%)
Heliocentric Constants
Solar parallax 38,798 sec b10. 001 90
Astronomical unit 2149.53x 106km 210.03 90
.
K2 €0.2959122083 | 2+0,010710 99+
AU3/solar day2
Planetocentric Constants
Mercury
Solar mass/mass Mercury | 26,100, 000 b165, 000 70
Equatorial radius 22330 km b:tll 70
1t/ ? ? 2
Venus
Solar mass/mass Venus 2407, 000 b;1300 90
Equatorial radius 86100 km (incl | Pi12 70
atmos)
1/f 2 ? ?
Earth-Moon
Solar mass/earth-moon 8328, 450 bizs 81
mass
Equatorial radius - - -
1t - - --
Mars
Solar mass/mass Mars 23, 090, 000 bi12, 000 81
Equatorial radius 23415 km b:tlz 88
1/t bas bi12 80
Jupiter
Solar mass/mass Jupiter 21047. 4 bxo. 1 81
Equatorial radius 271, 875 km bi20 50
1/t 315.2 b40.1 50
Saturn
Solar mass/mass Saturn 23500 bis.0 70
Equatorial radius 260, 500 km b 480 50
1/f 30.2 + 2 ?
(continued)
NOTE:

2Baker's value.

bV:«xlue obtained in this report.

CGaussian value.
dEhricke's value.

®Kaula' s value.
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TABLE 12 (continued)

Approximate
Confidence Level
Best Value Uncertainty (%)
Uranus
Solar mass/mass Uranus 832, 800 biGO 50
Equatorial radius #24, 850 km b:Q:E')O ?
1/f 214.0 + ? ?
Neptune
Solar mass/mass Neptune a19, 500 bj:200 70
Equatorial radius a25, 000 km bi2100 50
1/f 858.5 + 2 ?
Pluto
‘Solar mass/mass Pluto 3350, 000 b127, 000 70
Equatorial radius 23000 km bs500 20
1/f 2 ? ?
Geoce_ntric Constants
4 (km3 /sec?) €398, 601.5 €499 88
g 31082.28x10°% | 2:0.2x 1078 95
Jg 83,30 x 1078 240.2 x 1070 90
0y 2 2.12x 1078 840,5 x 1075 92
i 20,20 x 1078 240.1x 1078 88
0 8_1.0x10°8 2,0.8 x 1078 70
Equatorial radius (km) €6378.163 €+0.021 95
1/t €298. 24 €+0.01 95
Selenocentric Constants
Lunar distance (km) 8384, 402 km 341 km 88
b} 86,4385 840.0015 92
my /mg bg1. 357 b10.01 90
Semiaxis a (km) 31738.57 km 340,17 km 50
b (km) 81738. 31 km 840,07 km 50
¢ (km) 81737.58 km 840,07 km 50

NOTE:

3Baker's value.
b
c :
Gaussian value.
dEhricke's value.

€Kaula's value.

Value obtained in this report.
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TABLE 13

Gravitational Properties of the Planets

%*

Mass s x=
(km?3 /sec? 3 2 3
" ’e m- /sec (ft”/sec AU" (solar
Planet (10°* kg) (10°* slugs) m, /m, x 105) x 1016 day? x 1079 | (108 km) (10° £1) AU 1960 Epoch
Mercury 0.3257 0.02232 6, 100, 000 0.021, 725 0.076, 721 0.048, 509 0.11178  0.36674  0.000,747,6 | No change
- +65, 000 = = - - =
Venus 4.8811 0. 3345 407, 000 0. 325, 581 1.149,78 0. 726, 987 0.61696  2.0241 0.004, 126 No change
== = +1300 - - == - - -
*Earth 5.9758 0. 40947 332, 440 0.398,601,5 1.407,648 0.890, 033 0.92482  3.03429  0.006,185,0 | No change
+50 = — - - == -
Earth-Moon | 6.0484 0. 41444 328, 400 0.403, 444 1.424,75 0.900, 847 0.92933  3.04898  0.006,215,1 | No change
= - +25 == - - - = —=
Moon 0.073451 0.0050330 mg = 81.357 [ 0.004,899,4 0,017302,1 0.010,939,8 |0.066282 0.217460 0.000,443,3 | No change
M £0.010
Mars 0.6429 0.04405 3,090, 000 0.042, 883,0 0.151, 440 0.095,753,1 |0.57763  1.8951 0.003, 863 No change
- - +12, 000 — = — — - -
Jupiter 1896.7 129. 97 1.047.4 126.515 446,783 282. 493 48,141 157.943  0.321, 96 January 27, 1962
2= = 0.1 = o = - = -
Saturn 567. 60 38. 89 3500 37. 860, 4 133.703 84.538, 3 54,774 179.70 0. 366, 31 January 27, 1962
— - +1.7 e = - - - -
Uranus 87.132 5.970 22, 800 5.811, 91 20.524, 6 12.977, 4 51.755 169. 80 0.346, 13 January 27, 1962
— - +100 —— = = I - —
Neptune 101. 88 6.981 19, 500 6.795, 75 23. 999, 0 15.174, 2 86.952 285, 28 0.581, 51 January 27, 1962
+200 = — - - = =
Pluto 5.676 0.3889 350, 000 0.378, 596 1:1337..0 0.845, 364 35, 812 117.49 0.239,5 January 27, 1962
- +27, 000 D = S I = =
Sun 1.9866 x 10°  0.13613 x 10°  1.00000 132,511 467, 960 295, 912, 208, 3%| -- -- -- -=

—— Underlined digits are questionable.

*Solar gravitational constant is Gaussian value.
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TABLE 14
Geometry of the Planets

Radius of Sphere of Equivalent Volume
3 2
Equatorial Radius Polar Radius (R” = Re Rp)
Planet (km) (stat mi) (naut mi) (ft x 107) 1/f (km) (stat mi) (naut mi) (ft x 107) (km) (stat mi) (naut mi) (ft x 107)
Mercury 2330 1448 16 1258 5 0.7644 G 2330 1448 16 1258 £5 0.7644 2330 1488 £6 1258 £5 0.7644
+10 +0.0032 +10 +0.0032 +10 +0. 0032
Venus 6100 3790 £30 3290 £25 2.001 o 6100 3790 £30 3290 £25 2.001 6100 3790 +30 3290 £25 2.001
+50 +0.016 +50 +0.016 +50 +0.016
Earth 6378.16 3963. 20 3443.93 2.09257 7 298.24 +0.01 6356.77 3949.77 3432. 38 2.08555 .| 6371.02 3958.77 3440,08 2.09023 -7
+0.02 +0.03 +0.02 +164x10 +0. 05 +0.03 +0.02 +164x10 +0. 05 +0.03 +0.02 +164x 10
Earth-Moon == == == == = e =S == == X == == ==
Moon** a 1738.57 1080. 30 938. 75 0.57040 == = == == == == == - ==
+0.07 +0.04 +0.03 +0.00002
b 1738.31 1080.14 938. 61 0.57031 -- 1737.58 1079.68 938. 22 0.57007 1738.16 1080.04 938.53 0.57026
+0.07 +0.04 +0.03 +0.00002 +0.07 +0. 07 +0..03 +0.00002 | +0.07 +0.04 +0.03 +0,. 00002
c 1737.58 1079.68 938. 22 0.57007 - - -- - - -- -- -= -
10,07 +0.04 +0.03 +0.00002
Mars 3415 15 2122 +3 1844 12 1.1204 75 £1:2 3369 15 2094 +3 1819 +2 1.1055 3400 £5 2113 +3 1836 2 1.1155
+0.0016 +0.0016 +0.0016
Jupiter T1,:315 44, 350 38, 539 23.417 15,2 £0.1 66, 679 41, 432 36, 004 21,876 69, 774 43, 356 37, 675 22,892
+50 130 +25 +0.016 +50 +30 +25 +0.016 +50 +30 +25 +0.016
Saturn 60, 500 37,590 32,670 19,849 10.2:x ? 54, 560 33, 900 29, 470 17.990 58, 450 36, 320 31, 560 19.176
+50 +30 +25 +0.016 +50 +30 +25 +0.016 150 +30 +25 +0.016
Uranus 24, 850 15, 440 13, 420 8.153 14% £ 2 23, 070 14, 340 12, 460 7571 24, 240 15, 060 13, 090 7.953
+50 +30 +25 +0.016 +50 +30 +25 +0.016 +50 +30 +25 +0.016
Neptune 25, 000 15,530 13, 500 8.202 58.5:% ? 24, 600 15, 260 13, 270 8.062 24, 870 15, 450 13, 430 8.159
+250 +150 +130 +0.080 +250 +150 +130 +0.080 +250 +150 +130 +0.080
Pluto 3000 1860 1620 0.984 -- - -- -- -- 3000 1860 1620 0.984
+500 +300 +250 +0.16 +500 +300 +250 +0.16
Sun 696, 500 432, 800 376, 100 228.51 -- -- - -—- == 696,500 432, 800 376, 100 228.51
+500 +300 +250 +0.16 +500 +300 +250 +0.16

*Taken from K. A, Ehricke,

"Space Flight, '

' D. Van Nostrand, 1960,

**Moon is best presented by triaxial ellipsoid--a: toward earth

b: orthogonal to "a'' and "c"
c: along axis of rotation.



TABLE 15

Planetary Circular and Escape Velocities and Planetary Gravity

Circular Velocity at Sea Level Escape Velocity at Sea Level Gravity at Sea Level
) (AU/solar (AU/solar 2 2 9 2
Planet (km/sec) (ft/sec) (stat mi/hr) day) (km/sec) (ft/sec) (stat mi/hr) day) (cm/sec”) (ft/sec”) (stat mi/hr”) (AU/solar day”)
Mercury 3.05361 10,018.4  6,830.73 0.00176444 [ 4,31846 14,168.2  9,660.13  0.00249530 [400.212  13.1303  32,228.9 0.199801
Venus 7.30630 23,970.8  16,343.7 0.00422174 | 10.33266 33,899.8  23,113.5  0.00597043 | 875.261  28.7159 70, 484.5 0.436964
. Earth 7.909773 25,950.7  17,693.7 0.00457044 | 11.18610 36,699.8  25,022.6  0.00646357 | 982.0214 32.21855 79, 081.88 0. 4902632
'T‘ Earth-Moon == == == == = == == == -- == = ==
= Moon 1.678900 5,508.2  3,755.59 0.00097010 | 2.374831 7,789.8  5,311.23  0.00137194 |162.169  5.32049  13,059.38 0.0809608
Mars 3.55141 11,651.6  7,944.27 0.00205208 | 5.02243 16,477.8  11,234.9  0.00290207 |370.951  12.1703 29, 872.5 0.185193
Jupiter 42,5818 139,704  95,252.7 0.0246047 |60.2196 197,571 134,707  0.0347962 |2598.63  85.2569 209, 267 1.29734
Saturn 25.4511 83,500.9  56,932.4 0.0147062 |35.9932 118,088  80,514.5  0.0207977 |1108.26  36.3601 89, 247.5 0.553284
Uranus 15.4841 50,800.9  34,637.0 0.00894705 | 21.8978 71,843.3  48,984.1  0.0126530 |989.073 32,4499  79,649.7 0.493784
Neptune 16.5308 54,234.8  36,978.3 0.00955183 | 23.3780 76,699.6  52,295.2  0.0135083 [1098.84  36.0512  88,489.3 0.548584
Pluto 11.23(?) 36.860(?) 25,130(?) 0.00649(?) | 15.89(?) 52,130(?) 35,540(?) 0.00918(?) |4209(?) 138.1(?) 338, 900(?) 2.101(?)
Sun 436.181 1,431,040 975,709  0.252035 | 616.853 2,023,795 1,379.860 0.356431 |27,315.7 896,186 2,199,730 13.6371

Underlined digits are questionable.




solar activity, the resulting model was more
representative of these conditions than average
atmospheric properties. An example of the effect
of solar conditions on upper atmosphere density
is shown in the following sketches taken from
Ref. 4. These sketches show the data calculated
from the orbits of Explorer IX compared to
earlier satellite data and the 1959 ARDC Model
Atmosphere. Also shown are the portions of the
solar sunspot cycle represented by the data.

800 —

1961 & 1 Explorer IV
1958 B 2 Vanguard I
1958 a Explorer [
1958 ¢ Explorer IV
1957 a 2 Sputnik I

o v D>OoO

600~

ARDC model
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o
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4004—

200

Density (gm»cm-al

Period of ARDC model
atmosphere 1959

/

Period of Explorer IX /
measurements /

/
/

160

Smoothed sunspot number

A new COESA Working Group was convened in
January 1960. Using data and theories from more
recent satellite and rocket flights, the Working
Groups prepared a new standard atmosphere that
was accepted by the entire committee on March
15, 1962 (Ref. 5). This new U. S. Standard
Atmosphere depicts a typical mid-latitude year-
round condition averaged for daylight hours and
for the range of solar activity that occurs between
sunspot minimum and maximum. Supplemental
presentations are being developed to represent
variability of density above 200 km with solar
position and a set of supplemental atmospheres
that will represent mean summer and winter con-
ditions by 15° latitude intervals to an altitude of
90 km.
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a. U.S. Standard Atmosphere--1962

The U.S. Standard Atmosphere--1962 was
developed by four Task Groups of the Working
Group of COESA. (Although U. S. Standard
Atmosphere--1962 is the general terminology,
the Working Group considers the region above 32
km as 'tentative' and above 90 km as "specu-
lative. ') The recommendations of Task
Group I for the region from 20 to 90 km were
adopted. However, Task Group IV was appointed
to resolve the discontinuity and inconsistency of
the models prepared by Task Groups II (70 to
200 km) and III (200 to 700 km). The reports
of Task Groups I and IV (Refs. 6 and 7) have been
used extensively in describing the new atmosphere.

Suggestions agreed upon by the Working Group
were that up to 79. 006 geopotential km (80. 000
geometric km using the ICAO gravity relations)
geopotential altitude would be the basic height
measure. Geometric heights would be basic
above this level. Above 20 km (the top of the
ICAO Standard), temperature lapse rate is posi-
tive at 1 deg/km to 32 km. This gives a value of
228.66 which is in good agreement with measure-
ments. From 32 to 90 km, the temperature lapse
would be linear in geopotential height with changes
(of whole or half degrees Celsius) to occur at
whole kilometer levels. A 5-km isothermal layer
(268.66 °K)at 50 km was suggested, and densities

close to 1 g/m° and 0.02 g/m° at 50 and 80 km
(geometric), respectively were recommended,

Re-examination of constants from those used
previously resulted in new proposed values as
follows:

ICAO |(U.S. Ext | Proposed Units
Universal gas constant | 8.31436 | 8.31439 | 8.31470 [joules/g-deg
Speed of sound 331.43 331.316 | 331.317 |[m/sec at 0° O
Sutherland's constant 120.0 110.4 110.4 3id

The new value of the gas constant decreases
temperature values by 0.01° (0° C = 273. 15° K)
and density and pressure values. The differences
are summarized in Table 16 (from Ref. 6). The
column labeled ""N'" is the adopted revision, while
"H'" and '"'D" refer to earlier revisions. The
speed of sound at 0° C also changes slightly and
the new relationship is

Cg = 20.046707 P2 1 fsee, Tin K

The dynamic viscosity, u, is slightly changed by
the new value for Sutherland's constant, S, so
that

p o= 1.458x 105 73/2 [ (T + )

In analyzing the temperature and density obser-
vations an average temperature of 270.65° K was
indicated at 50 km, meeting the requirements of
linear temperature lapse (above 32 km) that fit
the observed data then placed the isothermal
region at 47 km. The value of density at 50 km
fell within the suggested value of the Working
Group. From 30 to 50 km the new temperature

-profile is between the mean annual measured

temperature for high and low latitudes as indi-
cated in Fig. 2 (from Ref. 6). Above the iso-
thermal layer, two temperature lapse regions
define temperature to the next isothermal layer




TABLE 16

Comparison of Properties of ICAO, U. S. Extension, ARDC
1959 Model and U. S. Standard Atmospheres--1962

Height Temperature Pressure (mb's x 107) Density (g/m3 x 107)
Geopot |U.S. Ext ARDC U.S. Ext ARDC U.S. Ext ARDC
(km) 56-58 59 ng" IINH 56-58 59 IIHH N n 56-58 59 IIHII LNl n
88,743 | 196.86 165. 66 190. 65 180.65 2,258 1.353 1.8980 1.6437 -3| 3.995 2.846  3.4682 3,1698 -3
0.0 0.0 0.0 0.0
79.006 | 196. 86 165.66 190.65 180. 65 1.224 1,008 1.0868 1.0364 -2| 2.165 2,120 1.9859 1.9986 -2
0.0 0.0 0.0 0.0
79.000 | 196. 86 165.66% 190.65*% 180.65% | 1.225 1,009 1.0879 1.0376 -2| 2.167 2.122 1.9879 2,0009 -2
0.0 =A% -3.2 -4.0
75.000 | 196.86% 183,66 203. 45 196.65 2,452  2,1707 2.1771 2,1420 -2| 4.3394 4.1176 3.7278 3.7946 -2
-3.9 -4, 5 -3.2 -4.0
61.000 | 251. 46 246.66 248.25 252,65 2,0934 2.0372 1.8224 1.8209 -1( 2.9002 2.8774 2.5574 2.5108 -1
-3.9 -4,5 -3.2 -2,0
54,000 | 278.76 278.16 270.65% 266,65 5.1637 5.1630 4.5834 4.5748 -1| 6.4534 6.4664 5.8996 5.9769 -1
-3.9 =435 0.0 -2.0
53.000 | 282, 66% = 282,66% 270.65 268. 65 5.8320=5.8320 5.2001 5.1977 -1| 7.1881 =7.1881 6.6934 6.7401 -1
0.0 0.0 -2,0
52. 000 282,66 270.65 = 270, 65% 6.5813 5.8997 =5.8997 -1 8.1113 7.5939= 17,5939 -1
0.0 D 0.0 D™ —ryT—
49,610 282.66 268.66 270, 65 8.7858 7.9969 17,9772 -1 1.0829 1.0370 1.0268 +0
0.0 0.0 0.0
48.000 282,66 268.66% 270,65 1.0673 9.5880 9,7748 -1 1.3155 1.2433 11,2582 +0
0.0 +2.5 0.0
47.000 282.66% 266.16 270, 65% 1.2044 1.0895 1.1090 +0 1.4845 1.4261 1.4275 +0
+3.0 +2.5 +2,8
32,000 2317.66 228.66% 228, 65% 8.6776 8.6800 8.6798 +0 1.2721 1.3225 1.3225+1
+3.0 +1.0 +1.0
25,000 216.66% 221,66 221, 65 2, 4886 2,5110 +1 4.0016 3.946% +1
ICAO 0.0 150, +1.0 ICAO ICAO
20.000 | 216.66 = 216.66 = 216.66% 216,65% | 5,4749 5,4748=5.4748 5,4747 +1| 8.8035 8.8034=8.8034 8.8033 +1
0.0 0.0 0.0
11.000 | 216.66% 216.66% 216, 65% | 2,2632= 2,2632 2.2632 +2| 3.6392 3.6391 3.6392 +2
-6.5 -6.5 -6.5
0.000 | 288.16 288.16 288.15 1.01325 1.01325+3| 1.2250 =1.2250 1.2250 +3

*Breakpoint in temperature gradient, given in deg/km.

79 km (geopotential). The upper segment 61 to 79 The boundary conditions applied to the model
(km) is based upon observed densities which have were:
been considered more reliable than measured
temperatures. Adopted temperatures are seen to (1) The density, pressure and temperature
be at least 20° colder than reported temperatures at 90 km must coincide with those of
near 80 km. The isothermal layer of 180.65° K Task Group I, namely: density 3.1698
above 79 km provides continuity for density in the -6 3 =3
region above the isothermal layer. The new density x 10 ~ kgm/m”, pressure 1.6437 x 10
value at 80 km (geometric) agrees very closely millibars, molecular scale temperature
with the target value. The properties of this por- 180. 65° K.
tion of the new standard atmosphere are shown on
Table 17 (from Ref. 6). (2) The density at 200 km should lie within
-10 3
The basic obstacle to a consistent, continuous the range 3.3 £ 03 x 10 kgm/m" for
standard atmosphere above 90 km was the de- mean solar conditions.
velopment of a mean molecular weight (M) profile
for the atmospheric gases together with a mole- (3) The model
: ; : should agree as closely as
cular scale temperature TM profile with linear possible with the densities in the altitude
lapse rates which would give the secondary atmos- range 90 to 200 km recommended by
pheric parameters in agreement with theoretical Task Group II and based on rocket and
and empirical data. satellite data.
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of the U. S. Standard Atmosphere--1962

TABLE 17
Properties, to 90 km,

Density

Sound Speed Dyn Visc
Kilometers Temperature Pressuri _gr_ré_ 10 m 102 gm 10
Geomet Geopot Grad SRS (mb x 107) n \m n sec ° m-sec
90.000 88.743 0.0 180.65 1.6437 -3| 3.1698 =3 2.6944 1.2163
89.235 88.000 180.65 1.8917 3.6480 2.6944 1.2163
87.179 86.000 180. 65 2.7613 5.3250 2.6944 1.2163
85.125 84.000 180. 65 4.0307 7.7729 \ 2.6944 1.2163
83.072 82.000 180. 65 5.8836 1.1346 -2 2.6944 1.2163
81.020 80.000 180. 65 8.5883 \ 1.6562 2.6944 1.2163
79.994 79.000 ok 180.65 1.0376 -2| 2.0009 2.6944 1.2163
78.969 78.000 4.0 184.65 1.2512 2.3606 2.7241 1.2399
76.920 76.000 192.65 1.7975 3.2504 2.17825 1.2865
74,872 74.000 200. 65 2.5444 4.4176 2.8396 1.3323
72.825 72.000 208. 65 3.5530 5.9322 ( 2.8957 1.3773
70.779 70.000 216.65 4.8994 7.8782 ! 2.9507 1.4216
68.735 68.000 224.65 6.6776 1.0355 =i 3.0047 1.4652
66.692 66.000 232.65 9.0034 1.3482 3.05677 1.5082
64.651 64.000 240.65 1.2017 -1] 1.7396 3.1098 1.5505
62.611 62.000 248.65 1.5889 2.2261 3.1611 1.5922
61.591 61.000 sk 252,65 1.8209 2.5108 3.1864 1.6128
60.572 60.000 -2.0 254.65 2.0835 2.8503 3.1990 1.6230
58. 534 58.000 258. 65 2.7190 3.6622 3.2240 1.6434
56.498 56.000 262.65 3.5339 4.6873 3.2489 1.6636
54.463 54.000 266.65 4.5749 5.9769 3.2735 1.6837
52.429 52.000 %% 270.65 5.8997 7.5939 3.2980 1.7037
50. 396 50.000 0.0 270.65 7.5940 9. 7747 =il 3.2980 1.7037
48.365 48.000 0.0 270.65 9.7748 | | 1.2582 +0 3.2980 1.7037
47.350 47,000 sk 270,65 1.1090 +0 | 1.4275 3.2980 1.7037
46.335 46.000 +2.8 267.85 1.2591 1.6376 3.2809 1.6897
44.307 44,000 262.25 1.6294 2.1645 3.2464 1.6616
42.279 42,000 256. 65 2.1203 2.8780 3.2115 1.6332
40.253 40.000 251.05 2.7152 3.8510 3.1763 1.6045
38.229 38.000 245.45 3.6544 5.1867 3.1407 1. 5756
36.205 36.000 239.85 4,8430 7.0342 3.1047 1.5463
34.183 34.000 234.25 6.4610 9.6086 | 3.0682 1.5167
32.162 32.000 *kk  228.65 8.6798 Y 1.3225 i 3.0313 1.4868
30. 142 30.000 +1.0 226.65 1.1718 +1]1.8011 3.0180 1.4760
28.124 28.000 224.65 1.5862 2.4598 3.0047 1.4652
26.107 26.000 222.65 2.1530 3.3687 2.9913 1.4544
24.091 24.000 220.65 2.9304 4.6266 2. 9718 1.4435
22.076 22.000 218.65 3.9997 6.3726 2.9643 1.4326
20.063 20.000 sk 216.65 5.47417 8.8033 +1 2.9507 1.4216
18.051 18.000 0.0 216.65 7.5045 Y 1.2067 +2 2.9507 1.4216
16.040 16.000 216.65 1.0287 +2 | 1.6541 2.9507 1.4216
14.031 14.000 216.65 1.4101 2.2674 2. 9507 1.4216
12.1023 12.000 216.65 1.9330 3.1082 2.9507 1.4216
110159 11.000 k% 216.65 2.2632 3.6392 2.9507 1.4216
10.016 10.000 -6.5 223.15 2.6443 4.1282 2.9946 1.4571
8.010 8.000 236. 15 3.5601 5.2519 3.0806 1.5268
6.006 6.000 249.15 4.7183 6.5973 y 3.1643 1.5947
4.003 4.000 262.15 6.1642 8.1916 +2 3.2458 1.6611
2.001 2.000 215,15 7.9496 1.0065 + 3 3.3253 1.7260
0.000 0.000 288.15 10. 1325 } 1.2250 + 3 3.4029 1.7894

sx%Altitude at which temperature gradient experiences discontinuity.
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(4) At higher altitudes the density should
match satellite density data under mean
solar conditions and agree as closely
as possible with the density values rec-
ommended by Task Group III,

(5) The molecular scale temperature gra-
dients dTM/dz should be linear and

kept to a maximum of two significant
figures and, where possible, to one
significant figure.
(6) The number of breakpoints or segments
in the TM(z) function should be kept to

a minimum, consistent with accurate

representation of the properties of a

mean atmosphere.
(7) The value of T at 150 km should be as
low as possible, consistent with the ob-
served density values, to give some
weight to Blamont's measurement of T
at this altitude. (These temperature
measurements are not consistent with
temperatures deduced from density
measurements. )
(8) The value of dT/dz should approach
zero above 350 km.
(9) The value of T above 350 km should lie
in the range 1500 + 200° K.
b. Properties

The model defined in terms of molecular-scale
temperature as a function of geometric altitude is
shown in Fig. 3 (from Ref. 7) together with the
corresponding defining functions for the ARDC
1959 model and the current U.S. standard atmos-
phere (ARDC 1956). In Fig. 4 (from Ref. 1) the
adopted profile (up to 300 km) is compared with
profiles deduced from several types of observa-
tions.

The gradients dTM/dz increase steadily from

0° K/km at 90 km to a maximum value of 20° K/km
between 120 and 150 km, then steadily decrease to
5° K/km at 200 km and finally to 1.1° K/km at 600
km. Because of the requirement that dT/dz tend

to zero above 350 km, dTM/dz must be maintained

at a small positive value determined by the rate of
decrease of M in the same region.

dTM/dz S = T/M2 (aM/dz)

where dM/dz is negative

Figure 5 (from Ref. 1) presents density versus
geometric altitude for the new standard compared
with some U.S. and Russian data and the 1959
ARDC Model Atmosphere. A comparison of the
pressure versus altitude curves for the new U. S.
standard atmosphere with other standards is pre-
sented in Fig. 6 (from Ref. 1). Figure 7 (from
Ref. 7) is a comparison of the molecular weight
versus altitude for the different standards. A

When dT/dz = 0

table of the defining properties of the 90- to 700- km

portion of the U.S. Standard Atmosphere 1962 is
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presented in Table 18 (from Ref. 1). Table 19
(from Ref. 1) shows the detailed properties of
this upper part of the new atmosphere. A brief
outline of the new standard from 0 to 700 km in
skeleton form is presented in Table 20 (from Ref.
1). This table is included along with the data of
Table 19 because of its compact form and be-
cause of the fact that other data is also presented.

TABLE 18

Defining Properties of the Proposed
Standard Atmosphere

z TNI L
(km) CK) (CK/km) M T
90 180.65 28.966 180. 65
+3
100 210, 65 28.88 210,02
+5
110 260,65 28.56 257.00
+10
120 360. 65 28.07 349. 49
+20
150 960. 65 26.92 892.79
+15
160 1110.65 26.66 1022, 2
+10
170 1210.65 26. 40 1103.4
+7
190 1350. 65 25.85 1205. 4
+5
230 1550. 65 24,170 1322, 3
+4
300 1830. 65 22,66 1432.1
+3.3
400 2160, 65 19.94 1487. 4
+2.6
500 2420, 65 17,94 1499, 2
s U
600 2590, 65 16. 84 1506.1
b d
700 2700, 65 16,17 1507.6
z = geometric altitude
T, = molecular scale temperature = TMO/M
T = kinetic temperature
M = mean molecular weight
M, = sea-level value of M
L = dTM/dz, gradient of molecular scale
temperature
2. Density Variability

a. Measurements

Variations in density of the upper atmosphere
affect the orbital lifetime and re-entry of satel-
lites. For these reasons considerable attention
has been given recently to evaluation of these
variations.

Tidal variations in the atmosphere are at-
tributed to gravitational variations caused by
the sum and moon. This tidal energy is supplied




TABLE 19

Defining Molecular Scale Temperature and Related Properties
for the U. S. Standard Atmosphere--1962

p P
T H (mm H k n

(et (°1\f<) © K%km) tct) (b x 10%) n x 10 gn LOglop/po(r;% i )n . Logyqp/p,

90 | 180.65 5.438| 1.6437 -3 1.2329 -3 -5.7899  3.1698 -6 -5.5871

92 | 186.65 t 5.623 | 1.1448 8.5869 -4 -5.9496  2.1368 -5.7584

94 | 192.65 3.0 5.807 | 8.0674 -4 6.0511 -6.0990  1.4589 -5.9241

96 | 198.65 5.991| 5.7476 4,3110 -6.2462  1.0080 -6.0847 .

98 | 204.65 * 6.176 | 4.1372 3.1031 -6.3890  7.0428 -7 -6.2404
100 | 210.65 6.361| 3.0070 2.2554 -6.5276  4.9731 -6.3915
102 | 220.65 t 6.667 | 2.2119 1.6591 -6.6610  3.4924 -6. 5450
104 | 230.65 5.0 6.974 | 1.6497 1.2374 -6.7883  2.4918 -6.6916
106 | 240.65 7.280 | 1.2460 9.3456 -6.9102  1.8038 -6. 8320
108 | 250.65 j 7.588 | 9.5205 -5 7.1410 Y —7aoz7i I3 o33y -6.9665
110 | 260.65 7.895 | 17.3527 -5 5.5150 -5 -7.1393  9.8277 -8 -7.0957
112 | 280.65 A 8.507 | 5.7609 4,3210 -7.2452  7.1512 -7.2338
114 | 300.65 | 10. 9.117 | 4.5908 3. 4434 -7.3438  5.3196 -7.3623
116 | 320.65 9,781 || 3.7127 2. 7848 -7.4360  4.0338 -7.4824
118 | 340.65 10. 34 3.0418 2. 2816 -7.5226  3.1109 -7.5953
120 | 360.65 \ 10. 96 2. 5209 1. 8909 -7.6042  2.4352 -7.7016
122 | 400,65 12,18 2.1204 1.5904 -7.6793  1.8435 -7.8224
124 | 440.65 13,41 1.8133 1.3601 -7.7472  1.4336 -7.9317 -
126 | 480.65 14,63 1.5721 1.1792 -7.8092  1,1395 -8.0314
128 | 520.65 15. 86 1.3787 Y 1.0341 Y -7.8663  9.2254 -9 -8.1232
130 | 560.65 17.09 1.2210 -5 9.1584 -6 -7.9190  7.5873 -9 -8.2080
132 | 600.65 18. 32 1.0905 8.1797 -7.9681  6.3252 -8.2871
134 | 640.65 J 19.55 9.8118 -6 7.3595 -8.0140  5.3357 -8.3610
136 | 680.65 | 20. 20,178 8. 8852 6.6645 -8.0571  4.5478 -8. 4303
138 | 720.65 22,02 8.0923 6.0697 -8.0977  3.9121 -8. 4957
140 | 760.65 23. 25 7.4079 5.5563 -§.1360  3.3929 -8.5576
142 | 800.65 24, 49 6.8124 5.1098 -8.1724  2,9643 -8.6162
144 | 840.65 25.13 6.2908 4,7185 -8.2070  2.6071 -8.6720
146 | 880.65 26,98 5.8310 4,3736 -8.2400  2,3067 -8. 7251
148 | 920,65 28. 22 5.4233 4,0678 -8.2715  2.0522 -8. 7759
150 | 960.65 29, 46 5.0599 -6 3.7952 -6 -8.3016  1.8350 -9 -8.8245
152 | 990.65 \ 30.39 4,7328 3.5499 -8.3306  1.6644 -8. 8669
154 [1020.65 |15. 31.34 4, 4359 3. 3272 -8.3587  1.5141 -8.9080
156 [1050. 65 32,28 4,.1655 3.1244 -8.3861  1.3812 -8. 9479
158 [L080. 65 33.22 3.9187 2.9393 -8,4126  1.2633 -8.9866
160 [1110.65 \ 34,17 3.6929 2. 7699 -8.4384  1.1584 -9.0243
162 [1130.65 |10, 34. 80 3.4848 2.6138 -8.4635  1.0738 -9.0572
164 [1150.65 Y 35. 44 3.2019 1 2.4691 -8.4883  9.9669 -10  -9.0896
Z = geometric altitude
H = geopotential altitude

IRz

" R+z R = radius of earth at 45° 32' 40" = 6356. 766 km
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TABLE 19 (continued)

p )
a8 H mm H k n

(kzrn) (°11\é[) (°K]7krn) (kr};) (mb x 10™ n (x 1o“)gn Logyop/pg <m_g3 oL )n Log; op/pg
166 | 1170.65 | 36.08 3.1128 -6 2.3348 -6 -8.5126  9.2637 -10  -9.1214
168 | 1190.65 | 10.0 36.72 2.9464 2.2100 -8.5364  8.6211 -10  -9,1526
170 | 1210.65 t 37. 36 2.7915 -6 2.0938 -6 -8.5599  8.0330 -10  -9.1833
172 | 1224.65 37.81 2.6468 1.9853 -8.5830  7.5296 -9.2114
174 | 1236.65 38. 27 2.5113 1.8836 -8.6058  17.0632 -9. 2391
176 | 1252.65 38.73 2. 3841 1.7882 -8.6284  6.6307 -9. 2666
178 | 1266.65 39.18 2.2648 1.6987 -8.6507  6.2292 -9. 2937
180 | 1280.65 7.0 39. 64 2.1527 1.6147 -8.6727  5.8562 -9. 3205
182 | 1294.65 40.10 2.0474 1.5357 -8.6945  5.5094 -9. 3470
184 |1308.65 40. 55 1.9483 1.4614 -8.7161  5.1868 -9. 3732
186 | 1322.65 41.01 1.8551 1.3914 -8.7374  4.8863 -9.3992
188 | 1336.65 41,47 1.7673 Y 1.3256 | -8.7584  4.6062 -9, 4248
190 |1350.65 ! 41.93 1.6845 -6 1.2635 -6 -8.7793  4.3450 -10 -9, 4502
192 |1360.65 ' 42,27 1.6064 1.2049 -8.7999  4.1130 -9. 4740
194 |1370.65 42,61 1.5324 1.1494 -8.8204  3.8950 -9.4976
196 |1380.65 42.94 1.4624 1.0969 -8.8407  3.6901 -9.5211
198 |1390.65 43,28 1.3961 1.0472 -8.8608  3.4975 -9.5444
200 |1400.65 43.62 1.3333 1.0001 -8.8808  3.3163 -9.5675
202 |1410.65 43. 96 1.2738 9.5541 -8.9006  3.1458 -9.5904
204 |1420.65 44,30 1.2173 9.1307 -8.9203  2.9852 -9.6132
206 [1430.65 44.63 1.1638 8.7291 -8.9399  2.8340 -9.6358
208 |1440.65 44,97 1.1130 8.3480 I -8.9592  2.6915 | -9. 6582
210 |1450.65 5.0 45, 31 1.0647 -6 7.9862 -7 -8,9785  2.5571 -10  -9.6804
212 |1460.65 45.65 1.0189 ¥ 7.6427 -8.9976  2.4303 -9.7025
214 |1470.65 45, 99 9.7542 -1 7.3163 -9.0165  2.3107 -9, 7244
216 |1480.65 46. 33 9. 3407 7.0061 -9.0353  2.1978 -9.7462
218 |1490.65 46.68 8. 9475 6.7112 -9.0540  2.0911 -9.7678
220 |[1500.65 47,02 8.5735 6.4307 -9.0726  1.9904 -9.7892
222 |1510.65 47, 36 8. 2177 6.1638 -9,0910  1.8952 -9. 8105
224 [1520.65 47.70 7.8721 5.9046 -9.1092  1.8051 -9. 8316
226 [1530.65 48.04 7.5567 5. 6680 -9.1274  1.7200 -9. 8526
228 |1540.65 48. 39 7.2497 5.4377 1 -9.1454  1.6394 -9. 8735
230 |1550.65 ! 48,73 6.9572 -17 5.2183 -7 -9.1633  1.5631 -10 -9, 8942
232 |1558.65 \ 49,01 6.6782 5.0091 -9.1811  1.4927 -9.9142
234 |1566.65 49,29 6.4119 4.38093 -9.1987  1.4259 -9. 9341
236 [1574.65 4.0 49.58 6.1577 4.6187 -9.2163  1.3624 -9. 9538
238 |[1582.65 49. 86 5.9149 4.4366 -9.2338  1.3020 -9.9735
240 |1590. 65 50. 14 5. 6830 4.2626 -9.2511  1.2447 -9.9931
242 [1598.65 50. 43 5.4614 4.0964 -9.2684  1.1902 1  -10.0125
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TABLE 19 (continued)

P p
an H (mm H k n
(ken) @;g (°Kﬁknﬂ (k) | (mb x 10 n x 10“)%1 Log, op/p, (;f%' i ) o Logiopleg
244 1606. 65 4.0 5071 5.2496 -7 3.9375 -7 -9, 2856 1.1383 -10 -10,0319
246 | 1614.65 50.99 |  5.0471 3.7856 -9.3027  1.0890 l -10.0511
248 | 1622.65 51.27 |  4.8535 3.6404 -9.3197  1.0421 -10. 0703
250 | 1630. 65 51.56 | 4.6683 -7  3.5015 -7 -9.3366  9.9738 -11  -10.0893
252 | 1638. 65 51.84 |  4.4912 3. 3687 -9.3534  9.5485 -10.1082
254 | 1646.65 52.13 |  4.3217 3.2415 -9.3701  9.1434 -10.1270
256 | 1654. 65 52. 41 4.1594 3.1198 -9.3867  8.7576 -10. 1458
258 1662. 65 52,70 4,0041 3.0033 -9,4032 8.3901 -10,.1644
260 | 1670. 65 52.98 |  3.8554 2.8918 -9.4197  8.0397 -10. 1829
262 1678.65 53..27 3. 7130 2.7849 -9.4360 7.7058 -10, 2013
264 | 1686. 65 53.55 3.5765 2. 6826 -9.4523  17.3874 -10. 2197
266 | 1694. 65 53.84 |  3.4457 2. 5845 -9.4684  7.0837 -10. 2379
268 | 1702. 65 54.13 5.3204 1 2.4905 | Loiidet oanan -10. 2560
270 1710, 65 54, 41 3..2003 -1 2,4004 -7 -9.5005 6,5176 -11 -10, 2741
2702 1718.65 54.70 3.0851 2,3140 -9.5165 6.2537 -10. 2920
274 1726.65 % 54, 99 2.9746 2o 2001 -9.5323 6.0018 -10. 3099
276 | 1734.65 | 4.0 55.28 |  2.8686 2.1517 -9.5480  5.7613 -10. 3276
278 | 1742.65 55. 57 2.7670 2.0754 -9.5637  5.5316 -10. 3453
280 | 1750. 65 55. 86 2. 6694 2.0022 -9.5793  5.3122 -10. 3629
282 1758. 65 56415 2.5758 1.9320 -9.5948 54,1025 -10. 3804
284 | 1766. 65 56. 43 2.4858 1.8645 -9.6103  4.9021 -10. 3978
286 | 1774. 65 56.73 2.3995 1.7998 -9.6256  4.7105 -10. 4151
288 | 1782. 65 57.01 2.3166 | 1.7376 1 -9.6409  4.5273 | -10. 4323
290 1790, 65 531 2.2369 -7 1.6778 -7 -9.6561 4,3521 -11 -10, 4494
292 1798, 65 57.60 2.1604 1.6204 -9.6712 4,1845 -10, 4665
294 | 1806. 65 57.88 |  2.0868 1.5653 -9.6862  4.0241 -10. 4835
296 1814.65 58818 20162 1551122 -9.7012 3.8707 -10,5004
298 | 1822. 65 58, 47 1.9482 1.4613 -9.7161  3.7238 -10.5172
300 | 1830. 65 1 58. 76 1.8828 1.4122 -9.7309  3.5831 -10.5339
305 |1847.15 ; 59. 38 1.7300 1. 2976 -9.7677  3.2629 -10. 5745
310 | 1863. 65 60. 00 1.5910 1.1934 -9.8041  2.9742 -10.6148
315 | 1880.15 60. 62 1.4644 1.0984 -9.8401  2.7135 -10. 6546
320 | 1896. 65 61. 25 1.3491 1.0119 V -9.8757  2.4780 -10. 6940
325 1913, 15 33 61, 88 1.2438 -7 9.3293 -8 -9,9110 2.2650 -11 -10,7331
330 |1929. 65 62. 50 1.1477 $ 8. 6086 -9.9459  2.0721 -10. 7717
335 |1946.15 63.13 1.0599 7. 9499 -9.9805  1.8973 -10. 8100
340 |1962.65 63.176 9.7957 -8  7.3474 -10.0147  1.7388 -10. 8479
345 |1979.15 64. 40 9.0604 Y  6.7958 -10,0486  1.5949 | -10. 8854
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TABLE 19 (continued)

P P
T H (mm Hg Kk n
G| K) | CKlkm) | (am) | (mb x 107 x 10" n | Log;oP/pg (r;% - Zn Log;of/pg
350 | 1995.65 65.02|  8.3866 -8  6.2905 -8 -10.0821 1.4641 -11  -10.9226
355 | 2012.15 65.66|  7.7688 5. 8271 -10.1154  1.3451 -10. 9594
360 | 2028.65 66. 30 7.2018 5.4018 -10.1483 1.2368 -10.9958
365 | 2045.15 66.94|  6.6810 5.0112 -10.1809  1.1381 -11.0320
370 | 2061.65 67.58|  6.2024 4.6522 -10.2132  1.0481 1 -11.0677
375 | 2078.15 3.3 68.22 5.7620 4.3219 -10.2400 9.6595 -12 -11.1032
380 | 2094.65 68.86 5.3567 4.0178 -10.2768  8.9092 -11.1383
385 | 2111.15 69.51|  4.9832 3.7371 -10.3082  8.2233 -11.1731
390 | 2127.65 70.16|  4.6389 3. 4794 -10.3393  7.5957 -11.2076
395 | 2144.15| | 70.81| 4.3212 1 3.2411 -10.3701  7.0211 Y  -11.2417
400 | 2160.65 ' 71.45|  4.0278 -8 3.0211 -8 -10.4007 6.4945 -12  -11.2756
410 | 2186.65 72.53|  3.5055 2.6293 -10.4610  5.5850 -11.3411
420 | 2212.65 73.61 3.0571 2.2930 -10.5214 4.8134 -11. 4057
430 | 2238.65 74.69 2.6714 2.0037 -10.5790 4.1573 -11.4693
440 | 2264.65 75.78|  2.2339 1.7543 -10.6367  3.5981 -11.5321
450 | 2290.65 2.6 76.88 2.0517 1.5389 -10.6936  3.1204 -11.5939
460 | 2316.65 77.98|  1.8031 1.3525 -10.7497  2.7116 -11.6549
470 | 2342.65 79.09 1.5875 1.1908 -10.8050 2,3609 -11,7151
480 | 2368.65 80.20|  1.4002 1,050 -10.8595  2.0595 117744
490 | 2394.65 J 81.32 1.2371 Y 9.2792 -9 -10.9133 1.7998 -11.8329
500 | 2420.65 82.44 1.0949 -8 8.2124-9 -10.9664 1.5758 -12 -11.8906
510 | 2437.65 83. 27 9.7042 -9 7.2787 -11.0188 1.3869 -11, 9461
520 | 2454.65 84,09 8.6110 6.4588 -11,0707 1,2222 -12.0010
530 | 2471.65 84,91 7.6500 5.7380 =11.1221 1.0783 -12,0554
540 | 2488.65 85.75 6.8041 5.1035 -11,1730 9.5250 -13 -12.1093
550 | 2505.65 | 1.7 | 86.59|  6.0585 4.5443 -11.2234  8.4238 -12.1626
560 | 2522.65 87.43 5.4007 4.0509 -11.2733 7.4585 -12.2155
570 | 2539.65 88.28|  4.8197 3.6150 -11.3227  6.6115 -12. 2678
580 | 2556.65 89.12 4,3058 3.2296 -11.3717 5.8673 -12,3197
590 | 2573.65 | | 89.97|  3.8508 2. 8883 -11.4202  5.2127 -12.3711
600 | 2590.65 J 90. 83 3.4475 -9 2..5859 =9 -11.4682 4.6362 -13 -12.4220
610 | 2601.65 91.47|  3.0893 2.3172 -11.5159  4.1369 -12. 4715
620 | 2612.65 92.13 2,7705 2.0780 -11.5632 3.6943 -12.5206
630 | 2623.65 92.78|  2.4865 1. 8650 -11.6101  3.3017 -12.5694
640 | 2634.65 93.43 2.2333 1.6751 -11.6568 2.9531 -12.6179
650 | 2645.65 ik 94,09 2.0074 1.5056 -11.7031  2.6433 -12.6660
660 | 2656.65 94,75 1.8057 1. 3544 -11.7491  2.3679 -12,7138
670 | 2667.65 95.42 1.6254 1.2192 -11.7948  2.1227 -12.7613
680 | 2678.65 96.09 1.4642 1.0983 -11.8401 1.9044 -12,8084
690 | 2689. 65 96.76|  1.3200 9.9007 -10 | -11.8852 1.7097 -12. 8552
700 | 2700.65 97,42 1.1908 -9 8.9317 -10 -11.9299 1.5361 -13 -12,9017

I1-28




TABLE 20
Skeleton of the U.S. Standard Atmosphere--1962

Defining temperature and molecular weights of the proposed U.S. Standard Atmosphere and computed
pressures and densities, where z = geometric altitude, h = geopotential altitude, T = kinetic temperature,
M = mean molecular weight, L = gradient of molecular scale temperature = dTM/dh (below 79 geopotential

km) = dTM/dz (above 79 geopotential km), Ty = molecular scale temperature = (T/M) M,; and M = sea

level value of M.

P
z h Tm L T v (ELHB_ 10“)
(km) (km) (°K) (°K/km) M (°K) (mb x 10" n | \m n
0.000 0.000 288.15 -6.5 28. 966 288.15 10,1825 2%| 1.2250 8
11.019 11.000 216.65 0.0 28. 966 216. 65 2. 2632 3,16392liilie
20.063 20.000 216. 65 1.0 28. 966 216. 65 5.4747 1 8.8033" 1
32.162 32.000 228. 65 2.8 28. 966 228. 65 8.6798 0 12322501
417.350 47.000 270. 65 0.0 28. 966 270. 65 1.1090 0 1.4275 0
52.429 52.000 270. 65 =980 28. 966 270. 65 5.8997 - 1 7.5939 - 1
61.591 61.000 252. 65 -4.0 28. 966 252. 65 1.8209 - 1 2.5108 - 1
79. 994 79.000 180.65 0.0 28. 966 180. 65 1.0376 - 2 2.0009 - 2
90.000 88.743 180. 65 3.0 28. 966 180. 65 1.6437 - 3 3.1698 - 3
100. 000 98. 451 210.65 5.0 28. 88 210.02 3.0070 - 4 4,9731 - 4
110.000 108.129 260. 65 10.0 28.56 257,00 7.3527 - 5 9.8277 - 5
120,000 T 360. 65 20.0 28.07 349, 49 2.5209 - 5 2.4352 - 5
150.000 146,542 960. 65 15.0 26. 92 892.79 5.0599 - 6 1.8350 - 6
160.000 156.071 1,110.65 10.0 26. 66 1,022.20 3.6929 - 6 1.1584 - 6
170,000 165.572 1, 210.65 750 26. 40 1,103.40 2.7915 - 6 8.0330 - 7
190.000 184. 485 1, 350.65 5.0 25. 85 1, 205.40 1.6845 - 6 4.3450 -7
230.000 221. 968 1,550.65 4.0 24.170 1, 322. 30 6.9572 - 7 1.5631 - 17
300.000 286. 478 1, 830.65 22.66 1,432.10 1.8828 - 7 3.5831 - 8
400,000 376. 315 2,160.65 19. 94 1, 487.40 4.0278 - 8 6.4945 - 9
500. 000 463,530 2, 420. 65 2 17.94 1,499.20 1.0949 - 8 1.5758 - 9
600.000 548. 235 2, 590. 65 L 16. 84 1,506.10 3.4475 - 9 4.6362 - 10
700.000 630.536 2,700.65 kel 16.17 1, 507. 60 1.1908 - 9 1.5361 - 10

to the atmosphere in the high density region and
the diurnal tidal component propagates upward to
about 105 to 305 km where it is damped. The
semidiurnal components of the lunar and solar
tidal variation, because of their shorter period,
are usually detected between 50 and 80 km. The
maximum density variation resulting from these
tidal effects is of the order of 25%. At 96 km,
Greenhow and Hall (Ref. 8) have found a diurnal
density variation of about 13% and a semidiurnal
variation of about 7%. Other causes of density
variability are solar heating which may be ex-
pected to vary with local time, latitude, season
and altitude (as selective portions of the solar
radiation are absorbed). In addition to gravita-
tional and thermal causes of fairly regular den-
sity variability there may be an irregular com-
ponent analagous to storm systems in the lower
atmosphere.

Nicolet (Ref. 9) indicates that atmospheric den-
sity variations may also be produced by solar
flares and sunspot activity. Sunspot variation ef-
fects on density would be expected to vary from
one year to the next with solar flare activity being
associated with the sunspot activity. It is presumed
that these effects would cause density variations
of the order of 30 to 40% at altitudes of 200 km.
The effect of the 11-year sunspot cycle on density
has been estimated by Johnson (Ref. 10) as shown
in Fig. 8. The maximum decrease occurs at
about 1000 km where density is lower by a factor
of 100. The effect reverses at 1700 km. If these
estimates are correct, then the solar cycle varia-
tion may be the largest change in density.

One of the most useful techniques in determining

densities has been from changes measured in the
orbits of satellites having fairly precisely defined
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elements. King-Hele and Walker (Ref. 11) have
determined density from 21 satellites. Figure 9
shows the density ratio (to sea level density) from
these determinations. These data confirm that at
altitudes between 180 and 300 km "the density did
not depart from the long term average of 1957 -
1959 by a factor of more than 1.5" as a result of
latitudinal, seasonal or day-night effects, although
it is possible that larger variations might have oc-
curred over intervals of less than 1 day and not
have been detected by this technique (which re-
quires about 10 orbits for a determination).

A grouping of the data from 180 to 250 km in
Fig. 9 into those points up to January 1959 and
after August 1959 would indicate density curves,
respectively, 10% higher and 10% lower than the
average shown on Fig. 9. This small decrease
in density with time is attributed to the decrease
in solar activity.

At altitudes between 300 and 700 km, Fig. 9
shows an increasingly pronounced day-night varia-
tion. The authors note that this is a solar zenith
angle effect and should not be attributed to latitude
or season beyond the fact that solar zenith angle
is related to latitude and season.

In evaluating the large apparent day-night ef-
fect shown, it should be noted that some of the
variation is due to solar activity as the midday
data all refer to early 1959 and the midnight values
to late 1959 and early 1960.

Jacchia (Ref. 12) has found from observations
of satellite motion that a large diurnal variation
in atmospheric density primarily due to solar heat-
ing effects occurs at altitudes greater than 325 km
and decreases at the 200-km level. This bulge oc-
curs in the general direction of the sun with a 25°
to 30° lag produced by the earth's rotation. This
atmospheric bulge represents the bulk of the den-
sity variations at altitudes above 200 km with
variations ranging from about 5% of the mean den-
sity at 200 km to about 25% at 800 km.

A separation of the day-night, seasonal, ter-
restrial (latitude) and solar activity effects has
been indicated by Martin and Priester (Ref. 13)
using observations of Vanguard I. At 660 km, a
factor of 10 day-to-night variation in density was
determined. This is considerably larger than
Jacchiar's value at 800 km. The value of density
shown in Fig. 10 is a function of the difference in
right ascension Ag of the sun and satellite perigee
(and therefore a function of true local time). The
shift of maximum density at 660 km by 25° from
local noon is well defined and in agreement with
Jacchia.

The seasonal and latitude effects are super -
imposed and at 660 km and over latitudes and dec-
linations 0° to 30° they are each about 1/10 of
the day-night effect. The analysis of Discoverer
satellite orbits (Ref. 14) has indicated that the
latitude -seasonal effect was only about 20%.
Kallmann-Bijl (Ref. 15) in a recent survey has
indicated that the separation of yearly, latitudinal,
seasonal and solar cycle effects still remains a
problem and her belief is borne out by the lack of
agreement among different estimates of these ef-
fects.
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Data from Vanguard 2 and Sputnik in addition
to Vanguard I data were further investigated (Ref.
16) and yielded the diurnal (plus seasonal) density
variations shown in Fig, 11. At 210 km the diurnal
variation of density is about a factor of 2, at 562
km it is between 5 and 6 and at 660 km it is al-
most 10 as mentioned earlier. The difference in
density between the solid and dashed lines is a
measure of the seasonal effect at each altitude
since

A 67 b
is the difference in declination between the satel-
lite perigee x and the sun @. The seasonal den-
sity decrease at an average As of about 40° is
about 5% at each altitude. (Parkyn (Ref. 17) has
determined the ratio of polar to equatorial density
of 0.65 at about 250 km.) Figure 12 (taken from
Ref. 17) is a model of the diurnal variations of
atmospheric density. The "wiggle" at 200 km
was first suggested by Kallmann (Ref. 18) and
derived more exactly and with better definition
by Priester and Martin (Ref. 19) using more data.
The wiggle occurs in the F1 region of the iono-
sphere and is considered as the beginning of the
density "solar effect.” It is caused by absorption
of the relatively intense solar helium line at 304A.
The diurnal variation of density at 200 km is small
because of the poor heat conduction. The increas-
ing diurnal effect "fan shape" with altitude results
from the combination of absorbed solar electro-
magnetic radiation and increasing heat conductivity
of the atmosphere. Another density "wiggle" at
300 to 500 km expected from the absorption of the
5844A solar helium line is apparently smoothed
out by the large heat conductivity.

The flux of solar radiations (short ultraviolet
as well as perhaps X-rays and particles) which
cause the diurnal density variation are themselves
variables. Therefore a "solar activity effect" upon
density (above 200 km) also occurs. The best in-
dex of this effect is the intensity of radiation (in
the 3- to 30-cm wavelength) from the sun which is
emitted from the same solar regions (coronal
condensations and flares) as the much more highly
ionizing radiations which modulate atmosphere
density.

The relation between density and 20-cm solar
radio waves has been found to be approximately
linear over the range of values of solar flux be -

tween 100 and 240 x 10 22 w/mz—cps. If 170 x 10
is used as a standard flux, the density variation
due to solar activity is about £41%. This is over
and above the diurnal variation. It is known that
some of the ionizing solar radiations have their
largest variations in intensity over relatively
short intervals of minutes during solar flares.
Short transients in density that result from the
absorption of these radiations are not distinguish-
able using the relatively long technique of varia-
tions in satellite acceleration. On the other hand,
some of the sources of increased ionizing radia-
tion are relatively long-lived, as a 27-day periodicity
of density has been detected. This corresponds to
the rotational period of the sun.

22

An estimate of density at 1518 km has been
made from the orbit of the Echo satellite (Ref. 20).




The variation in orbital period corresponded to a

mean density of 1.1 x 10 kG gm/cm3. However,
at this altitude, density variations of 2 orders of
magnitude are indicated, so the value of the mean
is very limited.

At lower altitudes, Quiroz (Ref. 21) has con-
structed a model of the seasonal variation of mean
density as shown in Fig. 13. This author notes
that the variations indicated on this figure join
quite well with the factor of 1.5 at 220 km from
Ref. 11. At altitudes up to 30 km there is con-
siderably more data available. In Refs. 22 and
23, summaries have been prepared and are avail-
able for a number of specific stations and by lati-
tude and season.

b. Variable models from satellite orbits
(Ref. 24)

Jacchia (Ref. 12) and Priester (Ref. 25) both
devised variable models of the upper atmosphere
based on the observed correlation with the deci-
meter solar flux and the angle between perigee
and the sun. An annual variation in atmospheric
density was then discovered by Paetzold (Ref.

26) who constructed a variable atmospheric model
based on all three effects. A CD of 2 should be

used with these variable atmospheric models.
(Paetzold has recently reported that he now uses
CD = 2.2.) In all the models .mentioned above the

density is calculated as if all the drag were caused
by neutral particles. At the higher altitudes charge
drag may be important, but the gross effects of

the interaction would be the same in any case for
satellites with conducting skins.

The model atmospheres based on satellite ob-
servations are constructed mostly from accelera-
tion data smoothed over 2-day intervals. There-
fore, these models can give no information about
shorter term fluctuations. Little is known about
short term fluctuations in the upper atmosphere.

Jacchia's Variable Model. According to Jacchia,
the density of the upper atmosphere is given by
the following formula.

P =Py (h) on {1 + 0.19 [exp (0.01887h)

-1.9]00564;/2

Po (h), which is the density when ¢ = 180° and

F,, = 1, is given by

20
log po(h) = -15.733 - 0.006, 808, 3h

+ 6.363 exp (-0.008,917h).
The quantities appearing in these formulas are

h = height in km (185<h <750)

20-cm solar flux in units of 100 x o

Foo

2
w/m®“ - cps

y = the angle between the satellite and the
peak ot the diurnal bulge of the atmos-
phere. (The bulge is assumed to lag
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behind the sun by approximately 25° in
Jacchia's atmosphere. )

p = atmospheric density in slugs/ft3
(1 slug/ £t3 = 515.2 kg/m°)

Priester's Variable Model. Priester's model
is similar to Jacchia's, since both are based on
the correlation with the 20-cm solar flux and the
angle between perigee and the sun. In Priester's
model, the atmospheric density is directly pro-
portional to Fg g, the 20-cm solar flux, and the

peak of the diurnal bulge lags 1 hr (15°) behind
the sun.

Paetzold!'s Variable Model. Paetzold's at-
mosphere is one of the more recent modes (July
1961). It also covers the greatest range of al-
titudes (150 to 1600 km), and uses the most depend-
able and readily available solar flux data (the 10-
cm measurements made by Arthur Covington at
the National Research Council, Ottawa, Canada).
Since Paetzold's atmosphere includes more ef-
fects, it is more complicated than Jacchia's or
Priester's.

In Paetzold's model, the density of the upper
atmosphere, p(h) is described by

220 - F10

log p(h) = log Ps(h) = izzo(h) B R
- a(h) g(a) - 6(h) f(0) . .

where pS(h) is the standard density function giveu
in Table 21. It represents the density in slugs/

£t (1 slug/ft3 = 515,12 kg/m3)at the maximum of
the diurnal bulge (local time, 6 = 14.00 hr), when
the 10-cm solar flux, F,, is 220 (in units of

10742 w/mz—cps), and when the annual variation

is at its peak., The function 1220 (h) represents
the effect of solar ultraviolet emission, which is
correlated with the 10-cm solar flux and with

sunspots. The effect of the diurnal bulge is
represented by 6(h), where

6(h) = 0 (h)

220 - F

i 10
_A, o(h) (iggoh) —gg— + a(h) &(a)
1220(h) + a(h)

220 - FIO
=l e e
All three functions, Gs(h), Ale(h) and Aze(h) are
given in Table 21. Below 650 km, the corrections
A 1G(h) and Aze(h) are small. The function f(0)
appears in Table 22. The annual variation in
density is represented by the product g(a) a(h), in

which g(a) is a function of the month of the year,
and a(h) is a function of the height.




TABLE 21

The Standard Functions for the Air Density and Its Variations

(1 naut mi = 1.852 km; 1 slug/ft°> = 515.2 1%
1m

R

(nau’? mi) @132(5/)@3 log ay(h) 8h) 29200 | iggoh) 4,0 | 4,6(h)

80 7.220 x 10712 -11.122 -0.009 0.031 0. 041 0. 000 0. 000
85 3. 845 0.443 -0.014 0. 036 0. 064 0 0
90 2. 098 0. 694 -0.018 0. 041 0.091 0 0
95 1.347 0.879 -0.023 0.047 0.121 0 0
100 9.787 x 10713 -12.0133 | -0.017 0.053 0.156 0 0
110 7. 206 0.1438 | +0.032 0. 066 0. 246 0 0
120 5.135 0.2913 0.070 0.079 0.325 0 0
130 3.296 0.4832 0. 049 0.093 0. 356 0 0
140 2. 060 0.6868 0.054 0.108 0.373 0 0
150 1.423 0.8477 0.094 0.122 0. 387 0 0
160 1.060 ¥ 0.9756 0.133 0.137 0.398 0 0
170 8.046 x 10 14 ~13.0957 0.170 0.152 0.409 0 0
180 6. 087 0.2167 0.207 0.168 0.420 0 0
190 4.612 0. 3369 0. 242 0.185 0.431 0. 001 0
200 3.507 0.4553 0.276 0.203 0.442 0. 001 0
210 2,712 0.5671 0.314 0. 221 0.454 0. 002 0
220 2,151 0. 6705 0. 344 0. 240 0. 465 0.002 0
230 1.714 0. 7684 0. 375 0.259 0.476 0.003 0
240 1.385 0. 8604 0.425 0.278 0.487 0. 004 0
250 1.130 0.9479 0.462 0.295 0.498 0.005 0
260 9.326 x 1012 -14.0316 0.499 0.312 0. 509 0.007 0
270 7.901 0.1107 0. 536 0. 327 0.520 0. 009 0
280 6.474 0.1898 0.573 0.342 0.531 0.010 0
290 5.443 0. 2650 0.605 0. 356 0.542 0.012 0
300 4.608 0.3376 0.642 0. 370 0. 554 0.014 0
310 3.921 0. 4080 0.679 0.384 0. 565 0.016 0
320 3.352 0.4762 0.716 0.397 0. 576 0. 020 0
330 2.873 0.5430 0.753 0.410 0.587 0.023 0
340 2.473 0.6082 0.790 0.422 0.598 0.028 0
350 2. 196 0.6717 0.827 0.433 0. 609 0.033 0
360 1.938 0. 7340 0.863 0. 444 0. 620 0.038 0
370 1.606 0.7953 0.895 0.455 0.631 0. 044 0
380 1.397 0.8557 0.927 0.467 0.643 0. 049 0
390 1.217 0.9153 0. 960 0.478 0.654 0.055 0
400 1.063 | 0.9739 0.992 0.991 0. 665 0. 061 0
410 9.300 x 10716 -15. 0316 1.025 0.498 0. 676 0.068 0
420 8.161 0.0886 1.053 0.508 0.687 0.074 0
430 7.174 0.1448 1. 080 0.518 0.698 0.081 0
440 6. 316 0.2003 1.108 0.528 0. 709 0.087 0
450 5. 564 0.2555 1.135 0.537 0.720 . | 0.094 0
460 4.905 0.3103 1.162 0. 546 0. 1732 0.101 0
470 4.333 0.3642 1.188 0. 556 0.743 0.108 0
480 3.8 0.4174 1.213 0. 565 0.754 0.116 0
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TABLE 21 (continued)

m
h pg(h) :

(naut mi) (slugs /5t°) log p () 04h) 29900 | igp0M) A 18(h) A 508(h)
490 3.395 0.4701 | 1.239 0. 574 0. 765 0.123 0
500 3.009 0.5223 | 1.264 0.583 0. 776 0.131 0
520 2.371 0.6256 | 1.310 0. 602 0.798 0.145 -0.002
540 1.875 0.7274 | 1.353 0. 620 0.819 0.160 -0.007
560 1.500 0.8278 | 1.396 0.637 0. 836 0.175 -0.016
580 1.195 | 0.9276 | 1.435 0. 654 0.852 0.190 -0.024
600 9.477 x 10717 -16.0268 | 1.471 0.671 0.868 0. 206 -0.032
620 7.499 0.1254 | 1.504 0.689 0.885 0.223 -0.038
640 6. 049 0.2225 | 1.536 0. 1706 0.901 0. 239 -0.038
660 4.854 0.3186 | 1.565 0.726 0.917 0. 255 -0.033
680 3.882 0.4137 | 1.590 0. 745 0.932 0.271 -0.024
700 3.116 0.5075 | 1.611 0. 754 0.947 0. 287 -0.011
720 2.538 0.5995 | 1.630 0.1768 0.961 0.302 | +0.006
740 2. 059 0.6905 | 1.647 0. 781 0.975 0. 316 0.029
760 1.666 0.7805 | 1.663 0.793 0.988 0. 328 0.053
780 1.356 0.8691 | 1.676 0. 804 1.000 0. 339 0.077
800 1.115 | 0.9566 | 1.692 0.815 1.012 0. 346 0. 096
825 8.692 x 10718 -17.0649 | 1.708 0.829 1.028 0. 354 0.114
850 6. 786 0.1721 | 1.720 0.843 1.043 0. 360 0.126

TABLE 22

The Phase-Functions, f(0) and g(a)

£(8) g(a)
020 0.870 12.0 Mon. 0. 120
1.0 0.945 1.0 0. 320
2.0 0.980 2.0 0.265
3.0 0.995 3.0 0.180
4.0 1,000 4.0 0.170
5.0 0.975 5.0 0. 300
6.0 0.850 6.0 0. 640
7.0 0.655 7.0 0.980
8.0 0.490 8.0 0.900
9.0 0.295 9.0 0.475
10.0 0.130 10.0 0.485
11.0 0.055 11.0 0.025
12.0 0.030
13.0 0.010 B
14.0 0.000 first month, etc.
15.0 0.010
16.0 0.045
17.0 0.120
18.0 0.210
19.0 0.300
20.0 0.400
21.0 0.505
22.0 0.615
23,0 0.740
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The relative amplitude of the annual variation
decreases toward a sunspot minirhum. The prod-
uct [g(a) a(h)] is represented by the equation

g(a) a(h) = ayyq(h){ gla) + (220 - F) [0.0043
- g(a) 0.0028]) + ...

The quantity g(a) appears in Table 22, while
a220(h) is given in Table 21.

Five special examples have been calculated
in Tables 23 through 27 in order to demonstrate
the effect of the different influences. The scale
height H, mean molecular weight M, and temper-
ature T, are given, in addition to the density p.




TABLE 23
Standard Model

log p (h) = log Py (h)

This example contains the greatest values of density and temperature which will occur in an

average sunspot cycle.

p(h)

(slugs/ftS)
(naufcl mi (1 S-}}Slg =515.2 igg (nI:qu';hr?ni) )
(1 naut mi = 1, 852 km) ft m (1 naut mi = 1, 852 km) M(h) (°K)
80 7.220 x 10”12 10.1 28.0 589
85 3. 845 15.6 27. 8 899
90 2.098 21.0 2T 1192
95 1.3a7 25.7 27.5 1455
100 9.787 x 10713 28.5 27.3 1603
110 7.206 27.9 26.9 1541
120 5.135 217.3 26.4 1469
130 3.296 29.3 25.9 1544
140 2. 060 34.2 25.3 1734
150 1.423 36. 7 24.8 1821
160 1.060 39.4 24.1 1888
180 6.087 x 10”14 43.7 23.0 1987
200 3.507 49.2 21.7 2067
220 2.151 54.2 20.4 2118
240 1.385 Y 57.8 19.2 2111
260 9.326 x 10 1° 61.4 18.2 2110
280 6.474 65.1 17.5 2118
300 4.608 68.9 16.8 2130
350 2.196 73.4 16. 1 2125
400 1.063 Y Tl 15.8 2116
450 5.564 x 10”16 78.6 15. 7 2107
500 3.009 81.3 15.6 2105
550 1.650 84.3 15.5 2118
600 9.477 x 10717 88.0 15.3 2112
650 5.450 93.1 14.9 2130
700 3.116 99.6 14.2 2130
750 1.863 108.5 13.4 2112
800 1.115 119.3 12,5 2118
550 6.786 x 107'° 133. 6 11.5 2128
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TABLE 24

Solar Flux Effect

log p(h) = log p (h) - ige(h)
This example represents the mean amplitude at a sunspot minimum, while the diurnal bulge and
annual variation have their maximum values.
p(h)
(slugs/fts)

(na.u}’z mi) 1 s_lgg = 515.2 k_g;_) (ngufchr)ni) T(h)
(1 naut mi = 1.852 km) ft m (1 naut mi = 1. 852 km) | M{(h) (°K)
80 6.525 x 10”12 9.7 28.0 569
85 3. 353 14,1 27.8 784
90 1.720 18.9 27.17 1066
95 1.028 23.3 27.5 1344
100 6.878 x 10713 24,5 27.3 | 1468
110 4.179 25.0 26.9 1383
120 2. 449 23.8 26.4 1280
130 1.459 25.8 25.9 1357
140 8,752 x 10714 29.0 25.4 | 1496
150 5.905 31.5 24.8 1554
160 4.276 33.4 24.0 1593
180 2,498 36.4 22.8 1634
200 1.372 40.2 21.5 1667
220 7,542 x 107 1° 44.4 20.1 | 1693
240 4.620 47.6 18.9 1708
260 3,019 50. 4 17.9 1704
280 1.972 53. 2 17,1 1700
300 1.297 55. 9 16.4 1701
350 5,685 x 10718 59. 6 16.0 | 1710
400 2.513 61.9 15.8 1710
450 1.135 64.0 15.6 1707
500 5,847 x 10~ 17 66. 8 15.3 | 1700
550 4,185 l 70. 6 14.9 1702
600 1.303 75.8 14.4 1709
650 6.764 x 10718 82.5 13.4 1700
700 3. 544 92.0 12,2 1700
750 1.963 107. 3 10.8 1691
800 1.110 . 131.3 9.1 1698
850 6,343 x 1071° 169. 7 7.5 1708
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TABLE

25

Day-Night Effect (''Diurnal Bulge'")

From this function the day-night variation can be seen.

log p(h) = log pS(h) - es(h)

variation, while the other influences retain their maximum values.

It represents the minimum of the diurnal

p(h)

(slugs /#t5)
(na.ult1 mi) (15_31“5 = 515.521 =& (nIi'u(thzni) i(h)
(1 naut mi = 1. 852 km) ft m (1 naut mi = 1. 852 km) | M(h) (°K)
80 7,373 x 10”12 9.7 28.0 562
85 3.962 14.4 27.8 838
90 2.186 18. 4 27.7 1054
95 1.419 21,2 27.5 1199
100 1.021 23. 1 27.3 1298
110 6.788 x 10713 23.4 26.9 1280
120 4. 399 22.9 26. 4 1241
130 2. 945 24,0 25.9 1250
140 1.822 25,1 25.4 1260
150 1.163 26. 3 24,7 1278
160 7.908 x 1074 27.6 23.9 1288
180 4.485 l 29.6 22,17 1303
200 2,279 31,9 21, 3 1314
220 9.931x 107 1° 34.5 19.9 1318
240 5.413 36,7 18.7 1311
260 3.174 38.9 17.5 1316
280 1.835 41.1 16.8 1316
300 1.070 43,1 16.4 1312
350 3.854 x 10716 45.5 15.9 1330
400 1.254 ¥ 47.8 15.6 1322
450 4.524 x 10”17 50.0 15. 3 1310
500 1.773 |\ 52.9 14.9 1310
550 7.429 x 10718 58. 1 14.0 1312
600 3.274 68. 3 12.3 1321
650 1.523 83.5 10.5 1332
700 7,681 x 10712 101.9 9.0 1369
750 4.166 131.7 7.2 1370
800 2.318 179. 5 5.3 1353
850 1.333 Y 277.8 3.6 1327

I1-36




TABLE 26
Annual Effect

log p(h) = log p (h) - a(h)

This example gives the density at the annual minimum, while the remaining influences are at

their maximum

p(h)

(slugs/ft3)
(n%ul; mi) (12‘? = 515.2 1‘_53) (nguihl)m) T(h)
(1 naut mi = 1. 852 km) ft m (1 naut mi = 1,852 km) | M(h) CK)
80 6.702 x 10”12 7.9 28.0 469
85 3.548 11,6 27.8 668
90 1,912 15. 0 27.7 850
100 1.211 18. 1 27.5 | 1002
100 8.678 x 10713 20.4 27.3 | 1119
110 6. 224 22.0 26.9 | 1208
120 4. 328 22.7 26.4 | 1212
130 2,671 25,0 25.9 | 1312
140 1.614 29,4 25.4 | 1553
150 Ve 31.8 24.8 | 1623
160 7.797 x 10714 34,8 24.0 | 1663
180 4.482 37,9 22.8 | 1697
200 2. 397 41,3 21.5 | 1727
220 1.270 45,3 20.1 | 1752
240 7,523 x 10”10 48.9 18.9 | 1759
260 4.791 51.9 17.9 | 1754
280 3.059 55.0 17.1 | 1754
300 1.988 58.0 16.4 | 1759
350 8.818 x 10716 60.7 16.0 | 1755
400 3. 777 62.6 15.8 | 1760
450 1.725 65. 3 15.6 | 1757
500 8.257 x 10717 68.4 15.4 | 1750
550 4,064 72.0 15.0 | 1748
600 2,049 76. 3 14.5 | 1741
650 1.045 82.4 13.8 | 1750
700 5.524 x 10718 91.4 12.6 | 1740
750 3.073 106. 3 11.2 | 1740
800 1.747 128.4 9.5 | 1748
850 1.004 162. 8 7.6 | 1750
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TABLE 27

Total Variation

log p(h) = log ps(h) - i220(h) - 8(h) - a(h)
This is the lower limit which will be possible in an average sunspot cycle.
p(h)
(slugs/fts)
(nau}’z my) (1 SlE - 515.2 -k-%) (ni(thim) _ T(h) pgh)
(1 naut mi = 1.852 km) ft m (1 naut mi = 1. 852 km) M(h) CK) “p(h)
80 6.213 x 10712 7.5 28. 0 429 1.155
85 3. 146 10. 3 27.8 605 1.219
90 1 616 12.9 27.7 739 1.30
95 9.738 x 10713 14.8 27.5 841 1. 40
100 6. 365 16.5 27.3 928 1.56
110 3.396 18.5 26. 9 1026 2. 20
120 1.748 18.8 26. 4 1017 2. 96
130 1. 050 20.5 25.9 1071 3.15
140 6.026 x 10714 21.6 25.4 1099 3. 43
150 3.618 22.0 24.7 1091 4.01
160 2.318 23.3 23. 8 1098 4.66
180 1.141 24.5 22.4 1087 6. 32
200 4.851 x 10”12 26. 6 20.9 1088 8.53
220 2. 000 ‘ 29.4 19.3 1098 11.42
240 9,621 x 1076 31.5 17.8 1091 15. 38
260 5. 048 33.0 17.1 1084 20. 86
280 2.575 34.0 16,6 1080 27. 60
300 1.329 34.7 16.2 1080 35. 86
350 4.036 x 1017 37.3 16.0 1085 54. 4
400 1.066 39.1 15.8 1094 99.9
450 3.213 x 10718 41.7 15.3 1107 173
| 500 1.035 46.3 14.4 1117 291
‘ 550 3.768 x 10719 54.5 12.7 1108 489
‘ 600 1.417 72.8 9.8 1102 668
| 650 7. 403 x 10”20 111.0 6.6 1118 736
‘ 700 2.908 160. 4 4.5 1071 1071
750 1.698 254. 1 3.96 | 1079 1096
800 9.625 x 10721 429.4 1.85 1080 1162
850 5. 405 ‘ 659. 1 1.24 | 1115 1252
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4. Radiation
a. Solar flare radiations

One of the most extensive manifestations of
solar activity is the chromospheric flare. Flares
are ranked according to their area on the solar
disk and their brightness (in the red line of He,

6563 A) as indicated in Table 28 (from Ref. 27).
The frequency of flares of different importance
(or class) is shown in Table 29.

TABLE 28
Flare Characteristics
Area
Limits Heo Line
-6 Width at
L0 Maximum
Duration (min) Visible .
Class| Average Range Disk (A)
= =0 == 100 1.5
1 20 4 to 43 | 100 to 250 3.0
2 30 10 to 250 to 600 4.5
90
3 60 20 to 600 to 1200 8
155
3+ 180 50 to 1200 18
430
TABLE 29
Flare Frequency
Absolute
Relative Frequency
Class Frequency (R)
i 0.:72 0.044
2 0. 25 0.015
3 0.03 0. 002

The number of flares per year varies with the
cycle of sunspots and is defined by the Wolfe sun-
spot number R, which is

R =k (10 g+f)

where f is the number of individual spots, g is the
number of spot groups and k is an instrument and
observer's correction factor. The mean sunspot
period is 11.07 yr with mean maximum and mini-
mum Wolfe numbers of 103 and 5. 2, respectively
(Ref. 28). The average time from sunspot maxi-
mum to minimum is 6.5 yr and the time from
minimum to maximum is 4.5 yr. The last sunspot
maximum occurred in 1958 with a record number
of 185. Thus, the next maximum will occur prob-
ably in 1969. However, since there is a periodicity
to sunspot cycle maximum which is not very well
defined, it may be that the next maximum will be
the end of the present period (with the 1969 peak
exceeding the 1958 peak) or the beginning of the

next period (with a sunspot number possibly as low
as 50 during 1969). During 1958 more than 3100
flares of Class 1 or greater occurred, while the
number of flares during the last sunspot minimum
in 1954 was only 16; none larger than Class 1 were
reported (Ref. 29). Solar flares may have electron

temperatures as high as 2 x 108°x (Ref. 30) as
compared to effective temperatures in the umbra
and perumbra of sunspots of 4300°K and 55008k
respectively. Prior to the IGY, high energy par-
ticles from solar flares had been detected by
ground-based measurements. Four such events
were noted in the 15 yr preceding 1953. Three
more of these events have occurred since that
time, namely 23 February 1956, 4 May and 11
November 1960. During the IGY and IGC-59 (July
1957 to December 1959) 25 additional solar flare
particle events were detected. These particles
were detected by balloons and satellites but were
not energetic enough to produce secondaries de-
tectable at ground level. During this period 707
Class 2 or larger solar flares occurred (of which
71 were Class 3 or 3+). Therefore, although solar
flares of Class 2 or greater have occurred on the
average of once a day during solar maximum,
only 25 times in 2.5 yr did these flares result in
the arrival of flare particles in the vicinity of the
earth. It should be noted here that during the last
sunspot minimum (1954) no flares of Class 2 or
larger occurred.

The flare particles are mostly protons (alphas
and some heavier nuclei have also been detected)
with kinetic energies extending from a few million
electron volts (Mev) to a few tens of billion elec-
tron volts. These energies are considerably be-
low the energies of cosmic ray particles although
the particle flux is greater than the galactic cosmic
ray flux. The first high energy solar particles
were detected at ground-based cosmic ray (sec-
ondary) monitors and one of the first names given
them was solar cosmic rays. Other names are
"solar proton event," "solar flare radiation event, "
and "solar bursts.' But solar high energy particles
(SHEP) has been offered by a group of researchers
in this field as a standard nomenclature. More
confusing is the terminology "Giant'"" and ''Large,"
sometimes used to describe the type of proton flux.
Proton fluxes from the "Giant" flares of 23 February
1956, 4 May 1960 and 11 May 1960 were not as large
as from the "Large' flares of 10 May, 10, 14 and
16 July 1959. Furthermore, the radiation doses
from the "Giant' events were not as great as from
the "Large" events. The only explanation for this
ranking is that protons from the "Giant' events
produced secondaries in the atmosphere that were
energetic enough to penetrate and be detected at
the ground. A better way to describe these events
is by their differential or integral kinetic energy
fluxes. Shown below are the differential spectra
for two solar events, 23 February 1956 as derived
from Foelsche's plot (Ref. 31) and 10 May 1959 as
derived from Winckler's observations (Ref. 32).

dN| = 2.563 x 107} kE1-2985 gE; 0. 60< E< 130 Mev
AN, = 7.859 x 1071 kE™1- 4460 4p; 130 < E<550

dN. = 2.957 x 105 KE2-9%20 4E; 550 <E< 1600
Flare 3
Model | dN, = 6.961 x 1011 ke3> 040 4E; 1600 <E< 5000
0. =
AN, = 2.802 x 1022 kE7-890 gE; 5000 <E< 10,000

K=EL S‘dNi =5.0x 10 protons/cmz-sec-ster
i

Flare
Klodezl {dN =9.39x 109 E"*8dE; 20< E< 10,000 Mev
0.
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A reasonably simple yet unambigious ranking
of the severity of these events can be seen directly
from these equations to be the coefficient indicating
the total flux of particles and the exponent indicating
how these are distributed with energy. Figure 14
shows the radiation dose inside different thicknesses
of absorber for these events and clearly shows that
the relative hazard from these events varies with
the amount of shielding provided.

Figure 14 also shows that the radiation doses
to an unshielded astronaut exceed the lethal doses
but are shielded rather efficiently by even small
amounts of absorbers. The shielding afforded by
the materials and equipment of two spacecraft is
shown on Table 30.

TABLE 30

Solar Flare Event Radiation Dose Inside Mercury
Capsule and Apcllo Command Module
(Including Secondaries)

Vehicle 10 May 1959 23 February 1956
Mercury 3
Capsule (3.8 x 10° rem 48. 33 rem
Apollo
Command
Module 60.5 rem 42.5 rem
Ambient [~ 5 x 106 rem 5.4x 102 rem
(=8 104 assum-
ing no protons be-
low 20 Mev)

The greater shielding inherent in the Apollo
vehicle is apparent. However, it should be noted
that the orbit of Mercury is such that the Earth's
magnetic field would shield a large fraction of
these solar particles. In Ref. 32 Obayashi and
Hakura have developed a model of proton cutoff
energies versus geomagnetic latitude during a
solar plasma induced geomagnetic disturbance.

At these times, the normal cutoff energies are
reduced and the solar flare particles are "allowed"
at normally "forbidden' regions near the earth.
Using this model of cutoff energies to modify the
incident solar flare proton spectra results in de-
creasing values of dose from polar to equatorial
latitudes. Satellites which spend little or no time
at magnetic latitudes less than 50° will not en-
counter solar flare protons. Correspondingly,
polar orbital satellites will receive the highest
dose. Figures 15 and 16 show dose versus orbital
inclination for the two solar flare events at different
values of shielding. The dose versus latitude cutoff
for the May flare is seen to be much sharper than
for the February flare. This is, of course, due to
its relatively larger number of low energy particles

which are excluded before the higher energy particles.

Also shown in these figures are the free space
proton doses given in Fig. 14 from Ref. 33. It is
seen that even at a 90° orbit the satellite dose

under 1 gm/cm2 is reduced to about 40% of the
free space dose. Actually, the doses within
orbital vehicles will be even lower due to shadow
shielding by the earth. This is a function of alti-
tude as shown in Fig. 17.
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One further qualification in the use of Figs. 15
and 16 is necessary because they are plotted in
terms of magnetic inclination. Figure 18 shows
the magnetic dip equator and a great circle approxi-
mation. This latter curve may be used together
with Fig. 17 to estimate the orbital dose.

The following example is given for illustration.
We will assume an orbital inclination of 60°, 500 -
km circular orbit extending to 60°N over 280°
longitude. The assumed duration of the February
flare event is about 1 hr as compared to about
1 day for the May event. In 1 hr the magnetic in-
clination of the orbit has changed little, so that
the February flare dose may be read from Fig.

16 at 60° + 13° (or 73°). This is about 35 rad

under 1 gm/cmz. However, during the day's dura-
tion of the May event, the magnetic inclination has
gone to 47° and back again to 73°. Averaging the
dose at these two latitudes gives 1200 rad under

1 gm/cmz. At 500 km the earth intercepts 0. 314
of the incident protons giving 35 (1-0. 314) or about
24 rad from the February flare and 823 rad for
the May flare as the final answers. In calculating
dosages from the May 1959 event, the flux of pro-

tons was assumed constant for 30 hr. This gives

a total flux of 3 x 109/cm2-ster above 20 Mev.
In calculating dosages from the February event,
the flux was assumed to decay immediately from

the given value as t 2. This gives a total flux of

1.8 x 108/cm2—ster above 0.60 Mev or 6. 33 x 107/

cmz—ster above 20 Mev. During maximum periods
of solar activity, it is believed that the total yearly
flux of protons with energies greater than 20 Mev

is 109—1010/cm2—ster. Therefore, the maximum
yearly dose would be equivalent to approximately
1010

=T 3.3 times the May 1959 dose or
3x 10

1010
————— ~ 158 times the February flare dose.
6.33 x 10
However, it is fairly certain that an event such as
that of February 1956 occurs no more frequently
than once every 4 to 5 years, so that the maximum
total yearly dose (during the peak years of the sun-
spot cycle) should be about 3.3 times the May 10,
1959 doses. This may be used to estimate the
hazard relative to mission duration.

b. Van Allen belts (geomagnetically trapped
particles)

In the vicinity of the earth, there are intense
regions of charged particles trapped in the earth's
magnetic field. In the four years since Dr. Van
Allen confirmed the existence of these regions
from measurements made on the early Explorer
satellites, a considerable body of data has been
gathered to "map'' these regions.

The trapped particles form a generally toroidal
region beginning at approximately 500-km altitude.
The earth's field is not geocentric and has a number
of signficant anomalies from a dipole resulting in
the radiation belt shape like that shown in Fig. 19
(for part of the "inner" belt). Yoshida, Ludwig
and Van Allen (Ref. 34) have shown that the loca-
tion of the trapped particles is related to the dip
latitude and scalar intensity of the real magnetic
field. In effect, the belt varies over about 800 km
in altitude and about 13° in latitude around the earth.




The belt position shown in Fig. 19 was deter-
mined from the relationships found in the last
reference and with the use of a spherical har-
monic fit to the magnetic field obtained from

D. Jensen of the Air Force Special Weapons
Center. The adiabatic invariant integral has also
been noted by a number of workers in this field
as having a better physical basis for determining
the structure of the belts.

Most recently McIlwain (Ref. 35) has shown
that the magnetic intensity scalar B and the param-
eter L. define a practical and accurate coordinate
system for the trapped particles. The parameter
L is related to the adiabatic invariant integral and
would be the equatorial radius of a magnetic shell
in a dipole field. In the real field the physical
interpretation of L. is more complex.

The energy spectrum and particle flux for in-
ner belt protons were calculated using the experi-
mental data of Freden and White (Ref. 36), Van
Allen (Ref. 37), and Van Allen, Mcllwain and
Ludwig (Ref. 38). Figure 20 shows the proton
flux contours at one location over the earth, and
Fig. 21 the differential kinetic energy spectrum
of protons. The peak flux shown agrees with Van
Allen's recent estimates.

The model of electrons, by far the most abun-
dant constituents of the trapped radiation belts,
was determined using flux and spectral measure-

ments of Holley (Ref. 39), and Walt, Chase, Cladis,

Imhof and Knecht (Ref. 40), together with the
Anton 302 geiger counter data from a number of
satellites and space probes (Refs. 41 and 42).
Figure 22 shows the electron flux contours at one
location over the earth and Fig. 23 shows the dif-
ferential kinetic energy spectrum.

This spectrum agrees well in shape with the
recent determination by Pizzella, Laughlin and
O'Brien (Ref. 43) for the inner radiation belt at an
altitude of 1000 km. The highest flux at this alti-

tude is 5 x 106 e1ectrons/cm2—sec—steradian as
given by Frank, Dennison and Van Allen (Ref. 44).
This agrees well with the flux at this altitude
shown in Figs. 22 and 23.

For the outer radiation belt, Van Allen has
given the following peak electron distribution

2 sec™! above 40 Kev

2 gec™1

10% em”
10”

102

cm” above 2 Mev

2 sec ™! above 5 Mev

cm”
This is two orders of magnitude less in flux than
van Allen's earlier estimates of the outer zone

electrons. Extending the new spectrum to 20 Kev

gives 2 x 10° electrons/cmz-sec or 1.6 x 10°

electron/cm2—sec—steradian, which agrees closely
with the peak outer belt flux shown in Fig. 22.
Figures 24 and 25 show the electron and
bremsstrahlung dose rates versus aluminum
absorber from electrons at the peak of the inner
and outer regions (Ref. 45). These may be com-
pared with the Van Allen belt proton doses also
shown in Fig. 14 as a function of absorber thick-
ness for protons at the center of the inner belt.
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Proton doses for orbiting satellites may be ob-
tained from Tables 31 and 32 as a function of
orbital altitude, inclination and aluminum absorber
thickness. Due to the belt asymmetry, the dose
on each successive orbit differs. For example,

at an orbital inclination of 40° (geographic) and an

altitude of 740 km under 6 gm/cm2 of aluminum,
the accumulated dose is 0. 0214 remn after the

first orbit and 0. 0249 rem after two orbits. For
integer orbits, the dose accumulation cycle should
repeat itself every 24 hr. The doses in Tables 31
and 32 are 12-hr totals, so that the orbital lifetime
dose may be closely approximated by 2 (number
of days in orbit) (12-hr cumulative dose). Table
33 from Ref. 45 gives dose versus orbital incli-
nation, altitude and absorber thickness for a
satellite exposed to the electrons of the inner

Van Allen belt.

c. Primary cosmic radiation

Steady -state cosmic radiation values (Ref. 46)
that have been generally accepted for a number of
years (Ref. 47) were based on the belief that the
primary spectrum contained few particles in the
energy region below a fraction of a Bev. This
meant the ionization at geomagnetic latitudes
greater than 60° was taken to be the same as that
at 60° and this indeed appeared to be true during
1950 to 1952, However, in 1954, a time of mini-
mum solar activity, low energy protons caused
an increase in the ionization levels at latitudes
above 60° (Ref, 48), It should be remembered,
though, that the most favorable periods for ex-
tended space flight are these same times of low
solar (but higher cosmic ray) activity, because
of the great reduction in flare occurrences. For
this reason, values of the ionization rate that in-
clude the effect of the increase above 60° as
would be expected during a typical time of solar
quiescence are plotted in Fig. 26 as functions of
altitude and geomagnetic latitude, both for near-
earth and high altitude positions of measurement
(Ref, 49). Not shown at the scale of Fig. 26 is
that as the surface of the earth is approached,
there is an ionization increase, followed by a
decrease. The increase begins at 130, 000 ft,
continues down to heights of 80, 000 ft (at 90°
latitude) or 50, 000 ft (at 0° latitude), and has its
source in the shower, or cascade formation of
mesons, nucleons, electrons and high energy
photons, all of which are created by interaction
of high energy cosmic particles with atmospheric
constituents. The decrease in ionization with de-
creasing altitude below 80, 000 to 50, 000 ft comes
about through atmospheric radiation absorption,
while the decrease with decreasing magnetic lati-
tude results from the increased shielding offered
by the earth's magnetic field against the lowered
energy cosmic particles. Figure 26 shows that the
increase in cosmic detector ionization at increas-
ingly great distances from the earth arises from
a combination of the decrease in the solid angle
subtended by the earth and the decrease in geomag-
netic field strength, with a corresponding decrease
in the cosmic particle deflection.

An estimate of the biological whole-body radia-
tion intensity as a function of altitude and geomag=-
netic latitude can be obtained from Fig. 26 only
if the conversion can be made from the ionization
itself, in units of roentgen, to rem, the unit which
gives an idea of the biological effectiveness of the




TABLE 31

Inner Van Allen Belt Proton Radiation Dose (rems)
Orbiting Aluminum Sphere

Aluminum Shield

Orbital ) ) 2 Rems
Inclination Orbital |Thickness (gm/cm®) —
(deg) Altitude No. Orbits 1550 2.0 6.0 10.0 20.0 60.0 100.0
1 +0. 00372 +0. 00272 +0. 00145 +0. 00104 +0. 00062 +0. 00024 +0.00014
0 555 km 2 +0. 01852 +0.01354 +0. 00720 +0.00517 +0.00312 +0.00120 +0.00070
300 n mi 3 +0. 02203 +0.01611 +0. 00857 +0. 00615 +0. 00371 +0.00143 +0.00083
4 +0. 02744 +0. 02006 +0. 01067 +0. 00766 +0. 00462 +0.00178 +0.00103
5 +0. 03642 +0. 02664 +0.01417 +0.01017 +0. 00613 +0.00237 +0.00137
6 +0. 06091 +0. 04455 +0, 02370 +0. 01701 +0. 01026 +0. 00396 +0. 00230
7 +0.07287 +0. 05329 +0. 02835 +0. 02035 +0.01228  +0.00474 +0.00275
1 +0. 02093 +0.01530 +0.00814 +0. 00584 +0.00352 +0. 00136 +0. 00079
2 +0.08120 +0. 05938 +0. 03159 +0. 02268 +0.01368 +0.00528 +0.00307
740 Kim 3 +0. 09957 +0. 07282 +0. 03874 +0. 02781 +0.01678 +0.00647 +0.00376
400 nimi 4 +0. 15308 +0.11195 +0. 05956 +0. 04276 +0. 02579 +0. 00996 +0. 00579
5 +0. 19437 +0. 14215 +0. 07563 +0. 05429 +0. 03275 +0.01264 +0.00735
6 +0. 24586 +0. 17981 +0. 09566 +0. 06868 +0.04143 +0.01599 +0. 00930
T +0. 27285 +0. 19955 +0.10616 +0. 07622 +0. 04598 +0.01775 +0.01032
1 +0.63995 +0. 46803 +0.24900 +0. 17876 +0.10784 +0. 04163 +0. 02420
2 +1. 13415 +0. 82947 +0.44130 +0.31682 +0.19113 +0.07379  +0.04290
1110 km 3 +1.62798 +1. 19063 +0.63345 +0. 45477 +0.27435 +0.10592 +0.06158
600 n mi 4 +2,40827 +1.76130 +0.93707 +0.67274 +0.40584 +0.15669 +0.09110
5 +3. 02077 +2.20925 +1.17540 +0. 84385 +0. 50906 +0.19655 +0.11427
6 +4.13293 +3. 02264 +1.60814 +1. 15453 +0.69649 +0.26891 +0. 15634
1 +8. 14456 +5. 95656 +3. 16909 +2.27517 +1, 37253 +0.52993 +0.30810
1852 km 2 +16. 08871 +11. 76655 +6.26020 +4. 49436 +2.71130 +1. 04682 +0.60862
1000 n'mi 3 +24.51561 +17.92961 +9. 53915 +6. 84841 +4.13142 +1.59513 +0.92741
4 +33.35166 +24.39190 +12,97731 +9.31674 +5. 62049 +2.17006 +1.26167
5 +41, 75440 +30, 53728 +16. 24686 +11.66404 +7.03653 +2.71679 +1.57954
1 +0. 07177 +0. 05249 +0. 02792 +0. 02005 +0. 01209 +0.00467 +0.00271
2 +0. 07767 +0. 05680 +0. 03022 +0. 02169 +0.01309 +0. 00505 +0.00293
20 555 km 3 +0.07838 +0. 05732 +0. 03050 +0. 02189 +0.01321 +0.00510 +0.00296
300 n mi 4 +0.07838 +0. 05732 +0. 03050 +0. 02189 +0.01321 +0.00510 +0.00296
5 +0.07890 +0. 05770 +0. 03070 +0. 02204 +0. 01329 +0. 00513 +0. 00298
6 +0. 08052 +0. 05889 +0.03133 +0. 02249 +0.01356 +0. 00523 +0. 00304
7 +0. 08355 +0. 06110 +0. 03251 +0. 02334 +0. 01408 +0. 00543 +0.00316
740 km 1 +0.05174 +0. 03784 +0. 02013 +0. 01445 +0. 00871 +0. 00336 +0. 00195
400 n mi 2 +0. 07776 +0. 05687 +0. 03025 +0. 02172 +0.01310 +0.00505 +0.00294
3 +0. 08903 +0. 06511 +0. 03464 +0. 02487 +0. 01500 +0. 00579 +0.00336
4 +0. 08907 +0. 06514 +0. 03465 +0. 02488 +0. 01501 +0. 00579 +0. 00336
5 +0. 09400 +0. 06875 +0. 03657 +0. 02626 +0.01584 +0.00611  +0. 00355
6 +0.12011 +0. 08784 +0. 04673 +0. 03355 +0. 02024 +0.00781 +0.00454
¢ +0. 14274 +0. 10439 +0. 05554 +0. 03987 +0. 02405 +0. 00928 +0.00539
1110 km ]! +0.60988 +0. 44604 +0.23730 +0.17037 +0.10277 +0.03968 +0. 02307
600 n mi 2 +1.11837 +0.81792 +0.43516 +0.31241 +0.18847 +0. 07276 +0. 04230
3 +1.36262 +0. 99656 +0. 53020 +0. 38064 +0.22963  +0.08866 +0.05154
4 +1.62606 +1. 18922 +0.63270 +0. 45423 +0.27402 +0.10580 +0.06151
5 +1.86481 +1.36384 +0. 72560 +0. 52093 +0.31426 +0.12133 +0.07054
6 +2.46111 +1. 79994 +0.95763 +0.68750 +0.41475 +0.16013 +0. 09310
1852 km 1 +17.25229 +5. 30399 +2.82190 +2. 02591 +1.222117 +0.47187 +0.27434
1000 n mi 2 H14. 12855 +10. 33298 +5.49749 +3.94679 +2.38097 +0.91928  +0.53447
3 +19. 89605 +14.55107 +7. 74166 +5. 55794 +3.35292 +1.29455 +0. 75265
4 H25. 14740 +18.39168 +9. 78499 +7. 02490 +4.23789 +1.63624 +0.95131
5 +30.67196 +22, 43209 +11, 93462 +8.56817 +5. 16890 +1.99570 +1.16030
40 555 km 1 +0.03171 +0. 02319 +0. 01234 +0. 00886 +0.00534 +0. 00206 +0.00119
300 n mi 2 +0. 03866 +0. 02828 +0. 01504 +0. 01080 +0. 00651 +0. 00251 +0. 00146
3 +0. 03866 +0, 02828 +0. 01504 +0. 01080 +0.00651  +0.00251 +0.00146
4 +0. 03866 +0. 02828 +0. 01504 +0. 01080 +0. 00651 +0.00251 +0. 00146
5 +0. 03866 +0. 02828 +0. 01504 +0.01080 +0. 00651 +0.00251 +0. 00146
6 +0. 03866 +0. 02828 +0. 01504 +0. 01080 +0. 00651 +0.00251 +0.00146
7 +0. 03866 +0. 02828 +0. 01504 +0. 01080 +0. 00651 +0.00251 +0. 00146
740 km 1 +0. 05504 +0. 04025 +0. 02141 +0.01537 +0. 00927 +0.00358 +0.00208
400 n mi 2 +0. 06403 +0. 04683 +0. 02491 +0.01788 +0.01079 +0. 00416 +0. 00242
3 +0. 06958 +0. 05088 +0. 02707 +0. 01943 +0.01172 +0. 00452 +0. 00263
4 +0.07104 +0. 05195 +0.02764 +0.01984 +0:101197 +0. 00462 +0. 00268
5 +0. 07155 +0. 05233 +0. 02784 +0. 01998 +0.01205 +0.00465 +0.00270
6 +0. 07749 +0. 05667 +0. 03015 +0. 02164 +0. 01305 +0.00504 +0.00293
7 +0. 08057 +0. 05892 +0. 03135 +0. 02250 +0.01357 +0. 00524 +0. 00304
1110 km 1 +0.43148 +0.31556 +0. 16789 +0. 12053 +0. 07271 +0. 02807 +0.01632
600 n mi 2 +0. 81762 +0. 59797 +0.31814 +0.22840 +0. 13778 +0. 05319 +0. 03093
3 +0.93977 +0.68731 +0.36567 +0.26252 +0. 15837 +0.06114 +0. 03555
4 +1.02163 +0. 74717 +0. 39752 +0. 28539 +0.17216 +0. 06647 +0.03864
5 +1.14910 +0. 84040 +0.44712 +0.32100 +0. 19364 +0.07476 +0. 04346
6 +1. 52201 +1 113113 +0. 59222 +0.42517 +0.25649 +0. 09903 +0. 05757
1852 km 1 +4, 77857 +3.49483 +1. 85936 +1.33488 +0. 80529 +0.31092 +0.18077
1000 n mi 2 +8.78610 +6.42576 +3.41872 +2.45438 +1.48065 +0.57167 +0.33237
& tF11. 22799 +8.21165 +4.36887 +3. 13652 +1. 89216 +0. 73056 +0.42474
4 t13. 73962 +10. 04854 +5.34616 +3. 83814 +2.31543 +0.89398 +0.51976
5 +17.46029 +12. 76966 +6. 79389 +4.87751 +2. 94244 +1.13607 +0.66051
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TABLE 32

Van Allen Proton Radiation Dose (rems)
Orbiting Aluminum Sphere
Launched From Vandenburg

Orbit Inclination Orbit Inclination Orbit Inclination
60° 80° 90°
2
gm/cm gm/cm? gm/cm?

Altitude No. Orbits 0 2.5 5 10 15 0 2,5 5 10 15 0 2.5 5 10 15
740 km 1 0. 0292 0.00134 0.00103 0.000592 0. 000453 0.0471 0.00219 0.001689 0.000968 0.000743 0.0980 0.00451 0.003466 0.001986 0.001525
400 n mi 2 0.0594 0.00262 0.002108 0.001208 0,000927 0.0629 0. 00290 0.008230 0.001278 0.000981 0.1200 0. 00555 0.004262 0.002442 0.001875

3 0.0662 0.00306 0.002356 0.001350 0.001036 0.0643 0. 00296 0.002280 0.001306 0.001003 0.1228 0.00561 0.004351 0.002493 0.001914

4 0.0667 0.00307 0. 002365 0.001355 0.001041 0.0643 0.00296 0.002280 0.001306 0.001003 0.1228 0.00561 0.004351 0.002493 0.001914

5 0.0667 0.00307 0,002365 0.001355 0.001041 0. 0645 0.00298 0.002287 0.001310 0. 001006 0.1230 0. 00566 0.004368 0. 002503 0.001922

6 0.0667 0.00308 0.002367 0.001356 0.001041 0. 0680 0.00300 0.002408 0.001380 0.001059 0.1305 0.00601 0.004637 0.002657 0. 002040

7 0.0705 0.00326 0. 002506 0.001436 0.001103 0.0681 0.00314 0.002419 0.001386 0.001064 0.1320 0.00608 0.004687 0.002686 0.002062

8
1480 km 1 3.025 0.1398 0.10762 0. 0800 0. 0473 4,320 0.1996 0.15357 0. 0880 0. 0676 4.950 0.2286 0.17588 0.1008 0.0774
800 n mi 2 5.545 0.2560 0.19689 0.1128 0.0865 6.850 0.3164 0.24335 0.1394 0. 1071 7.349 0.3390 0.26078 0.1494 0.1147

3 6.795 0.3138 0.24168 0.1381 0.1060 7.850 0.3628 0.27909 0.1599 0. 1228 8.360 0.3864 0.29726 0.1703 0.1308

4 7.400 0.3416 0.26274 0.1505 0.1158 8.195 0.3782 0.29091 0.1667 0. 1280 9.160 0.4233 0.32565 0.1866 0.1433

5 7.875 0.3625 0,27955 0.1600 0,1229 9.390 0.4335 0.33345 0.1911 0. 1467 9.760 0.4512 0.34710 0.1989 0.1527

6 8.915 0.4110 0,31645 0.1812 0,1393 11.210 0.5179 0.39837 0.2283 0.1753 12,110 0.5584 0. 42955 0.2461 0.1890

i

8
2222 km 1 24.600 1.1324 0.87110 0.4991 0.3833 20. 400 0. 9422 0.72477 0.4153 0.3189 26.580 1.2258 0.94296 0.5403 0.4149
1200 n mi 2 45.550 2.1013 1,6164 0.9262 0.7112 40.100 1.8519 1.42450 0.8162 0.6268 51.300 2.3614 1.81645 1.0408 0.7992

3 64.700 2.9865 2,2973 1.3164 1.0108 55. 150 2.5444 1.95722 1.1215 0. 8612 66. 700 3.0759 2.36609 1.3578 1.0411

4 88. 550 4.0905 3. 1465 1.8029 1.3845 71.500 3.2976 2.53664 1.4535 1.1161 33.500 3. 8527 2.96365 1.6982 1.3040

5 99.900 4.6047 3.5421 2.2096 1.5585 82.500 3.8144 2.93418 1.6813 1.2910 100. 000 4.6139 3.54915 2.0337 1.5616

6

i/

8
2960 km 1 59.300 2.7331 2, 1024 1.2047 0,9251 63.550 2.9373 2.2595 1.2947 0. 9942 64.150 2.9587 2.2759 1.3040 1.0014
1600 n mi 2 121.900 5.6169 4,3207 2.4758 1,9011 126.200 5.8287 4,4836 2.5691 1.9728 127.200 5.8720 4.5169 2.5882 1.9874

3 179.200 8.2674 6.3595 3.6440 2,7982 174. 800 8.0568 6.1975 3.5512 2.7269 176. 000 8.1143 6.2418 3.5766 2, 7464

4 244.000 10. 8105 8,3158 4.7650 3.6590 233. 800 10. 7673 8.2825 4.7458 3.6443 226.150 10. 4359 8.0276 4.5998 3.5321

5 286.500 13.2344 10,1803 5.8333 4,4793 265.300 12,2364 9.4126 5.3934 4. 1415 275. 800 12.6998 9. 7691 5.5977 4.2984

6

7

8
3700 km 1 111.800 5.1518 3.9629 2.2707 1, 7437 99.50 4.5972 3.5363 2.0263 1.5559 101. 000 4,6618 3.5860 2.0547 1.5778
2000 n mi 2 214.400 9.9144 17,6265 4.3700 3.3557 176.00 8.0995 6.2304 3.5700 2,7413 212.000 9.7774 7.5211 4.3096 3.3093

3 308.200 14,2183 10, 9372 6.2670 4,8123 272.000 12,5644 9.6649 5.5380 4.2526 296. 00 13.6474 10. 4980 6.0153 4.6191

4 404. 400 18.5992 14,3071 8.1980 6.2951 365, 00 16. 8568 12,9668 7.4300 5.7054 380.00 17.5463 13,4972 7.7338 5.9388
4075 km 1 120.00 5.5367 4,2590 2.4404 1.8739 98. 100 4,.5348 3.4883 1.9988 1.5348 107. 15 4.9528 3.8099 2.1831 1.6764
2200 n mi 2 247.40 11.3916 8,17628 5.0211 3. 8556 195. 80 9.0345 6.9496 3.9821 3.0578 208. 15 9.6143 7.3956 4.2377 3.2540

3 362.10 16. 7222 12, 8633 7.3707 5.6598 298. 00 13,7327 10. 5636 6.0529 4.6479 346.00 15.9783 12,2915 7.0428 5.4081

4 493. 00 22,7372 17,4902 10. 0219 7.6957 370. 00 17.1083 13.1603 7.5408 5.7906 451. 00 20.8289 16. 0222 9.1807 7.0498




TABLE 33

Twelve-Hour Orbital Dose (rad) Within Van Allen Belt

Aluminum Sphere Thickness (gm /sz)
Loy

Altitude (deg) Electrons X-rays Electrons X-rays Electrons X-rays
555 km 0 4.598x 10> | 0.7569 | 1.137x 1073 0.2301 0.1575
(200 naut mi) | 40 1.444 x 10° 0.2377 3.574x 1074 0.0723 10> 0.0494
90 6.811 x 10° 0.1121 1.686 x 107 0.0341 0.0233
740 km 0 1.1690 x 10%| 1.9241 | 2.892x 1073 0.5849 0.4003
(400 naut mi) | 40 5.046 x 10° 0. 8306 1.248 x 1073 0.2525 <107° 0.1728
90 3.693 x 10° 0.6078 9.136 x 1074 0.1848 0.1264
1110 km 0 6.634 x 10% | 10.9197 1.641 x 1072 3.3196 2.2716
(600 naut mi) | 40 4,129 x 10% 6.7964 1.021 x 1072 2.0661 10 1.4138
90 2.359 x 10% 3.8825 5.835 x 1075 1.1803 0.8077
1852 km 0 2.625 x 10° | 43.2147 | 6.495x 1072 13.1373 | 1.803x 10°%| 8.9898
(1000 naut mi)| 40 2.088 x 10° | 34.3755 | 5.166 x 1072 10.4502 | 1.434x 10”%| 7.1510
90 1.097 x 10° | 18.0597 2.714 x 1072 5.4901 7.534 % 107°| 3.7569

ionization. The factor of conversion, Relative in the relative number of heavy constituents,

Biological Effectiveness (RBE), yields a measure
of the degree of localization, or nonuniformity,

of tissue ionization. Ionization localization along
the path of penetration is singularly noticeable

for heavy (atomic number 6 or greater) particles.
Although all atomic species through iron have
regularly been observed, the biologically note-
worthy heavy constituents of the primary radiation
are carbon, nitrogen, oxygen, the magnesium

and calcium groups, and iron. When these medium
and high energy particles enter tissue, they first
produce an ionization trail of great density. The
high energy particles, in general, undergo nuclear
disintegration during the penetration process,
with a resulting large reduction in specific ioni-
zation, since afterward the ionization is caused
by several particles of reduced charge travelling
in different directions. These primaries which
have a reduced impinging energy have a signif-
icant probability of being completely stopped
through ionization only. This leads to extremely
large specific ionizations near the ends of the
paths, since the rates of energy loss increase

as the particle energies decrease, down to very
low energies. These thindown hits are capable

of causing cell destruction. Their effects in
nonreparable regions of the body, such as certain
brain areas, have not yet been demonstrated.

The RBE conversion from roentgen to rem ob-
tained from a weighted analysis of particle type
and tissue ionization characteristics between 30°
and 55° latitude at the top of the atmosphere and
extrapolation elsewhere, increases with increasing
altitude and geomagnetic latitude, as seen in

Fig. 27. This is explained by noting that at a
position requiring decreased particle penetration
of the magnetic field, there is a slight increase
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compared with hydrogen and helium. At the
same time, the heavy component energy range
extends to lower values. It must be emphasized,
however, that little actual biological experi-
mentation has been performed to test the validity
of the relation between ionization track density
and the RBE for particles of large atomic
number, which produce the greater fraction of
the unshielded biological intensity.

Shielding against cosmic radiation is not
ordinarily advisable, since it requires thick-

nesses of aluminum greater than 25 gm/cm2
for heavy particles, and at least 200 gm/cm2

(400 1b /ft2 of shielded area) for hydrogen and
helium, which have far higher penetrating power
and constitute about 15 percent of the unshielded
biological dose and 99 percent of the incident
particle number. In fact, the biological dose
increases for shielding thicknesses up to 15

gm/cm2 for the carbon, nitrogen, and oxygen
group, up to 10 gm /cm2 for magnesium, up to

6 gm/cm” for calcium, and up to 5 gm/crn2 for
iron.

An estimate of the effectiveness of shielding
against cosmic radiation is shown in Fig. 28
taken from Wallner and Kaufman (Ref. 50). A
comparison with the curves shown in Fig. 14
shows the relatively slow decrease of dose with
absorber thickness for cosmic rays as compared
to other space radiations. The dose peak at

about 10 gm/cm2 is due to the increase of ionization




rate before significant numbers of particles are
stopped in the absorbing material.

d. Penetrating electromagnetic radiation

Previous estimates of the high energy end of
the solar system indicated intensities of the order

of 10-4 erg/cmz-sec below 8A. Recent measure-
ments indicated that during a solar flare (class

2+) this intensity increased to about T erg/

cmz-sec with 2 A as the lower limit of the radi-
ation detected (Ref. 51). More recently, meas-
urements have indicated that X-ray flashes during
solar flares had energies as high as 80 kev (0. 15

A (Ref. 52).

During a class 2 solar flare on 20 March 1958
an intense burst of electromagnetic energy was
recorded which lasted 18 seconds (or less) (Ref.
53). This was determined to have an intensity

of 2x 1074 erg /cmz—sec above 20 kev and
peaking in the region of 200 to 500 kev (0. 06 to

0.025 10\). Measurements during a class 2+ flare
on 31 August 1959 indicated a peak intensity of

4.5 x 10_6 erg/cmz-sec (~ 20 kev) arriving at the
top of the earth's atmosphere (Ref. 54). The
spectrum decreases in photon count by a factor

of 10 for an energy increase of about 20 kev.
Although these photons are quite penetrating (the
half-thickness value of aluminum for 500 kev
photon is 3.0 cm) their intensity is so low as to
produce an insignificant dose (of the order of

10_5 roentgen from the March 1958 event). ,In-
tensity enhancements in the region of 8-20 A were
also observed during the August 1959 event. In

this region about 1 erg/cmz—sec was measured.
This would result in a much greater dose than

the less intense higher energy photons; their
penetration is very much less. The half-thickness

values are less than 10 1 cm of aluminum.

A solar X-ray spectrum from a class 2+ flare
is shown in Fig. 29 taken from Ref. 30. X-rays
with energies in excess of 20 kev appear to be
emitted only for short periods (a few minutes)
during large flares. The X-ray dose rate to an
unprotected man from a flux as shown in Fig. 29
would be about 3 rem/hr. However, since the
emission lasts for much less than 1 hr we may
conclude that high energy solar electromagnetic
radiation will not be of concern to space flight.
Saylor, et al. (Ref. 55) point out that ultraviolet
light on bare skin can cause severe burns and
even skin cancer. It will therefore be advisable
to use windows or shutter arrangements to filter
the otherwise unattenuated solar ultraviolet rays.
In space there will be no warning glare of scattered
light to alert the observer that his line of sight is
approaching the sun. An inadvertent glance at the
sun could cause temporary vision failure and ten
seconds of exposure would cause permanent
retinal burn. These authors conclude that pro-
tection of the eyes against sunlight is a necessity.
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e. Radiation damage thresholds

Of all the components of a space vehicle,
man has the lowest threshold to damage by
ionizing radiation as shown in Table 34.

TABLE 34
Radiation Damage Dose Limitations
Roentgen Equivalent

People 102 (sickness) 103 (lethal)
Semiconductor 106 (damage) 10'7 (failure)
Electronics 108 1010
Elastomers 107 108
Plastics 108 10°
Metals 10 -G
Ceramics 107

Ref. Nucleonics Sept 1956

More detailed treatment of radiation damage
mechanism are shown in Refs, 56 and 57 and
in the very comprehensive Radiation Effects
Information Center Series of Battelle Memorial
Institute.

Semiconductors are seen to be the second
easiest damaged component. This is caused
by the fact that their properties arise from their
form of very nearly perfect single crystals.
Most metals and ceramics used for structural,
electrical or magnetic applications are already
in a disordered polycrystalline form and their
properties are only moderately changed by
further disorder (ionization).

It should be noted that certain types of sensing
elements may give erroneous readings due to
spurious signals from the Van Allen or other
radiation environments. While this does not
represent damage by radiation, it is neverthe-
less undesirable and can be easily avoided by
proper selection, design and calibration of these
devices.

As contrasted to actually 'reading' unwanted
signals from ionizing radiations in sensitive
"front end' components it is known that electronic
components and circuits may operate improperly
while in the presence of large fluxes of ionizing
radiation. Measurements made under conditions
simulating a nuclear explosion in space have indi-
cated that the threshold of susceptibility to these

effects is at peak dose rates of 106 to 10
roentgen per second. This again is greatly in
excess of what will be encountered from the
natural radiation environments.

The radiation problem therefore reduces to
protection of the crew.




Maximum allowable radiation doses for
manned space flight have been revised upward
from 25 rem considerably in the past year.
Presently the Apollo maximum allowable emer-

gency dosages are as shown in Column 4 of

Table 35 from Ref. 58. The normal mission
dosages are as shown in Column 3. These
values are more meaningful than the single so-
called "whole body'" value used previously.

TABLE 35
Radiation Dosage

5 Year Dose Average Year Maximum Single Acute Design Dose

(rem) RBE Dose (rad) Exposure (rad) (rad)
Skin body dose 1630 1.3 235 500 1125
0. 07 mm depth
Skin body dose 3910 1.4 559 700 7753
extremities,
hands, etc.
Blood forming 2171 1.0 54 200 50
organism
Eyes 271 2.0 27 100 25

4. Meteoroids

Empirical data on meteoroids has come
either from optical and radar meteor obser-
vations or from impact detectors on board
rockets and satellites. In the first type of ob-
servation, velocity and luminous intensity history
are directly measurable. The mass and density
of the meteoroid is then determined using the
drag equation, the shape of the light curve and
the vaporization equation. Due to the variety
of assumptions and dependencies in this analysis,
there is a large uncertainty in flux estimates
from the same type of data. The relation between
meteoroid mass and visual magnitude is shown
in Fig. 30 from an early survey (Ref. 59). The
relation between mass and flux is shown in
Fig. 31 from a later survey article (Ref. 60).
The flux uncertainty is dealt with in a number of
other survey, articles (Refs. 61, 62 and 63), and
an examination of the assumptions employed in
the analysis procedure will show why it is as

large as 103. The best known model of the
meteoroid environment was developed by
Whipple in 1957 and summarized in Table 36.
The following equation fits the distribution
presented by Whipple in 1957.

¢ = 1.3 x 10_12 m_l

where ¢ is the flux /mz—sec of particles with mass
m grams and greater. This was revised by
Whipple (Ref. 64) in 1960 to

¢ = 10—12'6 m-l' 186 to include empirical
data from rockets and satellites. A recent evalu-
ation of rocket and satellite data (Ref. 65) (obtained
from acoustic detectors) obtained

=157 O8] 870
m
-10

enstes of 10710 to 107° gm. These distributions
are shown in Fig. 32 taken from the last cited
reference. It should be noted that meteoroid
masses of greatest interest to space vehicle de-
signers lie between the mass regions measured

= 10 applicable between
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by the meteor or satellite-borne microphone
techniques. Observations of meteors simulated
by shaped charge firings from an Aerobee Rocket
(Ref. 66) have indicated that Whipple may have
underestimated meteor luminous efficiencies.
This may be accounted for by a downward revision
by an order of magnitude in mass (Ref. 67) of the
1957 flux estimate of Whipple so that

o = 1.3x o

Various investigators have put forth penetration
models--some based on empirical equations derived
from test data and some based on theoretical con-
siderations and most all giving the penetration in a
thick target. Since structural skins are usually
made of aluminum alloy materials, a good basis
of comparison is the penetration of meteorites into
aluminum. Four penetration equations were in-
vestigated to obtain a comparison of the meteorite
penetrations given by the different equations. These
equations were:

a. Whipple's equation

This equation is given in (Ref. 63) as

105 1/3 173
npe) =

P= Ky (
where
P = penetration in a thick target
K, = constant of proportionality
E = meteorite energy
p = target density

e = heat to fusion of target material

For a meteorite of diameter (d) moving at a
velocity (V) cm/sec and with a meteoroid density
Pt = 0. 05 grn/c:md and e = 248 cal/gm Whipple's
equation is




TABLE 36

Data Concerning Meteoroids and Their Penetrating Probabilities
F. L. Whipple, Ref. 5

No. Striking
Meteor Assumed Pen. No. Strik- 3m (Radius)
Visual Mass Radius Vel KE in Al T ing Earth Sphere
Magnitude (g) (u) (km/ sec) (ergs) (em) (per day)** (per day)***
0 25.0 49,200 28 1.0 x 10 | 21.3 == =
1 9.95 36, 200 28 3.98 x 1013 | 15.7 " e
2 3.96 26,600 28 1,58z 1012 | 12,5 - -
3 1.58 19,600 28 6.31x 1012 | s8.48 = e
4 0.628 14,400 28 2.51x 1022 | 6.24 o =
5 0.250 10, 600 28 1.00 x 1012 | 4.59 2x10% | 2.22x107°
8 9.95x 1072 | 17,800 28 3,08x 1001 | 3.38 5.84 x 108 | 6,48 x 1072
7 3,06 %1072 | 5,740 28 1.58 x 1011 | 2,48 1.47x10° | 1.63x 1074
8 1.58x 1072 | 4,220 217 5.87x 1010 | 1.79 3.69x 10° | 4.09x 1074
9 6.28x 107 | 3,110 26 2.17x 1010 | 1.28 9.26 x 10° | 1.03x 1073
10 2.50 x 1072 | 2,290 25 7.97 x 10° 0.917 2.33x 1010 | 2.58x 1073
11 9.95 x 10°% | 1,680 24 2.93 x 10° 0.656 5.84x 1010 | 6.48x 1073
12 3.96x 10°% | 1,240 23 1.07 x 10° 0.469 1.47x 108 | 1.63x 1072
13 1.58x 107% | o910 22 3.89 x 108 0.335 3.69 x 1011 | 4.09x 1072
14 6.28x 1070 | 669 21 1,41 % 108 0.238 9.26 x 1011 | 1.03x 107!
15 2.50 x 1070 | 492 20 5 1010 0.170 | 2.33x 1012 | 2.58x 107!
16 9.95 x 1075 | 362 19 1.83 x 10" 0.121 | 5.84x 102 | 6.48x 1071
17 3.96x 1078 | 266 18 6.55 x 10° 0.0859 | 1.47x 1013 | 1.63
18 1.58x 1075 | 196 17 2.33 x 10° 0.0608 | 3.69x 101 | 4.09
19 6.28 x 1077 | 144 16 8.20 x 10° 0.0430 | 9.26 x 103 | 1.03 x 10
20 2.50x 10" " | 108 15 2.87 x 10° 0.0303 | 2.33x10'% | 2.58x 10
21 9.95x 1078 | 78.0 15 1e 14 10° 0.0223 | 5.84x 102 | 6.48x 10
22 3.96x 107 | 57.4 15 4.55 x 10% 0.0164 | 1.47x 10%% | 1.63 x 10
23 1.58x 1078 | 39.8% 15 1.81 x 10% 0.0121 | 3.69 x 10 | 4.09 x 102
24 6.28x 1072 | 25.1% 15 rel= 100 0.00884 | 9.26x 10%° | 1.03 x 10°
25 2.50 x 1072 | 15.8% 15 2.87 x 10° 0.00653 | 2.33 x 1016 | 2.58 x 103
26 9.95 x 10710 | 10.0% 15 1.14 x 10° 0.00480 | 5.84 x 106 | 6.48 x 103
27 3.96 x 10710 | 6.30% 15 4,55 x 102 0.00353 | 1.47x 1017 | 1.63 x 10%
28 1,58 x 10°10 | 3.98% 15 1.81 x 102 0.00260 | 3.69 x 1017 | 4.09 x 10%
29 6.28 x 10711 | 2.51% 15 7.21 x 10 0.00191 | 9.26x 1017 | 1.03 x 10°
30 2.50 x 1071 | 1.58% 15 2.87 x 10 0.00141 | 2.33x 108 | 2.58 x 10°
31 9.95 x 10712 | 1.00 15 1.14 x 10 0.00103 | 5.84 x 1018 | 6.48 x 10°

* Maximum radius permitted by solar light pressure.

%% These No. based on entrance to atmosphere at 100 km approx

*#*% Includes earth's shading effect of 1/2

TP €

. p=<_9,E_

1/73

b

= 447 x 778.3 ft 1b/1b for Al
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T = 1.08x 0 4 v2/3
where
P = penetration in thick target
= meteorite diameter
V = meteorite velocity in cm/sec.

Whipple's equation is theoretical and is
believed to give penetration depths for hyper-
velocity impacts that are too high.

b. Kornhauser's equation

This equation is given in (Ref. 68) as

. (2)1/3(_E_)0'09
2 'E E
o
where
h = penetration (depth of crater)
K2 = constant of proportionality
T = kinetic energy of projectile
E = modulus of elasticity of target

material

EO = reference modulus

This equation yields

% - 0.282x 10”4 v2/3

which is identical to Whipple's except that the
value of the constant is lower.

c. Summer's equation

This equation is an empirical equation based
on experimental test data using many different
projectile and target material combinations. As
given in Ref. 69, the equationhas the form of:

2/3 2/3
15 v
<C)

p
= g
a 2.28 (pt )

where
P = penetration in a thick target
d = diameter of projectile
pp = density of projectile
Py = density of target
V = projectile velocity
C = speed of sound in target material

For Whipple's meteorite density of pp =0.05
gm/cms, an aluminum target density of Py =

2.8 grn/cm3 and C =5.1x 105 cm/sec, the
equation reduces to
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P ol2a3x 1074 v 213

The agreement between this constant and that of
Kornhauser is noted.

d. Bjork's equation

This is a theoretical equation developed by
Bjork (Ref. 70) using a hydrodynamic model to
explain hypervelocity impact. He derived equations
for the impact of aluminum projectiles on alumi-
num targets and also iron projectiles on iron
targets. In Ref. 71, Bjork gives the penetration
of an aluminum projectile into an aluminum target
as:

P = 1.09 (mv)!/3
where
P = penetration in cm
m = projectile mass in gm
v = impact velocity in km/sec

Bjork in Ref. 72 states that the use of a correction
P\ ¢
factor of the form(%) is subject to a great
t
deal of conjecture as it rests on no theoretical
basis. He also stated that he would favor the

value of ¢ = 1/3 and 6 = 1/3 in a general pene-
tration equation such as:

) 8 =4 @ =13y 2
FR=R g0 P (c_)

equating the general and empirical relations.

_ 1/3
1.09 (mv)ll3 =K3m1/3 Py 1/3 (%)

og =k, o '/° &) 12

For aluminum targets, Py = 2.8 gm/cm3 and
C =5.1 km/sec, K3 = 2:63.

Thus we may write

2.63m1/% 7173 (V) e

P = t e

Then, letting "d'" equal the meteorite diameter
in cm and its density Pp = 0.05 gm/cm3 yields

P = 2.63 (f a° pp)1/3 o, 1/® C—Q =
£ = olzoz vl
where
P = penetration = cm
= meteorite dia = cm
V = meteorite velocity = Lt

sec




This probably stretches Bjork's work more
than he would care to see done but it is necessary
to obtain a comparison with the other formulas.

e. Engineering model

For purposes of evaluating meteoroid effects
upon propellant storage vessel design, the follow-
ing model has been recommended (Ref. 73).

(1) The integral mass flux of particles
is given by

o = 10 13 m 10/9 hits/mzlsec, by
particles of mass m gm and
greater. Approximately 90% of
the meteoroid flux is assumed to

have a density of 0.05 gm /cm3.
The effective flux used in com-
puting probability of hits is there-
fore reduced by an order of magni-
tude to compensate for the very
low density meteoroids which will
not follow the given penetration

law.
(2) The particle velocity (v) is 30 km /sec.
(3) Penetration of impacting particles into
a single thickness of steel is given by
P =1.5 (mv) 1/3, cm
(4) Aluminum is half as effective as steel

in withstanding penetration.

The use of spaced sheets (Whipple
bumpers) allows a reduction factor,

Bf = 5, in the total thickness required

to withstand penetration.

(5)

(6)
(7)

Particle density, (p) is 3 gm/cu cm.

The area exposed to meteoroids is
the total unshadowed surface area of
the object. The shadowing can be ex-
pressed in terms of an effective area
by computing a factor to be multiplied
by the actual area. This reduction
factor will be in the ratio of a sphere
with a conical segment removed to a
sphere. The center of this sphere is
the spacecraft and the conical segment
is that volume intersected, as an ex-
ample, by the Earth. Consider the
following sketch

Spacecraft
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where

oy il
u = sin

Ro /R.
Then

1-1/2 (1 - cos u)

(2]
]

1 + cos (sin i Ro/R)

== 5

The integral mass flux thus becomes

o = 10-14 m -10/9 hits/m2 sec

N (> m) = 8.64 x 10" %m "1%/% it /m?-day

Eliminating the constant meteoroid velocity
(30 km /sec), and expressing the penetration law
in terms of mass gives

s 10705

as the mass in grams required to penetrate X cm
of steel. With the flux and penetration expressed
only by mass, it is convenient to combine the two
relationships, obtaining

N (>m = 8.64 x 10710 (p%/101.25)710/°
= A AGETe
P

hits per square meter per day capable of pene-
trating P cm of steel. The reciprocal of this
relation is the average number of days between
penetrations. To determine the thickness re-
quired so that an area of A meters is not pene-
trated on the average for at least T days,

., 8/10
P = (AT - 1.46 x 10
- (A T30, cm of steel
10

This relationship is convenient to use for purposes
of design after the effects of the time distribution
of meteoroid encounters have been included. The
Poisson distribution model has been used to elabo-
rate on meteorite encounter probabilities. This
distribution which is valid for uniform masses of
low density is
K -t
(%) T
i e
K1

Prt =

where t is any selected interval, and % is the

average number of penetrations per day. Thus
the probability of any number, K, penetrations
during time, t can be estimated. To determine
the probability of no penetrations during T days
(T =1t) the relation reduces to

=1

P =iie

Kt = 0.368




so that the probability is 0. 368 that there will be
no penetrations within the average number of
days between penetrations. To find the time at
the end of which the probability of no penetrations
is 0. 989.

0.99 = ¢ t/T
t = -T1lno0.99
t = 0.0101T

For 0.95 and 0. 90 probabilities, the correction
factors are, respectively, 0.05 and 0.10. For
example, the average time between penetrations

for a 93 m2 steel surface 2.5 cm thick is about

175600 106 days. There is a 0.368 probability
that there will be no penetrations by the end of
this time. For this structure, the limiting time
for 0. 99 probability of no penetrations is 1.6 x
104 days; for 0.95 probability, 8 x 104 days; and

for 0. 90 probability, 1.6 x 10° days.

Correspondingly, if the probability for no
penetration of X thickness within T is 0. 368, then
the thickness required for a 0.99 probability of
no penetrations in T days is

10/3
10/3 _ P
(P at 0.99) = 0.070T
P, at 0.99 = 3,97P

for 0. 90 probability.

Pkt at 0.90 = 1. 96X

More generally

£ (1.46x 107 ) A

1n (prob) =
P10/3

The relationships between exposed area and
time, aluminum thickness and penetration prob-
ability are illustrated in Fig. 33.

C. CONVERSION DATA

1. Definition of Time Standards and Conversions
(Ref. T74)

Time measurement may be based upon the
period of motion of a stable oscillator, the decay
of a radioactive isotope, or the period of any
celestial body relative to the observer. The latter
is the body chosen sometimes referred to as the
time reckoner and a clock in most astronomical
research. The particular day is defined to be the
time span between two successive upper or lower
transits of the given time reckoner across the
celestial meridian of the observer. Noon is the
time of upper transit (the transit in the northern
celestial hemisphere). Angles measured in the
equatorial plane of the celestial sphere from the
observer!s meridian, O, westward are called
local hour angles (see following sketch). Thus
O_ is the local hour angle of vernal equinox. Then

local time of day is the hour angle of the time
reckoner for days beginning at noon. Since an
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international agreement in 1925, astronomical
time is reckoned from midnight, so that the local
time of day based on this origin is

T=r+12"

where 7 is the hour angle of the time reckoner.
Because astronomers refer to two time reckoners,
the sun and vernal equinox, there are two kinds of
days; the solar day and the sidereal day.

4 North celestial
pole
Observer's
meridian
Greenwich
meridian
\ ;
S g
N ~
G

o

The sidereal day is the interval between two
successive upper transits of vernal equinox.
Because this time reckoner is a point on the
celestial sphere, an infinite distance from the
earth, the sidereal day is the period of earth
rotation relative to inertial space. Because side-
real time is the hour angle of vernal equinox, it
is given at any instant by the right ascension of
a star that is crossing the observer's meridian
at that instant. The best value for the sidereal
day is 86164. 091 mean solar sec.

The solar day, the interval between two suc-

. . el s
cessive upper transits of the sun, is 3~ 56

longer than the sidereal day because the earth
moves almost one degree each day in its orbit
around the sun. Thus, the solar day is not ex-
actly equal to the period of earth rotation. Also,
the apparent sun (the sun we see) is not a pre-
cisely uniform time reckoner because the orbit

of the earth is slightly eccentric and the eliptic

is inclined about 23° to the equatorial plane. Be-
cause the apparent sun is a nonuniform time
reckoner, the mean sun is used to measure civil
time. The time unit is the average of the apparent
solar days, the mean solar day and its length is
defined to be 86400 mean solar sec. The differ-
ence between apparent and mean solar time is
called the '"equation of time, " ET:

ET = AT - MT = TA = TN T AM-— AA
where

AT = apparent time

MT = mean solar time




= hour angle of apparent sun

A
Tog = hour angle of mean sun
AM = right ascension of mean sun
AA = right ascension of apparent sun

Civil time, CT, is mean solar time measured
from midnight,

CT = ’TM
The local civil time at the Greenwich meridian
is known as universal time, UT, or Greenwich
mean time, GMT.

+ 12

The difference in local time at two places for
the same physical instant is the difference in
longitude, \:

g b

’I‘1 =
where \, in the astronomer's convention, is meas-
ured positive westward from the Greenwich merid-
ian. This equation applies for T measured in any
system of local time, i.e., civil, apparent solar
or sidereal times. For example,

LMT = LLCT = UT - A\

Fifteen degrees of longitude corresponds to an
hour of time difference, so that for local mid-
night at Greenwich, the corresponding local times
at A = 15° W and 30° W are 11:00 p.m. and 10:00
p.m., respectively. The local time increases
for eastward longitude changes.

Since local civil times are the same only along
a given meridian, some confusion is avoided by
the use of time zones. The earth is divided into
24 zones, each fifteen degrees of longitude wide.
In the middle of each zone, at the 'standard me-
ridian, " local time differs from Greenwich time
by an integral number of hours. The time read
on a clock at any place, i.e., standard time, is
the local civil time of the standard meridian
nearest the clock. Standard time differs in some
places from zonal time where boundaries are
twisted to suit geographical and political bounda-
ries.

Greenwich civil time is generally the system
employed in astronomical almanacs. Therefore,
conversions required most often are standard to
GMT and GMT to standard. The conversion from
a zone time to GMT is effected by dividing the
longitude (in degrees) of the observation site by
15 and obtaining the nearest whole number. This
value is added to the zone time for sites west of
Greenwich and subtracted for sites east of Green-
wich.

o

GMT = ZT i%

The same rule applies for conversion of standard
times, except that the irregular boundaries for the
time zones must be utilized.

The preceding discussions provide the basis

for an appreciation of the measurement of time
intervals; however, in order to relate any two

I1=51

events in time it is necessary to refer them to the
same time reference. For earth satellite prob-
lems this requires only that an epoch be selected
and that the universal time be recorded at the in-
stant. A record of time by days and/or seconds
from this epoch thus relates all of the events. In
other problems where two or more bodies are in-
volved such an arbitrary solution of the time origin
for one body may lead to unnecessary complexity
due to the fact that all of the various time scales
must be correlated each time a computation is
performed. To avoid such a situation the Julian
day calendar was established by the astronomers.
This calendar takes the origin to be mean moon
4713 years before Christ and is a chronological
and continuous time scale,i.e., days have been
counted consecutively from this date to present.
This practice avoids problems resulting from the
nonintegral period of the earth (365.2563835 mean
solar days) and the difficulties of months of differ-
ent length. On this calendar January 0 (i.e.,
mean noon January 1) 1900 is 2415020 mean solar
days. The conversion of other dates in the later
half of the 20th century is facilitated by Table 37
obtained from The American Ephemeris and
Nautical Almanac.

2. Review of Standards of Length and Mass

For many engineering purposes the conversions
between units of measure need be known only to
two or three significant figures. For this reason
a general unawareness of the definition and use of
these units has resulted and is evidenced by in-
consistencies in the literature. The purpose of
this section is to redefine a set of units and specify
accepted conversions from this set to other com-
monly used systems.

a. Standard units

The United States' system of mass and measures
has been defined in terms of the metric system
since approximately 1900; it was refined in metric
terms in 1959. Therefore, care must be exercised
to assure that proper standards are used for all
precise computations. Before going further it is
necessary to obtain an appreciation for the bases
for measurement.

The meter was originally defined to be 1 /107
part of 1/4 of a meridian of the earth. A bar of
this length was constructed and kept under standard
conditions in the Archives. Since subsequent meas-
urements of the earth proved this definition to be in-
correct, a new international standard, the Prototype
Meter, was defined to be the distance between
two marks on a platinum-iridium bar at standard
conditions. This bar was selected by precise
measurement to have the same length as the bar
in the Archives. National standards were also
produced and compared to the Prototype Meter.
In October 1960, at the Eleventh General Con-
ference on weights and measures, the meter was
redefined to be 1,650, 763. 73 wavelengths of the
orange-red radiation of Krypton 86. However,
the bar standards are also maintained because of
the ease of measurement,

The kilogram was originally defined to be the
mass of 1000 cubic centimeters of water at its
maximum density (i.e., 4° C). However, at the
time the Prototype Meter was defined, the kilo-




TABLE 37

Julian Day Numbers for the Years 1950-2000
(based on Greenwich Noon)

Year Jan. 0.5 Feb. 0.5 Mar. 0.5 Apr.0.5 May0.5 June 0.5 July0.5 Aug. 0.5 Sept.0.5 Oct. 0.5 Nov. 0.5 Dec. 0.5
1950 | 243 3282 3313 3341 3372 3402 3433 3463 3494 3525 3555 3586 3616
1951 3647 3678 3706 3737 3767 3798 3828 3859 3890 3920 3951 3981
1952 4012 4043 4072 4103 4133 4164 4194 4225 4256 4286 4317 4347
1953 4378 4409 4437 4468 4498 4529 4559 4590 4621 4651 4682 4712
1954 4743 4774 4802 4833 4863 4894 4924 4955 4986 5016 5047 5077
1955 | 243 5108 5139 5167 5198 5228 5259 5289 5320 5351 5381 5412 5442
1956 5473 5504 5533 5564 5594 5625 5655 5686 5717 5747 5778 5808
1957 5839 5870 5898 5929 5959 5990 6020 6051 6082 6112 6143 6173
1958 6204 6235 6263 6294 6324 6355 6385 6416 6447 6477 6508 6538
1959 6569 6600 6628 6659 6689 6720 6750 6781 6812 6842 6873 6903
1960 | 243 6934 6965 6994 7025 7055 7086 7116 7147 7178 7208 7239 7269
1961 7300 7331 7359 7390 7420 7451 7481 7512 7543 7573 7604 7634
1962 7665 7696 7724 7750 7785 7816 7846 7877 7908 7938 7969 7999
1963 8030 8061 8089 8120 8150 8181 8211 8242 82173 8303 8334 8364
1964 8395 8426 8455 8486 8516 8547 8577 8608 8639 8669 8700 8730
1965 | 243 8761 8792 8820 8851 8881 8912 8942 8973 9004 9034 9065 9095
1966 9126 9157 9185 9216 9246 9277 9307 9338 9369 9399 9430 9460
1967 9491 9522 9550 9581 9611 9642 9672 9703 9734 9764 9795 9825
1968 9856 9887 9916 99417 9977 *0008  *0038 *0069 *0100  *0130 #0161 *0191
1969 | 244 0222 0253 0281 0312 0342 0373 0403 0434 0465 0495 0526 0556
1970 | 244 0587 0618 0646 0677 0707 0738 0768 0799 0830 0860 0891 0921
1971 0952 0983 1011 1042 1072 1103 1133 1164 1195 1225 1256 1286
1972 1317 1348 1377 1408 1438 1469 1499 1530 1561 1591 1622 1652
1973 1683 1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 2017
1974 2048 2079 2107 2138 2168 2199 2229 2260 2291 2321 2352 2382
1975 244 2413 2444 2472 2503 2533 2564 2594 2625 2656 2686 2017 2747
1976 2778 2809 2838 2869 2899 2930 2960 2991 3022 3052 3083 3113
1977 3144 3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478
1978 3509 3540 3568 3599 3629 3660 3690 3721 3752 3782 3813 3843
1979 3874 3905 3933 3964 3994 4025 4055 4086 4117 4147 4178 4208
1980 | 244 4239 4270 4299 4330 4360 4391 4421 4452 4483 4513 4544 4574
1981 4605 4636 4664 4695 4725 4756 4786 4817 4848 4878 4909 4939
1982 4970 5001 5029 5060 5090 5121 5151 5182 5213 5243 5274 5304
1983 5335 5366 5394 5425 5455 5486 5516 55417 5578 5608 5639 5669
1984 5700 5731 5760 5791 5821 5852 5882 5913 5944 5974 6005 6035
1985 | 244 6066 6097 6125 6156 6186 6217 6247 6278 6309 6339 6370 6400
1986 6431 6462 6490 6521 6551 6582 6612 6643 6674 6704 6735 6765
1987 6796 6827 6855 6886 6916 6947 6977 7008 7039 7069 7100 7130
1988 7161 7192 7221 7252 7282 7313 7343 7374 7405 7435 7466 7496
1989 7527 7558 7586 7617 7647 7678 7708 7739 7770 7800 7831 7861
1990 | 244 7892 7923 7951 7982 8012 8043 8073 8104 8135 8165 8196 8226
1991 8257 8288 8316 8347 8377 8408 8438 8469 8500 8530 8561 8591
1992 8622 8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8957
1993 8988 9019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322
1994 9353 9384 9412 9443 9473 9504 9534 9565 9596 9626 9657 9687
1995 | 244 9718 9749 9777 9808 9838 9869 9899 9930 9961 9991 *0022 #0052
1996 | 245 0083 0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418
1997 0449 0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783
1998 0814 0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148
| 1999 | 245 1179 1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513
2000 | 245 1544 1575 1604 1635 1665 1696 1726 1757 1788 1818 1849 1879

1900 Jan 0,5 ET = Julian Day 2,415,020.0
1950 Jan 0.5 ET = Julian Day 2, 433, 282.0

Greenwich Noon, January 1, 1900, a common epoch
Greenwich Noon, January 1, 1950, another common epoch and
first entry in this table
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gram was redefined to be the mass of the Proto-
type Kilogram and, as was the case with the
Prototype Meter, national standards were obtained
by comparison to the Prototype Kilogram. This
unit has not been changed to date though proposals
have been made to base the measurement on some
atomic standard. The conversion from mass to
force is accomplished by the standardized con-

stant g, = 9. 80665 m/secz.

Effective July 1, 1959, the English speaking
people defined their standards of length and mass
in terms of the metric system of units. This was
accomplished through the definition of an inter-
national yard and an international pound.

1 yard = 0.9144 meter

1 pound (avdp) = 0.453,592,37 kilogram
These two units constitute the basis for all measure
with the exception of those accomplished by the

U.S. Coast and Geodetic Survey which continues
to use a foot defined by the old standard:

or

1 yard

0.91440182 meter

Of course, other units of length, area, volume,
etc., can be related by their definition to these
more basic units. These second generation units
(for example: statute mile, nautical mile, etc.)
are in general peculiar to particular regions and
thus only a few will be discussed in the following
paragraphs.

The astronomical unit (AU) is defined as the
mean distance from the sun to a fictitious planet
whose mass and sidereal period are the same as
those used by Gauss for the earth in his determina-
tion of the solar gravitation constant. This defi-
nition enables the astronomer to improve his knowl-
edge of the scale of the solar system as more ac-
curate data become available but does not require
recomputation of planetary tables since angular
data can be computed with an accuracy of eight or
nine significant figures. The best value of this

unit is presently 149. 53 x 106 km and the mean
distance from the earth to the sun is presently con-
sidered to be 1.000,000,03 AU.

The nautical mile was originally defined to be
one minute of arc on the earth's equator. On this
basis the best value of this unit appears to be ap-
proximately 6087 feet. Various attempts have been
made to adopt a standard length, e.g., the British
nautical mile was defined to be 6080 feet and the
U.S. nautical mile was defined to be 6080. 20 feet.
In 1954, it was agreed to standardize the nautical
mile by defining it in terms of the meter. As a
result, the international nautical mile was defined
to be 1852 meters, or, based on the conversion
between feet and meters at the time, 6076. 10333
feet. But with the redefinition of the foot (1 foot =
0.3048 meter) as of July 1959, the nautical mile
changed once again to 6076. 11549 international feet,
approximately. This value has been accepted by
the National Bureau of Standards and all respon-
sible agencies.
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The statute mile = 5280 international feet.

The meter was previously defined; however,

many units of length have been defined based on
che prime unit and related by powers of 10. Ac-
cordingly the following prefixes have been intro-
duced and are generally recognized:

3.

The yard

tera, meaning 1012
giga, meaning 109
mega, meaning 106
kilo, meaning 103
hecto, meaning 102
deka, meaning 101
deci, meaning 10~
centi, meaning 1072
milli, meaning 1073
micro, meaning 10_6
nano, meaning 1072
pico, meaning 10—12

0.9144 meter

3 international feet

The foot = 0.3048 meter

= 12 international inches

The inch = 0. 0254 meter

= 103 mils

The micron = 10_6 meter

10_10 meter

]|

The angstrom

Mathematical Constants

T = 3.141,592,653,6

2m 6.283,185,307,2

3m

9.424,777,960, 8

log, o™ = 0.497,149,872,7

log ™ = 1.144,729,885,8
e - 2.718, 281,828, 5
log g = 0.434,294,481,9
o = 17,389,056, 102

1oge10 = 2.302,585,091

1/m = 0.318,309, 886, 0
1/2m = 0.159, 154, 943, 0
1/3m = 0.106,103,295,3

360/2% = 57,295,779,51




1/e = 0.367,879,441,0
1/e2

0.135,335,283,1

-7
~ 10
1 second = 3.155,692,597, 47
times the Besselian (tropical,

solar) year at 1900.0 and 12 hr

4. Time Standards
| ephemeris time

| 1 mean solar sec ~ (1 + 10_9) ephemeris
seconds in 1960

sidereal day 86, 164.091 mean solar

seconds

sidereal year = 365.256,383, 5 mean
solar days

sidereal year = 3,155, 814,9 x 107 mean
solar seconds

5. Conversion Tables

Ready conversions for the more generally
used units of astronomical measurements will
be found in the following tables:

Table 38--Length Conversions
Table 39--Velocity Conversions
Table 40--Acceleration Conversions
Table 41--Mass Conversions

Table 42--Angular Conversions

Table 43--Time Conversions

Table 44--Force Conversions

TABLE 38

| Length Conversions

Statute Mil

International International International

International
Astronomical Units Nautical Miles
1 Astronomical Unit = 1 80.737, 90 x 10°
1 International Nautical Mile = 1.238,575x 1078 1
1 Statute Mile = 1.076,292x107° 0.868, 976, 242

1 Meter = 0.668,777,3x1072!  0.539, 956, 803x 1072
1 International Yard = 0.611,529,9x10711 0,493,736, 501x1073
1 International Foot = 0.203,843,3x107 0,164,578, 833x1073
1 International Inch = 0.169, 868, 4x1071%  0.137, 149, 028 x 107

1.150, 779, 447
1

0.621, 371, 192
0.568, 181, 818
0.189, 393, 939
0.157, 828, 282

es Meters Yards Feet Inches
92.911, 52x10° 149.5266x10% 163.524,3x10° 480.5728x10% 588,687, 4x1010

1852* 2025.371,828  6076.115,485 72, 913, 385, 826
1609, 344* 1760% 5280% 63, 360"

x107% 1 1.093, 613,298 3, 280, 839, 895 39, 370, 078, 740

x107%  0.9144* 1 3* 36

x1073  0.3048" 0.333,333,333 1 12*

x10™*  0.0254* 0.027,777,777 0.083, 333,333 1

TABLE 39
Velocity Conversions
International
Astronomical Units Astronomical Units Nautical Miles Statute Miles Kilometers per Meters per
per Mean Solar Day per Sidereal Day per Hour per Hour Hour Second Feet per Second

-

Astronomical Unit per
Mean Solar Day = 1 1,002, 737, 90 3

Astronomical Unit per
Sidereal Day = 0.997, 269, 57 1

w

International Nautical

|
‘ Mile per Hour = 0.297,258,2x 10°°  0.298,072,1x 1078

Statute Mile per Hour = 0,258, 310, 3 x 10'6 0.259,017,5 x 10_6 0.

Kilometer per Hour = 0,160, 506,6 x 10°°  0.160,946,1x 10 0.

1 Meter per Second = 0.577,823,6x10°°  0.579,405,6 x 1075 1.
1 Foot per Second = 0.176, 210,6 x 10”8 0.176,602,8 x 10°° 0.

—Underlined digits are questionable.
*Denotes exact conversion factor.

.364,079 x 10°

. 354,892 x 10°

868,976, 242, 6
539,956, 803,4
943, 844, 491

592, 483, 800
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6

3.871,313 x 10°  6.230,273x 10°  1.730,632 x 10°  5.677,928 x 10°

3.860,743 x 10°  6.213,260x 10°  1.725,807x 10®  5.662, 424 x 10°

1,150, 779, 447 1,852% 0.514,444, 444 1,687, 809, 856
1 1.609, 344% 0.447, 040% 1.466, 666, 666
0.621,371,192 1 0.277,777, 777 0.911, 344,415
2,236,936, 288 3.600% 1 3. 280, 839, 895
0.681,818, 181 1.097, 280% 0.3048% 1




Astronomical Unit
per Solar Day? =

Astronomical Unit

per Sidereal Day? =

International Nautical
Mile per Hour? =

Statute Mile per
Hour? =

Kilometer per
Hour2 =

Meter per Second? =

International Foot
per Second” =

-

Solar Mass =

-

Earth Mass =

-

Moon Mass =

-

Slug =

Kilogram =

-

Pound (avdp) =

TABLE 40
Acceleration Conversions

As 1 Units  Astr Units  International Nautical Statute Miles per Kilometers per International Feet per
per Mean Solar Day®  per Sidereal Day? Miles per Hour? Hour Hour Meters per Second? Second?

1 1.005, 483, 30 1.401, 700 x 10° 1.613,047 x 10° 2,595,989 x 10°  20.030,46 65.716,76

0.994, 546, 60 1 1.394, 056 x 10° 1.604, 250 x 10° 2.581,832 x 10°  19.921,23 65.358, 38

0.713,419,4 x 107°

0.619,944,7x 107

0.385,209,6 x 107

0.049, 923,97

0.015, 216, 82

Solar Mass
1
6
3.088, 062 x 10
3.697,320 x 1078
7.346,18 x 10729

5.033,73 x 107!

2.283,26 x 107>

0.717,331,1 x 1070
0.623,344, Fx 1070

0.387,321,9 x 10™°
0.050, 197, 70

0.015, 300, 26

Earth Mass
332,440

1

1.229,14 x 1072

0.244,25 x 1072

0.167,36 x 1072

0.759,15 x 10

0.868,976, 242, 6

0.539,956, 803, 4
0.699, 784,017, 6 x 10*

0.213, 294, 168, 6 x 10%

1,150, 779, 447

0.621,371,192
0.805, 297, 064, 9 x 10%

0. 245, 245, 245, 2 x 10*

TABLE 41

Mass Conversions

Moon Mass
217, 646, 600
81.358

1

0.198, 72 x 1072

0.136,16 x 10722

Slugs
1.361, 25 x 102°

4.094,2 x 1023

5.032,3 x 102}
1

6.852, 176,612 x 1072

1.427,04 x 10732

-

Ounce (avdp) =

—Underlined digits are questionable.
*Denotes exact conversion factor.

i meters _ 2
gy = 9,80665% — 32,174,048, 556 ft/sec

Revolutions
1 Revolution = 1
1 Radian = 0. 159, 154, 943

1 Degree

= 2.777,777,777 x 1073

0.474,47 x 107

6.283, 185, 307

1

"2 0.617,63x 10723 3.108,095,016 x 107
26 0,386,001 x 1072%  1.942,559,385 x 1073
TABLE 42

Angular Conversions

Radians Degrees
360, *

57.295,779,511

1.745, 329,252 x 10”2 1

1 Minute of Arc

1 Second of Arc =

1 Angular Mil =

*Denotes exact conversion

1.5625 x 10

4.629,629,629 x 107°
7.716, 049,382 x 107"

-4%

2.908,882,086 x 10
4.848,136,812 x 1078
9.817,477,040 x 10~

4

4

1. 666,666,666 x 10

=2

2.777,777,777 x 1074
5.6250 x 107 2%
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4

4,688,360, 711 x 10°%

1.852* 1,429,012,345 x 10
1,609, 344% 1.241,777,778 x 1074 4.074,074,074 x 1074
1 0.771,604,938,2 x lOAg 2.531,512, 264 x 10-4
12,960% 1 3.280, 839, 895
0. 395, 020, 800 0.3048% 1
Pounds Ounces
Kilograms (avdp) (avdp)
1.986,6 x 10°° 4.379,70 x 10°° 70,075, 3 x 10%°
5.975,0 x 1024 13.172,6 x 102 210.76 x 1024
7.344,0 x 1022 16.191,0 x 1022 259. 06 x 1022
14,593,902, 876 32.174,048,556 514,784,777, 0
1 2.204,622,621  35.273,961,94
0.458,592, 37% 1 16. 0%
0.283,495,231x 1072 0,062, 5% 1
Minutes Seconds
of Arc of Arc Angular Mills
21, 600. 0% 1, 296, 000. 0% 6400. *

3,437,746,771
60. 0%

1

0.016,666, 666
3.375%

206, 264,806, 236
3,600. 0%

60. 0%

1

202. 5%

1018.591, 636
17575707, 700

0. 296,296, 296
4.938,271,605 x 10
1

3




TABLE 43

Time Conversions

*Exact conversion
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III. ORBITAL MECHANICS

SYMBOLS

Semimajor axis

Right ascension

Semiminor axis

Eccentricity

Eccentric anomaly

Force per unit mass

Force or hyperbolic anomaly
Acceleration due to gravity
Angular momentum

Inclination angle of the orbit to the equatorial
plane

Moment of inertia; integral
Kinetic energy per unit mass

Latitude

Mass

Mean anomaly

Mean motion (mean angular velocity)
Semiparameter or semilatus rectum
Potential energy per unit mass
Orbital radius

Apogee radius

Radius to semiminor axis

Perigee radius

Radial velocity

Radial acceleration

Time

LI=1

=

<

Time of perigee passage
Kinetic energy per unit mass
Potential energy per unit mass
Velocity

Orbital velocity at apogee

Orbital velocity at perigee
Components of position

Angle of elevation above the horizontal plane

Azimuth angle measured from North in the
horizontal plane

Flight path angle relative to local horizontal
Total energy per unit mass

Orbital central angle between perigee and
satellite position

Angular velocity
Angular acceleration
Longitude (positive for East longitude)

Earth's gravitational constant 1. 4077

x 1018 £t3/sec? (398, 601. 5 km>/sec?)
Angle between the ascending node and the
projection of the satellite position on the
equatorial plane

Orbital period over a spherical earth

Orbital central angle between the ascending
node and the satellite (6 + w)

Argument of perigee
Longitude of ascending node

Rotation rate of the earth (27 rad each
86164. 091 mean solar sec




A. INTRODUCTION

The purpose of this chapter is to present data
pertaining to the more elementary laws and con-
cepts of orbit mechanics. The bulk of the material
consists of graphs and tabulations of formulas for
motion in elliptical orbits. In addition a brief in-
troductory treatment is given of the theoretical
background. Many excellent books are available
in the areas of analytical dynamics and celestial
mechanics (see the bibliography at the end of the
chapter). Therefore this chapter will only treat
the material in outline form with no particular
attempt to present a generalized and rigorous
treatise on classical mechanics.

B. MOTION IN A CENTRAL FIELD

To a first approximation the earth can, dy-
namically, be considered as a point mass located
| at the geometrical center of the earth. This im-
plies that the mass distribution of the earth exhibits
spherical symmetry, an assumption that does not
strictly hold true and will be discussed further in
the next chapter. Additionally, the earth's mass
will be considered infinite with respect to that of
a satellite moving in its gravitational field. Finally,
no additional forces will be assumed to act on the
satellite. Under these assumptions the gravitational
force F = 9‘;— (v = the earth's gravitational-con-
T
stant) acting on the satellite will be directed toward
the stationary center of the earth. The ensuing
motion will be planar.

In a rectangular coordinate system (in the plane
of motion) as shown in the sketch below {(assuming
m to be constant), we get

F
f =2F - B ooog0=-Tcos0=-f==%
>4 m r2 T
(1)
EL K N
fy= = =—;—2-sm9——fsme=—fr—y

The motion is, however, more easily found in a
polar coordinate system (r, ) as shown in the
sketch below.

In this system:

F
_r_:—f:-i=i:-r62 (3)
m 2
1e
F
S P T
T =0=r0 +210 ‘;'d—t— (I‘ 9) (4)

[11=2

-

From Eq (4) it follows that:

r2 ® = constant = h

(5)
This constant is the angular momentum defined from
vector mechanics. Substituting Eq (5) in Eq (3) re-
sults in

Now letting r = 4 it follows that

u

2
f=h2u2 <u+g——;—) =uu2 (6)

de

where time has been eliminated by:

- 1 _ 1S du s < _d_u
SR R
u u
and
¢ ond (G L2 2d%
L at \de o

Equation (6) can be written ‘

) |
d_u +u = Lz.
de2 h ‘

the solution to which can be recognized as:

[ _
-h—z + Ccos (0 60)

or in terms of r the solution is

= p
12 _1+ecos(e—eo)
1+—ﬁ— Ccos(e-eo)

(7)

The last form of Eq (7) is the standard form of a
conic with the origin at one of the foci. From
Eq (7) it can be seen that the semiparameter p

(semilatus rectum) is p = }L— and the eccentricity

2

eishH—C=pC. If e < 1 the conic is an




ellipse; if e = 0 it is a circle; if e = 1 it is a parab-
ola, and if e > 1 it is an hyperbola.

C. LAGRANGIAN EQUATION

The preceding integration of the equations of
motion is based on an elementary approach., At
this point a brief digression will be made into the
more general Lagrangian technique often used in
orbit mechanics, and encountered in Chapter IV.

The Lagrangian equation for a conservative sys-
tem is:

d oL .
d_t'('gq'_i "aq—i'o (8)

where the Lagrangianis L = T - U, T is the
kinetic energy of the system and U the potential
energy, The q's are generalized coordinates,

For a two-body central force case the Lagrangian
is (in polar coordinates) L =T - U = %m (f‘z + rzéz)
- U(r). Withq; =6 and q, = r we get:

d\ /oI, oL, d 2 .
@) & [mr 9}0:?9 (9)

where p, = m r? b is the angular momentum of the
system

and
d 8L\ _8L _d | 2 8U(r) _
dt (a_r—) r dt Enr] s 5 o
or, Sinee
au _
3 = - F()
d 2

(mt) - mr6? = - F(r) (10)

dt

From Eq (9) it follows that rz 6 = constant. (This
is commonly referred to as the law of areas.)

The orbit can be found by eliminating t from
Eq (10). From Eq (9)

mr? 28 -
at  Pe

we can conclude that

d _Pe a
de 2 de
mr
and
a2 _Po 4 sPo 4
g 2 do 2 de)
mr mr

Substituting this in Eq (10) we get:

2
p p p
0 d grdn 0 =
—2 -ﬁ-(——2 a'e- = 3 === F(I‘) (11)
1 mi mr

. 1
or using u = <

P - u2 2
0 d“u s N ke 2
— (;‘z*“)'*F(ﬂ = muu
0
which, since Py = hm, is identical to Eq (6).

D. ORBITAL ELEMENTS

Equation (7) for the conic which embodies
Kepler's first law defines the planar orbit of the
satellite when the constants p, e and eo are prop-

erly evaluated from a set of initial conditions,

such as V, r and y, where ¥ is the flight path
angle as shown in the sketch below. Note that

8r = V cos ¥ and hence 8r2 = r Vecos ¥ = h =

constant = Jup.

g,

The three constants p, e and 90, or any of a number

of equivalent sets of constants, describe completely
the geometrical properties of the ellipse in the plane
of motion. From a kinematic standpoint one more
quantity is needed to specify the position of the
satellite in its orbit. Frequently this specification
is given in the"form of the time of perigee passage,
although a knowledge of the position at any time is
sufficient.

Finally the plane of the satellite orbit must be
described with respect to some reference plane.
This description requires that two additional quanti-
ties be specified, for example, the inclination of the
orbital plane with respect to the reference plane and
the orientation in the reference plane of the line of
intersection between the two planes. The complete
specification of the orbit therefore requires knowl-
edge of six quantities, commonly called six elements
of the orbit. Under the simplifying assumptions
made in this chapter with respect to the dynamics
of the orbital motion, these elements will be con-
stants, whereas in the actual physical situation they
will generally be varying as functions of time.

A set of orbital elements in common usage is:
Semilatus rectum = p

Eccentricity = e

1

Time of perigee passage =t

=3




Inclination of orbit plane (with respect to
earth equatorial plane) = i

Argument of perigee (with respect to ascend-
ing node) = w

Longitude of ascending node (with respect to
vernal equinox) = Q.

E. MOTION IN THREE DIMENSIONS
From the solution of the orbit as expressed in

the orbital plane,i.e., r =1+ep—_—cTs—6' an expression
can readily be obtained for the three-dimensional
description of the motion in any coordinate system.
For this purpose define a coordinate system (x, y,
z) in the orbital plane with the x-axis pointing
toward perigee, the y-axis pointing in the direc-~
tion of r at ® = 90°, and with the z-axis completing
a right-handed Cartesian coordinate system. In
this system the defining equations for the motion
arex =r cos 6, y =r sin 6 and z = 0, To trans-
form these equations into the (x',y', z') system
shown in the sketch, the following transformation

applies: o

X cos 2cos w - cos 2sin w sin Qsin i X
- sin Qcos i sin w - sin Qcos i cos w

¥'|=| sin Qcos w - sin Qsin w -cos Qsini|l|ly
- cos Q2cos i sin w + cos 2cos i cos w

z! sin i sin w sin i cos w cos i z

Hence, sincex=rcos 6, y=rsin 6, z =0,
x'=A'rcos 6 +B' rsin 6, etc., etc.

where

A' = cos Q2cos w - sin Qcosisinw
and

B' = ~ cos 2sin w - sin 2cos i cos w

Now, since the orbital elements 2, w and i are
constant for this discussion the velocity com-
ponents are:

X'=A'(F cos © - r sin 6 9) + B! (r sin 0 +

r cos 6 0)
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where

h M
r0="— (1 + e cos 0)
p (o]
and
r=e 4& sin 6
1Y

Similar expressions are found for the other coor-
dinates. To reduce this description in inertial
space to one of position relative to the rotating
earth the following transformation is required

X, cos Qe it sin Qe it X:

yr:-sinQet cosQet y

z 0 0 z
r

where Qe is the rotational rate of the earth and
t is the time since the xr-axis, being in the prime

meridian, passed the xf-axis, the x! axis is ori-
ented toward the vernal equinox.

Zos (north)
A
///’—— e

~ SO
e == = -
=S -~

Qel

Q A
A
XI
T %
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The sketch also shows the right ascension A
and the geocentric latitude L.

Xl
A =arc cos

r2 - 2'2

and

5 VA . z
L =arc sin — = arc sin =
i 157

The longitude relative to the prime meridian
measured positive in the direction of rotation is
thus A = A - Qet.

F. PROPERTIES OF ELLIPTIC MOTION
Before progressing to a detailed discussion of

the motion, two general properties should be con-
sidered.




Equation (5): 2f=r (r6) = 2dA = h = constant

expresses the conservation of angular momentum
and is a consequence of the fact that the moment

of force about the center of motion is 0. It is also
the equivalent of the "Law of Equal Areas' known
as Kepler's second law. It is a general law of
central motion (i.e., for any force directed toward
a fixed center of attraction and hence having zero
moment about this point) since it was obtained with-
out recourse to any specific force law. Since

% r (r0) is the differential area dA swept by the
radius vector, one obtains A =% ht + constant,

and hence, Kepler's second law: the radius vector
of any given planet sweeps through equal areas in
equal time.

The time 7 to complete a revolution can easily
be found since the area of the ellipse is wab and
since b = Vap, one obtains

o 27 a3/2
7
Hence, Kepler's third law: the squares of the

periods of the planets are to each other as the
cubes of their semimajor orbital axes, or

It also follows from Eq (5) that gl —-g— or
7
the angular velocity is inversely proportional to

the square of the radius vector.

An important integral of the equations can be
obtained by multiplying Eq (1) by 2 X and Eq (2)

by 2y, and adding them .

2%x +25y =-L (xk+y§)
or
2 2
diCe t£d (2, 2
W(" +y)=‘?ﬁ€‘+y>
R G

If now f is a function of r only, the entire equa-
tion can be integrated to yield:

K2+ 3’2 = V2 = Sl gf(r) dr + constant =

2WVile) e,

where V(r) in a physical problem is a single valued
function of r. This equation is known as the ''vis
viva' integral. The velocity is, in other words,
only a function of the distance from the center of
attraction . V (r) is the potential of the force f(r)
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(in our case, f (r) =-£—2— ). Thus, V(r) = % and

2 _2u L 5
Vi =t constant, where the constant is found
to be equal to - u/a for elliptical motion, zero for
parabolic motion, and + u/a for hyperbolic motion.
In terms of the initial conditions v and r, the mo-
tion is elliptical, parabolic or hyperbolic depend-

ing on whether v2 = 27“ is negative, zero or

positive, respectively. This equation is inde-
pendent of the initial flight path angle y. For
elliptical orbits the resulting semimajor axis is
given by

a = __l“_u_2 (Fig. 1)
200 =TV

or

A%

c @)

For a circular orbit r=a and the circular orbit
velocity is given by

Ve =

ESTES

For a parabolic orbit a is infinite and the so-
called escape speed or parabolic orbital velocity
becomes

v o= (2=
esc I

So far only the geometry of the orbit has been
determined, and it has been obtained through the
elimination of time from the equations. To com-
plete the solution for elliptic motion, time is
reintroduced by substituting the area integral

+° 8 =h = Jua(l—ez)

[Eq (5)] ., into the 'vis viva' integral which in
polar coordinates for elliptic motion takes the
form:

(oyel

r a/u dr

dt =
da2 e2 - (a - r)2

Now, introducing the mean angular motion

= 1 M
8= a a




results in the equation

dr
Ezez—(a—r)2

To clean up this equation a new variable E is
introduced defined by a - r = ae cos E from which
r=a(l - e cos E) and

ndt =

[

ndt= (1 - e cos E) dE.

This equation is integrable and yields upon inte-
gration

n(t—to) =E - sinE

This equation is commonly referred to as Kepler's
equation.

Because of the importance of and general interest
in circular velocity, period and the mean angular
velocity (mean motion), these quantities have been
computed and presented in various forms in Figs. 7
and 8 and in Table 9 in both English and metric units.

The quantity E is called the eccentric anomaly
(anomaly = angle or deviation). Its geometrical
significance is shown in Fig. 4. The angle 0 is
referred to as the true anomaly. The quantity
n(t - to) is the angle which would be described by

the radius vector had it moved uniformly at the
average angular motion. It is called the mean
anomaly and designated by M =n (t - to).

Hence, M = E - e sin E. This transcendental
equation in E is known as Kepler's equation. Time
from perigee passage for elliptical orbits is now
obtained from:

3 3
T va_M= Ja_ B - in B
tp o 7 ( e sin E).

The solution of Kepler's equation for time
as a function of position is direct since there
exists a unique value of E for each value of r or
6. However, the reverse determination (for
position as a function of time) involves the solution
of Kepler's equation for E. This solution is trans-
cendental and thus requires iteration for conver-
gence to the proper value of E. The best form of
this iteration (assuming that a reasonable estimate
of E is available) is Newton's method which is ob-
tained directly from the Taylor series expansion
of M as a function of the estimate of E and the
mean anomaly. All higher order terms are neg-
lected.

M =M +4d
o g (M) AE + ...
or
M - M
Ak =Ti__0
=M—MO (Eo—esinEo)+M
IT-ecoskE

l-ecosEO
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This form can be further modified to yield the new
estimate of E directly by substituting

En+1= En+AE

e(sinE_ -E_cosE )+M
n n n

1 -ecos E
n

This series solution converges very rapidly and
generally requires only two iterations for six or
seven significant figures (given a two-place esti-
mate). Since one means of obtaining such an
initial estimate is a graph or nomogram, a nu-
merical solution of Kepler's equation may be found
in Big. 2.

A peculiar property of elliptic orbits is that
the velocity vector at any point can be broken into

components, Vb and Vd (V = Vb + \Td), such that
Vb is constant in magnitude and perpendicular to

the radius from the point of attraction to the instan-
taneous point in the orbit and Vd is constant in

magnitude and continuously directed normal to the
major axis of the ellipse. This behavior is illus-
trated in the following sketch.

Since Vg is constant, only V, contributes to the

acceleration, and solely by a change of direction,
i.e., the acceleration must be radial and such that

a=rants Vbe
where 0 is the angular rate of the radius vector.
But, the acceleration at any point can also be ob-
tained from the gradient of the potential function
(which, in the case of a spherical homogeneous
earth, or one constructed in spherically concentric

homogeneous layers is %).

Line of
apsides ¢

Therefore

or V, = H

Now since the acceleration is directed toward
the center of mass, the moment with respect to
this center must be zero, or

r2 6 = constant = h=r V cos ¥




This equation is recognized as the equation for
conservation of angular momentum, or the area
law.

Thus
V = — = E = M = li
b e h =~ rVcosy p

The second component of the velocity, V 4,
can be evaluated from the law of cosines.

v -2V, Vcos?

b

24 2 2
q —Vb +V

This equation reduces to the following upon

substitution
2 i
+ e ) =
i o (5 IZ“)

and V q can also be evaluated

eV,

W= b

The quantities Vb

from the sketch when it is noted that

Vp=Vb+Vd

Now assuming that the apogee and perigee radii

are known
7
G+
Ta

V. =

w
b 2r
p

T
= K = P
Vd 2Vb r ( r)‘evb
P a

The total energy in the orbit can also be related
to these fundamental quantities. This is accom-
plished as follows:

Potential energy - _ u
unit mass 7
2
N il VR
5 “2a - KE -3
Total energy - Kinetic energy
unit mass unit mass
¥ Poteptial energy
unit mass
2 2
e Yo " Va
2a 2

TTI=d

This representation of the orbit also offers a
simple means of determining the direction of the
line of apsides of the orbit . The line of apsides
is determined from the preceding sketch by

tan ¢ = VsmY - I’fanY
-V—b—cosy T

G. LAMBERT'S THEOREM

In Chapter VI, the problem arises of determin-
ing an ellipse from a given time interval between
two points on an arc of the ellipse as described by
the two radius vectors terminating on the arc.
From Kepler's equation and the definition of the
true anomaly, one obtains

E2 -E, - e (sin E2 - sin El)

1
= p-r & Pig
coSs 1(_6—1"1)_005 . (erl
2 1

From these equations the ellipse can be deter-
mined. The simultaneous solution of these equa-
tions for a and e is, however, very difficult since
the numerical iterative solution is quite sensitive
to the accuracy of the first estimates of a and e.
This problem is circumvented by the use of Lam-
bert's theorem which can be developed as follows:
Let

n At =

AB =

E2+E1and2g=E2—E

1
r, = a(l - e cos El)
ry = a(l - e cos E2)
Thus
rytry = 2a(l - e cos G cos g)

Let Cbe the chord joining the extremes of ry

and r, as shown in the following sketch.

b
<D sin El"
-

b sin E




2

C“= (acos E —acosEl)2

2

+ (b sin E, - b sin E1)2

But the quadratic forms in cos E,, cos E, and

sin El’ sin E2 can be reduced to functions of G
and g to yield

02 = 4a2 sin2 G sin2 g
+42a° (1 - e2) c052 G sin2 g

Now introducing a new variable h defined as follows:
cosh = ecos G

leads to

422 sin® g (1 - cos? h)

]

]

2a sin g sin h
and

r, tr, =2a (1 - cos g cos h)

Now introducing two new variables
e = h+g
S=ht=So
enables the following equations to be written

cos%(e +6)=ecosl(E

5, ¥ E,)

rytr,+C =2a{1-cos(h+g))

0]

4a sin2 %

r1+r2-C = 2a {l-cos(h—g)}
= 4asinzg

These equations serve as the definition of the
quantities € + 6. But

n(at) =E_-E. -e (sin E

9 1 9 sin El)

(e —6)—251n%(e - 6)cosé(e + 6)

¢ - 6 - (sin e - sin §)

which is known as Lambert's theorem.
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This form of the time equation may seem to
have no major advantages. Closer examination,
however, shows that for the case where the At is
specified for transfer from r, tor, through a

‘given A0, and it is desired to find the unique ellipse

whose parameters are a + e, this form may prove
preferable. This conclusion is based on the fact
that for this case only one variable of interest a
appears explicitly though it is necessary in the
process to solve for the auxiliary parameters

¢« + 8. One source of possible error is the selec-
tion of the proper quadrants for the angles ¢ and 6.
This selection may be accomplished by referring
to the following statements.

(1) sin 2 is + (a) the arc includes perigee
5 perig
and the chord intersects
the perigee radius

(b) the arc excludes perigee

and the chord does not inter-

sect the perigee radius

(That is, sin 6/2 is positive when the seg-
ment of the ellipse formed by the arc and
chord does not contain the center of mass.)

(2) cos % is + (a) the arc contains perigee
and the chord intersects
the apogee radius

(b) the arc does not contain
perigee and does not inter-
sect the apogee radius

(That is, sin €¢/2 is positive when the seg-

ment of the ellipse formed by the arc and
chord does not intersect the apogee radius.)

(3) 0<-%—e<7r

5=

0| =
I

(4) —§<

More detailed discussions of the reasoning for
selecting these quadrants are presented in Ref. 1.

Graphical solutions to this form of the time
equation are also possible. One such solution was
prepared by Gedeon (Ref. 2). Let

2s = r1+rO+C
and
20 2 2
C™ = r1+r2-2r1r2cosA8




Now define a function w

W= ‘l-C/S

where the + sign is utilized if A6 <7 and the
- sign is for A0 > 7.

Expanding the previous solution nAt in a power
series for the case that the empty focus falls out-
side of the area enclosed by the arc and the chord

yields
= 2n+3 n
< 1-(W) S

e Vz_E An 7nF3 (23)
‘ n=0
‘ A0=1

A =1.3.,5...(2n-1)_(2n-l)l

n b T T P - T

Force center

In a similar manner, a power series representa-
tion can be obtained for the case in which the arc
and chord enclose the empty focus

2n+3

2
nAt = ﬁ ——3712"/ -Z An12—3;g_w)
(s/2a) <o

|

Force center

111=9

where the An are the same as those defined
above.

Graphical presentation of this material is
found in Figs. 9 and 10.

H. THE N-BODY PROBLEM

The previous discussions have been directed
toward the description of the motion of a particle
in the gravitational field of a mass sufficiently
large that the perturbation due to the particle is
completely negligible. Indeed the attractions of
all other masses on both the particle and the
central mass were neglected. The discussions
of this section are intended to provide the
generalizations which are possible in order that
the discussions of perturbation methods of
Chapter IV will be appreciated.

Consider the differential equations

n 25 ==

e (ri - rj)

miri=-Gmiz mj __3—r
1 ij

e
J#i

This set is of the order 6 n due to the fact that
there are 3n coordinates (Xiyi Zi) expressed as

second order differential equations. A rigorous
solution thus involves the simultaneous solution
of the n second order vector equations.

Since these forces are all conservative, it is
also possible to express the total force acting on
the vehicle as the gradient of a work function.
Let

Fi = Vi 10
Then
i _ _ 90U
o= ™% 5xi
- 0 o kU
Fyi = ™% 7 7 9y,
_ o ou o
in—mizi— B-Z—l 1= s o e

multiply Foi by x, Fyi by i B, by z and add

oA

(X%, ty.ys +2.2;) =
= (Xl i YiYy it 1)
i=1

U . ;- ou -
B Z <5x. Xi+5y. yi+ 0z, Zi>
. 1 i i
i=1
But if a potential exists, U is a function of the 3n
variables X Yo 24 alone. Thus, the right-hand

side is the total derivative of U with respect to t.
Thus, upon integration




1 202 S la2n e D
?Zmi (xi tyt tzg ) = -U + constant

or
T + U = constant (energy equation)

Now, potential energy is the amount of work re-
quired to change one configuration to another.
Thus, since the bodies attract each other ac-
cording to the law of inverse squares, the force
between bodies is

- G.m, m,
F=-+>4d f
s | - 1

ij

Thus, the work is moving along the radius rij is

Q
B
B

ij i >
r(0).. ij

i il

-Gm.m. |— -—]
i [ro rlij

Now if r (0) is =, all possible system configura-
tions are included. Thus

Gmim.
W=
ij rij

Now the total work is the double summation of
the individual works

& a Gm.,m
W =U=1> Z #
T D) T
j=1 i=1 B
7]

The one-half arises from the fact that if i and j
are both allowed to assume all values, each term
in the series will appear twice in the equation.
Now following an argument of Moulton (Ref. 3),

it can be stated that since the potential function
depends solely on the relative positions of the n
particles and not on the choice of origin, the
origin can be considered to be displaced to any
new point, yielding:

- o
ri=g.+ 10
i i 0
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where

9 xi
1 = + 50 =
X = Xt gz =1

But U does not involve ¢ explicitly, since it is a
function of relative position thus upon dropping
the prime which is now of no value

n
e 90U ) 3 U
Similarly for Z 5y, and Z 5z *
1 ' 1=1 b

Butz m, T, is by definition M R which is the

product of the total mass of the system and the
position vector for the center of mass. Thus

MR=Ct+ B

This equation states that the center of mass obeys

Newton's law F = ma (where F = 0 = the resultant
force) and moves with a constant velocity in a
straight line under the assumption that there are
no net forces acting on the center of mass. This
integral introduces six constants of integration

to the system requiring 6 n such constants. Now
consider:

m.r, =V, U
i il i i

n n

= sl S N
; r.xm.r.=§ r. X V. U
) i vess 7 i i
= i=1

But the forces occur in equal magnitude and
opposite directions for any given pair of masses.
Thus, the right-hand side of the equation is zero
when summed over all the masses and




>~ s
b
8
A
1
o

d = o
T z (ri X my ri)
i=1

Thus by direct integration once again it is seen
that the total angular momentum is conserved

n o
(rixmi ri) =h
i=1

Since this is a vector equation, three additional
constants have been introduced.

One more relationship between the coordi-
nates and velocities can be obtained from the
energy integral, the general form of which was

presented earlier. Thus, ten integrals exist. These

ten are the only integrals known and are the only
integrals available from existing algebraic func-
tions. Thus, the general solution of the n body
problem requiring 6 n integrals is at this time
impossible even though several operations can be
performed to eliminate two variables, the line of
node and the time. (The latter simplification is
obtained by expressing each of the coordinates as
a function of a given coordinate.) The sole excep-
tion to this rule is the 2-body problem.

Consider the equations of motion

3 (e =r,)
my Ty = -Gm1 m, —r—S——
12
&, -1,
e 2 1
m, Ty = Gml D, ———
12

Changing origin to the center of mass by sub-
stituting

Ry=1; - Ry
Ry =Ty - Ry
yields
24 R, - R,
my R, = -Gm;my ———5—
R
12
= Ry - Ry
myRy = -Gmymy ——5—
Rio

But the center of mass satisfies the equation

IT1= 151

or
- m i
Bk 1
Ry*= iy Ry

Substitution of this equality eliminates R, from
the equations 4

= Uil 1;:1
Ry = -Gm2(1+ag) T
R
12
By
= -G(m1+m2) R—T
12
S R2
By = SRSl e
12
where
Rip = Ry - Ry
~ i A =
= LA e e
- M o
T my Ry
Thus
LY Grn3 E
=R 2 1
LT RY
XY Gml3 R2
R, = -
& M2 R23

With this substitution, the differential equations
become uncoupled in the coordinates. But these
equations are immediately recognizable as the
differential equation for a conic section with the
center of mass at the focus. Thus, as before,
the solution will be of the form

P

R =T___..___
1 +elcose1

L

Ry = T¥¢,cos9,
2 +e2cos2

But it is important to note that the elements of
these conics are not the same though they must
be related. Indeed, the effective masses as seen
by the two bodies will be different. This latter
requirement is the result of requiring that the
line between the two bodies contains the fixed
center of mass at any time. However, it is
possible to obtain a set of six constants of in-
tegration al, el, il’ wl’ Ql, t01 and a dependent

set ags €9 i2, Wos Qg and tOZ which will produce



the desired motion. This is accomplished by
considering various elliptic relations and the
geometry of the plane of motion. To illustrate
the relationships, consider the requirement that
the mean motions be the same.

SIS
M1 Bo
SR
1 25

" m
1 =(_1>.a2=§2_ &9
) 1

The other elements are determined in an
analogous fashion.

I. SERIES EXPANSIONS FOR ELLIPTIC ORBITS

Many of the solutions to trajectory problems
can be greatly simplified by utilizing approximate
forms for the parameters involved. The general
forms of several useful series are developed in
this section, and a list of expansions is given in
Table 6 (see Section K).

Kepler's equation can be rewritten as

E = M+esinE (12)

By Lagrange's expansion theorem, this expres-

sion can be devéloped (see Goursat and Hedrick,

"Mlathematical Analysis, " Vol. I, p 404) in powers

of eccentricity, e.

= o dn-l - 13)
B o= M+ z == — (sin” M) (13
ol v 1

!

From Eq (12) it follows immediately that

E-M
e

sin E =

Therefore,

= en-l -l "
sin E = Z n—!—— _H:f' (sin M)
n=1 (14)

To obtain the expansion for cos E, the auxiliary

integral function I is needed.

I = - S(E -M)dM
2 n n-1
- e 4 (sin"M)dMm
1k dMn—l
n=1
i -2
N £ (g d___zn (sin™ M)
néln: dMn_

n-2 o
n_z(sin M) (15)

I o

n
I

o}

oQ
n=1

From Eq (12) by integration,

d
dM

f'\
I = -g (E - M) dM = -‘)esinEdM

= - egsinE(l-e cos E)dE

= -eS\ (sin E -%sin 2E) dE
and using an arbitrary integration constant c,
e2
I = c+ecosE—T cos 2E (16)

but integrating Eq (15) with respect to dM,

5 2m o 2m 9 f‘21r
{ _ _e :
) I1dM, \ ( —4—)dM + \) [cosme terms] dM
0 0
(‘217 ez
0

Similarly, from Eq (16),

2m 2m

~ 2
5 IdM = g <:+ecosE—%— cos 2E)(1 - e cos E) dE
0 0
(18)

Equating Eqs (17) and (18),

2m e2 2m 9 3
5 (—T)dM= g (—%—+%- cosE) dE
0 0

(12“ e2 e3
=\ l:c-—2—+(e—ec +-8-— cosE-T cos 2E

0

p3

+ lé— cos 3E | dE

As for the complete integral, all the cosine terms
are zero; it follows that,

2
c:-.e—
E

Finally, the auxiliary integral function becomes

2
I = ecosE+e—4— (1 - cos 2E) (19)
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Next, Kepler's equation is expressed in a
functional form:

F(E,e, M) # E~esinE~ M = 0 (20)

The derivative of E with respect to e is found
by the use of Jacobians as follows:

dE Fe

de” s

gsin E

1 -e cos E (21)

Differentiating, Eq (19) yields

-g% = cosE+-§ -;—COSZE

. dE , e dE
-esinEa.€+Tsin2Ea-e— (22)

Substituting Eq (21) into Eq (22) and collecting
terms yields

dI

o = cos E (23)

Finally, the expansion for cos E is found from
Egs (23) and (15) as

- en-l dn-Z o
\ cos E = = z WEIT a2 (sin” M)
n=1 (24)
it d°
Note: — (F) = SFdM and —3 () = F
! dM dM

From the basic equations of orbital mechanics,

r

— = l=ecosE (25a)
From Eq (24), it follows that

= n n-2

r e d .. n

s ———5 (sin" M)

& E n-0 v (25b)

n=1
Squaring Eq (25a),
2
2 2
<~§r) =1+;—e —-2ecosE+;—e cos 2E
(26a)
Comparing Eq (26a) with Eq (19),
2
5 % 2
<é‘) Gl <L (26b)
and immediately from Eq (15),

i 2 3 e? g2 n
(—) = 1+e“+2 Z — (sin” M)
a n! n-2
£ dM
i (27)
From Eq (20),
dE _ _ Fm _ 1 s
aM T, TrecomE ¢ (28)
From Egs (13) and (28),
= n n
a e d n
= o= 1+§ — —_ (sin” M) (29)
T ;oGP
n=1
It is known that
z—- = cos E -e z
(30)
% = Vl-e” sinE ;
Combining Eqs (30), (24) and (14).
S n=1 n~-2
S _ e d Ao} 31
e e~ R
2y dM

dn--l

am™™1

(sin™ M) (32)

o n-1

\X = 1—-32 E e—[

a ; T’
=l

The relationships between the true anomaly and
eccentric anomaly are expressed as follows:

sin 6 = —' _62 s Vi —e2 d—E
l1-ecos E de

OS9=COSE—e - .d i f

- 1 -e cos E de \a (33)

The first equation follows from Eq (21) and the
second by Eq (25a)

. -cos E + e

d ) dE _
Ty (é‘) = -cosE+esinEa-e— =

Substituting Eqs (13) and (25b) into (33),

= n-1 n-1
sin 8 = 1-e E : - - dn-—l (sinrl M)
n'=1 L (34)
cos 6 = = Z nenm1 dn“2 (sinn M)
n-=1 = : dMn_ (35)

The general form derivation of the time anomaly
is somewhat more complicated and will not be
attempted here. If a finite number of terms is
carried, it follows from Eq (33) that

2
o _ h-é? R (a_)

ar - (1 -e cos E)

III-13




2
and after multiplying out (%) , the true anomaly
follows by integration

e=§ ¢1-e2 (?—)sz

Such an expression up to the sixth power of eccen-
tricity has been derived by Moulton,

This concludes the derivation of the series
expansions in powers of increasing eccentricity.
In general form these series are presented in
Table 6-1a. The results are given in Section K
in Table 6-1b for eccentricities up to sixth and
seventh powers.

Table 6-2a gives the n-th power of sin M in
order to simplify the use of the general equations

for expansions up to e13. Table 6-2b indicates
the determination of numerical constants for the
expansions.

The general forms of the Fourier -Bessel ex-
pansions are given in Table 6-3a with the cor-
responding expansions of Bessel functions in

“Table 6-3b. Table 6-4 gives the Fourier-Bessel

series expanded up to the seventh powers of ec-
centricity.

It has been shown by Laplace that for some
values at M, the series expansions may diverge
if the eccentricity e exceeds 0,662743 . . .

For small eccentricities, the convergence is
rather rapid. Table 6-5 presents the series for

small values of e (e2 << 1) as a function of mean
anomaly. Finally, Table 6-6 presents the
variables as a function of the true anomaly rather
than the mean anomaly.

J. NOMOGRAMS

Many of the formulas of the previous sections
are of sufficiently general interest to warrant
numerical data being prepared for use in pre-
liminary orbit 8mputation. Accordingly, a set
of figures will #& presented relating the parameters
which have beefl discussed. Use will be made in
this presentation of the techniques of nomography
(Refs. 3 and 4) and of more conventional forms
of presentation.

Before presenting the data however, it is de-
sirable to discuss the basis for construction of
a nomogram. If the equation can be expressed as
a determinant with the three variables separated
into different rows of the determinant and if by
manipulation, the equation can be put in the fol-
lowing form

fl () fz @ 1
£ ®) f, ® 1 =0
f (v) f, (v) 1

Then a nomographic presentation is obtained by
plotting the values of f; () versus f, @), £; (B)

II1-14

versus f2 (R) and fl (Y) versus f2 (Y) on linear

graph paper. It is important to note that the
same scale must be utilized for each of the three
curves. It is also important to note that the
shape of the scales thus gentrated is defined en-
tirely by the functional forms within the deter-
minant.

By utilizing this technique, the equations de-
fining the two body problem have been analyzed.
The type of presentation is considered to be, in
many ways, superior to any other available be-
cause of the fact that interpolation anywhere other
than on a graduated scale is eliminated, and by the
fact that more than a nominal number of variables
may be handled without losing simplicity or accu-
racy of presentation. The nomograph obtained
for equations of three variables, generally results
in three arbitrarily curved scales, U, V, and W,
as shown in this sketch.

For the simpler cases, the scales may be simply
three parallel straight lines, or two straight
scales plus one curved scale. In all cases, how~-
ever, the solution procedures remain the same.

Given any two values of the two independent
variables, say U = Ul’ and V = Vl’ a straight

line drawn between the two given points intersects
the third scale at the desired value of the unknown
function (W = Wl)' The straight line (Ul’ Vi

Wl) is called the index line or isopleth. It is
immaterial which two variables are given and
which is considered to be the unknown fanction.

Four or more variables will generally result
in a sequence of 3-variable nomographs as shown
in the following sketch.




Ungraduated auxiliary scales (e. g., scale q in the
given example) are employed, and the number of
auxiliary scales is N-3, where N = number of all
the variables (e. g., N = 4 in the present example).

A special case of the four-variable solution
exists for equations of the form

£,(0)
A

15(W)
i 4[ )

These equations may be expressed in the form of
a proportional chart illustrated below.

Given any three values of three independent varia-

bles U =

Ul’ V = Vl’ W = Wl’ the unknown X = X1

is found as follows:

(1)
(2)

Connect U1 and V1 with a straight line.

Draw a straight line through W1 and the

intersection point Tl’ reading X_. on

the X scale. L
K. TABLES OF EQUATIONS OF
ELLIPTIC MOTION

Because of their applicability, the equations
of elliptic motion have been collected and are pre-

sented in the form of tables.

The tabular content

is as follows:

Table 1

Table 2

Table 3

Elliptical Orbit Element Relations.

This table presents a large number of
formulas relating the various fixed
parameters defining the ellipse. The
index to Table 1 (next page) is a key for
locating equations of a given parameter
in terms of other parameters. For ex-
ample, parameter b is expressed in
terms of parameters a and e in Eq (20)
of Table 1.

Time Dependent Variables of Elliptic
Orbits.

This table gives the relationship between
the time varying parameters of the el-
lipse. The index (next page)is a key to
Table 2.

Elliptic Orbital Elements in Terms of
Rectangular Position and Velocity Co-
ordinates.

Table 4

Table 5

Table 6

Table 7

Table 8

This table is so brief that no special
index is required.

Elliptic Orbital Elements in Terms of
B, U

This brief table enables one to deter-
mine the orbital elements from given
kinematic initial conditions.

Miscellaneous Relations for Elliptic
Orbits.

This table contains some of the special
expressions not readily classified under
the other tables such as energy relation-
ship, time relationship and certain
angular relationships.

General Forms of Series Expansions in
Powers of Eccentricity.

This table presents a variety of series
expansions as follows:

(1a) General Terms of Series Expan-
sions in Powers of Eccentricity

(1b) Power Series Expansions up to &l
(Eq 6-1 to 6-11)

(2a) Expansion of Powers of Sin M
(Eq 6-12 to 6-24)

(2b) Pascal's Triangle and Its Modifi-
cation

(3a) General Forms of Fourier-Bessel
Expansion (Eq 6-25 to 6-36)

(3b) Expansions of J | (ne) (Eq 6-37)

(4) Fourier-Bessel Expansion up to e7
(Eq 6-38 to 6-49) P

(5) Expansions for Near-Cyrcular
Orbits (Eq 6-50 to 6-61

(6) Expansions in True Anomaly and
Eccentricity (Eq 6-62 to 6-76)

Hyperbolic Orbit Element Relations.

This table gives the basic parameters
for the hyperbola as follows:

(1) Hyperbolic Orbit Element Relations
Basic Constant Parameters (Eq
7-1to 7-56)

(2) Time Variant Hyperbolic Relations
(Eq 7-57 to 7-68)

Spherical Trigonometric Relations.

This auxiliary table expresses the re-
lationship between the various geometric
elements of the three-dimensional orbit.
An index to this table is found (next page),

Indexes to some of the tables follow.
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Index to Table 1 X, = Xy, X3)

Paramete: a b e P T T v V:

a| p a P
a, b T [ 80 TS o8 | 117 | 137
a, e 20 te61 |tsoft s9 | 118 | 138
a, p 81| 100 | 119 | 139
21 [t 42 81a] 100z
a, r 62 101 120 140
e 22 [t 43 63a 100a| 120a
a, r 63 82 121 | 141
P 23 |t 44 | 63a | 8lal 120a
a, v, 24 | 45 | 64 83 | 102 142
% vp 25 | 46 | 65 84| 103 | 122
b, e 1 66 85 | 104 | 123 | 143
b, p 2 47 86 | 105 | 124 | 144
b, r 3 48 | 87 106 | 125 | 145
b, T 4 49 | 68 87 126 | 146
3
a
b, Vp
e, P t 5 26 88 | 107 | 127 | 147
e,r, [t 8 27 69 108 (f 128 | 148
er, |17 28 70 89 129 |t 148
e, v, 8 29 71 |t 0| 109 150
e v, 9 30 72 91 |t 110 | 130
P, T, 10 111
11a | 31| 50 100a | 131
P T 11 32 | 51 92 132 | 151
P ila 81a
P v, 12 33 | 52 93 | 112 152
P, Vp 13 34 | 53 94 | 113 | 133
r, T 14 35 | 54| 73 134 | 153
sSSP 11a 63a 120a | 153
54
AV 15 36 |t 55 | 74 114 153a
x s 16 37| 568 | 75 115 | 135
r, v 17 38| 57| 76 95 155
Bl 952 153a
r, v, 18 39 [t 58 | 77 96 136
PP 95a
Voo Yp 19 40 | 54 | 78 97 | 118
95a

t figure available

NOTE:
This index to Table 1 is a key for locating equations of a given
parameter in terms of other parameters. For example, param-
eter b is expressed in terms of parameters a and e in equation
20 of Table 1.

Index to Table 2 Xl = f(a, e, X2)

Param- . .
eters |((E) | f(r) | f(x)| £(v)| £(y)| £(8) |£(6)
E 1 3 4 5T 6 9
2% 7
8
2%
r 10 12 [t13 |t1a | T 16 | 18
11% 15% 17
11%
15%
r 19 20 24 26 27 | 28
21% o1% | 22%|  23%
22% 25% | 25%
23%
T 29 30 | 32 | 33 34 35 | 36
31% 31%
v 37 [T 38 | 42 43 44 | 45
39 40%|  41%
40%
41%
v 46 |T a7 | 51 | 52 +53 | 56
48 49% 54
49% 55
50% 50%
) ts7 |t &2 | 66 | 67 |t 68 69
58 60% 64%
59 | g1* 85%
604  64%
61%  65%
8 70 71 | 73| 14| 75 6
7% T2%
P 78 | 79 | 80 | 81 g2 | 83

*Function of more than one time-dependent variable
tFigure available

See Note with Table 1

Index to Table 8
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Para-
meters i L B v ¢
(1, L) 21 31 41
(1, B) 11 34 44
(1, v) 14 24 46
(1, ¢) 16 26 36
(L, B) 1 37 47
(L, v) 4 27 49
(L, ¢) 6 29 39
(B, v) 7 17 50
(B, ¢) 9 19 40
(v, ¢) 10 20 30
(i, L, B) 32 42
(i, L, v) 22 43
(i, L, ¢) 23 33
(i, B, v) 12 45
(1, B, ¢) 13 35
L, v, 9) 15 25
(L, B, v) 2 48
(L, B, )| 3 38
(L, v, ¢)| 5 28
B, v, ¢) 8 18
See Note with Table 1
TABLE 1
Elliptic Orbit Element Relations
(see Fig. 4)
ax .0 1-1)
1 - e2
= ﬁ = h2 (1_2)
P -e
T 2 +b2
a
e (1-3)
a
r 2 + b2
= 5 (1-4)
P
=P (Fi a-5)
—l—j;z g. 11)
ra
e (Fig. 12) (1-8)
3
= 2 (Fig. 12) (1-7)




TABLE 1 (continued)

e
v
a
= K e (1-9)
v ( ¥ e>
p
2
i (1-10)
DTENEERT) -
a
rpz
= (1-11)
2rp P
rr
= ‘;p (1-11a)
= £ (1-12)
e .
Va( 'I:—) Va)
= e (1-13)
/.
vp( 5 vp)
il e
5 _a2__p (1-14)
ur
= 2 (1-15)
2u -r Vi
e 2T v, +W (1-16)
1 2 2
- 478—( p Va+‘/rp v +8urp) (1=17)
ur
= (1-18)
ST
2/3
- =(L2F) (Fig. 1) (1-19)
= aVI i (1-20)
T v@? (1-21)
=¥, (2a-r) (1-22)
= y‘r (2a - r ) (1-23)
p p
312
24/ a v,
= —‘/————2——3 (1-24)
ok av/a
3/2
24 a v
= e P (1-25)

G Eav

m-17

9 P (1-26)
1- e2
- 1-e
Ta¥T+e (1-27)
1+e
= rp — (1-28)
el (1-29)
v (1 +e) /2
Lure’? (1-30)
v (1 -e) 12
- P i
= ra Zl"a =5 (1-31)
- P x
= rp 5 o (1-32)
=‘/ (p)®/2 (1-33)
va(zu - vavﬁz)
_ (pu)s/2 (1-34)
Vp (2u - v ‘/—
=¢r_ r (1-35)
(1-36)
(1-37)
(1-38)
3 3 v 2
- P P (1-39)
2u - rp Vp
- 24 (1-40)
(V_+ V) 4V
} 2 2
b by
= 1_(5) = 1 - B (1-41)
= Y1 -g (Fig. 11) (1-42)
T
x _ai = il (Fig. 12) (1-43)
r
= __a£ (Fig. 12) (1-44)




TABLE 1 (continued)

m

1 ‘/ 2
?ﬁ(vp T I +8ura-2u AV

2
P

(1-45)

(1-46)

(1-47)

(1-48)

(1-49)

(1-50)

(1-51)

(1-52)

(1-53)

(1-54)

(1-55)

2) (1-56)
p

1 2 AEINE ) i
o (2;4 + Eia e e + Surp (1-57)
2

T SV
=B P _ 4 (1-58)
M
= Ju—p‘= 2 b (1-59)
2
s (1-60)
a
= (1 - ez) (Fig. 11) (1-61)
&
= (22 - r.) (1-62)
a a
L
& -Bi(ga - v ) (1-63)
a p
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I‘aI‘
p= p (1-63a)
= i 2 (1-64)
ey
a av
a
_ 4
= (1-65)
Ve
P
_ 2
=bVYl-e (1-66)
2b2 e
j =y L6
63
a
2b2 T,
= 1-68
—g——g—b o ( )
P
= ra(l - e) (1-69)
= rp (1+e) (1-70)
1o\ 2
= u (V ) (1-71)
a
2
1L
= p (V e) (1-72)
p
2ra rp
= e (1-73)
a 'p
I‘az Va'2
x i (1-74)
%
= 2|4y - G 2
m[“ v, ¥r, vyt eur tr v (1-75)
S R S (1-76)
2n a¥'p 'a (205, -
I‘pz sz
= " (1-77)
4
= £ (1-78)
v +v )*
< a p)

r, =a+¥a? - b? (1-79)
=a (l+e) (Fig. 12) (1-80)
=a(1 +¥1 -g) (1-81)
=§_p (1-81a)

p




n

TABLE 1 (continued)

__!§E_____
KSR
P P
2
2ur T
rp+l«lp_p
i - R
a
i ¢
p 'p
Va
"p
2u = il
IC'V2
P P
2u
iyl T (B e
SRS D

(1-82)

(1-83)

(1-84)

(1-85)

(1-86)

(1-87)

(1-88)

(1-89)

(1-90)

(1-91)

(1-92)

(1-93)

(1-94)

(1-95)

(1-95a)

(1-96)

(1-97)

(Fig. 12)

[
o
Y

1
-

‘W -
2 5 va
p
2 2
e v
= a a
2u-rava

(1-98)

(1-99)
(1-100) ‘

(L-100a)

(1-101) |
(1-102)

(1-103)

(1-104) ‘

(1-105)

(1-106)

(1-107)
(1-108)

(1-109) ‘
(1-110)
(1-111)

({1=112)

(1-113)

(1-114)

(1-115)

(1-116)
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TABLE 1 (continued)

2
b
e

V [y

(1-117)

(1-118)

(1-119)

(1-120)

(1-120a)

(1-121)

(1-122)

(1-123)

(1-124)

(1-125)

(1-126)

(1-127)

(1-128)

(1-129)

(1-130)

(1-131)

(1-132)

_ m
v, = 2‘/;-vp (1-133)
2
= “Tp (1-134)
3¢ (r +r )
a a p
v 2 2 v
V= +r—: - £ (1-135)
2
2 =
I (1-136)
) 4
P
_ e
v, =[% (1-137)
4/ M l1+e
=y <1_e> (1-138)
) .
=y/ff<;— + ‘[% - %) (1-139)
P
=\[‘i ,Z_-—ra ) (1-140)
a a—ra
Hr,
2 s (1-140a)
p
=‘/& (2a'r ) (1-141)
a 1
p
. I8
" Ty, (1-142)
2
e Nl 1+e\
~\/ 5 (1 e/ (1-143)
o 2
=‘/-“— [1+ 1-(%) (1-144)
= —;f—i;——? (1-145)
b (ra +b%)
2
s __iz?_.g_ (1-146)
r (r “+Db"%)
p P
=g/~ (1 +e) (1-147)
/ 2
/s (1+e)
= _T_ira — (1-148)
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TABLE 1 (continued)

0
- =‘/;— {+e) (1-149)
P
i l+e
o X (1 - e) (1-150)
- Wp
= (1-151)
p
= [ -
z‘/;_ v, (1-152)
2ur
a
_‘[;_(___]r S (1-153)
pisal D
- Fa Vs (1-153a)
15
P
2
2u~r v
= _r_;’f_%__ (1-154)
a a
2
‘ﬁ’a 2u Va
= " " T (1-155)
P
TABLE 2
Time Dependent Variables of Elliptic Orbits
(see Fig. 4)
B ~1 fa -« _
= cOos (?-) (2 1)
(Fig. 13) (2-2)

1 sin-l( r sin 0 >
aVl -e2

w1 /,Le2 + [uz e pua (1-—e2) i'z]
S =

v
ueie[uz ez—ua (1 —ez)rz] J

(2-3)
2
X ~1 |1 f[av -,u):l
= cOos —_ -—2-——-
l:e <av U
= cos"1 [el (i ‘/1 -(1- ez) sec2 y>] (2-5)
‘@ 2 .
= sin”! ( otk e) (Fig. 14) (2-6)

¥ teleos

1/2

= co

(2-4)

e + cos 6

f °°S-1[rm] {Plg: b=t

II1-21

L] AN/ 2
2 tan * [(‘i—-}_:) tan-g-] (Fig. 14)

v sin y

(2-8)
1/4
=5l 2 pa (1 - ez)]
= CoS =il - (2—9)
< a 0
= a(l-ecosE) (2-10)
= o NfhEren 2—12—?— (2-11)
s pa (1 = %) 7o (2-12)
u=x [uz e2-ua (1 o e2) 1‘2]
= _2ua (Fig. 15) (2-13)
av +u
= o [1 + \[1 - (1~ 6;2) sec? Y] (Fig. 17)
: (2-14)
a(l-e”)tany (2-15)
e sin
a (1 - e?) (Fig. 16) (2-16)
l + e cos § i i
- (Fig. 13)
ig.
(ra + rp) it (ra - rp) cos 0 (2-17)
5 /2
[!ua: :<:1 -:e >} (2-18)
)
=‘/Z‘_— esin®E (2-19)
a 1 -ecos E
u rZar e az (1 -ez)]
o L . (2-20)
(2 b o
‘/; ua (1 - ez)
S et e (2-21)
‘['_z
- Wwa(l-eT)tany (2-22)
r
- Vﬁa a-e’) SRR, SR )tan 0 (2-23)
r a(1l-e”)
i‘/;u av? - (av2 +u)2 (1= ez) (2-24)
dua
_ (2-25)




+
TABLE 2 (continued) v = ‘/‘;_((.}_Eioi%% (2-37)

- € CcOoS
L /
1/2
2 2 2 ik .
2 e o pl e )tan” y . = u(—- —) (Figs. 1 (2-38)
£ (2-26) S and 15)

2

a [1:&‘4- (1= ez») sec2 y]

1/2 "K’oz i (315 - ;1'“) (2-39)
} sin 6 (2-27) 0

2
- Wa(l-e) (Fig. 18) (2-40)

ol
a(l-e”)

2 61/2 21/2. L2 r cos vy
= -E o lpa (1-e%) 9
[ ( )]T/4 a l: ]
pa (1 -e
u1+2ecose+e) 5
(2-28) ‘/r (T +ecos 9) (2-41) / |
1/2 ‘
5 1/2 1
u(1+e)12 [ue-a(l-e)r]
) a(l-e 4
gl B & (cos E - e) (2-29) (2-42)
3
P (1 -ecos E) ‘/ 1/2
1* 1-(1-e )sec ) (2-43) ‘
2 P |
a(l-e”)=-r - ~
. HL 3e ] Zht0) 1 (1 e)sec v |
_ (1+e + 2e cos 6)] 1/2 (©-44)
= E;— cos 6 (2-31) a(l-e )
£ 1/a 1/2
2aé1/2 - [pa (1- e2ﬂ |
9 9. .g]1/2 ., 1/2 7
= {x e-a(l-e)i‘] H 177
u[# a[ua(l _ez)] |
(2-45)
4o 112 [uez ca(l-ed i‘z]
-1 e
.a13/2 g y = tan sin E] (2-486)
i[uez_a(l_ez)rz] }/@1/2 a2 (1-e2):l [‘[l_ez
(2-32)
_ -1 a2 (1= e2) ]
= cen r (Ga-r)  (Fig. 17) (2-47)
2 2
jgv_;__;,i_ |:(av2 +u) (1 - ez) - 2u:|
TIT
B (2-33) = s—‘/ b (Fig. 17) (2-48)
r(r. +r_ -1
a 'p
,uBl-ez)-(l :tvll—(l-ez)secz y)] .
. 13 _ -1 !ua (1 -¢e7) : _
a* [1 i‘/;- (1- e2) sec2 y:l SRCes ( rv ) (Fig. 18) (2-49)
(2-34)
=1 r
= tan -————) tan e] (2-50)
= ;—(1%':2—)2 (1+ecose)2cos9 [( a(l-e ))
(2-35) |_ , ] 1/2
I 1/4 | _ -1 i‘ra (A8=Tew)}] 2-51)
a(l-e2)93/2 -[ua(l—ez)] 5 + tan AT = 2'2]1/2 ( 1
= o = ) :k[pe -a (1-e“)r
[pa G = eZ)]
(2-36) ___itan—l(‘(l-e ) [4pav ? =E 2iu)? (1-e )]) (ee3]
(cA.V +u) (l_e )
(Fig. 19)
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TABLE 2 (continued) 1/2

152
M -1 /e sin 6 é = —————2—(1 € ) (2"70)
Y =tan (WG‘) (Fig. 20) (2-53) <—;3_> (1-e cos E)
. 9] 1/2
= sin—l <__e_§£n_9__> (Fig. 20) (2-54) e a(l=e™) (2-71)
Yi+2e cos 6+e2 -
Lt < M) (Fig. 200 (2-55 =‘/:4 (1+e cos ) (2-72)
Vi+2e cos 0+e> = 12
/4 1/2 a2
=+ tan {2391/2[# a(l-e if La(l 5€ )] = iﬂl/z [#32 -a (1 -elzl)zr ] ‘ (2-173)
1/2 AT [“a e )]
-1
_ 1
(2-56) (aV2+IJ)2 [ua (1"e2)] (2-74)
4u” a
= cos™! (TC-%S—C—EJE) (Fig. 14) (2-57) T ek
/ =L e 5 (2-175)
5 1/2 2 2 2
= 2 tan 1[ ife) tan —g—J(Fig. 14) [li Vi- (1-¢%) sec Y]
x (2-58) 1/2
7 2
i H- (1 +e cos 6) (2-176)
L tiilata B Yi-e® S [3 23}
I-ecos E | (Fig. (2-59) a” (1-e“)
1/2
L (a fhonE - e]) (2-60) " peliel
= = o . e e”) sin E (2-77)
:3_ (1-e cos E)4
b gt a¥l-e” sin E (2-61) 1/2
r 2 2 2 2 2 2
=i—%— (2ar - r) (1-e“) -a“ (1-e“)
-1 | a(l1-e”)~-r : g
= co8 . (Figs. 12 & 13) (2-78)
(2-62)
. [2r.r_-r(r_+1r) -5/2
= cos™} [ Lk ] (Figs. 12 & 13) _ 21 [a (1-e?) {ul/z
a P (2-63) / 3
o] 1/2
L -1 [a (l—e )tan Y ] (2-64) i[uez -a (1-e2) r2:| } (2-79)
—an =1 [a (1-e )tan Y -I (2565) 2 3
a (1-e y-r J =% [M:I {(1'92) [2#3"2 (1+32)
2ua
) (1-2 1/2 /
D= ) T a(l-e”) - 1/2
= sin {.e_ “—] } (2-66) S (1_e2)]} (2-80)
L +“)Zu(; o) -2 ] (2-67) ey 2u(1-e?) tany

: 4 (2-81)
a2 [11V1 - (1—e2) seczy]

= cos™ ! -el—— {coszy - 1l%cosy VCoszy-(l-ez)}]
(Fig. 20) (2-88) ————3— (1 +e cos 6)° sin € (2-82)
r 3_1/4 a? (1-e)
3 2 . 1/2
— {[a_(l_'e;)] 0 -1}] g b 2/3 2 - 1/2 9 q1/4
K 7 =k {Za (1-e7)6 [ya (1-e )]
(2-69) a3 e

1/2

/2 2.
- (l—ez) [ua (1--e2ﬂl g (1-e2) 9}
(

2-83)

111-23




TABLE 3 x =V—% [(cos 6 +e)(-sin y cos Q
Elliptic Orbital Elements in Terms of Rec-

tangular Position and Velocity Coordinates - cosisinQcosy) (8-17)
-1 - sin 6 (cos w cos Q ~ cos i sin Q sin w)]
-1/2 . .9 .
i 2(2+ 2+Z2) -—1(2+2+22) 3
= Y e y =VI;C [(cos 6 +e) (-sin y sin @
=tan_l<X> ey + cos i cos Q cos w)
%
) f3=2) ; - 8in 0 (cos  sin o + cos i cos g sin w)-j
= {l - 71- [(xy - y)'<)2 + (xi - z§<)2 (3~18)
z =YL |(cos 6 +e) sin i cos o - sin6 sin isinw
-1/2
i 05 2, 2. 2 1o 12 (3-19)
(yz - zy) 2(x" +y +2%) P (x
L -1/2
-9 -9 TP/2 Y =Sm1[(xx+yy+zz)(x2+y2+zz) (2
Eys bz (3-3)
‘9 -9 -1/2]
= cos ™! {(xy —/y)lt) [(xjf - yx)2 + (xz - zx)2 ez (B2
. 1/2 -1 [ 2
: (5] = + + 7z
Ll zy)z] } (3-4) cos (xxp yyp zp) (x
o o712 o 4 '1/2]
+ + - +
=tan—1 _i_ Y “ ) (xp yp Zp ) (3'21)
yX. =Xy (3-5)
n n
¢ =cos—1 (xx_ + + zz ) (x2
n Yn n
1y x _ 2 -1/2 -1/2
cot [Z cos @ - — sin Q] (3-6) er2 i 22) (an +yn2 +Zn2) ](3_22)
-1/2
el 2 ng o . T 2
= gin [z (x"+y" +2z%) J (3-17) w cos [(anp + ynyp + anp) (xn
ol : =19 : N2 : o -1/2 -1/2
-u—[(xy-yx) +(xz-zx)+(yZ—Zy)] +y2+zz) (x2+y +z2) ]
(3-8) S ESS P

p
(3-23)
= V<2 + y2 + 22 (3-9) wheze:
4 n = node
Va2 432 452 (3-10)

p = perigee
=r I:cos(w+ 6) cos @ ~cos isin (w+6) sin Q] 5 <z - z) (3-24)
(3_11) XZ - XZ
=r [cos (w+ €) sin @ + cosisin (w+6) cos Q]
(3-12) TABLE 4
=r sin (w+ 6) sin 1 (3-13) Elliptic Orbital Elements in Terms of r, v, Y
= [cose(coswcosQ-—cosisianinw) . ~ r
9 rv (Fig. 15) (4-1)
+ sin € (-sin w cos Q T T
) .y p v
cos i sin Q cos w )] e (3-14) - -
o oo ig. 15) (4-2)
= [cos 6 (coswsin Q + cos i cos Q sin w)
it v : 2 2
sin 6 (-sin w sinQ b _ r“ cos
i P ( TR (g
+ cos i cos 2 cos w)] TR 3-15) rV2
= [cos 6 sin i sin w 2
= Az cosyh (4~4)
A o % p _ A g
+smesm1cosw)] I Fecos 0 (3-16) Q

I11-24




\[ 9 2 2N, 2
PN Vs (2 TR I A TSl
T m ( W (4-5)

n

1-Q(2-Q) cos?y  (Fig. 19) (4-6)

1

iy (r v cos y)2 (Fig. 18) (4=T)
= r& cos? v (4-8)
v == (Figs. 15 and 19) (4-9)

2
. = _r—'Z [1+‘A-uL (rvcos\()2 (—3--‘2—)]

K (4-10)

= 2_rQ [1+\[1’Q(2-Q)cos2y:| (4-11)

2
s e )

K (4-12)

= Z_IL—Q— [1- 1-Q(2—Q)cos2y] (4-13)

2
4 e I:l ‘[1 o (rveosy)” 5 ]

(4-14)

S AV [1-— 1—Q(2—Q)coszy:l (4-15)

it et el +‘4 - (rvcos )2 (3- —Vz )j]
rv cosy M R ¢ M

(4-16)

= (ﬁ [1 B V1 -Q((2-Q) coszy] (4-17)

TABLE 5
Miscellaneous Relations for Elliptic Orbits
£ sl H
2a (5-1)

(see Eqgs 1-1 through 1-19 for parametric
variations of a)

=K+P (5-2)
2

= _ KM =

= - B (5-3)
2
v

K == (5-4)

M

16

=FE - e sin E (Figs. 2 and 22a to i) (5-5)

(see Egs 2-1 through 2-9 for parametric
variations of E)

= -2_)T
T (Fig. 1) (5-8)
= {u—a-3/2 (5-17)

(see Eqs 1-1 through 1-19 for parametric
variations of a)

. M
t—t‘p‘ (5-8)
=- £ (5-9)

=a (see Egs 1-1 through 1-19 for parametric
variations of a)

(5-10)
- M i
= +tp (5-11)
a3/2
=2 _ (E-esinBE)+t (5-12)
M P

(see Egs 2-1 through 2-9 for parametric
variations of E)

- ‘/_‘;_ (Fig. 8) (5-13)

(see Eqs 2-10 through 2-18 for parametric
variations of r)

= \/é‘vc (5-14)

=@ (5-15)

(see Eqs 2-10 through 2-18 for parametric
variations of r)

= sin"lee) (5-16)

(see Egs 1-41 through 1-59 for parametric
variations of e)

etan” _%%_) (5-17)

—al ra_rp

= tan (_“‘2 (5-18)
35
Va'p

e (-e) (5-19)

sl (%) (5-20)

B a (Table 9 and
_gna‘/.u_ Fin 1) (5-21)

(see Eqs 1-1 through 1-19 for parametric
variations of a)




TABLE 6-~la

General Forms of Series Expansions
in Powers of Eccentricity

(see Fig. 4)
& e gl n
e n=1 dMm
n=1
sin E = z CER e (sin™ M) (6-2)
n=1
= en-l dn--2 "
cos E = = z - — (8in" M) (6-3)
Ly m =17 an™ 2
= n n-2
r e d n
(—* = 1+ z (sin™ M) (6-4)
a m=1)! dMn-Z
n=1
2 = n n-2
iy - 2 e d
(5.—) = 1+e” +2 Z F W (Sin M)
n=1 (6-5)
©0
n n
(-E-) = 1+ z %—, d - (sin™ M) (6-6)
© dM
n=1
2 n=1 n=2
X e d N
= = - = z (8in™ M)
a m=1) n-2
| dM (6-17)
5 = n-1 n-1
g. = W -e ng—,—— -._l_d (stn™ M)
n=1 (6-8)
&2 n=1 n-1
sinf = - ez 42 g (sin™ M)
- ! s
n=1 M-D o=l e g
= nen—l dn-2
cos 6 = -

=1 (sin™ M) (6-10)
n=1 1 !dMn—

S‘ Vi o2 (;_)2 - (6-11)

NOTE: Divergence for e > 0.662743...

TABLE 6-1b

f
Power Series Expansions up to e

2
E =M + esinM+§,— sin 2M

3
A (32 sin 3M - 3 sin M)

4
+ -....3.(4 sin 4M =~ 4- 2 sin 2M) +

(continued)

III-26

TABLE 6-1b (continued)

5
+ 2 (5% sin 5M - 5-3% sin 3M + 5-2 sin M)
5127

6
+ 2. (6° sin 6M - 6-4° sin 4M + 5-3-2° sin 2M)
612

7
+——e-6— (76 sin TM ~ '7-56 sin 5M
012

+7-3-3% gin 3M - 7:5 sin M)

T et (Flg. 2) (6—12)

sin

E = sin M + g-smzm

2
+ ;—22 (32 sin 3M - 3 sin M)

3
+—2 o (4% stn 4 - 4-2° sin 2m)
412

4
+—'52T (5% sin 5M - 5 3% sin 3M + 5-2 sin M)

5
+—=2 . (6% sin 6M - 6-4° sin 4M + 5-3-25 sin 20)
612

e® 6 6

+—'-;6_(7 sin TM - 7:5 sin 5M

+7-3-3% gin 3M = 7-5 sin M)
7

e 7 T
+-’—2ﬂ7- (8 sin 8M -8-6 sin 6M

+ 7'4~4'7 sin 4M - 8'7‘27 sin 2M)
00T (6-13)

co8

E = cosM+§- (cos 2M =~ 1)

2
+-e—-2 (3 cos 3M =~ 3 cos M)
212

3
+ 2 (4% cos 4M - 42 cos 2M)
3! 2
+ _ze4 (53 cos 5M= 5-33 cos 3M + 5-2 cos 1\‘/—[)
1 2

5
e 4 4 et
+-’——2-5 (6" cos BM ~6+4" cos 4M + 5-3:2" cos 2M)
+ (continued)




TABLE 6-1b (continued)

6
+-—e-s- (75 cos TM = 7-55 cos 5M
6! 2

+7+3:3% cog 3M = 7-5 cos M)

7
e 6 6
+ ﬁ' : (8" cos 8M = 8-8° cos 6M.

+7-4-4% cos aM = 8-7-2% cos 2M)

TABLE 6-1b (continued)

cos 8 = cos M +e (cos 2M = 1)

2
3L2 (3 cos 3M = 3 cos M)
2! 2

- 463 (42 os 4M-4='22 os 2M)
T F

, et (53 cos 5M = 5-3% cos 3M
m Cc cOS

(6-14)

2
i) S5e
0 = M+2esinM+T sin 2M
e3
+T2_ (13 sin 3M = 3 gin M)

4
+ g-s- (103 sin 4M = 44 sin 2M)

)
e
- +
- 380 (1097 sin 5M = 645 sin 3M + 50 sin M)

6
T S’b’b (1223 sin 6M = 902 sin 4M + 85 sin 2M)

+ 52 cos M)

8e’ 4
+ ﬁ_(e cos BM =64

5! 2

4 cos 4M

+5-8-2% cos 2m)

. oael (7° cos T™ = 7-5° cos 5M
6t 20 ¢

+7-33° cos 3M = 7-5 cos M)

7
7 v Lo @ conmmivgiel canem
+ gyp5g (47,273 sin TM - 41,699 sin 5M = ¥k o
+ 5985 sin 3M + 749 cos M) + 7-4-46 cos 4M = 8'7'26 cos 2M)
(6-15)
+ ol S (6-17)
gin 6 = Vl-e2 sin M + e sin 2M 7 e2
;zl-ecosM-r(coszM-l)
+ iz—z— (32 sin 3M = 3 sin M) - e3 (3 cos 3M= 3 cos M)
2! 2 21 22
o 2 (43 sin 4M ~ 423 sin 2M)
3112 e 2 2
--3_'_2.3. (47 cos 4M = 4-2° cos 2M)
4 .
e 4 .24 .
+4—?(5 sin 5M = 53~ sin 3M + 5-2 sin M) 5

5
+ 2l (89 sin 6M - 6-4° sin 4M + 5-3- 2° ain 2M)

5! 2

6

e 6 6
+—-e—(7 gin TM -~ 7-5
6! 2

sin 5M

+7-3-3% gin 3M = 7:5 sin M)

7
L (87 sin 8M = 8-8" sin 6M
71 2

7 44" sin 4M = 872 sin M)

LB (5% cos 5M = 532 cos 3M + 5-2 cos M)
41 2

4

6
- —e—-5-(64 cos 6M=6°4" cos 4M
552

4

+5°3:2" cos 2M)

1f
_e_g_(75 cos TM = 7-55 cos 5M
8! 2
+17-3:3% cos 3M = 7+5 cos M)

- (6-18)

(6-16)
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TABLE 6-1b (continued)

2
= 1-2ecosM-§,—(cosZM-3)

3
-§$_.2_.(3 cos 3M = 3 cos M)

4
- —2 5 (4% cos 4M = 4-22 cos 2M)
41 2

5
= —2 o (5% cos 5M
51 2

REs con 3M + 5°2 cos M)

6
e 4
-— (6~ cos BM
6! 2

- 6-44 cos 4M + 5'3'24 cos 2M)

T
- ——5—e (75 cos TM = 7'55 cos 5M
T2

$17:8:3° cos SM - T-5 cos M)

i RO (6-19)
% = 1+ecosM+e2cos 2M
e:3 3
+W (3% cos 3M = 3 cos M)
+ __3_e4 (44 cos 4M - 4-24 cos 2M)
4! 2
+ _Tes (5% cos 5M = 5-3° cos 3M
512
+ 52 cos M)
g __Teﬁ (66 cos 6M = 6- 48 cos 4M
6! 2
6
+5-3:2" cos 2M)
+——_%-e7 (77 cos TM = 7- 57 cos 5M
71 2
+ 7~3-37 cos 3M = 7-5 cos M)
3 (6-20)

2
= 1+2ecosM+%—(5cosZM+1)

3
e
+T(13 cos 3M + 3 cos M)

TABLE 6-1b (continued)

4
- —29—4— (103 cos 4M + 8 cos 2M + 9)

5
e
+ 193 (1097 cos 5M = 75 cos 3M + 130 cos M)
eb‘
+ 160 (1223 cos 6 M - 258 cos 4 M
+ 105 cos 2M + 50)

7
e
+ 53020 (236,365 cos TM

-~ 83,105 cos 5M + 17,685 cos 3M

+ 13,375 cos M)

Sl e

-e +cosM+§- (cos 2M =~ 1)

2
e
+-2'—52-(3 cos 3M = 3 cos M)

3
+ _e_g_ (42 cos 4M = 4'22 cos 2M)
3t 2

e4
4! 2
e5 4

D= (6" cos 6M =~ 6-4
Bl 2

+ i (53 cos 5M = 5-3° cos 3M + 5-2 cos M)

= cos 4M

+ 5'3-24 cos 2M)

6
e (7° cos TM = 7-5° cos 5M
61 2

+7-3-3% cos 3M = 7-5 cos M)

7
+ —e—,T—(S6 cos 8M - 8.6° cos 6M
(T2

+7-4-48 cos am - 8.7.2% cos 2m)
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