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FOREWORD

This handbook has been produced by the Space Systems Division of
the Martin Company under Contract NAS8-5031 with the George C. Marshall
Space Flight Center of the National Aeronautics and Space Administration.
The handbook expands and updates work previously done by the Martin
Company and also incorporates, as indicated in the text, some of the
work done by Space Technology Laboratories, Inc. and Norair Division of
Northrop Corporation under previous contracts with the George C. Marshall
Space Flight Center. The Orbital Flight Handbook is considered the
first in a series of volumes by various contractors, sponsored by MSFC,
treating the dynamics of space flight in a variety of aspects of
interest to the mission designer and evaluator. The primary purpose
of these books is to serve as a basic tool in preliminary mission plan-
ning. In condensed form, they provide background data and material
collected through several years of intensive studies in each space
mission area, such as earth orbital flight, lunar flight, and interplan-
etary flight,.

Volume I, the present volume, is concerned with earth orbital
missions. The volume consists of three parts presented in three separate
books. The parts are:

Part 1 - Basic Techniques and Data
Part 2 - Mission Sequencing Problems
Part 3 - Requirements

The Martin Company Program Manager for this project has been
Jorgen Jensen, George Townsend has been Technical Director. George
Townsend has also had the direct responsibility for the coordination
and preparation of this volume. Donald Kraft is one of the principal
contributors to this volume; information has also been supplied by
Jyri Kork and Sidney Russak. Barclay E. Tucker and John Magnus have
assisted in preparing the handbook for publication.

The assistance given by the Future Projects Office at MSFC and by
the MSFC Contract Management Panel, directed by Conrad D. Swanson, is
gratefully acknowledged.
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Vi. MANEUVERS

SYMBOLS

Right ascension

Throat area

Semimajor axis
Coefficient of Thrust

Drag force

Velocity increment due to impulsive thrusts
Eccentric anomaly

Eccentricity

Hypergeometric series

Force; Function

Gravity acceleration

Altitude

Modified Bessel function of the first kind
Specific impulse
Inclination

First coefficients of the potential function

Latitude
Mean anomaly relative to the injection point

Mean anomaly relative to perigee;
Mach number

Mass and mass rate
Generalized Legendre polynomial

Semiparameter of ellipse
Range, equatorial radius
radius

Apogee and perigee radii
Period of sustained lifetime

Time

Burning time

Potential function

A%

v
c

W
o

W

p

Xk

XYz

4 a4 ©

-©

vi-1

Velocity

Circular speed '/;—,;Tf
Initial weight
Propellant weight
Acceleration

Coordinate components

Azimuth relative to north point on horizon;
Log-log slope of atmospheric density ap-
proximation

Flight path angle relative to local horizon-
tal; ratio of specific heats for a gas

Base of natural logarithms utilized to prevent
confusion with eccentricity

Mass ratio W_ /W

p' o
Central angle measured from perigee, i.e.,
true anomaly

Gravitational constant = GM ; statistical
mean

Angle in the equatorial plane measured from
the ascending node to the intersection of the
equatorial plane and the instantaneous meridi-
an

Atmospheric mass density
Variance of a statistical density function
Orbital period

Central angle measured from the ascending
node = 6 + o

Thrust orientation angle relative to velocity
vector

Right ascension of the ascending node
Rotational rate of the earth

Secular regression rate of the line of nodes
due to the earthts oblateness

Argument of perigee

Secular precession rate of the argument
of perigee due to the earth's oblateness



A. INTRODUCTION

Because of many reasons, including guidance
inaccuracies in launch and ascent, change of
mission for the satellite, and evasion or rendez-
vous maneuvers, a requirement exists to transfer
from one position and velocity in space to another
at some subsequent time. This chapter treats
some of the problems associated with such ma-
neuvers and presents computation routines and
data useful in analyses of these maneuvers.

Due to the fact that two general trajectories
do not intersect, it is necessary to perform at
least two maneuvers in order to produce the de-
sired trajectory. Thus, the first order of busi-
ness is the analyses of impulses (the mechanism
of investigation) and of the independent adjust-
ment of the six constants of integration or ele-
ments., These discussions will be followed by
the analysis of small maneuvers in nearly cir-
cular orbits, a general two-impulse transfer
discussion, propulsion requirements for cor-
recting the effect of atmospheric drag and the
earth's oblateness. At this point, the emphasis
changes slightly to the presentation of material
pertinent to differential corrections, the errors
in the final orbit and trajectory optimization.
These discussions are followed in turn by the
analysis of the effects of finite burning time and
the in-orbit propulsion system. The chapter con-
cludes with a discussion of the adaptability of
microthrusts for orbital corrections.

B. IMPULSIVE CORRECTIONS

Because the impulse is the medium of analysis
in these discussions, the accompanying assump-
tions and methods will first be reviewed. Be-
cause the burning time is infinitesimal, the ef-
fects of gravity, variations in position due to
thrust, etc., can be neglected and the governing
law considered to be the law of cosines.

By this law, the characteristic velocity of
the maneuver (A&V) may be expressed as a func-
tion of the velocity vector prior to maneuver
(Vl)' the velocity vector after the maneuver

(V2), the turning angle of the maneuver (¢) and

the angle of thrust application relative to the
initial flight direction (qJT).

avl = v12+v22-2v1v2cos¢ (1)
where
) 1
&= gyl <—n'r§> ()
1-——2
My

A convenient graphical representation of this law
can be found if it is first nondimensionalized,

2
2 v v
(#) 0 ()2 () e
(3)

Similarly the law of sines is:

\'A
2 sin ¢ (4)

ay -
v, sinéq = V3

These equations are presented in Figs. 1 and
2., The velocity increment itself is related to
™ tb>
——} in Fig. 3. The form
Mo
of these figures is the nomogram; the philosophy
of construction along with a general description
of the utilization of such a figure is presented in
Chapter III. The effects of errors in AV and

the mass fraction

ch on the final velocity V2 can be seen immedi-
ately from the law of cosines to be
+cos ¢
I x _ y T
(33) , T~ (5)
T
9 x - .Y .
(m) = xsinep 6
y
oy sin ¢T
(57) T (7
b X
(w'r) X <ay) 6 @
y T
where
. = o2
Vi
Av
y = v‘l-

and the subscript on the partial derivative
indicates the parameter held constant.
Figures 4 through 7 show these error
coefficients,

the ideal velocity increment obtainable.



C. INDEPENDENT ADJUSTMENT OF
ORBITAL ELEMENTS

The impulse having been considered, atten-
tion can be turned to the correction of the or-
bital elements. This series of corrections will
be treated first for the case when the target
orbit is circular then for the case of elliptic
orbits, (The distinction is made because of
minor differences in the maneuver formulation,)

1. Circular Orbits

In general, the ascent guidance system will
not be capable of placing the vehicle in a speci-
fied precisely circular orbit (even for a spheri-
cal earth). Therefore, maneuvers to change
each element must be defined.

a. Correction of eccentricity and semimajor
axis

The first of these maneuvers is the placement
of the satellite in the proper orbit. This prob-
lem is considered in three cases, in which the
planar orbit will be described by apogee and
perigee radii and the time of perigee crossing.
The three cases are:

(1) r,>r, >rp

(2) ro>r >r.

p
(3)

I‘n >I‘a >I‘p.

The ro is that radius which is specified for the

satellite.

Case 1--r_ >r_>r_ . Consider first the
a n p

pulse necessary to change an initially elliptical
orbit to a circular orbit.

’
(&

From the law of cosines

2 2 2
A = - AN
WV, Vc +Vn ZVCVn cos &Y
where
V. o= HE
c r
n
Vn = velocity in the incorrect orbit at
"n
AY =

change in flight path angle

This expression may be written in terms of the
knowns by considering

v .
c AVe
$
AY te
Va
1 rarp
AY = cos r (r +r_-r)
n a P
2 _ up _ 2 _ Th
Vo =3 2 2V, ( r +r
a p

r° cos” Ay
n

(up

- ‘f#
2Vc Vn cos Ay =2 q r——wn o5 cos AY
2r_ r
2 a
=2V
FE, Fr
(¢4 rn ra rp

Then, the nondimension solution for the correc-
tive pulse may be written so as to involve only
two ratios.

Tn
av y\ 2 T
€ =3 P _
2V 2 T
¢ 2+ 1
P

The direction of thrust application is determined
by noting that

AV6 sin ¢te = Vc sin AY
or

A\
b = sin” L (zsv—: sin Av> (10)

If a timer signal is used to trigger the pulse, the
time to make the correction must also be com-
puted.

3/2
1 I‘a-“.p ra-rg .
t = —— E-r+r sin E +tp
{u a p
(11)
where
r r, r
sin E = ——— = (1+2 2
a o p n

(continued)
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and t is the time to initiate the correction.

The orbit resulting from the correction(s),
the magnitude, direction and time of which are
given by Egs (9), (10) and (11) is a circular orbit
of the desired period. However, this orbit may
be slightly in error due to inherent inaccuracies.
For this reason, the following error analysis for
changing the size and shape of the orbit to a
circular orbit was condlucted.

. _AvV .
sin AY =y smctzt
c
fay . A
cos AY 3 (AY) =8(_V) sin ¢ +—VCOS¢ ¢
VC t VC t t

av
- ind, &
;2— sin bt VC

c
where
v = ¥ and
c r
av A%
c . __c |
ar r
Thus,
A Fay
cos Ay § (AY) = & (av) sin ¢ + 2V cos ¢, L
\Y t Vv t t
c c
AV Ar .
+ —ZV_CI‘ sin ¢t
or
cos AY § (AY) _ & (&AV)
sin Ebt VC
AV Ar
- Al .
tv, [‘2’? *cot “’t]

It is noted that both sides of the last equation be-
come infinite as ¢>t goes to zero. This problem

may be resolved by going back one step to the
preceding equation and noting that for ¢t =0,
AY =0,

NN

c

5 (AY) =

b. Correction of the plane

The second maneuver to be considered is
that necessary to change the orbital plane. Con-
sider the case of maneuvers in circular orbits to
change orbital inclination or the node (Fig. 8). A
vehicle in a circular orbit with inclination angle
(i) and nodal longitude (Q) is given a horizontal
thrust pulse (AV, the characteristic velocity of

VIi-4

the maneuver) at latitude (L) so that the orbital
velocity remains constant in magnitude, but
changes in azimuth by an angle AB. (Azimuth is
determined by the intersection of the meridian
at the point of the maneuver and the great circle
projection of the orbital path.) Using primes to
indicate quantities after the maneuver,

g =g +AB,

A new node (Q') and new inclination (i') re-
sult from such a maneuver. If d is the longitude
of the maneuver, measured from the reference
axis, then

v =Q+d,
(Note: Use a plus sign if 2 and d are on opposite
sides of the reference axis, and a minus sign if
they are on the same side.)

Since d is fixed, the longitude of the new node
is

From spherical trigonometry,

cosi = cos Lsinf
sinv = tanLcoti
cot 8 = sinLcotv

These expressions can be manipulated by main-
taining L constant to yield

v o= 'tam_1 (sin L tan fS').

(12)
and

cos-1 (cos L sin §').

-
]

(13)

The energy requirement to accomplish this
constant speed turn is then simply

A\ .
V; = 2 sin AB/2 (14)

and the impulse must be directed according to

Y] )
= % °
k0 (‘z * 90
in the plane normal to the radius vector.

The error derivatives 3_1)
L. = constant

F)
9
and 37?) may be readily determined
L = constant
as
%—) = - c____ossa cl:os B .. sin L cot i cot v
L

(15)



and
. 2 .2
av) sin L sec” 8 2 . sin” v
IO = =cos” vsinL +————,
L sec2 v sin L
(16)

At this point, it is of interest to note that if it
is desired that the nodal position be maintained
constant, the maneuver must occur at one of the
equatorial crossings. If, however, the inclina-
tion is to be maintained constant, all maneuvers

must be made at £ i“;— (sign depends on the

direction of the AQ) from the longitude corre-
sponding to the maximum latitude.

Equation (14) shows the very large energy re-
quirements for significant changes in azimuth
at low altitudes where VC is of the order of 8000

mps and suggests that a more efficient procedure
might result if the maneuver could be made at

a point where the velocity is low. Pursuing this
thought further, consider the following sketch.

/// Initial ~_
~. circular o

orbit N

h, |Apogee
avy /
e //Mar}euvering
S — orbit

The philosophy is first to inject into an elliptic
orbit the parameters of which will be investi-
gated, secondly to change azimuth at the maxi-
mum radius (minimum velocity) and thirdly, re-
establish the desired circular orbit but in a
new plane., Now

V. =V +A4v
c

P 1

2 2 _ 1 1
Vp-Va—2u (;——F—>

P a
or
2V02

V. = - -V

a A\

p p

Having reached apogee, the second increment
of magnitude defined by

sz A(SZ

—V——2sin—2—

is applied.

B(AVT) ) Ve ’ 1T, . +ra
3r QTz?r_ T
a c c c

Then at perigee, the initial velocity adjustment
must be canceled; thus

AV =2AV1+AV2.

total

By combining the above equations, the following
explicit expression for AVT in terms of the

radius of the circular orbit and the ratio of
apogee to perigee radii can be obtained.

AVp =2V, {(:-:) [1 + (%) -l-sin ﬁ;ﬁ]

1/2

(r_. >r) (15)

This function has been plotted in Fig. 9 (ra > rc)

in nondimensionalized form (by dividing through
by Vc) for various values of AB, For the smaller

values of AB, the impulsive incremental velocity
required to perform the transfer maneuver is
seen to be greater when the vehicle is injected
into an elliptic orbit, that is, when the nodal
point is stretched or lengthened. On the other
hand, for the larger values of A8, the three-im-
pulse maneuver becomes more efficient, and, in
fact, there is a definite ratio of ro /rC at which

the total energy required for the maneuver is a
minimum.

This condition is more clearly illustrated by
analyzing the variation of AVT with respect to r
for a given value of r.. Performing the indicated

differentiation yields

-3/2

This function defines the minimum points when

8(AaV,)
L =0 (17)
Ta
that is, when
Ta Ta
7 = <1+2r_> sin - (18)
c c



or when
r sin AS
2 . ———mrT (19)

c 1-25m-2-

The right-hand side of Eq (19) is plotted in Fig.
10 for the range 0°< &i < 90° and also in Fig. 9
as a dotted line. The values given by the curve
are the minima, while values selected within

the shaded area represent choices which
require more energy than the minimum, but less
than that required to make the correction on the
initial circular orbit itself. Another factor which
in inferred from this curve is that since ro>Tos

the value of AB, at which the function is exactly
unity (about 39°), defines the minimum azimuth
change for which it becomes profitable to effect
the transfer to an eccentric orbit.

The vertical boundary at A = 60° arises
because of the fact that the formulation breaks
down at this point because the vehicle is re-
quired to transfer to infinity (i.e., escape)
maneuver, then return. In this region all
maneuvers will require the same energy, since
the velocities at these large radii are essentially
zero. However, this solution is of academic
interest because of the impracticality of such an
approach.

Another factor of interest in this study is the
period T of the elliptical orbits being considered,
since one would normally want to keep the transfer
time within reasonable limits. The equation for

the period of a vehicle in an elliptic orbit about
the spherical earth is

(20)

which may be reduced in terms of the variables
used in the previous equations to the form:

. 3/2 r
)
u r

3/2

&

is the period of the (target's) circular

3/2

(21)

where 7
c

orbit. Figure 11 is a plot of the nondimen-
sionalized orbital period of the interceptor

o ]

as a function of the parameter ra/rc for the

3/2
(22)

.
same range as was considered previously, with
the same equation applying in this case, for the

entire range of ra/rc.

The factor of interest here, however, is the
additional amount of time required to perform
the eccentric maneuver, as compared to the
period of the circular orbit. This factor is
given by

_ T
T=-7 = [=— - T
c T c
c

The new circular orbit may also be described
in terms of the lateral separation from the old
orbit as a function of the central angle from the
point at which the maneuver is made (tbo) if the

(23)

maneuver is small. Let the spherical separation
of the new orbit from the original orbit be z ex-
pressed in radians.
Then

sin ¢0
sin 4>T

sinz
sin Al

but sin A3 = AV /VC sin ¢T from pulse geometry.
Therefore,

.- _ Ay .
sinz = 7(:— S1n¢0-

For small angles (z < 0. 1 radian) sin z Tz

. ~ z (km) . .
(radian) ;6- Tkm) * and with a maximum error

of about 1% we have:

z - %‘5 sin ¢, (29)
0 0

The separation z (km) versus mass ratio re-

quired is plotted in nomograph form in Fig. 12

for circular orbits at altitudes of 0,200,400,600,

800 and 1000 km for various ¢0 and Isp = 200,

250, 300, 350 and 400 sec. The maximum separa-
tion between the orbits is seen to occur at

¢0=(2n-1)90°,n=1, 2, ...

This fact is true because both orbits must con-
tain the original radius vector.

There is no time separation between satellites
because the satellite is in a circular orbit at the
same altitude with the same period both before
and after the maneuver.

c. Correction of position

The equations to correct the position of the
satellite in its corrected circular orbit are
derived as follows. If it is assumed the satellite
is displaced A0 from some desired position, then
the time in which the satellite passes through
A0 is

(25)



This At must be lost or made up, depending upon
whether the satellite is ahead of, or behind its
desired zenith. The simplest solution, from the
standpoint of computations involved, is to cause
the satellite to enter an elliptical orbit possess-
ing a period 7 + At/n (with perigee or apogee, as
the case may be, at the altitude of the desired
orbit) by a pulse tangent to the original orbit,
and to re-enter the original orbit by an equal and
opposite pulse after n periods of the transfer
orbit. Then, if T and a are parameters of the

3/2
+ 7 {(;) - 1} .(26)
n

Combining Eqs (25) and (26) and noting that

transfer orbit,

At
- = % - =
n (Tt ™)

pr
as —-=,
Zu-rnVn

Vn is determined as

Vn = 9 - 1
v EPUEE— .
¢ A0 4
2 m

Then,

AVgy Vp _ 1

S— ~-1= {2 - -1
nV A\ 273
c c A8 +1
2 ™
(27a)

and

AVgg =~ BVg,
where:

AVe 1’ AVe g are the first and second cor-

rective pulses applied tangentially at an

intervalnrt (1 % CET

n = number of revolutions in transfer

orbit
AB = + if vehicle is to move backward in

orbit (i.e., AV along velocity
vector)

= - if vehicle is to move ahead in
orbit (i.e., AV opposes velocity
vector)

Equation (27a) is presented in Fig. 13.

For large values of 48, AV approaches

AV =J‘%—(ﬁ- 1),

which is the difference between escape and circu-
lar orbit velocities., For small values of A8,

[T A
AV~ V/F— (6-1?

The time required for carrying out the maneuver
is

21Tn T 3

t = 5
m 2u - r (V+AV)

where AV is negative if A8 is + and positive if
A8 is -,

The more general case where thrust is not
assumed to be along the velocity vector results
in the following expression

AB=(1—K2)n{1- —-1_372_}
2
(2-1{2)
-1ftan @
+2 K, tan + a
o]
2
_E-esinE } (27b)
2
[2-K2]
where
-1 (K2 -Kl) ]s'mch[
@ =1t (TR, -KJcos o
2 1 T
r
K 2—5-
and
2 .
_ 2 -K, [siné,. |
E=tan1{(K2-K1) 22 T }
Kz-l

This relationship is presented in Fig. 14.

Equation (27) assumes that the maneuver may
be initiated at any time and considers only the
magnitude of the error in the central angle. If it
is desired to produce a specific node (on a rotat-
ing earth) at a specified time, the basic approach
must be altered. The new problem may be re-
stated as follows: Assume that it is desired to
move from a known position B (relative to the

ascending node) to a nodal position 92 on a rotat-

ing earth in the same time that it takes to move
from a position a to the node Ql’ This problem

is illustrated in the following sketch.
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For the case of nearly circular orbits, this im-
plies that (t1 = t2):

1
2% [2mn +a - ns&] =2T—n [27n' +B -n'&"

(28)

Ifn=n'"and &'~ o,

T _n' (271 -5")+B

TV Tn(2w -4y Fa

B -«
= 1+n(§n-d)5+a'

Another relationship between 7 and 7' can be
obtained by observing the nodal motion as a func-
tion of period change:

nATQe = AR +$'2n

and
T o= +AQ + nQ
ral 'ﬁTZ;T'_
Equating
B-o _AQ+nQ

n@r o) Ta nQe'r' (29

The angle a is included in the analysis for the
sole purpose of providing a means for including
errors in the time of passage through the node

Q 0° Therefore,

2 At

a =f(t )=_.___O-
error T

Substituting this relationship into Eq (29) yields

A

B _|,.0 ,-% Lo

2T 2% nrT T
(30)

Thus, the position of the point at which the first
corrective pulse is to be made is defined, but
the magnitude of the correction itself has not yet
been evaluated. This portion of the analysis can
be accomplished when it is noted that the orbits
of interest for this study are circular.

Thus,

At =37 |— + —— (31)

If the period change is to result solely from a
velocity pulse (that is, no change in radius during
the application of the pulse), the period change is:

Ar =378V

\Y
c

Again,

A’7_=AQ+nQ i

ns2
e
Therefore,
A .
AV = u . Q +nf2 (32)
nil
6mr e

This equation defines the first pulse, which alters
the period to produce the desired position change.
However, a second pulse approximately equal to,
but in the opposite direction from the first, is
required at the desired node to produce the cor-
rect orbit. Both of these pulses should be di-
rected along the velocity vector. The magnitude
of this second pulse is:

AV

=AV1 +.(VC -86V,)

2 1

where the corrective term is included to com-
pensate for the small radius and velocity errors
which produced the initial displacement.
Case 2. r_>r_>r . For this case, the
=== Ta p n

determination of AVE must be modified as fol-

lows:
av
€ 1 _ 1 (33)
E-Vca Jra Jra
S+ 1 = +1
r r
n P
Av
€2 .. 2z (34)
Vc Tn
1+ =
Ta

= L i
where V Jra . Tangential pulses (AV€1 and

AVeZ) are applied at

and

, respectively.

The subsequent corrections for i, 2 proceed
exactly as in the first case.

Case 3. ro>r, > rp. Proceeding in a
manner similar to Case 2,

AV
ﬂsl - 1 _ 1 (35)
v r r
cp ‘1 + P Jl + P
r r
n a
AV
€2 _ 2
Vv =1 r, (36)
¢ LR



where ch = FI;; and AVel and AVE2 are applied
tangentially at times

27 rptr 3/
t_ o+ 2 P
p 2

and

The subsequent corrections for i, Q proceed
exactly as in the first case.

2. Elliptical Orbits

The presentation here considers the orbit to
be defined in terms of the six usual elements a,

e, tp’ i, w, 2 and discusses the adjustment of
each.

a. Transition from incorrect orbit

The first step in the final correction of an
elliptical orbit is a transition from the incorrect
orbit to an orbit of the desired size and shape in
the plane of the incorrect orbit, but rotated in the
plane through an angle & - w', where ' is the
angle from perigee to node for the incorrect orbit
and « the angle from perigee to node in the orbit
ultimately desired.

a
r , w and ', where primes denote quantities

Known or calculable quantities are r'a. r'p, r,

in the incorrect orbit. The angle from perigee
to intersection in the original orbit (8) may be
determiined as follows.

. = p - p
n T+e'cos® T+ecos(® -w +tu")

Writing this expression in terms of the known
radii,

' r' r' ir
(F,a‘_-l)cose+;r+1=;3 r_a+1
b P a P

r (37)
+(r_a -1\ cos (8 - 4)
p

where
= ow-w'.

This expression can be easily solved for 6 by an
iteration technique. However, a direct solution
is also available

B (1 - A cos ¥)

cos B =
1+A% - 2A cos ¥

+ [Bz (1-Acos 92 -(1+a2
1/2
- 2A cos ¥) (B2 - A2 sin2 #ﬂ

¢ (1 +Az - 2A cos \u)-l

where
A= I/Tp - lll‘a . el
1/1'}')-171‘51 epr '
rl
a
2 41
B_l/r‘a+1/rp _I"p _elpl_l
-Ilr'vp— I7rt r! ) el
F-l
p
o= ow-w'.

The change in flight path angle in the maneuver
is

G [
Ay = cos T 7 T
r] /rp (rn/rp)+1

(38)

The characteristic velocity necessary to effect
the maneuver may be determined from the law
of cosines.

AVZ
€ =9 - 1 _ 1
2V 2 ri. rt. T r
er a,_ b &, P
r r T r
n n n n
N [ p— It Jeos av,
r rt r T
24 B 24+ P
T r r T
n n n n

(39)

where AVE is the characteristic velocity of the

correction and Vcr is the circular velocity at r.

Thus, ifr , r_, r', r'p, » and «' are known,

a a
0 (and hence ro and the time for correction), AV

and A Y are determined.
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b. Correction of inclination

After the size and shape correction is com-
pleted, it is possible to correct inclination to
the desired value by a constant speed turn at the
node (w). The error in inclination (Ai) will be
determined as data. The characteristic velocity
of the inclination correction is then

Avi = 2Vn sin %-i- (40)

where the velocity at the node (Vn) is determined

as
B 2 1
Va T M\ T 5
n
1/2
2_‘3
a .r
=V ——-+1+< >COSw— p
calr r
24
Ty

(v, is circular velocity at ra.)

Then, the inclination correction may be expressed
in nondimensional form as

E NP1 S -
v— = sin T\ —~Z-1cosw }——

ca r‘a +1
P
(41)
and the direction of thrust application is
L Oi o
d’ti =5 + 90 (42)

from the initial direction of motion because the
thrust possesses no component along the principal
normal to the orbit.

The thrust is applied at a time
. T _ .
t—tp'QT(En esmEn)

where

_ -1 ’ p w
En =2 tan g tan 7| (43)

c. Correction of nodal position

The next corrective maneuver is the correc-
tion of nodal position.

The inclination (i) is to be maintained and the
latitude of the satellite at transition is L. Con-
sider the spherical triangles formed by the pro-
jections of the original and corrected orbits on a
spherical earth.
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tan LL tan LL

tan i = — = e
sin (1/2 +4Q) sinv,

sin (uz + AQ) = sin vy

Thus

AQ
vg = 90° - 5

Let the angle from node to transition (x) at the
incorrect orbit be ¢x'

Then,

_; tan {90° + 5

= tan
¢X cos 1

The velocity at x should be changed to the velocity
possessed in the original orbit at 90° - -5 longi-
tude from Nl‘ To obtain this condition, a con-

stant speed turn, the change in yaw angle at x in
the actual orbits (Amn), and a consequent rotation
of the orbit through an angle in its plane is nec-
essary.

Again considering spherical trigonometry,
the projected change in yaw angle is

- AR
An' =180 - 2 cos 1 sin —— sini (44)

The actual change in yaw angle is given by
_ .o-1 . Anf
Amn =2 sin @)s Y, sin —2—> (45)

where YX is the flight path angle in both orbits

at the transition point.

The first pulse required in the nodal correc-
tion is then

. 4An LA
! = =
AVn 2VX sin +- 2VX cos Yx sin —Z—Sm i.

However, re. Vx cos Yx = ‘up.



Then,

AQ
Ay! = H i
Vrl 2 {p (1 +ecos GX) sin ——

=¢x

The time for the correction is determined by et.

sin i
(46)

where 6_ -y and A nt is given by Eq (44).

Since the orbit is elliptic and since this orbit
rotates about the line through the point of thrust
application and the center of the earth, the line
of apsides is rotated in the orbit plane during this
maneuver. For some satellite applications, this
rotation is very objectionable and must be can-
celed. Therefore, a second pulse is required
(AVH) to rotate the orbit a specified angle (@) in

If rt
=2 V' sin ¥'.

@m\

1-e cos
But, V! ‘lﬁ_“_r
r!t cos Y cos y!

esina
2

its plane, is the radius at transition, AVH

and, therefore, since tan Y' = o
1 - e cos 3

- e sin 2
o o ()
p sin Y
Then
(47)

AV = ! i f == ad in2
Vn 2V! sin ¥ 2 b e sin 5

where p, e are parameters of the desired orbit,
and @ is determined as
AQ
(90 -y

cos 1 (48)

_1 | tan
a = 180° - 2 tan ][

The corrective pulse is applied at

=-277 (E+ - e sin Et)
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seconds after the time of perigee passage, where

T
E' =2 tan 1( P cot %)
Ta

Note is made at this point that the analysis
of the second nodal pulse is identically that which
is required to change the argument of perigee an
amount Ay for the case where this element alone
is to be changed.

(49)

d. Correction of position

The elliptical orbit is now correct with the
exception of the position correction or analogously
the correction to the time of perigee passage.
Since the orientation of the orbit is correct, this
final adjustment must be made either at apogee
or perigee.

If the observed time of perigee passage is t'p

and the time at which the satellite should cross
perigee is tp' the period of the transfer orbit

where &t =t' -t ,
P

tangent at perigee is 7 + At, o

And, the corrective pulse to be applied at perigee
is

AV 2/3
p PAJE (7 + &t
Y 50
1+.2
a
+n (7 +

An equal and opposite pulse applied at tp

At) completes the maneuver and prevents further
drift.

Equations (10) to (50) comprise a method of
correction calculation which is theoretically suf-
ficient to achieve the desired properties in agiven
orbit.

Repetitions of the various maneuvers may be
required to achieve desired accuracies. The
number of repetitions will depend on sensor and
control accuracies, and on the mission itself.

3. Sequence for Corrections for Maneuvers

Several requirements restrict the selection of
a routine to correct the positions of a satellite.
Since the mission of most satellites is intrinsically
one of long duration, and corrections to an ac-
curate orbit might be required daily, economy is
an important factor. Secondly, the transfer or-
bits involved in the correction should closely ap-
proximate the nominal orbit, so that the mission
(communication, surveillance, etc.) will not be
interrupted. Also, the correction routine should
be as simple as possible with the other imposed
conditions. The following correction calculation
routine has been selected on the basis of these
requirements.



At any given reference time t_, the data for

OI
the correction calculation are an, €4 igs QO'

wgs 90. These quantities are in error compared
to the corresponding parameters of the nominal
orbit at the same time, a_, e , i Q_ , wa,

n n’ 'n, On On
8

On”

Because of their frequent occurrence in the
correction equations chosen, it is convenient to
define six parameters, m, A, £, o, %, ¥. These
parameters are defined (for the case of the in-
correct orbit, denoted by subscript "0 as fol-
lows:

Ty T COS wy sin QO + cos iO cos QO sin wg
L sin wy sin QO + cos io cos QO Cos W
éo = COS w( CcOs QO - cos iO sin 2, sin v
Gy - sin wq COS QO - coSs io sin QO CO8 wy
Xy = sin iO sin wg

¥y =sinijcosw, (51)

Then the incorrect orbit may be expressed in
spherical coordinates (r, A, L) by the three
equations:

2
.- a, (1 - € )
T+ e, cos )
» C]O cos 6 + xO sin
A = tan gocosﬂ+co smy
L= sin ! (x, cOS O + % sin 0) (52)

¥4

Although all six orbital elements may require
correction, economy can be improved by correct-
ing more than one element with a single thrust.
The corrections of inclination and the node,
which are both nonplanar corrections, can be
simply combined, as can the planar corrections
(size, shape and position of the satellite within
the orbit). Although, for maximum economy,
the order in which the planar and nonplanar cor-
rections are made depends on the energies of the
incorrect and required orbits, the increased
economy derived from employing separate cor-
rective routines for each case is not sufficient to
justify the increased complexity of the routine
(for small changes in the orbital elements). For
example, in the case of circular orbits of radii

r, = 5.488164 x lO7 + 6000 ft (1.672792 x 107
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-+ 1830 m) the velocity increments required to ro-
tate the orbit planes through 0.10° are 27.961 fps
and 27.965 fps (8.5225 and 8.5237 mps), a differ-
ence in the fifth significant figure or third decimal
place. Even though the error in radius should
approach r, + 25, 000 ft (7620 m), the difference

in the increments is in the fourth place. Thus,
for orbital maintenance the order of correction
for the nodal and inclination changes has very
little effect on the resultant energy requirement.
Even though the errors to be corrected during
initial placement are much larger and the differ-
ences in the velocity increments more significant,
the order still produces only minor differences.
For this reason the position of the planar change
in the routine will be considered inmaterial for
simplicity.

The first thrust in the corrective sequence is
chosen as a thrust to eliminate error in inclina-
tion and node by a constant speed turn at the in-
tersection of the incorrect orbit and the nominal
orbit plane. If quantities associated with this in-
tersection point are denoted by the subscript 1,
this point may be determined by setting r = T
8 = 91 in Eq (52) and simultaneously solving this
equation and Eq (53) of the nominal orbit plane
for 61 and Ty

cos L cos A sin in sin QOn

-cos LLgsin A sinil_cos 2, + sinL cosi_=0
n On n

which yields (53)
(§0 cos 81 tay sin 91) sin in sin Qn
- (no cos 91 + )\0 sin 91) gin in cos QOn
+ (XO cos 8, + y sin 61) cos in= 0
Solving this equation for 6, gives
cos f, = + —Z'Q—z (54)
T+ Q
where
Q= % gin in gin QOn - )\0 sin 1n cos Qon

+ “’O cos in’

T = §0 sin in sin QOn - 7, 8in in cos n

0 0
+ X €08 in,

and the sign chosen in Eq (54) i8 that which sat -
isfies

- . Q
cos 61 T sin 61.

In computing the velocity increment required
at the intersection point, latitude, flight path
angle, orbit velocity and change of flight path
azimuth during the maneuver are necessary.

=1 .
L1 = gin [sin in sin (91 +m1)] (55)



where

o il siniosin (81+ coo)
1 sin in

= [ ey sin 8, :|
Y tan (56)
1 1+ eq cos E)l
2 1
v, - u( _ ___) (57)
1 Ty a,
ABl =
(58)
X

The magnitude of the velocity increment re-
quired to correct the orbit inc'ination and node is

AR

= i 1
AV, 2V, sin —o— cos v, (59)

The parameters in the corrected orbit corre-
sponding to Eq 51 are:

= . i + i Q i
4 cos w sin an cos i cos @, gin wy

o i o . +
\1 sin w, sin an cos in cos an cos w,
&1 = cos «, cos an - cos i sin an sin “y

a7y T -8in v, cos an - cos 1n sin an COS o 4

gin w

x; = sinig 1

sini_ cos w (60)
n 1
The orientation of the corrective thrust can then
be obtained. Since the general elliptical orbit in
three dimensions may be expressed as:
- sin ©
r = [&p

cos 0 o
t oPp 1+ecosB] 1

1+ ecos?®

{continued)

+[ cos 0
"P {TT e cos ®

+ [XP

the orbital velocity may be determined as % .

gin B
+Xp1+ecosBJ

cos 9
1+ ecos ©

gin ©

tpp1+ e cos ]

61)

[~+(cos 8+ e)-£ sine] 7
[x (cos 8 + e)~nsin9]j

[¢(cose+ e) - x 8in & ] 1—;
(62)

Orbital velocity in spherical coordinates may
then be expressed as:

v D

o tan” ! [X(cose+ e)- n sin 6
g (cos 6+ e)-E gin ©

sin-1 [\l/. {—%_{¢(cose+e)-xsine}].

(63)

R "
"

where

Corresponding to Eq (63),
velocity increment A V1

the orientation of the
is given by:

b _ _1 [ _ _
&vy =tan } ()\1 )\0) (cos 91 +e0) (nl

-m) sin el] [(01

(&, - £y smel]'lg

cro) (cos 91 + eO)

%k -
207 = sin l[ﬁl {gg {(‘”1 - 4p) (cos 8,
+ eo) - (Xl - xo) sin 91} ]

(64)

After addition of the velocity increment de-
fined by Eqs (59) and (64), the vehicle occupies
an orbit which lies in the correct plane, but which
has the original incorrect size and shape. The
next step in the selected correction routine is a
transfer from apogee of the incorrect orbit to a
point in the nominal orbit (for this case assumed
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circular). This approach is not always the most
efficient means of making a transfer; however,
for the small period changes required (even for
the initial placement problem), the energy dif-
ferences are extremely small. The equations
defining this correction are:

= ( Zrn T
AV, = " V-————-—— - ‘[2 -—
2 Ta I'a.+ Tn ag

1y
* -1 1
sz = tan (77_;)

* -1
Ad’z 8in (-4’1);

!

(65)

where
I‘a = 80 (1 + eo)

When the vehicle completes the transfer to
nominal orbit altitude, a tangential thrust could
be applied to cause the vehicle to enter a circular
orbit at this altitude. However, the vehicle would
still not be synchronized because the orbital cen-
tral angle would remain uncorrected. Correction
of this quantity, which is discussed earlier, in-
volves two thrusts applied tangentially at any
point in the circular orbit. Selecting the terminus
of the Hohmann transfer orbit, i.e. the point at
which the vehicle first reaches nominal altitude,
as the point for initiating the change of position
improves the economy of the correction routine
in certain cases. For example, if the vehicle
reaches the nominal radius, ro with a velocity

greater than circular velocity, and the vehicle

is ahead of the nominal position desired in the
orbit, part or all of the excess velocity can be
used as part or all of the first velocity increment
of the angular position correction.

The third corrective thrust, computed as the
combination of the tangential thrust to achieve
circularity and the first of two tangential thrusts
to change the orbital central angle, is

AV

3 J <2' 1- r +r
A
£vi s tan”! <_1_> + 180°
3 5]

1

(66)

The direction of AV is opposite to that of AVZ.

In Eq (66), the angle of required position change,
A8, is positive for the case in which the vehicle
lags its nominal position in the pattern orbit. The
first equation of (66) holds whether r >r or
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The final corrective thrust is

o )

A
Av* = tan-1 ._1)
4 g,

>
<
]

2oy ). (67)

As noted, economy can be improved by substitut-
ing -—(ie n = an integer Yfor A0 in the first equa-
tion of (67) and increasing the transfer time by
a factor of n.

If the value of 48 in Eqs (66) and (67) is to be
computed from the initial data (eo. en, a4, 2.,

etc.), the time interval from the time of data
sensing to the time of initiating the correction
of orbital central angle is

a Jl-e sin @
0 m - sin” ( >

At=a0 e 1+e cosB
’ 2 .
+e0 l-e0 smBO
I+eocoseo

p
+ 7 ( 0 +1> 1 ( ¢,
2\I-¢ 2u\T "¢, (68)
The location of the nominal position at the time

of initiation of the angular position correction is:

r =r
3n n

LIi’on

=1 . At
sin [sm LOn cosi 2w

+ \(sinz i - sinz L
n On

(69)

+ AOn

and the position of the vehicle at this time is
given by:

-1
L, = sin (xl)

tan—1<“1>.
3 E"_l—

»>
"

(70)



The required change in central angle is then

28 =cos ! [cos L, cos Ly cos (A; - A

+ sin L3 sin Lsrzl

3 3n)

The four maneuvers given by Eqs (59), (65), (66)

and (67 comprise the complete correction routine.

Although the proximity of the correction trans-
fer orbits to the nominal orbit means that the
difference in perturbation of the transfer and
nominal (perturbed) orbits is negligible, the
perturbations affect the times of correction
initiation and must, therefore, be included in
the routine. This may be done by considering
the orbit parameters « and 2 involved in the
equations as functions of time and adding a per-
turbation correction to the computed times.

A sample problem has been calculated using
this routine in order to provide an appreciation
of the magnitude of the propulsion requirement
for each correction. The data for the sample
problem are:

L =5.488164x 10" ft a =5.4889664 x 10” ft

%0 7 0 7
(1.672792x 10 m) (1.673037x 10 m)

€on =0 € =0,0001

iOn =54, 736° io =54, 741°

QOn =0 QO = 0, 005°

“gn © 0 wg = -60°

eOn =0 90 = 60.005°

The radius at this time is r, = 5.488692 x 10" ft

(1.672953 x 10" m) which is r_plus 1 stat mi or
1.609 km.

Proceeding through the correction routine
yields the following correction magnitudes.

AV, = 1.804 fps (0.5499 m/s)
AV, = 0.185 fps (0.0564 m/s)
LV, = 1.899 fps (0.5788 m/s)
AV, = 0.914 fps (0.2786 m/s)

Total 2V = 4,802 fps (1.463 m/s).

Thus if the satellite possesses propellants
capable of supplying a total of 5000 fps (1524
m/s) and 5 fps (1.524 m/s) is assumed to be
the average correction required twice per day,
the system can function for about 500 days.

Thus, the routine seems adequate to satisfy
the requirements of economy and proximity of
the transfer and nominal orbits with a reasonably
simple calculation routine.
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D. SMALL MANEUVERS IN NEARLY
CIRCULAR ORBITS (REF. 1)

1. Linearization of Maneuvers

The discussions of Section B have been
general and are not restricted to small eccen-
tricities. Generally, however, for the cases
in which the target orbit is circular and no
intermediate orbits are utilized, the actual orbit
obtainable will deviate slightly from circularity.
If this deviation is to be corrected, some of the
maneuvers of the previous discussions can be
simplified using first order differentials. This
approach has two major advantages:

(1) The functional form of the solution
can be simplified,

(2) The roundoff error arising from sub-
tracting to nearly equal quantities can
be reduced.

As before, the discussions will be divided into
three cases for investigation:

(1) Correction by means of two velocity
increments tangent to the flight path,
the first impulse (AVI) being applied

at apogee in the incorrect orbit and
the second at the altitude of the
nominal circular orbit.

AVI

(2
A
Va

(2) Correction by means of two tangential
impulses, the first (AVI) being applied

at perigee in the incorrect orbit.

AV2

AV1
(3) Correction by means of one impulse
(AV) applied at the intersection of the
incorrect and correct orbits, if the

orbits intersect.

XN

av



It is noted that while the circular orbit is shown
within the ellipse for Cases (1) and (2), the
cases for exterior circular orbits will also be
discussed.

Consider

fa = a-Ty
Le = e

for Case 1

r, =a(l+e)=r

1 +Aa+e(rO+Aa)

0

= A
r0+ a+er0

~ [B _Aa _ e ha e
V17§, ( 21y 7) (141”0 I)

e2<<l

Aa)
-\ (1-¢e) .,
( Ty @a)z
— << 1
0

The latter approximation utilizes the following
expansions,

(l=l=e)-1 =1$e+62$53+,,,
2 3
1/2 _ € € €
(l:te) _]_:k_z,__g_:!:_I_B__

Then

AV

—
u
W
1
H
S
e
—
-~
(3]
]
'
-
S|
J

Da /2
1/2 2“(1+?3)(1+e)T
- o~
ro [(1+?6)(1+e)+1]}
5 La e
ll - [(1 +2_.—r0 + 3

AV, = i
2 [ro]

d
-4-9)

The procedure is similar in Case (2), the re-
sults being summarized below. For Case (3),

2 _u 1 Ba (_ 2
AV = 3-——13—-2 RI+T) 1-e
0 1+ — 0 J

1/2

4
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2
avi L m 3 - 1-£°i+(éi>
To o Io
NESONE
ry B ry Z,
2
Asz_u_[ez_% <éi>]
Ty o

The final results are as follows. For Case (1):

1 Aa
AV, = ‘,—] (e - —)
1 1 Ty T, (71)
1 Aa
AV, = 2 (-e- D)
27 7 Vro ry (72)
AVT = IAVL‘ + \AVJ
e2 << 1,
La=a - Ty
Case (2):

1 u Aa
AV = “—— (e- ——) (13)
177 ry rq
1 Aa
Ay, = ‘}L G = (74)
277 r, T,

SViotal © IAvl + \sz‘
e2 << 1
Case (3):
1/2
1/2 2
ave [ EZ-g @) '] ,
To o -
(75)
e2 << 1; —A—a- <e
To

The symmetry is obvious in Cases (1) and (2),
and the total velocity requirement is the same
in these cases:

Av

totalzle _e<_A_a_<e

V0 2 rg
I =3
?ro ry

Since for intersection of the correct and incor-
rect orbits



a(l-e) =1"p<r0<ra =a(l+e)

then
r0+Aa—erO<ro<rO+ Aa+er0
or
Sa < e
?
Ty

and, from Eq (75), the impulses required for
Case (3) have the range

e Jm o
— < AV <ce I
Z ¥xo o

Ag

)‘

However, if the orbits intersect (i.e., e >

the total velocity required for correction by two
tangential impulses at extrema, Case (1) or
Case (2), is

L€ ’u
AViotal = 7 % 4

which indicates the anticipated superiority of ef-
ficiency in Cases (1) and (2). Eqguations (71)
through (74) are plotted in Fig. 15 for the error
ranges of interest. Equation (75) is plotted in
Fig. 16. As an example, consider the following
table.

Errors in Original Orbit Velocity Increment
A Required for Cor -
a :
(k) e rection AV, ., (mps)
10 0.00167 6.72
9.3 0.001 5.44
0 0.001 {3.91 2 pulse
7.77 1 pulse

2. Error Analysis

Orbit correction sensitivities will also be
developed for the case of correction of a
slightly eccentric orbit to a circular orbit by
two impulses tangent to the flight path. The
following nomenclature will be involved:

V1 = orbit speed at ry before the
first correction
!
V1 = orbit speed at ry after the

first correction

AV = characteristic velocity of the
first corrective impulse

r = radius at extremum where
second impulse is applied
(nominally ro)
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v = orbit speed at r, before the

second correction

V2 = orbit speed at r, after the
second correction
AV2 = characteristic velocity of the

second corrective impulse

Y = flight path angle with respect
to local horizontal

= thrust attitude angle

Primes will denote corrected parameters.

lThe errors in the final orbit parameters,
L3 and e , will be functions of'errors in the
injection parameters (Arz, AV2 and y2), which,

in turn, will be functions of errors in the magni-
tude and orientation of the second corrective
thrust and errors in the conditions r2, V2 and

91 Vz and YZ
are functions of errors in magnitude and orienta-
tion of the first corrective impulse and errors

in the determined values of £y, V1 and Yl.

‘{2 before thrust. The errors in r

Therefore, the error equations are conveniently
developed in several steps.

a. Errors contributed by corrective thrusts

The orbit errors contributed by errors in the
corrective thrusts may be induced intuitively,
but a rigorous general analysis is not difficult.
The equations describing addition of a vector
impulse AV are

v v 4 v'? Covv' cos (Y'- vy =0
(76)

-
n

o = - AV sm¢>T+v' sin(¥'-v=0 (17

—
L]

Symbols are consistent with previous notation
and are further defined in the sketch.

Errors in V' and \(' are to be determined as
functions of errors in V, v, e and 24V, From

Egs (76) and (77) the error relationships, to
the order of linear differentials, can be ex-
pressed as follows,

-avd@@v)y +viav' o+ VV'[sin ' -V
AdY' -dv]-lcos (¥ - )

Avav!' +V'dV]+VdV =0



and
- sin ¢T d (&V) - AV cos ¢Td¢T

+sin (Y - yydv' + V'[cos ' -y

o(dy' - dYﬂ=

Terms may be collected, and the resultmg ex-
pressions solved by ap}'::hcatlon of Cramer's
rule for the errors dV and dvy In this solu-
tion the Jacobian

3 (£, fy) V' -Veos(y' - v vV'sin(v'- v
’JTV'_') =2
Y sin (Y' - v) V'cos(¥' - y)

2v! Ev" cos (¥ - V) —'\ﬂ

is useful. The results are

1
AV ecos (Y - V) - 2 sin? (v' - v
av' = AV d (AV)
Vicos (YT - v -V

+cos (Y -v)dV - Vsin (Y - v d e,

'
sin (Y' - y) lkv' - Vcos(Y'-Y» /S%’ -AV—I

dy' = v EV' cos (YT - v} - V]

d (av)

. ]
-S‘_“QIL"_Y)dV+ [1% cos (v' - Y}]‘”’T

+d vy

In terms of (Y' - ¥) or, in terms of ¢T

cos ¢> d(av)
GT vr T (78)

+(TYC°S¢T v-,—) dv - V-v—smtb d¢>

dy —2- sin ¢T d(AvV) - —2 sin ¢>T dv

(79)
AV
+‘72-(AV +V cos ¢) d¢T +d\{

For the case of interest, tangential corrective
impulses applied at orbit extrema, the follow-
ing nominal values are involved in evaluation
of the sensitivities.

b = 0
v' = V+AV
Y- y = 0

Then Eqs (78) and (79) become

dv' =d(AavV) +dV (80)
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dy' =¥ de+dy (81)

(tangential impulses at extrema)

which agree with intuition for this simple case.

b. Errors prior to second impulse
Errors in the orbit conditions Tos Vz, Y2
prior to the second impulse will be developed
from a general analysis giving errors at ex-
trema in terms of errors in any injection con-
dition r, V, y. Specification of the conditions
(r, V, y) at any time completely determines
the planar properties of the orbit. From the
energy equation and the geometry of an ellipse,
simple expressions can be developed relating

r ,r ,v_andv_toaande:

a 1Y a P
r, =a (1 +e) (82)
rp =a (1l -e) (83)
- “ 1-e
Va a ( Te (84)
- (Yu fl+te
AR F ey (85)
Then
dra = (1 +e)da + ade (86)
drp = (1 -e)da -~ ade (87)
Va V
dva = Tda - —2— de (88)
(1+e)
V V
dvp = T da + (1—:72- de (89)

In turn, from the energy equation,
-1

a = |- - — ,
r M

and Kepler's second law, which can be re-
stated in the form

6D =)

the differentials of a and e are

22 2a%v
m

da=—2-d+ av

2,,2
21 1 (., r°V .
de T Y (2 m cos Ysin ydy +

{continued)



2
+£‘§_‘“ {erz dr + 2V r2 dv}>

_r2 V2 0052 Y 2 d 2V av
e T T

which, after simplification and substitution of

2
I‘=a(1-e)
T +ecos®

give

2 (1 +ecos 6)2

dr + 2a Di
u

da =
(1-¢e7)
(90)
1+2ecos6+e2
i av
1-e
+ 5]
de=(e cos 8) (1 +2ecose) dr
a(l-e”)
a(l-ez)
+ 2 (e + cos 0) av
u{l+2ecosB +e”)
sin © (91)

+-ef) PR ay

Substitution of Egs (90) and (91) in Eqs (86)

through (89) gives the required error relation-

ships:

d . l+e
(1-e2)2

(1 +ecos 6) (2+e-e2+ecose

+ cos 0) dr

+2ar<1+e>
l-e

1 +cos @ 4V

‘;1+2ecos6+e2

in ©
vat-eh) AR o ay (92)

dr -%—2(1+ecos8)(2-e—e2+ecose

(1 -e%)

- cos 6) dr

+2a Fdl-e) 1-cos® av

1-e ’1+2ecos€3+e2

salt e SRl e d (93)

E (1 +ecos®)
a 1

dVa=_(1 + e cos 9)

l1-e - e

V.
p (e +cos 8) dr+

+T—_2'
(1-¢)

(continued)

_fg VJ1+2ecos8+e2
M a l-e2
\I 2
+ov Yl-e

(e +cos 6) ]dv

p 2
(1+e) 41+2ecos9+e2
2 .
1-e sin @
-V dvy (94)
p(1+e)2 T+ecos®

_ (1 +ecos 9) [YE (1 +ecos 8)
a

dv
p 1-e

1-e

_E (e+cos9)]dr
fo-e)

. r[ J1+2ecos9+ez
l—e2
vl—e2 (e + cos B)
2V ZJdV

a (l-e)2 (1+2ecose+e

1+e sin 6
t*VaTTe T¥ecosd dv (95)

These equations relate errors in conditions at
orbit extrema to errors in injection conditions

(r, \' Y)-

For e2 <<'1 Egs (92) through (95) reduce to

dra" [2+cose+2e(3 +cos9)coszg—]dr

+2aﬁ|:1+cos9+2e(2-cosG)coszg-]dV
. ea .
+[a sin 6 - 5 sin 2 8] dy (96)
.. 28
dr s[Z-cose-Ze(S-cose)sm ]dr
P 2
+2a€[:1-cose—2e(2+cose)sin2§]dv
. ea .
+[:—asm9+_2. sm29] dy (97)
dav s-ll—‘f_(1+cose)(1+ecos6)dr
a a fa
-[(l-ecose)(1+2cose)+e]dv
-J%sine(l-ecose-e)dy (98)
_1 [od - 9
dvpfs EE(I cos 8) (1 +ecos 8)dr
-[(l-ecose)(l-Zcose)-e]dV

+J§—sin9(l+e—cose)dy (99)
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For e2 << 1 and impulses applied near apogee or

perigee (© = 0° or 180°), the case of interest for

the two-impulse correction previously described,
Eqgs (96) through (99) reduce still further to the

following results: perigee injection,e2 << 1t

a
dry~(3+8e)dr +4a E(1+e)dvp (100)

_2 ’u - (3 -
dVag 3 E(1+e) drp (3 2e)de (101)
R 2
apogee injection, e” << 1:
'a
drpw(S-Be)dra+4a H(l—e)dVa (102)

2
dav A L] - -
P~ "3 l}a (1 -e) dra (3+2e)d Va (103)

For e, % < 0,001 the errors are given to three

significant figures by the following very simple
formulas.

dr dr dv
2 L3 _1 4 4 1 (104)
r r Vv

0 0 0
T 1, M (105)
vy To Vo

The relation of errors in conditions before
the second impulse to errors just after the first
impulse must also consider errors in orbit
central angle, 6, and local flight path angle, vy.
Because the orbits of interest are nearly circu-
lar, a variational approach is necessary to
define errors in these angular quantities. There-
fore, a general analysis of errors inr, Vv, 8 and
y anywhere in a near-circular orbit as functions
of launch errors will be performed, and the
results for r and V will be compared to Eqs (104)
and (105).

Series expansions for the variables of interest
are available in Chapter III.

2
e
1 eCOSM-—Q—-(COSZM-l)

r
a

-3 cos M) -

e
- (3cos 3 M
2! 2

1+ecos9+—eI (3 - cos 2 9)

5rE] | <

3
+EB- (4cos®-cos36 -7 +“.

2

o = M+2esinM+5_Z_ sin 2 M
e3

. _ . +

+.r2-(13sm3M 3 sin M) .
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e? e’
v esin9—751n28+

=

sin 38 -

M = mean anomaly =E (t - tp) (106)
For e2 << 1, approximate relations can be written.
r ~ a(l -ecos M) (107)
Vv m{g—(l+ecos M) (108)
8 ~ M+2esinM (109)
y = esinM (110)

Deviations from the nominal circle r, and Vo
at launch are 6r1 =r;-rg, 6V1 = V1 - Vo’ 6V1

=y, and 66, = 81 - 90. From Eq (47)

= = “ - -
M MO +4M ’ n 3 (t tpo Atp)
r 1+ =
0 i r j
0
or
- 3 &a = (111)
aM = - 5 % M, —3Atp.
r
0
The errors at any later time 6Ty, 6V2, y and
682 will be determined by varying one in-

jection parameter at a time and assuming a linear
combination of the individual errors.
Case (1) [61-1 =0, <5Vl =0, éylﬁvo:l. If 2]

is the only launch parameter which is in error,
érl =0, 6V1 =0, vy ® 6Y1' and from Eq (133},

€ w ’ 5Y1‘ » where éy, is an error due to a velocity

component normal to the desired circular orbit
velocity at launch. For the circular orbit, M
and t_ are referenced to the perigee direction in

the incorrect orbit. Since the semimajor axis

a is a function of r and V but not y, 6a =0 for

this case. That is, if only the orientation of the
injection velocity is varied, there will be generated
a family of orbits in which the eccentricity varies,
but the semimajor axis remains constant. Then,
from Eqgs (107) through (111),

6r(1) ~ - erjcos My= - r,|by,|cos M,
;\;(61_) ~ |6y1 cos M0

681y ~ - r_‘;?) Ot +2 |5Y1 sin M,
5\,(1) =~ |5vq sin MO

From the 5r1 equation, ér = 0 when cos M0 =0,
Therefore, for Case (1), M0 = 90° (for Y1 positive)
or MO

magnitudes in these equations may be removed by

= 270° (for vy, negative). The absolute



defining a mean anomaly WO‘ referenced to the
launch point. Then 7’10 =M,
syps and g = MO + 90° for negative 5vq- Sub-

- 90° for positive

stitution in the previous equations gives, for
either positive or negative 5Y1e

or
(1) Ayl sin 7,70 (112)
r
0
6V(1) .
v, s - By sin g, (113)
66(1) ~2 By, {cos 7, - 1) (114)
8v(1) ~Lyq cos 7 (115)

In derivation of Eq (114) use is made of the fact
that 68(1) =0at m, = 0 since the correct and in-

correct orbits intersect at launch.

Case (2) [‘Wl =0, 5V1 =0, 6r1 # Ol. For

6Y1 = O. 5V1 = O’ 5r1 ;40,Eqs (90) and (91)
6T

To

give 82 (2)~ 2
r
0

Arl

e £y
(2) r,

Ar‘l

Then, from Eqgs (48) through (52)
6T (28
, 1 Jor4]

6
r(3) ~ 2 cos M
r, ry ry 0
6V 6T 8T
(2) rl I ll cos MO
0 0 To
8 ki I%
& (2) ~=- 3 rO MO - - 5tp
0
‘51”1]
+ 2 sin M
r 0
0
8Tyl M
6\/(2) s TO sin 0

But M0 = 0° for Arl positive, and M = 180° for
8Ty negative. Then, for 77]0 = 0° at launch,
5T 1

Sr
(2)
rO = TO_ (2 - cos 7710)

(116)
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~ —— (cos M, - 1) (117)
V() ry 0
il i 11
69(2) ~ ) (2 sin 7710 -3 77?10) (118)
8y
sv(g) ™ ———ro sin M, (119)

Case (3) [6r1 = 0, 6y = 0, 6V # 0]. For
the remaining case, where <Sr1 =0, 5Y, = 0 and

1
6Vl # 0, Eqs (90) and (91) give

\'
03(3) ~ 2%
I‘O 0
|sv

8(3) s 2—V——1—|.

o

A procedure similar to that used in C.ases (1) and
(2) gives

Sr sV
(3) 1
- s 2 v (1 - cos 7710) (120)
0 0
MO (2 cos . - 1) (121)
v, v ‘0
8Vq 8V
69(3) ~ -3 7?(0 v + 4 ~— sin 77(0 (122)
0 Q
&Vy
5Y(3) ~ 2 —va sin 7710. (123)

The total error solutions are obtained by adding
Eqgs (112), (116) and (120); Egs (113), (117) and
(121); etc.

T sinm +(2 -cos M )—'Srl
T 0 vy o' T
0 0
6V1 1
+2 (1 - cos ) v, (124)
61‘
sV e _ 1
¥, = T SIn Mg evy tleosTng - D
Nk 125
+ (2 cos 7720 -1) TO ( )
50 o~ 691 +2(cos 7y - 1) gy
) 8Ty
+(2 Sln7710—37n0)—r7~[)—
i 5V 126
+(451nm0'3m0)T0 (126)
. 8T
5y =~ cos ')YLO syq T sin;, —ro
6V1
+ 2 s'm?no v (127)
0

for e << 1



For the problem of relating errors at one orbit
extremum to those at the previous extremum,
g T 180° in Eqs (124) through (127).

or or
2 1 1
~ 33— + 4 (128)
Ty To Vo
M S -
0 Ty 0
6r1 6V1
50, = 68, - 46\{1—311?-31:176 (130)
ayz ~ - 6v1 (131)

92<< 1, points 1 and 2 extrema

Eqgs (128) and (129) agree exactly with Eqgs (104)
and (105), in which the errors were derived as
differentials.

¢. Errors in final orbit elements

Errors in the final orbit elements éa' and e'
may be determined as functions of errors in the
orbit conditions just after the second impulse,

Tos V2, \(zbylettmgr 'r0+6r V=V_+ 6V

0
and cos2Y =1-vy +. in

( 2) 2y coszv>

(neglecting terms of third and higher orders) and
in
1

1=
o
r M

(neglecting terms of second and higher orders).
The results are

To
La~26r+2v— 5V (132)

e ~<_+_.[> +v2 (133)

d. Combination of the errors

The errors in the final orbit parameters can
now be written completely in terms of errors in
tracking and prediction of the original orbit and
errors in the corrective thrusts by adding the
individual errors derived previously. Let the
errors in tracking and prediction of the original
orbit at the time of the first corrective impulse
be érl, 6V1, and 6\{1, and let the errors in the

first corrective impulse magnitude and orienta-
tion be 6(AV1) and 6¢1. Then, from Egs (80) and

(81), the errors just after the corrective maneu-
vers are

]
61"1 ~ 61‘1

6V, 6(AV1) + 8V

1 1
'
691 ~ 68
/_\Vl
' .
6Y! = —vg 6¢T1 + 6‘{1

These errors are transformed to errors at the
next orbit extremum, where the second correc-
tive impulse is to be applied by Eqs (104), (105)
and (128) through (131).

]
23 1 4y V1 ~3f2+4 AEVy)
T 0 Vo 0 7o
3%
Lo
0
1 1
6V2~-2 ér -swl ~_26r1-3 é(AVI)
Vo To Vo To Vo
+6V1
Vo
or.! 6V1'
r _ | . -
60, ~ 80" - 48" - 3m ™ 3"170—

AVI érl
»~ 691-4 v6~6¢T1+6y1) - 3n W

6(AV1) 6V1]

fy v
av,
- 1 - -
6y m = Oy = v, ‘5“’T1 5Yy

Equations (80) and (81) are then applied to these
equations to include the errors in the second im-
pulse magnitude and orientation, 6(AV ) and 6¢T

]
6r2 i 6r2 s 61“l .\ 4(6(/_\V) 6V1\)
To Yo 0 Vo Vo
sv,)! 6(AV2) Y AV 6r1
vV "~ _V-_ * VE“ ‘"V__2 -2 5

0 0 0 o

(6(Av1) 6V Y
-3

561 =60, 860, - 4 i]_lw + &y

2 2 1 Vo T1 1

or AV ) 6V
- 37 ——l+
_V'_ V_



5y'gﬁa¢ +6ygﬁ s
2 VO T2 2 VO T2
iY_l 6 ¢ - &y
VO T1 1

Finally, these errors are transformed to the
errors in final orbit elements by Egs (132) and
(133).

gl o, ! + Vi + Mivl) + 6($V2) (134)
To To Vo 0 0
6r 5V sav)  sav,)| 2
er?al-—1.2 1. V1+2V 2
Ty Vo 0 0
av, av, 2
+] == b, - bo,, - by
v, 'ty Vv, Ty 1
(135)

Equation (134) is plotted in Fig. 17. For the
assumption that 6(AV1) = 6(AV2).

E. GENERAL TWO-TMPULSE MANEUVERS
For the case where it is desired to transfer

between orbits and where the maximum change
in the azimuth is not large, it is possible to ac-

complish the transfer efficiently with two impulses.

This may be visualized from the following sketch.

Desired trajectory

Point of transfer ABZ

Point of

initiation Earth

Ty

Initial
Line intersection trajectory

of two planes n

- —
The plane of the transfer is thus defined by r - ry
b'e ;2 = 0 where r is a general radius vector for
points on the transfer trajectory. However, this
expression will not serve the purposes we desire.
Thus, consider the unit vector fi along the inter-
section of the planes.

r, - A
1 = ¢ a
cos a, = = *n
1 r 1
1
Ccos o =/1"‘ {’\1
2 2
cos ag =T, 5

sin o
2

sin AB, = sin A8% o
! 3

where A8* is a known angle for the two orbits as
a function of the latitude at which the planes inter-
sect.

Now at this point, the plane of motion is de-
fined. The initial and final radii and the angle
between are known; however, the transfer has
not been uniquely defined because many elliptical
trajectories could be constructed to satisfy these
conditions. To completely define the problem,
one additional parameter must thus be selected.
This parameter could be a geometrical element
such as a, p, or e, a time variant parameter at

ry or r2 at the time of transfer. Since the latter

piece of data is more general than the others, it
is assumed to apply for this purpose.

Thus the problem evolves into the solution of
a set of simultaneous equations for the planar
elements of the orbit.

At =t . -t
arrival injection

IJ - - . " _ .
’;3 E2 El e(smE2 smEl

Q«3=82—81

_q}att- e2) -r,
=cos —_—

er,
ale-ed -r
- cos T,
where
a-r
_ 2
cosEz— a
_2-r1
cos E, = —
1 ea

This solution is transcendental and thus requires
the simultaneous iteration of 4 equations unless
Lambertts theorem (discussed in Chapter III) is

utilized in place of Keplerts equation, (If Lambertts

theorem is utilized, the semimajor axis is eval-
uated by an iteration which does not involve ec-

centricity, and the equation for @q can then be

utilized to define eccentricity.) Two iterative
processes are valid for this solution and are suf-
ficiently simple that their use is justified in auto-
matic computation. The first such process is the
Newton-Raphson iteration. This procedure is ap-
plicable for functions

¥y =f1 (El, E2, a, e) =f1 (xi) =0
i=1,2,3,4

Yo =f2 (El’ E2, a, e) = f2 (xi) =0

Y3 = f3 (El' Ez, a, e} = f3 (xi) =0

Y4 =f4 (El’ E2, a, e) =f4 (xi) =0
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Now assume

x1=x1’0+h
x2=x2‘0+k
= +
Xg TXg g7 M
= +
Xg TX4 o7 0
Thus
+
f 5y g *he Xg g * ko X3 o T
x4'0+n)=0

etc.

Expanding these f.1 in Taylor series and neglecting

higher order terms inh, k, m and n now yields

+h, **x +n) =

fxy, 0 4,0

fy (x1, 0» X2, 0* *3, 0* "4, 0

afl) af1>
+h ﬁ; + k éx—z
% T%,0 % 5% 0
ot of
1 1
+m (?a—)q) +n ﬁz
X TX,0 i ~%,0

and similarly for f2' f3 and f4‘ Now treating the

coefficients h, k, m and n as the unknowns, the
solution is

£y 8f1/8x2 df1/6x3 af1/8x4

£ . .

f3

fy 6f4/8x2 8f418x3 8f4/8x4
h =

afllax1 . . afl/8x4

af4/ax1 . . 8f4/ax4

and k, m and n are determined in a similar man-
ner (i.e., by replacing in turn the second, third
and fourth columns of the determinant by the
column fl' f2, f3' f4 and dividing the resultant

determinant by the same denominator as pre-
sented above). Once the process is completed’
numerically, it is repeated until the values of the
increments h, k, m and n are smaller than some
value which must be specified.

This solution has been tested and proven to
converge; however, it must be noted that the
functions which are being iterated are of a very
complex nature and have many relative minima
and maxima. Thus, unless the first guesses for
a and e are reasonably valid, the method will not
converge to the proper root. First estimates
may be obtained from series expansions or ap-
proximate forms discussed in Chapter I11.

The second iterative solution which has been
checked is a purely numerical evaluation and
proceeds as follows. First, the variable E is
eliminated by direct substitution into the equations
for At and £9. Then functions fl‘ f2 and f3 are

defined as follows

f1° (Atgiven - Atcomputed) 2mfr
f2 N Aegiven B ABcomputed
f3 =10 * %

As before, a value for each of the variables a and
e is guessed, but this time one value (say a) is
incremented positively and negatively and the
function f3 evaluated for each set of variables

(a + 2a, e); (a, e); and (a - 2a, e). The value
of a which results in the smallest value of f3 is

then selected and the process is repeated after
incrementing e. A fairly coarse grid (i.e., large
L£a and Ae) can be utilized 1nitially, and this grid
is halved each time the previous root is selected
as the minimizing value. Once the grid is suf-
ficiently small or once the value of f3 (which is

the total error of the solution) is less than a
specified number the solution can be halted. In
all cases f3 should be checked because unless it

is nearly zero, the set of variables selected cor-
responds to a local minimum, not the true root.
In such cases, both a and e can be incremented
varying amounts to see if there is any set of roots
in the vicinity yielding a smaller f3. If so, the

procedure continues. This solution is illustrated
below for the case in which point A represents
the first repeated root

-4 T T T T T 1
393,13 2 2y ¥ Py
This solution was found ideally suited to auto-

matic computation, since no functions other than
those required in the definition of the problem



need be programmed and since the logic involved
is very simple. In addition, it is possible to as-
certain whether convergence to the proper roots
has been obtained by checking the value of f3.

This method also proved to require less accurate
initial estimates of a and e and was never subject
to the problem of division by zero as is possible
in the definition of h, k, m and n of the Newton-
Raphson method.

Once the elements a and e are known to the
desired accuracy, the development of the maneu-
vers can continue. The term 483, was defined
previously, therefore, consider the azimuths in
the two orbits at the point of the second maneuver

cos i
sin B8, = _ 1
1 cos L
cos i
. 2
sin B2 " cos
cos i
sin Bl Sos T 0, sin BZ
but
A = -
82 32 Bl
Thus
cos i
= A + sin &
cos 1, cos 62 sin 82 cot BJ
or
cos i
= A in &
o8 1, cos 32 + sin 82 cot Bl

A82 can be evaluated directly from this equation,
however, unless AB2 is small a simple solution

would be to evaluate both Bl and 82 then subtract.
For the case where ABZ is small (as is in general

true)
cos 1
AB. m ( > [(cos L l‘J
2 cos 1y cos 1

But the velocity vector must be rotated through
another angle (2Y) in order to change the direction
of the velocity in the plane to attain the correct
ellipse. This angle is obtained from

- 172

2 2
Ay =cos_1 a (1 -e”)
1 rﬂ?a-rli

(continued)

-1 fa(1 - &%

- COs
I‘2 a P2

where: the absence of a subscript denotes the
transfer orbit
subscript 0 denotes the initial orbit
subscript f denotes the final orbit

Now the total turn angle for the velocity vector is
obtained from the following sketch to be

AB

T cos_1 (cos AY, cos AB.)
1 1 1
-1
= A A
by = COS (cos Yy COS 62)

and the changes in the required velocities are:
2 2 2

AV1 =Vy +V," -2V, V, cos g,
I R !
r; a; a
- 3-_1> i-l).cosévlcos AB
T r; g 1

and

AV2=u[i—l—_1

K ’> ( > cos AY, cos AB]

No provision has been made at any point in this
analysis for nonzero burning times. Actually,
however, these equations have been utilized in a
digital program to simulate powered maneuvers.
The process was as tollows.

(1) The impulsive analysis was made.
(2) A finite burning simulation was attempted.

(3) The error in the position and velocity at
burnout was determined from the com-
puted position and velocity and the values
were predicted for the transfer orbit the
same number of seconds after the im-
pulse.

(4) The magnitude of the errors was utilized
to adjust the time for initiating the thrust
and the thrust program.

(5) The process was repeated until the de-
sired transfer orbit was obtained to a
specified accuracy. The allowable
errors for the initial computations were
(&x, Ay, AZ)BO < 1000 ft (or 300 m) and

(A%, AY, AQ)BO < 0.1 fps (or 0.03 mps).
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The validity of the impulsive analysis was in this
manner proven for moderate to large accelerations.
The low acceleration runs, however, required
more computations in order to converge to a proper

- thrust program. This fact should be expected,
since the accuracy of the impulsive analysis de-
teriorates as the time of thrusting increases. The
results of these runs indicated generally good
agreement for the computation of the actual pro-
pellant mass required but indicated that the ma-
neuver should be anticipated in order to find the
proper thrust program in a limited number of
trials. The physical significance of this statement
is seen directly from the following sketch.

Original track

Desired
track

Thrusting trajectory

F. PROPULSION REQUIREMENTS FOR
CANCELLING THE EFFECTS OF
DRAG AND OBLATENESS

For most earth satellites only two relatively
large perturbing accelerations act on the vehicle,
the first due to earth's oblateness and the
second due to atmospheric drag. Generally these
effects are sufficiently large that it is necessary
to accept them; however, for some orbits and for
some specific satellite applicatioris it may be
desirable to cancel them. This gection treats
these two problems.

1. Counteracting the Effects of the Earth's
Oblateness (Ref. 2)

The potential function of the earth in Jeffrey's
notation is:

3
- .4 | R _JR _ .2
U(r, L) b F+-3—-3,(1 3 sin” L)
r
+ O(Jzﬂ

where

J=3/2 J2

2

and where terms of the order J~ have been

neglected
while for a spherical earth it is

U =-%&

s r

The gravitational force acting on the satellite
is given by the negative gradient of the potential

function. In polar coordinates
_a 00U 2 10U A 1 ouU
grad U=t 5o *L 237 *¢ voos 1. 39
therefore
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Fob =-grad U (r, L) = f -—2“—2 [1
Rp
+3(1-3 sinzLj (136)
p
L
u .
+ R . J sin 2L
R p
and
= - = . K
FS = - grad Us r ?——Z—
p
where
_r
P R (137)

The corrective force which must be exerted
on the satellite to remain in an unperturbed orbit
is the difference between these two forces repre-
sented by Eqgs (136) and (137).

-

req =-m (Fob B Fs)
Fr‘eq = m (grad U - grad Us)

so that the general force equation giving the cor -
rective force per unit mass is

= - n _ .2
req 9——2—4- J({ -3sin“ L
R p
-/I\J—z%— J sin 2L,
R p

(138)

Consider the following sketch which shows the pro-
jection of the actual orbit on a sphere of radius
equal to that value of r occurring at the highest
latitude of the orbit. The X-axis in this case is
90° out of phase with the ascending node.

By inspection, the relation between the latitude
L and the angle from perigee 9 is

sin I, = sinicos 7 (139)
where

T = 0 -0

a = 90 - 0w

From the standard form of the conic for the
orbit of a satellite about a spherical earth,

r =

p
T+ecos ® (140)
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Substituting these expressions into the force
equation per unit mass (Eq (138)) yields

2
?'T (1 +e cos 6)4 [J (1

- 3sin®i cos? ® - a)]

A 2
LZS“R_ (1+e 0039)4 sinicos (8

- a) {1 - sin 1cos2 (6 - a)
(141)

Now to relate the force to time rather than true
anomaly, replace © by E, using the geometric re-
lationship

cos 6 = TCEE_E;% (142)
-~ ecos b
and
_ H

cos (0 - = T—o5E (143)
where

H = (cos E -e)cos a+ l-e2 sin E sin o

(144)

Substitution of Eqs (142) and (143) into Eq (68)
to get the corrective thrust requirements in terms
of obital elements gives

F = m ({«‘ F + T FL) (145)

req

where

F=JuR (1—9, > [
T -€ecos |,

- 3 H sm2 i ]
2
(1 -ecos E)”

and
4

l-e2 \ 1
1-ecos E/
1

z

J2uR2 H sin i

Fy, =3
p

(1 -ecos I)

H2 sin2 i ]
N
(1 -ecos F)
Now the mass of the satellite must be considered
a function of time. If the mass rate is small rela-
tive to the mass of the satellite, this time varia-

tion can be written as

m = m <1——+O(m/m)>
o]
Mo
or as a function of the eccentric anomaly

m=m—dm dEt
o dE dt

- dm <Q (146)

But for a spherical earth,

t= 5= (E -esinE) (147)
so that
dt = -2— (1 - ecos E) (147a)

and hence m (and therefore W in units of weight)
can be expressed as a function only of the eccen-
tric anomaly:

- _ E-esinE dW
w =W, I-ecos E dE ° (148)

Substituting Eq (148) into the force equation
(145) gives
_ 1 . E-esinE dW
Freq ~ 2 [WO T-ecos E asz][ Fr
A
+ L FLJ (149)

Now expressing the thrust as a function of the
specific impulse

F =1 W
req sp

or as a function of eccentric anomaly and weight



Freq: spa ()

(150)
Therefore
dw  _ T
Isp I - T g [WO (1 - ecos E)
-(E - e sin E) d‘g] v
O
thus,
W(l—ecosE) F2+F2
aw  _ r L
dE 2r 1
——S£—0+(E-esinE) F2+F2
r L
(151a)

Integration of Eq (151a) over limits of one
revolution (0 to 2 7) gives the amount of propellant
used in that orbital pass

(152)

Also, by a slight rearrangement of terms, using
Eqs (147a) and (151), the integral equation for the
corrective thrust is

|Freal

E 2 2
Wog Fr +FL

(153)

Both of these equations are difficult if not impos-
sible to integrate analytically. However, a sim-
plification will result if the mass of the vehicle
is assumed constant for a complete revolution.
The magnitude of the error of this assumption is
small as will be apparent in subsequent discus-
sions.

Each component of the force can be related to
the propellant flow by Eq (151)

dwr W
Ispd_E ?"—g—o (1 -ecos E) Fr

(154)

I dWL Wr
sp dE 2mgg

It

(1 - e cos E) FL (154a)
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The actual propellant flow rate is

dW Wr

lepdE = T g o (1-ecos E) F (155)
or upon substituting for Freq in terms of its com-
ponents

dW _ Wr _ - L2
IspH‘E__Eﬂ—gO—(l e cos E) Pr +FL2
(155a)
so that
2 2
95 - J(_ardwr) + ( L (156)
- -

and hence, the weight of propellant consumption
per revolution is

2 2n
W7 uR“J  ( 1
Wp = 1 5
2mg a1 0 (1 - ecos E)

sp
1/2
. [5}{4 sin4 i- 2H2 (1 e¢cos 1‘1)2 sin2 i+(l-ecos F)‘ﬂ dE

(157)

Probably the most common case for which
the oblateness correction will be made will be
for satellites in circular orbits. It would there-
fore be of interest at this time to determine the
thrust and propellant equations for circular or-
bits.

The simplifying conditions for circular orbits
are: (1) eccentricity is by definition zero, (2)
perigee is undefined and may be selected to make
the angle a zero, and (3) the eccentric anomaly

FE and the true anomaly 0 are coincident. Then
uR2 2
F =?_ J (1 - 3sin” L) (158)
R? 2
Fp o= - _‘{E_ J sin” L (158a)
= 4 2 4 2
Freq =m F U4 (158h)
2 2r
Wp =__7r_w""“R J S "5 cos? B sint i
Zm gop? Isp 0

1/2
-2coszEsin2i+E| dE
(159)

Also, for circular orbits, the true anomaly
is related to the time since perigee passage by



Thus, the corrective thrust Freq can be rewritten

from FKgs (158) and (159) as

2
. _HR°J _ 3 sin 2
Fr—_?_ (1 - 3 sin” cos” 6) (160)
2

FL = _2%“] sin i cos © Jl - sin i cos?©
(160a)

N

Pr‘eq = M [r +[<L (160b)

The variation of the absolute values of these
functions as functions of the true anomaly 8, and
orbit inclination i are illustrated in Figs. 18 and
19. The parameter for these figures is a non -
dimensional acceleration x defined as follows:

- —— |ry
LT 'Pe

4
a

uR™ J

X
req

F
req

Estimated average values derived from these
curves are illustrated in Fig. 20 as a function of

the orbit inclination i. The curve for Xreq
represents the averages derived from the

curves in Fig. 19, not from ¥, and X, , since

1.’

Evaluation of the propellant requirement is
now a simple matter, since

Wp T
ISp S‘ de = S Freq dt
0 0
hence,
Wy s IL_ Fr'e
p sp q

or

2
W = WruR“J ;{req
gOIspa

where x is as illustrated in Fig. 20.
req

Example 1. Consider a 10, 000-1b (44, 500
newton) satellite on a 300-naut mi or 556 -km
equatorial circular orbit. The parameters for
this case would be as follows:

m = 311 slugs = 4530 kg

ISp = 500 sec (assumed)

R = 20.9264 x 10° 1t = 6378. 2 km

a = 22.72 x 10% 1t = 6930 km

uo= 1.407645 x 1016 13 /gec? =
398601.5 km® /sec?

1L = 0 deg

T = 5740 sec

J = 1.637x 103

For this case

x = 1
req

F

req 11.8 1b (average value)

and
Wp = 136 lb/orbit = 605 newtons/orbit
Example 2. Consider the same 10,000-1b
(44,500 newton) vehicle on a 300-naut mi
(556-km) polar circular orbit. The param-
eters are the same as before, except that now,
i = 90°

For this case

x = 1,31
req
Hence,
F = 15.5 1b (average value) = 69 newton
req
Wp = 178 lb/orbit = 794 newtons/orbit

Example 3. Consider the same 10, 000-1b
(44, 500 newton) vehicle on a 300-naut mi (556 -
km) circular orbit inclined 28° to the equator
(east-launching from the AMR). The param-
eters are the same as in Example 1, except
that now,

i=28°
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= 52,5 newton



For this case

Xreq = 0.935
Hence,
Freq = 11.05 1b (average value) = 49. 2 newtons

w

P 127 1b/orbit = 566 newtons/orbit

Example 4. Consider the same 10, 000-1b
(44,500 newton) vehicleon a ™ 24-hr" circular
equatorial orbit. The parameters are the same
as in Example 1, except that now,

8

l.ax108 ¢t =0.42x10%m

W
n

T = 86,164 sec

For this case
?:req =1

Hence,
Freq = 0.00815 lb (average value) =0.0363 newton
w = 1.4 lb/orbit = 6,24 newtons/orbit

p

Conclusions. Some general observations may
be made from Figs. 18, 19 and 20.

(1) In an equatorial orbit, the corrective force
required to maintain an unperturbed orbit
is constant and directed away from the
earth (Fig. 18). As the inclination of the
orbit is increased to about 30° the radial
component of the force decreases some-
what, indicating the diminishing effect of
the equatorial bulge as the vehicle gets
farther away from it. Beyond an inclina-
tion of 30°, the vehicle begins to feel the
full effect of the oblate shape of the earth
and results in the high values of Freq

(Fig. 19) for low values of 8.

(2) The correction required on a polar orbit
is greater than that required on an equa-
torial orbit. As an illustrative example,
consider a satellite on a polar orbit. Be-
ginning with its position at 8 =0 (over
the earth's North Pole), the field is sym-
metric, and only a negative component of
radial force exists (i.e., thrust directed
toward center of earth). As the vehicle's
latitude decreases (increasing 9) the force
decreases and rotates away from the center
of the earth until at & = 55°, it is tangent
to the orbit, and directed away from the
equator, Finally, as the vehicle passes
over the equator on its way toward the
South Pole, the only force is the radial
component acting away from the earth.

(3) Another result is that an orbit inclination
of about 30° requires the least amount of
energy expenditure to maintain the orbit
(Fig. 20).
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2. Propulsion Requirements for Counteracting
Drag

Corrective propulsion needed for drag can-
cellation may be applied either by a continuous
thrust device or in discrete impulses. In the
first case, either thrust must be varied in such
a manner that the drag is balanced at every
instant or the time integral of the thrust dotted
into the velocity around the orbit must be equal
to the work done by the drag force. This drag
force is

y C.A - o N

D _ _1 D .

m. T m P(V+VaT) (v

+V ) v aT
aT’ | = + =
V+Vomp

where

VaT = the velocity of the atmosphere

v = the velocity due to elliptic motion

4} = mass density as function of position
Thus

r._pn

m m

Assuming that the orbit is specified (both planar

and orientation elements) and that a model of
atmospheric density is available which includes

as many of the effects due to solar radiation, atmos-
pheric oblateness, etc., as desirable, and that

the product CDA can be defined with some accu-

racy, the time history of thrust can be computed.
This procedure would best be handled numerically
though the possibility exists that series expansions
in the various terms might also prove useful.

The major drawbacks, however, that the method
is cumbersome and requires a variable thrust,
are sufficient to eliminate this method from con-
sideration in a parametric study of this nature.

The time integral approach to drag cancella-
tion may be stated as

Wihrust =~ Wdrag

S F. (V+VaT)dt= S D . (V+V_,)dt

0

. N N
S 5 CDA p dt

0 ‘V+VaT

where 7 is the orbital period



But if
poep vt Var)
vV + vaT
where
F = scalar constant

The left-hand side of the previous integral re-
duces to:

. o~ - .
FS (V + VaT) . (V+VaT) g
o lv+ vaT{

which is by definition

F -S‘(] ‘V+VaT' dt

Similarly the right-hand side of the equation is
T

- = 3
1
’Z_g CpA, |v+vaT

This solution, like the first, is such that a
numerical solution is quite attractive for the
general case. For special cases when the term

VaT can be neglected or considered to be colinear

dt

with V (that is for very high satellites or nearly
circular equatorial orbits). The general order of
complexity can be reduced and analytic solutions
become attractive. Material pertinent to these
cases is covered in Chapter V. Because of the
restrictive nature of this material it is not pre-
sented here. Rather, it is noted that the pro-
cedure is simply the matching of the work done

by thrust and by drag. The matching procedure

is at times very tedious but may nonetheless be
accomplished. An approximation to this impulse
could be obtained by integrating the drag force
over a revolution and observing the change in the
orbital elements; then via the methods described in
previous sections the impulse required to correct
elements could be computed and the average thrust
obtained by dividing by the orbital period.

The final approach to this maintenance
maneuver is one in which the orbit is allowed to
decay until one of the elements has changed an
amount equal to or greater than a prescribed
tolerance for that element. At this time a two-
impulse maneuver is initiated which transfers the
vehicle back to the original orbit. Since atmos-
pheric velocity is small compared to the vehicle
velocity, the perturbing forces occur approximately
in the plane of motion and thus the transfer will
be approximately coplanar. Chapter V again pre-
sents all of the data pertinent to the decay of
satellites and the first section of this chapter ties
these changes into the propulsion requirements.
Thus, the procedure to be followed for an analysis
of this nature is:

(1) The specification of the geometrical
elements.

(2) The establishment of tolerances for the
elements.

{3) The evaluation of the rates of change
of the elements.

(4) The assessment of the times at which
corrective action is required, the same
maneuver being required each time.

(5) The calculation of the maneuver re-
quirements.

Since each of these discussions is presented
in detail in the respective sections of pertinent
chapters repetition of this material for the general
solution is superfluous. However, becaus®
circular orbits pose a unique problem the solution
of which can be obtained, the following paragraphs
are presented for this restricted problem. The
discussions follow those of Ref. (3).

The total required velocity, AV, is the sum
of the separate velocity additions AV1 and sz,

where AV, refers to the velocity addition necessary
to obtain @& Hohmann transfer back to the desired
altitude, and where AV2 is the velocity addition

necessary to circularize the orbit having once
reached the desired altitude. The total required
velocity for a single two-impulse correction
maneuver is just AV, The following sketch de-
scribes the geometry of these maneuvers.

2nd velocity addition

Hohmann
transfer
orbit

1st velocity addition

The separate velocity additions, AV1 and
AVZ’ may be determined from the energy equation
to be
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(162)

The velocity addition available from a given
engine is related to the propellant mass fraction,
Wp/WO’ by the familiar rocket equation

1
AV, =1 _galn W TWo (163)
i sp-0 pi’ Voi
or
W, - AV /1 g
pi - ¢ . i’ "sp®0 1
Wo—i_ 1-e (164)

where AVi is the ith total velocity addition and
Wpi is the amount of propellant required for that
particular velocity addition.

Since all the AV requirements are the same for
each maneuver, it follows that

Wo1 Wp2 W3
0 0~ "pt Wo - Wpl - Wp2
AV g
= 1-e sp°0 (165)

where the subscripts 1, 2, 3, etc., denote successive

corrective maneuvers. The total amount of pro-
pellant used after n maneuvers is then,

W= Z W . (166
P &y P )
where,
-AVII g
w. =w. (1-e sp 0> (167)
pl 0
NI g)
_ sp®0
sz = (WO-Wpl) (1—e
(168)
W, o= ;(Wo Wy Wop —WPH_D

. [1 - exp (AV/I EO)]‘ (169)

The total time elapsed after n maneuvers is
the summation of the increments of time between
successive maneuvers, where it is recalled that
the amount Ah has been lost in altitude from one
maneuver to the next. This time may be found as
follows:

dE = -__&n_.z. dh (170)

VI-32

(where Eq is the total energy of a satellite of mass

m in a circular orbit at an altitude h.)

From the drag force D acting on the satellite.

- 1.3
dEp =DV dt = 5 p V' CpA dt

T (171)

(if the atmospheric velocity is neglected).

Now combining Equations {170) and (171) with the
expression for circular velocity, and approximating
the atmospheric density, to make integration
possible, by

p=poe PP (172)
0
yields

h. - 4h

(w/cpa) o © AT
g ePhgh = - S dt
h0 0

gopo ]UR

(L <<R) (173)

which after integrating and rearranging is the
time interval between maneuvers

) (W/CLA) Bhy

AT = —— ——— e (l-e—BAh)
Begrg {uR
k|
+er2(R "uh) - an) (174)

where the corrective term is 1/ 2 of the period
of the transfer orbit.

An appreciation of the validity of the density
approximation may be seen in Chapter V. It is
noted, however, that generally good agreement
between the true density and that predicted can
be obtained for an altitude range from 185 km to
370 km and from 370 km to 750 km using

py = 1.60x 1070 slugs/ft3 or 0,824 x 107"
kg/m3
g =721x108 0 or237x10%m™!
and
b = 1.92x 10712 glugs/$t3 or . 988 x 107°
kg/m3
g =358x10 8 lor11.1ax10 8 m!
respectively.

Now, denoting successive maneuvers by the sub-
scripts 1, 2, 3, n, it follows that

aT, ={w0 - Wt Wog t et W)

{continued)



fh
e 01 - e PO +TT)/[2(R+h) - an)?
BCDAgOpO uR H (175)

Thus the total time elapsed after n maneuvers is

n
Ty = E ATy (176)
&1

Now if the corrective term for transfer time is

neglected as being small compared to the total time,

and the equation for Tq divided by the total amount

of propellant used after n maneuvers, the series
common to both equations (involving the weights)
may be eliminated to arrive at the desired ex-
pression

gh _
T/ 0 _ ‘V;E e 0 (1 -e BAh)
s' TR AT
b 0 BeyPy YuR (1 -e SP 9

(177)

This relationship between the propellant mass
fraction required to sustain a satellite a specified
lifetime is explicitly independent of the number of
impulse corrections, and like the continuous thrust
method, shows a linear dependence of the pro-
pellant mass fraction, Wp/WO, upon the sustained

lifetime, Ts’ for a given set of initial conditions.

Figures 21 through 24 show the linear relation-
ship as predicted by Eq (177) as a function of the
ballistic coefficient for various Ah/ho, and

initial altitudes for a specific impulse of 300 sec.
One of the values on these curves is for the

case where Ah = 0. This curve was obtained as
follows.

.o 1 2 _
B o= g CpApvVe =WI
1CDAp V2
W= T
ptT T
T oW 1 2W 1 (R +h)
s - P _sp ._ P _sp
ATASIYS W, pV2 Vo P

Although it will not be shown here, this is the
same limit that would be obtained if &Ah and the
various maneuver increments (AVi) were allowed

to approach zero simult aneously in Eq 177 with
the corrective term for time being neglected,

(the corrective term must be neglected because
the vehicle is never coasting back to the initial
orbit; i.e., there is no Hohmann transfer).

These figures show that the longest sustained life-
time per unit weight of propellant is obtained from
the continuous thrust sustaining method. In the
case of satellites utilizing the discrete velocity=
addition sustaining method, longer lifetimes are
realized (for a given propellant mass fraction)

as the increment is decreased in altitude, A4h,
the point below the desired altitude at which the
first and successive corrective maneuvers are
initiated.
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Another interesting fact which may be ob-
served by comparing the sustained and un-
sustained lifetimes is that the advantages of a
sustained satellite over an unsustained satellite
are greatest at the lower altitudes, where they
are needed most,

G. DIFFERENTIAL CORRECTIONS
IN ORBIT TRANSVER

The fundamental goal of space vehicle guid-
ance is placing the vehicle at a certain point in
space at a certain time, perhaps with a partic-
ular velocity. An approximate method of com-
puting guidance commands to accomplish this
objective is by differential corrections based
on the ideal transfer profile. The sensed data,
in the form of deviations from the ideal transfer
orbit, are transformed into the desired vehicle
velocity component corrections by a matrix of
precomputed error sensitivities stored in the
vehicle-borne computer.

The primary advantage of the differential
correction technique is a simplification of guid-
ance system input calculations performed aboard
the vehicle. These calculations involve only
matrix multiplication, which can be mechanized
in a simple, lightweight vehicle-borne computer.

The technique is {feasible wherever deviations
from the desired transfer orbit and perturbations
to Keplerian motion are reasonably small. Orbit
deviations must be small to admit the use of a
linear differential approximation. Also, if the
deviations are small, the effect of small pertur-
bations on both nominal and incorrect orbits is
essentially the same, i.e., the deviation is inde-
pendent of small perturbations. The orbit cor-
rection, being dependent only on the deviation,
is thus independent of small perturbations.

The problem may be formulated in several
ways (Refs. 4 and 5), depending on choice of co-
ordinates and orbital elements. The formulation
considered is that of Lawden (Ref. 4), the solu-
tion being obtained by a somewhat different
mathematical approach. Let the center of co-
ordinates be located at the center of the force
field, the X-axis be the line of intersection of
the ideal vehicle transfer orbit and the orbit
plane of the target point, the Z-axis be normal
to the target point orbit plane, and the Y-axis
complete a right-hand system, as shown in the
sketch.

Z

Incorrect
vehicle
orbit
/

/ Vehicle at
/ correction
// Y1 5 .
- 3 v

oy Y2
Perigee Target
/ point



The following nomenclature will be used

1

Yo

Semimajor axis of the preselected transfer
orbit

Eccentricity of the preselected transfer
orbit

" Curly pi" or sum of the longitude of as-
cending node and argument of perigee of
the transfer orbit

Eccentric anomaly of the vehicle position
at the time of correction

Eccentric anomaly of the vehicle position
in the transfer orbit at the time of ren-
dezvous with the target point

Inclination of the preselected transfer
orbit to the target point orbit plane

Sum of x, and the true anomaly of the
vehicle at the time of correction

180° + longitude of the ascending node of
the transfer orbit

Radius at the rendezvous point

Eccentric anomaly of the target point in
its orbit at the time of rendezvous

Radius to the vehicle at the time of cor-
rection

Angle in the XY-plane from the X-axis to
the projection on the XY-plane of the ve-
hicle radius at the time of correction
Angle measured in a plane normal to the
XY-plane from the XY~plane to the vehicle
at the time of correction

Time between correction and rendezvous

Radial velocity component of the vehicle
at the time of correction

Vehicle velocity component normal to uy

and parallel to the XY-plane (at the time
of correction)

Velocity component which completes a
right-hand system with uy and ugy

Velocity components of the vehicle in the
transfer orbit at rendezvous (directions
analogous to ui)

Target point velocity components at ren-
dezvous

Semimajor axis of the target point orbit
Eccentricity of the target point orbit

Eccentric anomaly of the target point at
the time of correction
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;0 Angle in the XY-plane from the X-axis to
perigee of the target point orbit.

The problem may be stated as follows. At a
certain preselected time, at which errors are to
be determined and corrections executed, the ve-
hicle position (yl, Yos y3) is found to be in error

relative to the preselected transfer by amounts
dyl, dyZ' dys. The velocity components at this

If the de-

sired velocity at the incorrect point (the velocity
to rendezvous y, + dyu later) is uy + dui, the cor-

point are in error by Aul, Auz, Aus.

rection to be applied is dui - b, where the cor-
rection relative to the programmed velocity (dul,
du2,
dy's. I the velocity, as well as the position,

the vehicle is to be matched to that of the target
point, a second velocity correction, to be added

to the programmed thrust at rendezvous, must
be computed.

du3) is to be determined as a function of the

The required transformation matrix may be
obtained by differentiation of the following func~
tions, which describe the Keplerian motion of
the vehicle and the target point.

-

§0= X4 = Xg = Xy (sinx4-sinx3)
LN
X9 ¥ %o

o
[

X, ~X 1+ x b'4

6 "2 1 3

1 tan 3 _Vl-xl tan —
:uc7~-x2m/1+x1 tanx4
2 T-x 2

@2 = tan

§3- Xg = Xg (l-x1 cos x4)
®, = ¥~ % (1~-x1 cosxa)
Y4
Qs- x9-EO--e0 (sinxg-sinEO)-aTO— 3,
X, -0 1+ e X
. 77%0 _‘/ 0 9
¢I>6 = tan 5 1= % tan—2-
§7 = xg-ag (- e cos xg)
%, = tan (x.7 - y2) - tan (x7 - xs) cos Xg
&, = sin e gin (x7 - x6) 8in xg

Up= uy-x 8in (xs'xz)‘/—i—‘z‘
x. (1-x.9)
0 1

2

cos xS.Vp.xo (1-x1)

cos yq Yy

2” Yz 7

2
wxy (1-x, )
Yy

tan y3
u = -
3 3 tan (x6 x7)
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The desired velocity components are U +duk

where u, are the programmed velocity components

at correction and (in Einsteinlan summation nota-
tion)

= k = 3 4
= k = 2 3‘ m 1 2 N .
du] 5 dy ) 1, ERA) » &

(179)

The solution of the problem {s then complete upon
evaluation of the partial derivatives of this ex-
pression. These partials are obtained immediately
from the Jacobian

a,., | O
A= U
u 1
o
where
a,, = 8(§i i =0, 1 9
ij axj 1J 2 i k]
au
- L=1,2, 3
2] ex,
J
10
o = [o],
3
I = [1]3
u

The partial 5y of Eq (179) 18 obtained by dividing

the negative of the determinant A into the same

determinant with the (10 + k) B olumn replaced
by the column vector

% 8@1 BUI
8ym ' 8ym

For example,

| o2,
R
™
5_53’_1 0 0
3y |
93
Bu; Bl
- -1 | By
By, BlewaalC L oo L
| su
| ! 0o o
|
ii)U2
ulj (3_}'1 1 0
|8U3
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This completes the solution for the components
of the midcourse differential correction. The
thirteenth order determinants (A and substituted
A 1 8) may be evaluated for a particular mission
by a computer program and the resulting matrix

l: Bu, :|
Bym

stored in the vehicle-borne computer memory.

However, for hand computations, the solution
can be expressed in a more convenient form.
This is possible because of the large number of
zeros in the determinant A . Specifically,

a 0 a a 0 0 0 0

80 201 03 %04
[} aq a12 a13 0 0 86 0 0
0 851 299 0 294 0 0 agy 0
839 83 0 0 aqy o] 0 0 asg
240 841 0 8,4 0 0 0 o] 0
aij]= 06 0 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 g 0
0 o0 0 0 0 0 0 0 aga
0 0 0 0 0 8g5 8gg g7 0
0 0 0 0 0 ag5 2gg g7 0
(180)

which, by Laplace's development of the first five
columns, reduces to

830 801 ¢ 203 Bg4
0 &y ajy 84530
_ 0 a a 0 a
aij = 8.598.67(8.858.96 21 “22 24
a a 0 0 a
- ageage) 30 2331 34
840 841 0 345 0
where
_ 3 -5/2
800 = 2¥* %o Y4
9.01 = gin x3 - 8in x4
y
303 © e
X0
a = 8
04 x0
o = -tan_3¢lv 1
11 B 1+xl (1—X1)2

79




242

"

213~

X, - X
-%— sec2 ———62 2 96
897
f1-x X, =X 1+ x
1[ 1 2 6 2 1 ]
- gec + Also
2 1+ Xy 2 1- Xy
X 1-x
4 1 1 =
- tan Y
2V 1+x, ,__ .2 J
1 (1-x1)
x
-5 0802 _22_ where
u
Q
LY e T4 '
2 l-x1 2
% Y20
%0
Y30
*0 " X8
Y11
- Xg %4 8in x4
J
X Hoq
¥ "N
u
- Xg Xy gsin Xgq 31
1.2 % X2
"2— gsecC 5 u12
X u
écscz —52' 25
u
1 16
Xg Y3g
a
0 Y37
"
1 2 @0 and
g 8¢ 5~

pude

9%
By

{aqzi
53

[

- tan Xg sin Xg
sec2 cos8 X
*g 5
2 2
sec” y, - sec Xg cos Xg

- gin X cos Xg

VI-36

o =
[y N
1+
of o
o |o
w
®
o
¥
»
o
et
o @
2.3
—

L}

>

- COS8 Xg sin )(5

T 896

Y90

-u cot(xs-x

9)
u, tan Xg

Y2

u, sec X, CSC X
3 6 6

~ Y36

BUI} %
8y1

2
yll

0,0,0,0, 1,0,0,0,0,0,0,
s
Y1

SUI 2
| " {0,0,0,0,0,0,0,0, -sec” y,,

0,0,0,0}

8uU
T‘}’ {0,0,0,0,0,0,0,0,0, cos y,,
Y3 3

0, -u, tan y,, -ug sec ygcsc y3}



pe. 9U, d = _8
{_871— 5 }: {__L‘/:E 0,0,0,0, 04 X,
Y4 g %o V¥
d = 1 sin (x, - x.)
-—1‘}—“— 0,0,0,0,0,0,0 k2 6 "2
a a > 2 2 ’ 2 ’ ’ 1
0 0
The determinant }aij |1s interesting in itself d = -(V L *1 + ZXI cos2 76 x2>
since the differentials in the transfer orbit geom-~ 13 T+ *1 1-x.2 2
etry
9x,
dx = Sy dyg (182) 1
i d21 = t-x——z sin X,
are given by laij‘ in the same manner that the !
corrections in vehicle velocity are given directly = Xy 2x 2 ¥
by A. From |aij| , after simplification and fac- doy T+%, +‘/1 —3 sin® —5
toring, the following error sensitivities are ob- *1
tained.
j=0, , 4 J=5...,9
ax . . ox,
o= (-1 j*1 4] Il =9 s =5, , 9
! (-1) '3y—1 J
X . . M ax ax ox .
I - opitt 1 5 . 6 I - -
3, = (-1) c4_Di %, ky, 5, kz,g-)-,; 0, j=17,8,9
ox. . Ix k, k 9x 9x .
J =(_1)J+1C 1 5 273 , 6 = k. k. k., J =0, j=7, 8, 9
%3 5D %3 ky %3 173 74 Bxy
3
oax. . M, . ox ax Ix ax 9x
3 =(-1)JZ c, —X — kk,,a_s kg (1 kz),.a._z_—ks,as Cqr 5o = cifP
4 & kD Y4 1757 9y, Y4 Y4 3y *g¥ag
(125)
where M. . are the 4 x 4 minors of the determinant dgn. = -d
ij 30 04
d d 0 d d
00 01 03 04 d31 =X, - Xg
0 d;; -1 d13 0
D = 0 dy, -1 0 dy, d3q =~ Xg Xy sinx,
d d 0 o d
30 31 34 cl40 d03
dgo dgy O dyy O
d =X, -y
and 41 0 1
3y
- 4 ‘/u -
dOO = d43 =X X sin Xq
2x 0
0
CO = _1_ K
y X Vx
a0, =_1(_4 £_+x3-x4) 0 7o
X1 V¥ ¥Xg
C1 = K5 (1 - cos x5)
d =z - ﬁ
03 X, C2 = - K5
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1 ’
Cq = -)G uaoeo sinx9

C4 = COS x5

cy = kikgky
sin x
kl * fan x6

kz = COS Xg

cos? Yg COS ¥

k3 i cos” x
6
k4 = sinx6
1-e 2 e o
1 m 0 0 270
kg = x—v:r[vﬁe * sin —z]
8 0 4]
1—e02

The orbit to be achieved by the velocity correc-
tion is thus determined in terms of the data.

Special note is made at this point that further
development of these determinants is possible
resulting in a set of analytic expressions for the
corrections. Some of these expressions, how-
ever, are very complex in form. For this
reason, it is felt that the present form of the
solution is most useful.

As an alternative to evaluation of the velocity
corrections (duk) from the 13 x 13 A determi-

nants as previously outlined, the corrections
may be determined as functions of the orbit
element corrections since

du 8x
_ k
duy, = 'b'_xj ‘a—lyi dyy (184)
%
where 5 are given by Eq (183) and
i
du
B T Uy

from Eq (181).

If the velocity, as well as the position, of the
vehicle is to be matched with that of the target
point, the required correction to the programmed
velocity increment at rendezvous may be deter-
mined as follows. The velocity components of
the vehicle just before rendezvous are

v, = ‘/———-p———z— Xy sin (x7- xz)
Xp (1-x1)

B Xq (1- x12)
v = —_— co8 X
2 Xg 5

VI-38

2

e Xg (- Xy )

vg = __;5—__ sin xg (185)

The deviations of these components from those of
the preselected transfer are given by

8x

_ i k
8xk
where the By, are given by Eq (183) and the
j
Bvi
- ares from Eq (185)
k
Bv1 ) vy i Bv1 . vy
—_— = - ; = —
9% X0 * Xy (1 -x )
8v1 Bvl
8—x2 = vy cot Xy i ﬁ; = -V cot X,
ov, ) vy 8v2 } vy Xy
5% 2x * O Bx
0 1 1~ Xy
EE = - Vv tan x . 8_"2 = - _vz_
8x5 2 5 ax8 Xg
8v3 ) Vg ) 8v3 . V3 x1
% 2x, X 1-x
Bv3 8v3 Vg
= vpcotx, ; ms— = = —
§x5 3 5 8x8 Xg

Similarly, from the velocity components of the
target point at rendezvous,

Wy ———F———Z—— eosin (x7—30)

ao(l-eo)
B ag (l—eo)
Wo % Xg
Wa = 0, (187)

the change in the desired rendezvous velocity
from the programmed value is given by

9x
~ - . ~ T
dw, w, cot (x7 - wo) dx, w, cot wOBﬂ dy,



= - 8
dw2 - dx8— - = dy4 (188)

The partials are given by Eq (183).
Then the required velocity correction to the
stored veloclty increment at rendezvous is

Avi = dvi - dwi

In the previous analyses dy4 has been con-

sidered as an arbitrary increment in the time
between correction and rendezvous. If the time
of rendezvous is to be maintained at the pro-
grammed value, dy4 = 0 and the computations

and storage requirements are simplified. On
the other hand, if some flexibility is acceptable,
then the increment in time may be selected so
as to minimize the energy requirement of the
correction. Lawden (Ref. 4) gives the value of
dy4 which minimizes the propelliant expenditure

(189)

dyl, dy2, dy3 = position component errors at
correction

Au1 = velocity component errors at correction

v = velocity increment at rendezvous

Many formulations of the differential correc-
tion technique are possible. Reference 5 pre-
sents rectangular coordinate routine. However,
regardless of the form of the data, the approach
presented is applicable. By modification of the
% functions, transformation matrices for any
adequate data system may be obtained.

This formulation has been checked for efficacy
in several specific examples, one of which is
transferred to a 24-hr orbit. The results of
these checks indicated a very high degree of
approximation in the commanded velocity cor -
rections. In no case were the resultant position
and velocity errors greater than 10% of the un-
corrected value for errors in position less than
100, 000 ft (or 30 km) or more than 3% for errors
in initial velocity as large as 20 fps (or 6 mps).
In fact the general order of the resultant errors
was approximately 3% for errors in initial position
in this range and 0.5 to 1% for errors in initial
velocity less than 20 fps. The method is thus
seen to be ideally suited to midcourse guidance
problems and to the problem of small maneuvers.

H. THE STATISTICAL DISTRIBUTION
OF THE ELEMENTS OF
THE FINAL ORBIT (REF. 6)

Preceding discussions (for example Eqs 134
and 135) related the errors in the resultant orbit
elements due to a combination of tracking and
control errors. However, these relationships
provide no insight as to the probability of occur-
rence of a given error. This additional infor-
mation is obtained by relating the probability
distributions of the total errors Aa' and Ae' to
the distributions of the individual tracking and
control errors, The development of these dis-
tributions will be based on the customary assump-
tion that the individual errors (Arl, AVI, etc. )

are independently and normally distributed.

Since the forms of Eqs 134 and 135 are different,
i.e., Aa' is the sum of linear differentials and
Ae' is the square root of the sum of the squares

of differential terms. The distribution of both
forms will be derived. Consider

where the a, are constants and the x; are inde-
pendently and normally distributed with means
(7 and variance oiz. Then the moment generating

function m (t) for the distribution of the variate
u is given as follows:

o 2) ? (rr_> S5 e

o Toe

1 x.—u.z K
1 1
t} ax -y §< - )]TT dx,
i =1

i

where ¢ is the base of natural logarithms (utilized
to differentiate from eccentricity).

Transformation to the standard form is convenient.
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Now letting ¢ be the base of natural logarithms . Aa orl
to differentiate from eccentricity) and - -
( ) Y +g§(AV D € 8
N 2
Iy o5
Aazr 3
_ 0 2,2 .
then T °av1 “a(avl) %5(aV,)
k K %/ta ¢
T ta.y. 0. . . . . . :
m(t) = N2 "”'\ S(‘ 1 1) (‘ 171 1) The distribution of the eccentricity error is
Vil | maore difficult to obtain because Eq (135) is not
i=l 7~ linear. Equation (135) is of the form
1y 2 2 2
-2 -
€ dy; u x, "+ x,
K K . 1 t2 9 3 where x4 and X, are assumed normally and
1\2 r-rr M Tt A G independently distributed, i.e.,
= .2..’.; € € X 2
i=1 1 1
n(x,, x,) = ! € z Ix
[« 1 2 2 9 1’ 72 To, Oy 1
C - (yi —2tai ¥i % +t a, 012) 1
L“ € dy. 1 9
) — §< xz)
- a
2 € *2
t 2 2
t au, + - a, o
T 1 ! The distribution of u may be obtained by elimina-
= ™ (190) ting either X, Or %, in terms of u to obtain a
density
However, the moment generating function for
the normal distribution is ox
- i
ty + 1,2 2 g(u, xz) = zn [x'l (u, xz), xz] tou
my (t) = € gt i i

where each term in the summation represents one

Therefore, Eq (190) is the moment generating branch of a possibly nonmonotone function u(xl).

function for a normal distribution with mean and
variance given by The desired distribution, g(u), may then be ob-
tained by integrating over the Xy in g (u, xz).

Moo= z 3iHy (191)
i g(u) = j‘ g (u, xz) dx2
02 = z aiz Uiz (192) In particular, for
i
u = x12+x22

In particular, application of this result to Eq (134)
provides the distribution of the error Aa', The 2 2

error in semimajor axis of the corrected orbit S T
is normally distributed with zero mean and
variance axl u
r ) u? - x 2
2 2 0 2 2 T2
Ong' 4 o'r1 + 4 7—2- é&vl + Gé(AVI)
0 Since the function g(u) is not single valued,
. 2 ) it must be evaluated on each branch
cr5(AV2)
+ -
: + | %1 %%y
That is, the distribution of Aa’ is glu, x5) = f(xy) | 5| *+ f(xg ) |5
3
2 .%o 2 2 But
f(Aa') = (8n + — +
( ) { [°r1 u GaVI Ga(AVI)

f(x1+) = f(x;)
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+ -
axl ) Bxl l
ou du l
Thus
(u, x,) -
gl X7 = 2 f(xy) Bu
2 2
u —X2
1 ) o
g (u, x2) 2[2“; N € =
X T2
2
1 X2
T Tz
€ Ox,
2 u
2 2
a 2
1 u2
7 P
O'X o0
glu) = 4¢ L j L
"oy Ux, 2 2

this expression may be integrated to yield the
required distribution

u 1 + 1
- (—
gy o,
1 2

2
1 u ( 1 ~ 1 (193)
ol G
2 1
(<% <)

This g{u) (and, in particular, the distribution of
corrected orbit eccentricity error) is a skewed,
single-sided distribution with positive mean and
and a shape similar to that of the gamma distribu-
tion.

g (u)

In manipulation of the distribution g(u) the
following definitions are convenient.

K, 5 —moo——
1 o o
X, %,
1 1 1
K2=71'C¢_2+E—2>
x X
1 2
S A S
3 T 4\o_ 2 o 2
%y *1

The distribution is then

2

- - K,u 2
glu) = K1 u e 2 10 (K3u )

This final form has been checked both analytically
and numerically utilizing randomly selected var-
iates from normal distributions. The results show
excellent correlation.

Quantities of some significance in describing
the properties of the distribution (e. g., central
value, spread, skewness, etc.) are the moments
of the distribution. The rth moment of g{u) is

oa

I gurg(u)du
0

®
]

~ 2

~ r+1 -K,u 2

= KIS‘u € 2" 1, (K3u)du
0

(194)

After the transformation t = u2, the integral can
be evaluated in various forms.

n - K,t
S\t € 2 Iv(K3t)dt
0

| - ga+1)
[r (n+ v+ 1) (K2 - Ky

_ K
pnv<K__z_2 . )‘] Ky > [K|
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where the generalized Legendre function is given
by

m _ 1 z + 1
Py (z) = T (1 - m) z—i)

l—m;é--é-z)

253"1 (—n, n+1;

and the hypergeometric series is given by

[
ma:n (al, cees Bl Yy eees Vi z) =
Z (ay);...(a)y z'
i i.,.,‘ ;. 1T
TTo Y1'i Yo'i 1t
Then
r
— =K1 rg ) r+2 r+4 ( )
Hy ' T 31 ’ ! K.
Kzz

"
KE (195)

In particular, the mean of the distribution g(u)
is given by

)

K, I'(3/2)
— ] [ 3 5
T3 .\3:'&’3
T

2K3
35 2 31759
_K11;w 1+7¥I(K3>+IKI?{K3
- — \x,/ "7 7 \K
3 1-1 2 (21)
4K2
371159 13 6 I
LETTTEF(03) L | e
(31) 2
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The second moment is of interest in determina-
tion of the variance of g{u).

®
()
[

2
- _® ru L3 (K3>
T 7z 3 U AR,
2

.
2K2 7 K 2t 7 K,
K
35 7 3)
+3’?"2"'2"‘2<K' + ... (197)

Then the variance is

2 - —
o, —uz—(ul)

2 (198)

Another factor of interest is the probability of
occurrence of extreme values of u, Direct compu-
tation of areas under the distribution of Eq (193)
is rather tedious. However, for large values of
the variate u, the modified Bessel function of the
first kind of order zero may be approximated by
the following series.

12 2. 2

X
I (x) s (1+ +
0 {2nx Tt8x 5, (8x)*

+12_32.52 . )
31 (8x)3
(x 1arge)

If only the fundamental term of this series is
retained, the distribution of Eq (193) becomes

2
() 2 1 7 o 2
g =V7 . > € Xy
Xy X2
(u largé (199)

Thus, available tabulations of the normal density
area

- 2
ZZ'
n(x)=_1-£e' dy
Ve

can be used to evaluate probability of occurrence
of extreme values of u with good accuracy.



I. TRANSFER TRAJECTORY OPTIMIZATION

1. Variational Approach

The problem of trajectory optimization hag
received attention in much of the literature ref-
erenced. However, the work of D. F. Lawden
(Refs, 7, 8, 9) is felt to be particularly meritor-
ious. For this reason, his work has been fol-
lowed quite closely in this material which is in-
cluded to provide insight into the general maneuver
problem and the basis for the formulation of the
differential correction routine discussed later.

The general problem of optimizing a maneuver
trajectory with respect to the energy requirement
may be expressed as: it is required that two
points in space be connected by a curve along
which the vehicle can be maneuvered with a min-
imum energy expenditure. Because aerodynamic,
electromagnetic and other forces are extremely
complex in nature, only thrust and gravity forces
will be considered.

Consider the reference frame in the following
sketch:

X3
T
7
Xy
X3
*1
%9
X1
We have
mF=T+m§=T—E§‘ ? (200)
r

where the symbol A denotes a unit vector.

if 1".1 (i =1, 2, 3) denote the gravitation components
along the three axes at the point (xl, X, x3) and
the time is t we can assume the fi are known func-
tions of t, tO’ tl, Ak, X5 (where t0 is the time of
departure, t1 is the time of arrival and the Ak
are parameters whose values change for different

problems). Now we can form the following func-
tions:

(201)

. =%, - = 2
¢i 43 X =V, =0 (202)
where again

I = fi (tn ton tl' Ak, Xi) (203)
I, =the direction cosines of the thrust vector

i=1,2,3,

Now noting that T = c¢f (where 3 is the mass rate
of change) and utilizing the cosine identity,we can
form the following functions:

¢i=\'fi—§n6li-fi=0 (204)

O 43 =% -V, =0 (205)

¢7=x'n+s=o (2086)
3

b=y LZ-1=0

8= i = (207)
i=1

But 8 is positive and bounded (Bl <B< 62) to over-
come problems arising from the fact that the ¢

i
are undefined when 8 = 0. However, we shall let
Bl -0 to allow for unpowered flight. B is assumed

to be a monotonically increasing function of some

parameter of no physical significance [o = o (t)]
such that as o changes from -« to «», 8 changes

from Bl to 32. Thus, gg = 0 for some large value
of |a|. Conversely, the vanishing of—g—ﬁ implies
either maximum or minimum thrust (Ref. 10).

These eleven functions of t (Xi’ Vi' ti' a and

m) must be chosen in such a manner that the energy
(or characteristic velocity of the maneuver) is
minimized, subject to a particular set of boundary
oonditions.

Now the boundary conditions for the problem

are xiO‘ xif' xiO and xif' These conditions can
be stated as
gi = X di =0 (208)
S143 = X3y 72 = 0 (209)
tiog = Vig~d =0 (210)
€149 Vg4 =0 (211)

where the subscripts 0 and f indicate the initial
and final values of xi and )ii, respectively, and

the d and a denote the points of departure and
arrival, respectively. If, in addition, the times
of departure and the time of transfer are speci-
fied, two additional boundary conditions are

=ty - T, =0 (212)

§13
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=t, -T.=0 (213)

Now we introduce 8 Lagrangian multipliers
()\j) and form the fundamental function

8
F = > b (214)
Lo) ¢J
i=1
Using two sets of running indices (the summation

convention) the Euler-Lagrange equations can now
be written as:

Nt 570 (L k=123 (215)
x’i+3+xk;%=o (216)
2)‘811-%‘1@ N = 0 (217)
=28 (218)
gg (g - L )=0 (219)

It follows from these equations that the )‘1 must

satisfy
. of
)\1 = )‘k F’i (220)
and
_2m
)‘1'@')‘8(1 (221)

This latter equation states that the vector composed
of the three components ‘Ai (mutually orthogonal

and referred to by Lawden as the primer) is always
parallel to the thrust direction except in those
cases when 8 = 0 (1. e.,no thrust).

It further follows from Eq (219) that

a8 _ (222
iz 0 )
or
=S 3 1 2
Ay =2 )‘i i (223)

The first alternative implies that § .0 or B = ﬁu

or again that the thrust level is either zero or
maximum. If B =0 the vehicle coast in an orbit
under the influence of gravity alone and )\7 = con-

stant, )‘8 = 0 and the li are not defined. If 8 =8,

the thrust is parallel to the primer as mentioned
previously and

cB
2
Mg T oo Z M (224)
=1
3
cB
'} 2
g =—3 Z M (225)
m f=1
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The second alternative in conjunction with Eq (218)
yields

X, = £ (226)

which upon integration gives

_ constant

x,, = (227)
However
A
i
L= — (228)
1 3
2
Z M
i=1
therefore
3
z xiz =c (229)
1=1

This equation states that the primer vector has a
constant magnitude which {s a contradiction to
earlier proofs of Lawden (Ref 8). Therefore, this
alternative is not possible, leaving the first alter-
native (Eq 222) as the only possibility.

Now since the Vi, li and 3 need only be piece-
wise continuous in the interval to <t< tf, the

extremal arc may have corners. If such corners
exist, the Weierstrass-Erdman corner conditions
must be satisfied for the instants at which thrust
is applied or terminated. This implies that the
».(j=1,2, 3, 4, 5, 6, 7) must be continuous at

these times. But since )\1 = _)‘i+3 i=1,2,3),

the primer and its first derivative must be con-
tinuous. Now the corner condition must be
satisfied:

OF . ) OF
+ -

This equation requires that the following function
be continuous

- cB -
M (m it fi) Mag Vit AP
which in turn requires that

cB y\ 1 -
m MM

be continuous since fi and Vi are by definition con-

tinuous, and since the A, were shown to be con-~

i
tinuous for this class of problems (Eq 91). This
function is shown to be continuous in Ref 7,
Further it is shown that

. [
- = L - =
)\1 fi )\1 V1+B (m )\1 1 x7> constant
where the constant takes on the same value for
the entire minimum energy trajectory.
We now form another function, H, from the

constraints (Eqs 208 through 213) and the expression
for the characteristic velocity of the maneuver.



M
H=c 1°gM_(1] oy Bgg ) Hggg Oy - ay)

gty - Tp) Fmyy 8y - Ty (231)

At this point it is noted that if the time of transfer
and the time of initiation constraints are removed,
M3 and ny4 2re zero,

Now, from the generalized problem of Mayer,
the necessary conditions for the minimization of
H can be evaluated

M~ Mg, 0 "0 (232)
- - 2
M+ " Mg, 0 =0 (233)
T (234)
Nisg *Ay g =0 (235)
C - = 6
_Mo X7' 0 0 (236)
_c - 237
W +)\7' ¢ 0 (237)

£
i o,
g N T dt =0 (238)
t x
. P -
137 M 50 T 46 Vio M, 0
t of,
‘S Moy 9t e (239)
t 0
0
. (&4
M14 M543 % ir T a9 Vig I, M
o of,
- X, 3 dt=0 (240)
t £

where the subscripts 0 and f refer to the initial
and final times for the orbital transfer. If the
time restraints are removed (to find the minimum
energy trajectory), N3 and ny4q are zero and n

and n . can be eliminated from Eq (239) and

Niy3 and n; 4 can be eliminated from Eq (111)
yielding
. te afi
DY - M= 4
MV TNV RS g Mo, ¢ (241)
0 t 0
o o o ar
= iy = : t 242
MYITN YT My St Moot d (242)

The conditions of Eq 232 to Eq 242 must nec-
essarily be satisfied if the external arc is to be
optimum with respect to the energy requirement.
As is evident from the complexity of these ex-
pressions, exact solutions are not easily come
by, and general solutions to the optimum transfer
problem appear doomed. In fact, numerical
evaluation is generally necegsary. This con-
clusion is strengthened when it is noted that the
abgolute minimum energy maneuver is not the
only solution satisfying these conditions. Thus,
it is generally necessary to investigate each of
the resulting "optimum'’ solutions. However,
several conclusions can be drawn from this
work and that reported in Ref. 11.

(1) The optimum trajectory is composed of
maximum thrust arcs and coasting arcs.

(2) There are in general only 3 sub arcs in
the trajectory, 2 of which are thrust
arcs.

(3) The thrust arcs generally occur at the
two terminals.

To aid in the visualization of the transfer
problem and provide information which is of
value in the analysis of trajectory problems, the
general problem will be reduced to one of pulse
transfer. This agsumption is valid for most ma-
neuvers since the magnitude of the correction
(A V) and the time of burning (tb) are generally

1 and the time of trans-

fer, respectively. Under this assumption the
optimum trajectory connects the two specified
radii with impulses at either end.

small compared to V0 or V

Variations in all of the parameters during
thrust periods are assumed small. This infers
that since the primer vector and its derivatives
are continuous during initiation and termination
of a thrust phase, they are continuous across any
null thrust arc. Thus, Eq 225 reduces to

(243)

By considering the equations for A_ it can be
shown that Eq 223 implies that

1 (244)

at the beginning of the maneuver.

Now, since the xi are the direction ratios for the

thrust vector, this equation states that,for the
pulse case, they are equal to the direction cosines

of the impulse. The other constraints are

s _ ¢
N T B TN (245)
. 1 of,
xifi - xivi = 5 xi W dt (246)
ty
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t
. T et
7‘if'1 - Mvi = -S )‘i 51'; dt (247)
to
A ifi -2 iVi = constant (248)

where to and tf are not specified, and the con-
stant of Eq 248 is zero if the fi components are

time invariant and independent of ty and ty.

Investigations of these equations are reported
in Ref. 7 for motion in Keplerian orbits. There-
fore, it is not deemed necessary to repeat this
material. Rather, conclusions pertaining to
these investigations will be presented for the
case of transfer between elliptic orbits.

(1) If the orbits intersect, a single im-
pulse can be used to effect the maneu-
ver, and the conditions for optimum
transfer are satisfied. However, in
some cases this type of transfer is
not the absolute minimum energy
maneuver (i. e., minimum of the
minimum energy maneuvers). For
this reason it is necessary to check
the energy requirements of each
solution satisfying the conditions for
minimum energy maneuvers.

(2) I the orbits do not intersect, two im-
pulses are generally required (one at
each terminal) to effect the maneuver,
This conclusion must be modified in
certain classes of transfers as is
indicated in the analysis of 3 impulse
transfers.

(3) If the eccentricities of the two orbits
go to zero, the optimum mode of
transfer is via the well known Hohmann
ellipse which is tangent at perigee to
one circular orbit and tangent at apogee
to the other. This conclusion is also
modified for certain orbits for 3
impulse-transfers.

(4) If the eccentricities of the two orbits
are small, the line of apsides of the
minimum energy transfer ellipse
aligns itself in the approximate direction
of the line of apsides of the terminal
ellipse (initial or final) having the
greater eccentricity.

(5) If the two terminal ellipses are not
coplanar, little in the way of a general
conclusion can be made. If, however,
the eccentricities of both the initial
and final orbits are small, the optimum
maneuver occurs when the transfer
orbit is tangent to the respective orbits
at the points of departure and arrival
and when the line of apsides of the
transfer orbit is the line of intersection
of the two orbital planes.

Utilizing the second of these " general rules”
numerical data may be generated relating the
parameters of the "optimum" transfer orbit.
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However, because of the number of variables
involved, parametric studies generally prove
extremely lengthy in all but the most simple
cases. Among these simple cases is the analysis
of transfer between circular orbits. For this
reason and for the reason that many satellite
applications require circular orbits, certain of
the parameters will be discussed in the following
paragraphs.

Consider the following sketches depicting
coplanar and noncoplanar transfer.

The first of these sketches (showing transfer
petween circular coplanar orbits) points up the
fact that the maneuver required must change
both the magnitude and the direction of the
velocity in the plane of transfer (both of the
effects have been discussed earlier). Thus, it
is desired to show what types of orbits will be
required to minimizea V, ¢ for various types

of transfer. The equation for this maneuver are:

av 2 v
T . 0 - 0
- = 1+V__ ZVE cos ¥y




1 - 0
tany0= 238
tanT
r r r r
.0 0 _ "0 0 2A8
i J(l ?E)T ZE(I_ECOS —2_)
smézg
r
1 - 1
2a
tanyf_ —jg__
an
-
r r
r —_— - r 2 A6
+J (l-ﬁ)r 2a 1"55005 5
A0
sin =5

Thus, if T Tgs Tp and A6 are specified, the

quantity a which will require the smallest value
of A VT can be determined. This was done

numerically in Ref 12, The results of these
computations are presented in Figs. 25, 26
and 27,

The second sketch shows the nonplanar
transfer between circular orbits. The equations
for this maneuver can be obtained in a simple
form if the second impulse alone is responsible
for altering the plane of motion. This assump-
tion will not always yield a true minimum energy
transfer; however, more rigorous attention to
detail leads to a very complex form of solution,
thus making such an approach less suited to pa-
rametric analyses of this nature,

AB
VO - ‘2 . sin —-2—
Vi ' cos (A6 - @ oS v,
ry cos y;
2
2 - VO)
AV V
1 _ 2 - cl
\Y% r
cl ron
0
A V2 VD
7 = smAG—Z(V—)cosyf
cl cl
(sin2 AB - sin2 2 )1/2
V0 2 r
+(V—) sinAO:l (r—)
cl 0
1/2
-1
.sin A 8]
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A VT N A V1 + AV

Vet Vel
These equations have also been solved numerically
to yield the smallest values of A Ve The re-

2

sults of these studies are shown in Figs, 28,
29 and 30.

As was noted in the discussion of the optimum
trajectories, and again in the previous paragraph,
these solutions may not in general be the mini-
mum energy transfers. However, in all cases,
this solution will belong to the set of relative
minima,

2. Minimum Energy Transfers

The preceding discussions present the
variational formulation of the general maneuver
optimization procedure along with several con-
clusions derivable therefrom. The solution,
while rigorous, does not provide data which
would be of general interest due to the fact that
a lengthy numerical evaluation is necessary to
evaluate each optimum solution. This being the
case, numerical data for the special case of
transfer between circular orbits was also
presented. However, two questions arise in
regard to the application of the "rules" for ap-
proximate maneuver optimization. These
questions are:

(1) Under what condition is the two-pulse
transfer between circular orbits mini-
mum energy ?

(2) What is the minimum energy two-
impulse transfer between circular and
elliptic orbits?

To answer the first of these questions con-
sider the three-impulse maneuver,

a. Three-pulse transfers between circular
orbits

Some of the orbits which have been proposed
for various satellite missions require large
amounts of energy for the ascent and injection
maneuvers because of their extreme altitudes.
Thus the three-impulse maneuver philosophy
can be divided into three classes:

ro>rg>r;
f32Tp2 T
rg>ry; >r,

where
r, = radius of the initial circular orbit
ro = apogee rac_lius of thfa first t?ansfer

orbit (the intermediate radius)

ry = radius of the final circular orbit.

The transfers have all been assumed to be of
the 180° type since any other transfer would re-
quire more energy, and since the primary pur-
pose of this material is to show the existence of
three impulse optimum solutions.



Case No, 1 (r2 >rg > rl)

The velocity increment required for this case
is defined by the difference in the circular veloc-
ity and the perigee velocity for the first transfer
orbit, plus the difference in the apogee velocity
in the first and second transfer orbits, plus the
difference in the perigee velocity in the second
transfer orbit and the circular velocity in the
desired orbit; i.e.,

av, = javy| +|AaVy |+ AVl
= (V3 - V) * Vag = Vay)
+ (VpZ - VcB)
AVt ) 21‘2 3 VC2 rg
Vel ro ¥t Ty
_ ¥ VcS
Vc1

This equation is presented graphically in Fig. 31.
The dashed curve denotes the Hohmann transfer.
Curves for all 1'3/1'l originate at this single curve

since it is, in essence, the limit of the family
(i.e., vy = r3). The investigation must now be

turned to the problem of determining whether or
not any of the curves of this family eventually
diminish by an amount sufficient to result in a

‘ av,
value of -v——CI
transfer; (data for this type of transfer are
presented as Fig. 32).

less than that of the Hohmann

This has been accomplished in Ref. 13, where,

the equation for is differentiated with re-
cl

spect to rzlrl and the resultant equated to zero.

The complete solution thus found is:

r
r 3+ r1
2. 3
r
1 r 2r
3(1+ r_l) -2 [3- _r_l
3 3
g T3
Now by using the constraint — > — > 1, which
rn-n
is a restatement of the condition assumed in form-
r r.*
ulating this case, the value of, -—3, i.e., 3 for
1 1

which the three-pulse approach is more efficient
is obtained as 15.582 approximately.

r r. *
For all -5 > —>—
!‘1—

ot the curves possess no re-
1

lative maxima or minima and the curves con-
tinually decrease, Therefore, the three-pulse
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method is always more efficient than the
ry _T3*

Hohmann transfer, If 11,939 <g < , the
1

|
r3 A Vt

solution for those values of ﬁ for which v__cl

is less than that for the Hohmann transfer can

r
also be found. However, this value of r_3 is a

function of the altitude of the intermediate point
which must be placed above a critical altitude
greater than the altitude of either of the circular
r
orbits and approaching infinity as r_3 approaches
r 1
11,939, If—> <11.939, the Hohmann two-pulse
1

transfer is always the more economical approach.

Case No. 2 (rg>r,>ry)

The velocity increment required for this
case is defined by the difference in circular
velocity at the first altitude and the perigee
velocity of the first transfer orbit, plus the
difference in the apogee velocity of the first
transfer orbit and the perigee velocity of the
second, plus the difference in the apogee velocity
of the second transfer orbit and the circular
velocity of the second circular orbit.

AV 2r v 2r
t 2 S+ cl
Vel ryFry V2 ry+ry
i 2r1 . VcB - 2r2
rptry Vet ra+ry

When this equation is differentiated with re-
r
spect to the radius ratio Fz— , it can once again
1

av
be shown that the quantity -v-—t is a single zero
cl

derivative which for this case corresponds to a

maximum. Further it can be shown that the end
points of the curve correspond to the energy re-
quirement for the Hohmann transfer; therefore,
this mode of transfer is always less economical
than the Hohmann transfer.

Case No, 3 (r3 >ry> r2)

The velocity increment required for this
case is defined by the difference in the circular
velocity of the first orbit and the apogee velocity
of the first transfer orbit, plus the difference in
the perigee velocity in the second and first trans-
fer orbits, plus the difference in the circular
velocity in the final orbit and the apogee velocity
of the second transfer orbit; i.e.,



AVt ) [ ] 2r2 :l . ch 2r3
Vel VT, Ver [Ira3t+ Ty
i ' 2r1 J+V°3 [1- f 2r2 :I
rl + r2 VCl r3 +r2

The curves obtained from this equation in-
crease for all r, < ry and have no maximum

value., Thus, this approach can never be as
efficient as the Hohmann transfer.

b. The two-pulse transfer between coplanar,
circular and elliptic orbits

This problem has been formulated in Refs.
14, 15 and 16 and, therefore, will only be sum-
marized in this presentation. Detailed proofs
of each step in the formulation are left to the
reader,

The problem is that of transferring from one
terminal (definuvd by a scalar distance and a
velocity vector) to another. If Vi and Vrl are

the normal and radial components of velocity at
the first position and VI12 and Vr2 the components

at the second point, the total velocity pulse re-~
quired for the transfer (assuming two pulses) is

= _ 2 _ 2
AV = J(Vno Vo) Vg = Vip)
2 2
+ J(an - Vn2) * (er B Vr2)
where
Vro Vno denote velocity components
following first pulse (that is,
at burnout)
er, an denote velocity components just

prior to second pulse,

Now assuming a conservative field, this equation
can be reduced to nondimensional form by using
the conservation of angular momentum

2
AV _ C’no _ Val N <Vro - Ver
cl cl VE cl cl

r.V v 2 \%
+k 1 "'no _ "'n2 + (er _ r2
T2V Ve Vel Vel

where

<
u

cl circular speed at the distance ry

radial distances for the two term-
inals.

3
[\V]
u
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The problem is now to minimize this quantity
under the constraint that the radial velocities
are always real, i.e.,

r 2 v 2 v 2
(1 _ _12_>( no) +< ro>
r, Vcl cl
r
+<—1 —) > 0
ry =

{This is a restatement of the conservation of
total energy)

where

o

T

0 < <1,

This minimization is accomplished as follows
since in the region of interest the function is
differentiable,

c> -0
0

AV Vv

8 (v*y a(v—
cl - 1

n

o(¥2) ()

cl
Justification for this step is shown in Ref. 15

when the function av is shown to have a relative

\
cl er
minimum interior to the limits which 7 can
cl
rx Vr2
assume, {i.e., 0 < &—= < . Performing
A% A\
cl cl

this differentiation and simplifying the resultant
(A N4
; cl/ min

must be compatible with one of the following
equations

equations leads to the conclusion that

\2 A% v v r
no _ n2 r i( rx  _y 2

2 Ver Ve Viz \Vp Fa*ry

After combining terms and using the equations

for the partial derivatives obtained previously,
four pairs of expressions are obtained

r

-
w

2]

V.. -V A%
X r

r 2 _ r2
Vax ~ Ve u ry
Vn2 W T, +r
1 1 2
Veo " Vel _ Vi1
Vio ™ Va1 r 2r
v+ L) "2
1°r, Wr,) ©, +1
n 2 1 2



When these four equations are divided into
two sets both with positive (or negative) radicals

and solved for the values of v__no and v_ro , four
cl cl

independent solutions are obtained (two for each
quadratic equation). The smallest of the four
solutions is then the minimum energy (two-pulse)
maneuver between the two terminals. This is the
basic approach and the solution to the problem
first formulated in Ref, 14. In general, it is not
possible to select the correct solution analytical-
ly; however, in particular cases this selection

is possible.

Investigation of these equations is now directed
toward the definition of the type of transfer which
is most efficient. First, it is obvious that un-
less the relative radial velocity approaches zero
at a given terminal, the condition defined is not
one of tangential transfer from the circular orbit
or arrival at apogee or perigee in the elliptic
orbit, Additional investigations reveal that for
nonintersecting circular and elliptic orbits, the
optimum path is tangent to the circular orbit but
is not, in general, tangent to the elliptic orbit.
This fact is illustrated in the following sketch.
Numerical studies of the parameters of the
optimum path must, of course, be deferred until
such time as the orbits in question are completely
specified.

Intercept

Ny
Tangential departure

J. THE EFFECTS OF FINITE BURNING TIME
The simplest means of evaluating the effects
of burning time on a maneuver in space is to
study the numerical simulation of a maneuver,
that is,to program a set of equations which
describes a maneuver and compare the results
to those predicted by an impulsive analysis.

This approach, however, is somewhat restrictive
because:

(1) The results of the analysis are valid
only in the neighborhood of the
maneuvers which were simulated,

(2) The results are strongly dependent

upon the manner in which the thrust

vector is controlled to yield the
desired maneuver.

(3) Unless large numbers of simulations

are made it is quite possible to over-

look the effects of particular variables
and trends in the results.
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For these reasons, the approach taken here will
be to present an analytic approximation to the
equations of powered motion which will yield the
desired information in a form which exhibits

the necessary functional relationships. Consider
the following sketch,
Z
®
1
o
Y

X

R = ry -1y

R = am +ry -1y
where ;T = the thrust acceleration and where

the acceleration due to the mutual attraction of
the vehicles and the differences in the pertur-
bation accelerations have been neglected. But
the radial acceleration vector ;1 can be de-

veloped in terms of ry to be

r1=r0+(R'V)r0+...
where
;0 = acceleration due to the central force
L _ —_ — - .
R = ar +(R°*V) ry
But
p _ m —
r, = -— r
0 rq 0
Thus e
e [E 2R
T r ry
0 To

Thus, for motion in a nearly circular orbit the
small displacements from the unperturbed
position are:

X = 302X+ 20 ¥+ a, (along radius)

y' = -25 Xx+a (along velocity
of origin)

Z o= - 2 z+a, (normal to plane)



where o is the angular rate of the origin about

the earth = “—3 . Now, following the method of
Fo

Darby (Ref 17), assume that the thrust is applied

as a series of small impulses of magnitude

AV = aAT

Thus each of the equations listed above can be
considered to be unperturbed for a time (i.e.,

the thrust acceleration is zero) then at a small
time later the velocity is changed and the process
repeated. Consider the equation for Z.

Z+w22=0

z = Asinw (t ~T) t1<1:<t2
z. = wA coswu (t-T)
= Bcoswy (t~T)
z1=(B+aZT)cosr»(t-T) t2<t<t3
di-1im(é1-é)=azcosU(t—T)dT
At0->0
Thus
. t
z = SO a\Zcosw(t—T)dT0

t
z =L Sasinw(t-T)dT
w 0 Z

and similarly

™

-t
g a [1 - cos w (t-T)] dT
Jg X

¥ =Soay[4c05m(t-T)—3J dT

t
'Z.SOaX Einm (t —T)] aT

t
y = g a [4— sinw(t-T)-3(t—Tﬂ dT
Jo ¥

e+ £

t

X = 1 S a_sinw(t - T) 4T

W 0 X

P t

+ = ga[l-cosw(t—T)J dT

0 _Oy
. t
x=S‘acosw(t-T)dT

0 X

t
+ 28' a_sinw (t - T) dT
Jg Y

At this point the solution is no further progressed
than would have resulted if the functions X, ¥, 2z,
% and z had been expressed as inverse Laplace
transforms since the time history of a, ay and a,

has not been specified. However, if it is assumed
that once firing is initiated the direction of the
thrust vector is unaltered, then, the acceleration
will vary with time according to

. _a(o0)
LI
where: m is the % change in mass, i.e., L dm

At this point the terms cos w(t - T) and sin «{t - T)
can be expanded in a power series to yield

2 2 4
coth—T):l-‘L(izi-fbfl%qj)__

3(t-T)3
-

sinw(t - T) =w(t - T) - +---

Thus, since w is a constant, the solution evolves
into the evaluation of integrals of the form

t n
S (t_'_qj_)d'r n=1,2, 3, 4, ---
1-mT
If only two terms of each expansion are retained
(i.e., n < 4) the results of Darby can be obtained

as:

m

t
t - T) 1 L . 1-
i___rﬁ_TdT--T-Z mt - (1 - mt) In 1 - mt
0

N

t 2
(t -T) 1 .02 1
L) gr = - mt —

g Ty 4T =3 (1-m)”In v

0

T

- mt + = (mt) ==

Tt ] X

yt -1’ ar =L {1 -mtydm 1 __
,TowT 9T Tt

-t + 5 mn? - 1L (fm)S:' = m—%

t 4
t-T) =1 - d 1
S\O T T dT m——s- [(1 mt) ln‘ 1 -t

- mt +;(r'nt)2 - 135 (r'm)3 + %_; ({nt)‘*] =rh_Ds

and

a0 w2 ayow w2
X =5 \A - —=5C) +-2 -——D

m 12m
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3m 12 m

_aZO A - wz
2703 — 2

m 6 m

a 2

x0 1 W
= 5= |In ——=— '———2B
* m n1 mt 2 m >

m 6 m
a 2
=y()(1n 1 2w 1%
Y 1 - mt ,',12

N
|
\ w
o]
]
5
|
€
oo
w
e’

2 m

As is done in Chapter VII (Rendezvous), the
set of definitions for A, B, C and D can be
simplified for the case where r'ntmaX (or mtb)

is small compared to 1, for then

1
- mt

1n1 = - In (1 - mt)

R
=r'nt+._2_(mt) +_§__(mt) ¥ -

Thus

A= mt - (1 - mt) Eht+(_‘"2‘_tl2+ﬁingtf+-{\
B=£—r{3;£[l+;m£+£iln%)_2_ +Lf§_éﬁ+-_2\
c=(_£3}1ﬁ 1+_'r21+_(_r'1_n;_)3 +(_r'£’é_)5i+__]

o : 02 3
D = (mt) [1+%1+(mt) , () +__J

Now since the motion of the origin of the
relative coordinates is known to move in a circle,
the position and velocity of the vehicle are known
as a function of time. In particular, they are
known at the end of burning. Thus, the effects
of the burning can be computed by comparing the
position and velocity vectors at this time with
those that would have resulted at the same time
if the maneuver had been impulsive. It is further
possible to determine the effect on the six orbital
elements since the position and velocity at the
end of burning determine these constants uniquely
via the equations of Chapter II1.
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The accuracy of this solution is limited or
restricted by four assumptions.

(1) The locus of the origin of coordinates
was assumed circular. This assumption
can of course be violated if the interval
of burning is known by using the average
velocity corresponding to that interval
and correcting for the radial motion of
the origin. The resultant accuracy will
of course deteriorate .

(2) The vehicle is assumed to be at the
origin with zero velocity at time =0,
Should these conditions not be satisfied,
however, suitable constants can be in-
troduced via the medium of the Laplace
transform, A similar solution employing
nonzero initial boundary conditions is
illustrated in Chapter VIIL (Rendezvous).

(3) Only first-order terms were carried in

the expansion of ?1 -r This assump-

0"
tion effectively limits the allowable
deviation of the vehicle from the origin
of coordinates. Although no analysis of
this restriction will be made here, it is
noted that for single thrust periods

of no more than approximately 2 to 4% of
the orbital period and accelerations no
larger than 1 g, the total displacements

will be no more than 106 ft or 0.3 x 106m.
For such displacements the accuracy of
the method is still adequate for hand
computations of first-order effects.

(4) Higher order terms in mt were neglected
in the series for A, B, C and D. This
assumption is generally not serious due
to the rapid convergence of the series
for most values of this parameter. How-
ever, should this convergence problem
be such that additional terms would not
resolve the difficulty, the original
definition of these constants could be
utilized at the expense of simplicity in
the form.

Because of the manner in which the variables
are related and the large number of ways which
can be used to assess the effects of finite burning
times, parametric data based on these solutions
will not be provided. Rather it is suggested that
the computations be made as outlined and that the
results be compared to the unperturbed solution
utilizing the equations of Chapter 111 or the dif-
ferential expression relating elemental errors
to position and velocity errors of Chapter VII.

Reference 17 does, however, present a set of
figures which relate to the time interval necessary
to "anticipate'" a maneuver (or lead time) and the
difference in the magnitude of the ideal and actual
velocity increments as functions of specific im-
pulse, acceleration level, azimuth and flight path
angle. Because of the interest in these results
they are included.

Figures 33 and 34 show the approximately
linear manner in which the lead time varies with
both acceleration level and specific impulse. In



both cases the curvature is the result of mass
changes and is less noticeable for the small
maneuvers,

Figures 35 and 36 show the effects of finite
burning time on the magnitude of the velocity
increment., These figures show the importance
of consideration of these effects in any com-
putations beyond those of a preliminary nature,

Though not shown in figures, several trends
can also be noted,

(1) Finite burning times tend to result in
a smaller value of eccentricity for a
given mass fraction due largely to the
fact that work is generally done against
gravity forces,

(2) These times tend to produce perigee
radii which are greater than their
impulse counterparts.

(3) The change in inclination of the plane
will tend to be larger for the finite
burning time case than for the im-
pulse case.

K. IN-ORBIT PROPULSION SYSTEM

1. Propulsion System Requirements

Each of the maneuvers to be performed in
orbit (including injection into the various transfer
orbits) requires the application of corrective
impulses. The control of these impulses is the
determining factor in the evaluation of the utility
of the satellite in performing the particular func-
tion. In the navigation problem, the control
tolerances are specified (based upon some maxi-
mum allowable drift rate for the satellites with
respect to each other) and the subsystem require-
ments remain to be evaluated. In order to pro-
vide insight into these problems, the following
analysis of two different types of propulsion
control techniques has been made. These
techniques are:

(1) Monitored propulsive inputs.
(2) Monitored velocity increment,

The first of these techniques attempts to
control or at least compensate for variations in
each of the parameters contributing to the velocity
increment. Therefore, errors in each of the
parameters will be reflected directly in an error
in the velocity pulse. These effects may be
evaluated from the following equation (where the
loss due to finite burning time is neglected):

AV = -gy I An (1 - L) (249)
s(ay) = 2AV) a8 (AV) ain
9 b av'vp
a8 (AV) a3 (AV)
+ o AISp + TWE AWO

g1 LAt Aw
=0 sp b4+ __p (250)
=l
P
AW,
—é(l—é)ln(l-é)-—w—:l
0
) (T/WO) gOAtb . g9 Isp L sz,p
- T-T 1-T
W
p
n Q2 AVAIsp _ go Ispg’ AWO
Isp -t 0

This equation may be reduced to a more simple
form by employing data which is representative of
current technology for each of the control param-
eters. These data are:

Atb = 0.030.sec
Avw = 0,005 W
p p
Al
5P = 17260
sp

Thus, for a specific impulse of 300 sec:

0.966 T/W, 0.1611_ ¢ 2
5v) = —p 04 e +E oV

(n t, Aw_ +w At

A
Z bl pi p; bi 4 WO)
WO WO

(251)

gyl L
T-¢

i=1 i

where AWO is the initial error in the weight of the

vehicle. The last group of terms in this equation
(the summation) is small compared to the other
three for small or even moderately large incre-
ments; therefore, it may be neglected. The maxi-
mum magnitude of the remaining terms is pre-
sented in Fig. 37 as a function of the initial thrust-
to-weight ratio. As may be noted from this figure,
a system of this type would have difficulty in satis-
fying extreme accuracy requirements since to
limit a maximum error in the velocity increment
to less than 0.5 fps appears difficult..

If the velocity increment itself is monitored by
integrating the acceleration due to thrust, the
maximum error in the increment is a function only
of the error in the time of burning and that in the
integration itself. Assuming that the integrated

. 5
accelerometers are accurate to 1 part in 10° g
(which is the expected accuracy of future integrat-
ing accelerometers), the error in the integrated
acceleration should be accurate to approximately

1 part in 104. Thus, the maximum error is

ay 0-966 T/W,
§ (AV) = e (252)

This equation has also been plotted and appears
as Fig. 38a. This figure shows that with control
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parameters as quoted the error in the velocity
pulse can be controlled to well within 0.5 fps for
thrust-weight ratios as high as 0.4 (AV < 100 fps).
Thus, the precision required for small corrections
can be obtained with this system. Since the error
plotted in this figure is the maximum expected,
this figure implies that the error will generally

be negligible. Figure 38b shows the effect of re-
ducing the error in the shutdown time on the
resultant velocity error. The parameter in this

figure (At T ) is immediately recognizable
b WO
as the error in the total impulse.

2. Selection of Thrust Level and Propellants

While the detailed design of a propulsion sys-
tem is obviously beyond the scope of an effort of
this type, the general sizing and capabilities of
such a system can be established.

As shown in Eq (252), if the velocity increment
is to be controlled within 0.1 fps for increments
of less than 500 fps, the ratio of the error in the
impulse to the initial weight must be

TAt

b AV 1-¢
—~ < |8V - 1-5
0~ [ 10 €o
0.05 (1 -1L) _0.05 [ _av
= g g0 g0 Isp
<

0.0015 (for ISp = 300 sec)

From this it may be seen that (for reasonable
errors in the shutdown time, say 0,05 sec) the
thrust-to-initial-weight ratio should be < 0.03,

It should be noted, however, that the thrust
levels should not be extremely low because of
the assumption made in the formulation of the
corrective maneuvers. For these reasons, an
initial thrust-to-weight ratio of say 0.01 should
be selected. If this ratio were maintained con-
stant, the thrust for successive corrections would
have to decrease according to the following equa-
tion.

m
T =0.01 l:wo- Z wptbi]
1

11

However, since the vehicles in orbit will possess
fuel fractions of less than 2/3 in order to assure
reasonable payload capabilities, the thrust-to-
initial-weight ratio for each correction will always
be > 0.03 which is the allowable upper limit. Thus,
no provision for thrust variation is necessary.

With thrust level thus established, the remain-
ing propulsion parameters can be evaluated once
the propellant characteristics are known. This
requires the selection of a propellant or propellant
combination capable of performing as required.
These considerations are beyond the scope of the
present effort and will not be discussed.
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The second step in the analysis of the propul-
sion system is the sizing of the rocket motor and
nozzle. This will be accomplished through the
utilization of the theoretical relationships develop-
ed in gas dynamics and the experimental propulsion
systems data available.

The first assumption concerning the motor
which must be made pertains to the expansion
ratio which is feasible for the nozzle of a motor
operating in a vacuum. From this ratio and the
average value of the ratio of specific heats for the
products of combustion, it is possible to determine
the pressure ratio across the nozzle,

y-1

E? 1 - (Bi) Y
pC pC

1
=AT 2 /Y'l
Ao \v+1

where vy is the average value of the ratio of
specific heats of the products of combustion.
This equation is of the form

2 3y-1
P 1Y Y
<_£> -(.?_) -C=0
Pe Pe

The simplest solution to this equation is by
iteration. Newton's method will be utilized
because of convergence

(253)

y-1
Y+T

f (X))
X =X - e
n+1 n T zxni
where, for this solution, Xn is the nth estimate
of P /pc. This solution results in the following
equation
3y -1

2 Y
n

-C
2y - 1

X Y
n

If P /pc is assumed to be << 1, the first trial of
Pe /pc should be approximately the square root
of C.

From this point, it is possible to establish

the theoretical thrust coefficient of a gas with
the given value of the ratio of specific heats.

y+ 1 Y_‘l
2 2 9 \Y¥ 1 AN
Cp =y () -
F T-1 Y\f+1, P,
p. A
+p—el\—e (254)
c i



Now from the definition of the thrust coefficient
CF = T/Atpc

it is possible to size the nozzle for any selected
chamber pressure. First, however, it should
be noted that the theoretical thrust coefficients
are approximately 5% higher than indicated from
experimental data, thus a better estimate of
these areas should account for this discrepancy.

The length of the nozzle may be obtained once
the equivalent value of the half angle of divergence
has been selected. Care must be exercised in
this selection to assure that the flow doesn't
separate from the nozzle, and that the nozzle is
not excessively long. The length is then obtained
as follows:

2
A - 2.9 - e) -
Ae At m G’e r‘t> At [(’q IJ

r =r +Ltan«
e t

but

thus

L 2
Ae—At At [(1 +ﬁ tan o) -1:'

\ER R
7 tan a

These data define the general size of the
nozzle; however, due to the fact that the optimum
nozzle is not conical but rather more nearly a
segment of a paraboloid of revolution, they do not
define the optimum geometry. This refinement,
however, is not deemed necessary due to the fact
that the thrust levels are small.

L = (255)

4. Combustion Chamber Sizing

The combustion chamber to be fitted to the
nozzle, which has been described in terms of the
design parameters utilized, must now be investi-
gated. This may be done through the investigation
of an additional parameter, the characteristic
chamber length (L*). This parameter, which
affects the cycle efficiency, is defined as the ratio
of the chamber volume to the nozzle throat area
and is a function of the oxidizer-to-fuel weight
ratio of the propellants utilized. Experimental
data must be utilized for this determination. One
such curve is presented in Fig. 39. The curve
presented here is an average value curve since
the data available were for slightly different pro-
pellant combinations operating in different test
facilities under different pressures. Nonetheless,

these data are sufficient to indicate a characteristic
chamber length of approximately 100 in. or greater

is recommendable. Similar data for any other
propellant combination thus yield the chamber
volumes:

V ~L*¥A
c t
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Before the motor can be sized, however, the
geometry of the combustion chamber must be
specified as either cylindrical or spherical.

The former is particularly well suited for small
motors since production is greatly simplified;
the latter is a better design for larger motors
due principally to the fact that the surface area
exposed for heat transfer within the chamber is
minimized for a given volume. Both of these
chambers may be defined when a restriction is
placed on the ratio of the chamber-to-throat area
ratio of the cylindrical motor. This may in turn
be accomplished by investigating the pressure
drop through the chamber.

Py 1+ YMIZ
. 256)
B ulav— (
1 1+4YM, .
inj

where the point 1 is a section passing through
the nozzle throat.

Pr 1+ Yo y2| YT (257)
P LT
Thus
Y
2 Y-1,.2 V-1
Pong _ |14 Y™, 1+—2——Mmﬂ
P b Y -1 2
T, 1+yme 1+—2-_M1J
If now M, .2 is small compared to M 2.
inj 1
2
PTinj= L+ YM,
PT Y
1 Y -1 -1
1+ - 1ym 2
B R |

This is also the ratio of the total pressure at the
throat of an ideal motor to that of a tubular motor.
This ratio may be related directly to the chamber-
to-throat area ratio from the continuity equation
as



Y+1

o1 2)‘(—7)2 V=
Ay o 20— My
A‘;‘er Y+ 1
(258)

The graphical relationship between the total
pressures at the throat for tubular and ideal
motors and the chamber-to-throat area ratio
can thus be plotted in a figure similar to Fig. 40,

and the minimum ratio KE_ assessed. Once this
t

is done, the geometry of the chamber is:

ok 4 3 )
VC =L At =gmr (spherical chamber)
(=)
= A—t— AtL (cylindrical chamber)
Thus
B At
L=L x
c

Note is made that since, as is shown in Fig. 40,
A
A_c should be equal to or greater than 3.0 and

t

since this ratio corresponds to an awkward
length-to-diameter ratio for the chamber (approxi-
mately 30), the length may be selected based on
other criteria.

5. Propellant Flow Rates

The propellant flow rates for the range of
chamber pressures can be obtained once the
variation in specific impulse for a given oxidizer-
to-fuel weight ratio is established. A review of
the abundance of data available will generally
reveal no well defined curve for this variation
due to differences in assumptions, fuel properties,
etc.; therefore, an average curve such as
Fig. 41 must be utilized.

Now
w_ =T/l
p sp

and
A T |
wf‘T+er'I+rT/Isp
T o . _ r
Wo Tttt Y TTFT isp

The propellants may be fed to the motor by any
of a number of types of pumps. However, two
schemes appear particularly attractive for small
thrusts. The first utilizes positive displacement
pump (which can be electrically driven), a hydrau-
lic accumulator and a pressure regulator to sup-
ply the propellants to the nozzle under a constant
pressure. This system can have one significant
advantage due to the fact that the utilization of
the accumulator makes it possible to employ a
very small pump which operates between the
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corrections to keep the system charged. This
possibility results in a reduced peak power re-
quirement and a reduced pump-drive unit weight
without increasing the size of the accumulator
beyond allowable bounds. However, due to the

fact that the unit will be constantly pressurized,
the seal between the diaphragm and the propellant
will require special attention. The second tech-
nique utilizes a small vane-type pump of such

size as to make an accumulator unnecessary. The
accumulator could be used in this application as

it was in the other; however, the positive displace-
ment pump is more efficient for this type of opera-
tion. Note should be made at this point that a
positive propellant feed system is required to
assure flow to the pump in either case.

Pumps of both these types exist in the sizes
required though it is probable that special ma-
terials would be required because of the corro-
sive nature of the fluids.

The piston pumps are available in a variety
of sizes capable of providing exit pressures up
to approximately 3000 psia (20,7 x 106 newtons/

m° at overall efficiencies varying from 85 to
92% (see sketch) for 500< p < 3000 (3.5 to

20.7 x 106 newtons/mz).
- 93 r
= N
o 91
2
o 89 -
9
a 87
m
85 1 1 ] 1 j _
500 1000 1500 2000 2500 3000 psi
| i i J
5 10 15 20 5
Exit Pressure newtons/m

The required power input for these pumps is
obtained from the following equations.

hp = 0.000583 (psi) (gal/min) =

0.00419 (psi) (Ib/sec)
{densily) (overall efficiency)

Torque = (in.B/rev) (psi)

rpm = (lb/min) / (in.S/rev) (1b/ in. 3)

(volumetric efficiency)

L. MICRO-THRUST STUDY

The purpose of this study is to evaluate the
performance and applicability of micro-thrust
devices for small corrections in various orbital
parameters. For each specific correction ma-
neuver, a definite thrust orientation law (con-
sidering thrust magnitude, direction and duration)
exists. The analytical expressions derived from
the basic laws of celestial mechanics are obtained
and their applicability in case of micro-thrust
maneuvers investigated. Solutions in closed form
are obtained in several cases. Low thrust systems



capable of producing these thrusts are discussed
conceptually as well as in detail in the literature.
For this reason, such data will not be presented

here.

1. Planar Study of Radial Circumferential and
Tangential Thrusts

Consider a set of equations of planar motion in
polar coordinates. If R is used as the sum of
radial accelerations and T as the sum of circum-
ferential accelerations, then

2

S u
r r8+—2- R

r

1 d 2 > )

T ar (‘” 9 -7
It is noticed from Eqs (259) that angular momen-

tum is conserved only if there is no component of
the tangential thrust applied to the satellite.

(259)

Several special cases for thrusting in the two-
dimensional micro-thrust problem are discussed
in the literature. The most important results of
these solutions are summarized below and will
serve as an introduction to further discussions.

a. Radial thrust

This problem is treated in Refs. 18 through
20. The outline presented here follows basically
Ref. 20.

Equations (259) for the given case become

. -9 i )
r -ro +—;2 = R

rzé = th = constant

where p is the semiparameter at the instant.

(260)

Now introducing nondimensional variables
defined in terms of the instantaneous orbital
elements.

R¥ = R (acceleration compared to gravity at a)
a

r . . . .
r¥* = I (distance in number of semimajor axes)

t* = t/ al g, (time compared to the orbital
period)
By these substitutions, the Eqs (260) become
(neglecting e2 terms)
- ES b3 52 1 = sk
rk -rx0 +—2— = R*

r*
(261)

where differentiation is with respect to t*.

Now eliminating 0 in Eq (261) yields

.I‘.* - — + — = R (262)

1 1
% o

Eq (262) can now be integrated assuming an

initially circular orbit at r* = 1 to yield
C 2 2 1 . :
rx® = S - - +2R* (r¥-1)-1 (263)

From Eq (263), it is apparent that the radial veloc-
ity is zero at the radial distances where

oR* r#S - (2R* + 1)r*d + 2r% - 1 = 0 (264)
or

rk =1
and

- %ﬁ——- h‘gR (265)

From Eq (265), the fact is seen that the orbit
remains bounded for radial accelerations R* < -é—
In the opposite case, R* >é—, no real roots exist

in Eq (265), which indicates that large changes in
the planar elements are possible or that escape
from the earth's gravitational field may occur if
a constant radial acceleration is applied for a
sufficiently long time period.

The condition for critical acceleration R> = é—

implies

2
- mx _ 1 o1 op 1 r
R = R*g, gga'z;;zw;(a\ g

R, = radius of @

gy = surface gravity.

Siuce the micro-thrust devices have, in general,
a thrust level of 107~ to 1073 g,» they are obviously
not adequate for large orbital changes employing
radial thrust applications. Nevertheless, as
shown in Ref. 19, such radial micro-thrust can be

used effectively to change the eccentricity of an
orbit.

If Xy > %y > Xg are the roots of Eq (264), the
solutions for a central angle and flight time as
functions of the radial distance are:

{1) Radial inward thrust, R* <0

[
B

o (r%) = 25 l:__,, (¢, a—, k) + cF (s, k)]+ const.
v B

(266)

VI-57



t* (%) = i—'s [23 F (¢, k) + (x1 - x3) E (¢, k) +

(x1 - x2) sin 24

]+ const
2;1 -k sin ¢

where 2
a = -xk
3
B = X,
2
6 = (xz-x3)k
2
px = 280 6+ B
.2
csin ¢+1
2 | Z *( x,)
y = (xz-xs)k -2R X, 3
X =X
2 1 2
c = -k = -——F
*17%s

F (4, k), E (¢, k) and = (&, % , k) are elliptic
integrals of the first, second and third kind.

(2) Radial outward thrust, 0 < R* <%

262

6 (r*) = vap " (%, g_, k) + const.

t* (rx) = gL
Y

[x1 F (4, k)

-y - x3) E (4, k)] + const.

where (2617)
@ = Xy-xg
B = Xq
_ .2
r =asin” (¢ +8)
6 "Xy X3
Y = (x2 - xs) 21’{’°=(x1 - x3)
W2 X2
X1 7 *3
.2
pe = 28I 4+ B

csin” ¢+ 1

b. Circumferential thrust

This problem is also solved in Ref. 18, using
a series expansion method for large thrust ratios
and a simple first order approximation for the
very small thrust ratios. For circumferential
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thrust, the equations of motion corresponding to
Eq (261) are

f‘*-r*é2+ 1

r’°<2 "0
(268)
dc:—* (r*zb) = r* T*
where
T* = Tig, (269)
Eliminating 6 from Eqs (268),
Edt_* el 4 x-=r<)1/2 = pX T* (270)

for very small accelerations, r*3 r' * << r* and
the approximate differential equation is

T r* 1z i T (271)
and
1
r¥ =
(- T* t*)Z (272)

which is a good approximation.
¢. Tangential thrust

The problem of tangential micro-thrust appli-
cation is treated in Refs. 21 through 23. It is
shown that the mass ratio is slightly smaller for
tangential than for circumferential micro-thrust
for all but circular orbits. The approximate
solution for radius is basically the same as Eq
(270), if the first order approximation in Tt* is

considered (Tt = tangential acceleration):

1 (273)
e (9)

where s = distance traversed by the rocket.

r¥* ~

In Ref. 16 the altitude change per revolution
is given for the tangential micro-thrust as:

Ar =47 T, *r (274)



and the number of revolutions to reach a certain

altitude is

to

(275)

This equation states that the number of revolu-
tions to escape is inversely proportional to T,
The following sketches obtained from numerical
integration exhibit this behavior. Also shown is
the fact that the orbit grows in such a manner
that most of the revolutions approximate concen-
tric circular orbits. Thus a tangential thrust is a
very simple and accurate means of changing the
radius of a circular orbit,

Radii
10 15 20
L 1 1 l l ] - 1 L 11 1 l 1 4 1 )
T = 6.30 days
T = 4.10 days
T =2.97 days
Escape
T = 8.70 days
Escape
T = 91.91 days\
Radii N
2 30 40 50 60 70 80 \
| | L 1 1 | 1
T = 72,66 days
T =54, 10 days
T = 29.55 days
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2. The Equations of Motion

The preceding discussion (Eqgs (259) through
(275)) showed the motion of the vehicle in polar

coordinates under the influence of a micro-thrust.

Unfortunately, this formulation is not always
satisfactory for presenting the most readily com-
prehended information pertaining to the micro-
thrust problem. For this reason, the equations
have been written in terms of osculating orbital
elements (i.e., the elements of the instantaneous
elliptic orbit resulting from thrust termination

at that time). This derivation is presented in

Chapter IV.
da 2 i )4 _‘
ga = [ . 4+ =
T > (e sin g R h T) !
afh - e ]
2
de _ V1-e . "
T T o {sme R+ (cosg +cos E} T
{ +
g:_ R r:os(u Z) W
na (I-e)
.osda L r sin {y +o)
sin 1 3 —27_7. w
na 1 -e
4 . o, a2 Ldn
il 2 sin 2 at
2 :
+ y: - ¢ [—cose - R+sin p (1+—)'I]
nae P
2
de 2r e di
a - z Rt z dt
na 1+¥1 -e
21 d
+ 2 1-82 sin %—? (276)
~
where: o = w +Q

and where R, T and w are the components of ac-
celeration along the radius, the normal to the
radius in the plane in the general direction of
motion, and normal to the plane in the general
direction of north, respectively (see sketch).

Equations (276) are the basic Lagrange planetary

equations, from which special cases for a single
component of disturbing acceleration can be de-
rived. The resulting set of differential equations
for the orbital parameters can be programmed
for a digital computer, and the variations in the
orbit computed as a function of time.
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The equations can, however, be integrated un-
der several conditions. The resulting equations
are presented in following paragraphs. It should
be noted, however, that, in certain cases, angular
momentum is not conserved for long periods of
time (tangential thrust) and that the integration
formulas give a good approximation for only a few
orbital revolutions.

a. Acceleration perpendicular to orbital plane

In this case both the radial and circumferential
components of the acceleration are zero (l.e.,
R = 0 and T = 0), and the planetary equations for
the disturbing acceleration fdllow from Egs 276
simply as

((da _ de _ A
dt dt
di _ recosu +5)
dt 2 2
na Vl -e
do _ rsin (w +6) S
dt 2 2
na 1 - e sini
dg 21 d (277)
Cw o i L
dt 2sin 5 5
de | du
L dt dt
Define a nondimensional acceleration
W:{( = —— (278)
€a

where g, is the gravitational acceleration at a

distance corresponding to the semimajor axis.

. 2 -
Sinceg =n a3, this acceleration is equal to
ML 2
g~ 3 -~ n@
a .
and 2 (272
W = n aWx
From the conservation of angular momentum,
do _ Yop
dt 2
r
it follows, by using p = a(l - ez), that
I S
de 2 2
na 1 -e
(280)

Substituting Eqs (279) and (280) into Eqs (277):



3
di | r cosluw *a) . .
e T wo= 3
7 de a3 (1—e2)
22
- +
(1 -e”) cos{y+ag) W
(L +e cosap)
22
do . (1 -e”) sin(y +9) Wi >
d sini (1l + e cos g)
dj _ .2 1 dp
36 = 2 sin 2 d_e
Lgf_ = _di J
deg dg

(281)

Assuming the variation in i during a revolution
to be extremely small, such that sin i can be
considered essentially constant, these expressions
can be integrated with respect to the central angle
8.

First, expand the sines and cosines:

sin{w+ g )=sinw cos g + cosw sin g

cos (w+ 5) =cosy cosg -sing sing

(282)
Substituting this into Eq (281),
0 2

' 2 ' co d
AisSdi=W*(1—e) COSwS—M—‘g“
9 (1 +ecosg)

0
d 0
. * sin
—smm‘g Eiﬁ—? (283)
(1 +ecos g) 0
0
0
A= S do
3]

2
(1+ecosag)

I¢]
+ CcOS 3 M_S_} (284)
(1 +e cosg)

Both equations can be integrated by the use of the
following integration formulas:

sin g da - 1 i
3 2
(1+e cos p) 2e (1+ecosg) 80

3‘ dg _ 1 [ -e '1 - e2 sin g

2 232 +
{1 +e cos g) (1 -e”) l+ecose

-1{ /1 -e 9
+ =
2 tan ( T+ tan 2):, :

0

2 .
5' cos g dp _ 1 ['4—e sin g

2 3/2 1+ ecosg
(1 +ecosg) (1-92)
3]
- —e g
-2etan T+e tan 2>:'
0
© cos o dg _ 1 sin g
5 3 2 2
(1 +ecosg) 2(1 -e”) (1 +ecosg)

+S._2e+cosgz d9]= 1 . sin g .
(l1+ecos g) 2(1-e”) (1 +ecosg)
2 .
+(1+2e) sin g
2
2(1__(32) (1 +ecosg)
0
Je ~1 1 ~e 5
5z A ( IT+e ta”z)
(1 ~e™) 80
(285)

After some simplification, the change in orbital
inclination caused by a constant micro-thrust
perpendicularly oriented to the orbital plane is
given by

2
Ai = W:::S d-e) 9 |:sin9 cos g
12(1+ecose)

(1-e2) ) :, (1+282) sin g cosuw
= \————— gin y{ t+

e 2(1 + e cos g )
(<]
3e cos -1 1 -e g (rad/rev)
iz @r ('l+e ta"z)
(1-¢e)
6(')
(286)

and the change in the longitude of the ascending
node is given in the form

2
Wk 5 1 -e . :
AQ = S'i_n 1 ( ) 2 |:sm9 sin ¢y
1 2{1+e cos g)

2 2
- + i i
. (1 e )cos w:| + (1 +2e7) sin n sin

e 2(l+ecos g)

o €]
3e sin ~1 -e i a l
T 172 tan <‘[1 + e tan 9 (rad/rev)
2 (t]

(1 -¢7) 0

(287)
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2
and the mean longitude of epoch (¢) are both equal dg _ _{1-e) cosg R*

de

The integrals for the longitude of perigee (@) { 2 k

2
and are simply Eq (287) multiplied by 2 gin? é— e(l+ecosg)

Of course, if i should be varying very rapidly, 2 5/2
then sin i could not be taken outside the integral d_‘_ I 2(1-e)
sign in Eq (172), and a closed form solution would dg (1+e cos )3
be extremely difficult, if not impossible, to obtain. 6
b. Radial acceleration 2 2
+ e(l -e”) cosg R*
Setting T = 0 and W = 0 in Lagrange's plane- 1+ '[_ < 1+ 2
tary equations, the following results are obtained: ( e)(l+ecose) (290)
\
da _ 2e sgin 9
a As for micro-thrust applications, the changes
; in orbital parameters during one revolution are

extremely small; thus it is possible to assume

F e= ey a=a,, etc., and consider these variables
de L -c sing R as ""almost constants'" in integrating Eqs (290).

dt This assumption can be proven analytically for
certain cases, and it is a close first approximation
a | da_ _ for all cases.
< dt dt

The change in semimajor axis during one
revolution in the orbit is found as

do _ -e cose
dat R Aa-gda=

[¢]
. 2
de 1 r e ¥Vl -e 2 sing dg 2aR* (1 -e”)
— =~ /= |2 + =~ = cosgl|R 2aeR* (1 -e") =
> dt na [ / :l / +
2 1+1—e2 (1+ecosg)2 (1 +ecosg) A
(288) (291) 0
At this point it should be noted that for radial o . o
acceleration there is no change in the orbital Similarly, the change in eccentricity for intervals
inclination and in the longitude of the ascending up to 1 rev is

node. The orbital plane remains essentially fixed
in the inertial space, and only the shape and size

2 2
© si d R* (1 -
of the ellipse are altered. Aew S de = R* (1 - e9) 3 sin g dg 5 = (l(+e ceos)9 A
(l1+e cos g) !

2 .0

(292)
Now introduce a nondimensional acceleration, If e = 0, the equation simplifies to
R* = il . Thus as before 9
g, ;
Ae =S‘de=R*Ysme dp = - R* cos g
R = n®aR* (289) %
For the case of a radial acceleration, the The variation in the longltude of the perigee

angular momentum is conserved. Thus again for intervals up to 1 rev is

. 1 -¢) cosg dg
Aags dg = - (—-e—""R* S — 3
2 (1+ ecosog)
at r
4
do aZ n ‘/17— e or
~ R Y. -
and Eqs (288) become A= - [ 1i sin g
e '/1 -e cos g
2 6
da (1 - e”)sin - -
3 = 2ee -———_92 R* - 2etan~! [¢/L2€ tan & 203)
(l1+ecosg) l1+e 2 /14 (
Finally, the change in the mean longitude of epoch
de _ (1 - ’Fsin 8 for this same interval is
dg R* 5/2
6 1+ 2 2 dg
(l1+ecossp) Aengds=- 2(1-e") 3
(1+ecos g)
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(1 2)2
e -
+1+‘A—62 S

Integrating and collecting terms,

- R l-e2 %

cos 6 d 6

2
(1 +ecosg)

-e(l—ez)sing

Ne =
(1 +ecosg)

3 e
I +——-—__>

-2 t:ln-!(vi tan i) .
l+e 2 / 2
‘1 -c
f (2]
-e 1—5-2 Sinq+2t -1 1 -e t’lne— l
1+ ecos s an 1+e 2 S

(294)

Equations (291), (292), (293) and (294) define
all the changes in orbital parameters for a con-
stant radial micro-thrust applied during a known
change in the central angle during 1 orbit.

c. Circumferential acceleration

Last, the case is considered for radial and
the normal components of the micro-thrust ac-
celeration equal to zero; i.e., only the component
in the orbital plane perpendicular to the radius
vector exists., Then, Eqs (276) reduce to

N
da 2 P\ 1
dt f‘*z‘ r
n ‘/1 - e
de ~82
Tl vy (cos g +cos E) T
di _ do
a T oa "0
2
dg '1 -e . r
It S Thae  sine <1 +E> T
/ 2
e eW-e (1 +I) T
dt ( 2) P
na (1+ ¢l -e
\ ‘[ ) (295)

Once more, using a nondimensional acceleration

T# = -, substituting T = n® a T* into Eq (295)
a

and remembering from the definition of semipa-

rameter that

= (1-e4 2
r

N T

| =

the following set of differential equations is ob-

tained:

d——a = 2r T = L s

de 1+ecosg
de  _ 1 - ez)z (cos g + COSZE) T
de (1 +ecosg)

. 2
6 e (o)
dg e P a
2

s D0
ds 1+ +e2 P .
L —

(296)

Here, also, the assumption is made that the
changes in orbital parameters during one revolution
are extremely small. Thus, Eqs (296) can be
integrated as follows, giving the change in semi-
major axis

- - _— dp
Aa = Sda =2 pI‘~ 3 m
a
-_2EIL -1 <'l - el sin
= tan e
‘/1 - e2 1+ecosg (297)
Now 0

e+ cos g

cos E= ———— Y
l1+ecosg

Therefore, the change in eccentricity becomes
Aezf de = (1 - )2 x {g

dg

cos g dg
(1 +e cos 9)2

+eS‘

cos g dg }

3
(1 +ecosg) (1+ecos9)3

f
Vl-ezsing

z 3/2 [1+ecose

(1 -e?
€ tan &
-~ 2 e tan i+e tan 2):,
+ 1 e {—e 1 ~-e sin29
2(1-e2) (1 +ecosg)

(continued)

V1-63



+ .3 -e‘l-ezsins‘thn-l 1-e tang—)]
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2 2 . - -
+(——-——————1+26)1_e Smg-fie?.an1 1 elan»Ei
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23/2
1 (1-¢) sin g
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2
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(298)

The change in the longitude of perigee is

2

2 ;
* -
~=S‘d;}=’1‘(lee) [(‘smgde ,
Y (1 + e cosp)

. (‘singdg 3]

‘J(1+ecosg)

and, thus,
2

_Tra-ed [ 1 . 1 ]
e2 (1+ecosg) 2(1+ecosg)2

0

<]
0

(299)
The change in the mean longitude of epoch is

and, finally,

T*e !1-e2 s -e% -e2 sin 0
De = 2
f‘—)z l 1+ ecoss
2(1+ 1 ~e

- - Q
+ 2 tan Q1+e tan2>j|

2 1+
(1 +ecosg) 1 - € cos 6

‘/ ‘/ 2

_ e 1—ezsin9 + 3 l:—e 1 -e sing
2
e

o (continued)
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(300)

d, Conclusions

The equations of the preceding discussions
are in the strictest sense only approximate, since
the coupling of the equations has been neglected.
However, if the interval of time is sufficiently
small, the results will be quite accurate. The
implication of this is that these expressions could
be used to evaluate secular changes and a program
written for an electronic computer to sum the
various contributions. This is indeed true. The
procedure has much to recommend it since the
time of computation will be much reduced and the
problems of numerical roundoff almost eliminated.
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NOTE: No primes denote premaneuver

Primes denote post maneuver

Fig. 8. Maneuvers in Circular Orbits to Change Orbital Inclination and/or the Node
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RENDEZVOUS

SYMBOLS

Symbols used frequently in this chapter are

listed here.
a

A

Mo

Isp

2 8 8 rC

o}

semimajor axis (ft or m)
right ascension relative to vernal

equinox; homing vehicles yaw
relative to target orbit

braking distance

eccentricity

eccentric anomaly (deg or rad)
thrust (1b or Newton's)

gravitational acceleration =

GM@/I‘Z (fps2 or mpsz)

Newton's Universal Constant of
Gravitation

angular momentum (ftzlsec or

m2/sec)

inclination to the equatorial plane
(deg or rad)

specific impulse (lb-sec/1b)

coefficient of the potential func-
tion = 1, 0823 x 1075

latitude (deg or rad)

mass (slugs or kg)

mean anomaly (deg or rad)
mass of earth (slugs or kg)
number of revolutions; mean
motion (ﬂ

semilatus rectum (ft or m)

radial component of position,
velocity and acceleration

apogee and perigee radii
equatorial radius of earth

radius of equivalent sphere for
earth; relative range

relative range rate (R * V)/R
relative position vector

time

burning time; braking duration

rectilinear time to go (R/R)

VII-1

Subscripts

a

normalized position variable for

relative motion study = wot

deviation in radial velocity for
closure = —VR

velocity

velocity components in the
circumferential direction, radial
direction, and normal to the plane,
respectively

initial weight; deviation of velocity
from circularity in discussion of
relative motion = —VC

Cartesian components of position

nondimensional position parameter
for relative motion study (y/r)

azimuth relative to local north

flight path angle relative to local
horizontal

central angle from perigee to
instantaneous radius

nondimensional position parameter
for relative motion study (z/r)

longitude relative to prime meridian
earth's gravitation constant = GM@

longitude of the satellite relative
to the ascending node

nondimensional position parameter
for relative motion study (x/r)

ratio of propellant mass to initial
vehicle mass

standard deviation

orbital period

argument of perigee; angular rate
angular rate in a circular orbit

change in argument of perigee per
revolution due to oblateness

right ascension of the ascending
node

change in Q per revolution due to
oblateness

rotational rate of the earth 1 rev
each 86164, 091 mean solar sec

apogee



BO

Lar)

= =

bias

burnout

parameter in final orbit; final
homing

launch

low altitude orbit

node; nominal; running integer

perigee, proportional

VII-2

(=S

A @

along range vector

smoothing

value in transfer orbit; total; target

transverse

rotation about local vertical

initial, at time
earth

moon

0]



A. INTRODUCTION

With the advent of large instrumented and
manned satellites, a requirement has been gen-
erated for bringing two or more vehicles together
in space. This maneuver is referred to as ren-
dezvous and is differentiated from intercept by
the fact that at the time of closure the velocity
vectors of the two vehicles must match. The
procedure for matching these position and veloc-
ity vectors is the subject of this chapter, and the
various phases of the maneuver will be studied in
detail.

Rendezvous can be broken into a series of
problems for the purposes of discussion, these
problems being:

(1) The gross maneuver.

(2) The terminal maneuver.

The gross maneuver refers to the powered and
coasting periods necessary to place the shuttle or
homing vehicle in the vicinity of the target satel-
lite. This maneuver can be performed in a num-
ber of ways,among them being:

(1)

Rendezvous utilizing an intermediate
orbit.

(2) Direct ascent.
(2) Rendezvous compatible orbits.

{(b) Direct ascent coupled with plane
change maneuvers.

The first of these techniques concerns itself with
the reduction of a three-dimensional problem to
one of two dimensions by the simple expedient of
launching into the plane of motion at the time the
launch site is in the plane. Time then passes un-
til the desired relative positions of the two vehi-
cles are obtained; then a planar transfer is initi-
ated.

A second approach (Rendezvous Compatible
Orbits) is an attempt to once again reduce the
problem to two dimensions but without utilizing
the intermediate or parking orbit. This is pos-
sible if the orbital elements of the target satel-
lite are judicially selected. Thus, the whole
philosophy is predicated on the premise that
rendezvous will be required at some future date
and the orbit of the target selected accordingly.
The third approach treats the problem as one of
three dimensions and allows for the expenditure
propellant to turn the velocity vector at the time
the vehicle enters the desired plane. Each of
these approaches is investigated.

of

The terminal maneuver refers to the analysis
of the procedures necesgsary to reduce the rela-
tive position and velocity of the shuttle vehicle
with respect to the target to zero. Because the
distances involved are small, this portion of the
analysis is conducted utilizing the equations of
relative motion which are derived and discussed
in the text. The discussions pertain to the vari-
ous guidance schemes which can be employed
utilizing these equations and the behavior of the
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vehicle under the influence of such a law. Materi-
al is also presented which relates the energy and
time of closure requirements for such motion,

and schemes for data smoothing during closure.
The chapter ends with a discussion of long time
closure trajectories, and an analysis of homing
phase errors.

B. THE GROSS MANEUVER

The analysis of closing with another vehicle
requires that the velocity and radius vectors of
the target vehicle be matched. In the process,
however, it is generally required that as little
propellant as possible be expended for maneu-
vering (i.e., changing the orbital inclination or
nodal position). Thus, while not always practical,
it is desirable that the analysis be reduced to the
problem of nearly coplanar orbital transfer. Two
schemes for defining the launch timing for nearly
coplanar transfers and the general case of non-
coplanar transfers are presented in the following
paragraphs. These are:

(1)
(2)

Launch utilizing parking orbits.

Direct ascent to a rendezvous compat-
ible orbit.

(3) Direct ascent to orbit considering
planar adjustment.

The method of approach neglects the pertur-
bative accelerations due to the sun and moon and
assumes that the orbits are Keplerian ellipses
(making adjustments for the secular perturbations
due to the earth's oblateness). Similarly, the
orbital decay rates in all orbits are assumed
negligible (thus the analysis is restricted to or-
bits of greater than 200-mi (320-km) altitude or
to short times at lower altitudes). And finally,
the burning time of the rocket stages is assumed
to be short (making it possible to treat the velocity
increments obtainable from rocket stages as pul-
ses). Justification for the final assumption is
shown in Chapter VI.

1. Development of Equations To Be Utilized

The studies of orbital injection are directed to-
ward the evaluation of the parameters affecting or-
bital injection and the establishment of the sensor
accuracies and computer requirements necessary
to produce a desired orbit. For this analysis the
transfer orbit is assumed to be an ellipse, and the
final orbit either circular or elliptical. To assure
the maximum degree of flexibility, injection (i.e.,
the point at which the final trajectory is obtained)
is assumed to occur at a point corresponding to
the intersection of the transfer orbit and the de-
sired orbit rather than at apogee of the transfer
orbit or at the point of tangency of the two orbits,
However, it must be pointed out that both of these
methods of injection can also be obtained from the
generalized approach as outlined. All of the equa-
tions derived are reduced to the fewest variables
possible, thus maintaining simplicity both in the
analysis and in the application of the equations to
a vehicle-borne computer. While not absolutely
necessary, the equations are reduced to a non-
dimensional form, thus assuring that the analysis



is capable of handling transfer between any two
elliptical orbits around any central body. The
following sketch defines a typical transfer and
points out the parameters which must be deter-
mined to define the maneuver.

Y=o, -0 (1)
Ay =Y T Yy (2)
AVZ’-lVf2+Vt2—2Vf V, cos BY (3)
g, £ s8in
AV =g, I _fn [ ) - 8P Y
0 “sp \1-¢ F/WO
(4)
0 xcos 1 [p-r]
re
Zra r,
Nk
= cos ¥ (5)
-1
p
y -1 r_/r
= cO8 - I (6)
2 +1) - _‘_’:7L_
T, r_ It
Cir r /r
gV s LAP a (7

Ta
5 -2
p

The determination of the radius of intercept is

in reality a fairly complex solution since the exact

size, shape and orientation of the transfer orbit

are not known until the vehicle has been tracked for

some Interval of time, However, since the actual
orbit differs but liftle from the predicted orbit
and since there is an interval of time during coast
when tracking data may be processed, it seems
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reasonable to assume that the actual transfer or-
bit is defined. Now, since the required informa-
tion is available,the radius of interception may be
evaluated as follows.

P
1% et cos §
t t
Y Pt
-Fl—efcos 8, T'+e;cos (et'\i/) @)
Therefore:
r r
af af
T +1>+(r__'>°°s Oy -v)=
pf pf
r r t
raf ra__t + 1) + (?'i‘i - '1) cos e{\ (9)
at pt pt
and:
2 rat rat rat
_ - (_r_+1 +(f'_ - cos 8, (10)
pt pt

The solution for Bt from Eq (9) 18 somewhat

tnvolved, and the type of solution may well de-
pend upon the material available for the solution
and the number of times that the equation must
be solved. If a small digital computer in the
vehicle is programmed to handle the solution,

an iterative solution would probably be the sim-
plest, A direct solution may also be obtained for
6, after manipulation of the terms in Eq (9); this

direct solution is to be preferred for accuracy for
manual evaluations of et even though the form of

the equation is complex,

coset- -A+ ¢gB+A (11)
CD
AwCD_ A
1+C
B-.—l_-_lzz-
1+C & (12)
C = X ~yz co8 y
Yz 8in
D= (x +2)-2z (y +2)
yzsiny )
x = 8t 1
rpt
-
af
= -1 (13)
rpf
2 u 8t
Taf /



Timing for the injection pulse can be obtained
by matching tracking data for the radius to the sat-
ellite with the value of the intercept radius as
calculated, or the pulse may be initiated at some
specified time corresponding to the time of flight
from cutoff to the intercept radius. This time of
flight may be computed by subtracting the time of
flight from perigee to the cutoff radius from that
corresponding to travel from perigee to the inter-
cept radius. The time of flight from perigee may
be determined as follows.

This appreoach is entirely general so that the
case of tangency of the two orbits can also be
evaluated. That case, however, provides another
restraint (the flight path angle identity).

‘ raf/r
cos ¥ = T T IT
( af | 1) _ af I‘pf
I‘pf Tat
I‘att/r
) (‘at +1> _ Tat/Tpt
rpt r 4t
r
(‘Lt N 1) r (_31 " 1)
r r at b
. af \'pt pf (14)
tan raf rat
Ty rpf

The equations of this section have been plotted
in nomographic form and are presented in Chap-
ter III. The accuracy afforded by these figures is
inadequate for most detalled analyses: however,
preliminary calculations are greatly simplified
by their use.

2. Launch Utilizing the Intermediate Orbit

a. Formulation

Since the majority of the missions envisioned
for satellites suggest orbits inclined at greater
than 30° to the equator and since in-orbit maneu-
vers are not necessary for these orbits, the first
approach to be analyzed is that which requires
accurate control of the time and azimuth of launch
and which utilizes the intermediate orbit.

Kepler's equation defines the time the vehicle
coasts in the transfer orbit. This time plus the
total time in the intermediate orbit, the time of
ascent to the intermediate orbit, and the time from
perigee to the point of rendezvous in the target
orbit, defines the time (in the target orbit) from
perigee to the position of the target vehicle at the
time of launch. This time in turn defines the
position of the vehicle in its orbit. However, this
reverse solution of Kepler's equation is trans-
cendental and requires an independent investigation.
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The time from perigee in the final orbit at the
time of launch can be computed as

t = t

1t -t (15)

2f ~ tt STy ascent

where

5]
21
tan —2——:'

Now
tlffzn)

Te

E, -epsin E, = =M, (16)

This equation can be solved using any of a num-
ber of iterative processes; however, Newton's
method appears to possess best convergence
properties.

f (E,)
E A =E, - —nrX
k+1 k I'(Eki
f(Ek)-=Ek-esinEk-M1

f (Ek)-l-ecosEk

and

e [sin E

Eppr = —

k-Ekcos Ek] + M

1 -ecos Ek an

This series has been shown to converge for all
Ek and to converge very rapidly if a reasonable es-

timate of By is utilized. Pursuing this thought fur-

ther, it may be seen that Kepler's equation can be
divided into two terms, each of which defines a line.

y =8in E
1
y-?(E—M)

The Intersection of these lines is the required
solution. This graphical solution, presented in
Fig. 1, would be employed as the first estimate
of E. (The nomogram of Kepler's equation,
Chapter III, may also be utilized.) Once this solu-
tion converges for El’ the initial position of the
target vehicle may be evaluated.

E
-1 af 1f
elf = 2 tan [ tan —2—}

(18)
rpf




To illustrate the power of this method, consider
the following sample problem:

Sample problem

M=1.0
e =0.3
E.~1.29
g =0.3 [0.980823 - 1,29 (0.277174)}+ 1.0
Kk+1 T.0 - 0.3 (0. 27717T4) —
= 1.288087
- . 0.3 [0.980294 - 1.288087 (0.278991)}+ 1.0
K+2 1.0 - 0.3 (0.278991)
= 1.288088

These equations only partially define the ren-
dezvous problem since only the position of the
target vehicle and the corresponding time of launch
are evaluated. Consideration must now be given
to the position of the launch site. This can be
accomplished with spherical trigonometry; how-
ever, several quantities, shown in the following
sketch must be defined before proceeding.

Reference direction

-
Projection X
of the perigee

radius in the

equatorial plane Rotating

reference

The angle from the ascending node to the ra-
dius at which transfer into the final orbit occurs
(projected along the equator of a nonrotating
earth) is

-1
A, -Q=tan I:cos { tan (wt + Bt)] (19)

where As is the right ascension of the satellite at
the point of injection into the final orbit, and the
latitude of the point of injection 1s

-1
Ls = sin [sin it sin (mt + Gtﬂ (20)

Similarly, the angle from the node to the peri-
gee of the transfer orbit and the latitude of peri-
gee may be computed as

-1
Ap - =tan [cos i, tan “’t] (21)

~1
Lp = sin [sin it sin wt] (22)
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Continuing, the position of the required point
for injection into the intermediate orbit is

ABO- Q =tan"1 [cos i, tan (wt - ¢)] (23)

Lgo™ sin” ! [sin i, sin (wy - ¢>)] (24)

The last remaining step is to define the posi-
tion of the launch site and the azimuth of burnout.
This problem requires the value of the ground

range attained in ascent to the low altitude orbit
over a nonrotating earth (x).

AL -Q = tan™! [cos i, tan (wt . )] (25)

R

e
in! leiny, st - -x—)] 26
L; =sin [sntsn(»t ¢ R, (26)

B, =stn’! cos (27
L cos EL

If the assumption is made that the distance and
time spent during ascent to the point of burnout
are small, the azimuth in which the vehicle must
be fired can be computed. This solution follows
from the laws of sines and cosines and Eq (27).

2 2 2
VBO _VBO +(Qe Re cos LL)
-2 VBOQe R cos L sin §§
- v. 24+(@ R cosL )2-2V_ .2 Rcosi
BO e e L BO e

cos B' = Vpo ©08 B [VBOZ + (Qe Re cos LL)2

-1/2
-2 VBO Qe Re cos 1} (28)

The uncorrected launch azimuth (1.e., Eq (27)
is presented in Fig. 2. The value of azimuth ob-
tained in this manner is quite close to the corrected
value since the velocity component produced by
the earth's rotation is only 1524 cos L fps or 465
cos L mps. The magnitude of this vector is, thus,
approximately one-tenth of the magnitude of the
burnout velocity for most orbital shots with a re-
sultant effect on the cosine of the azimuth between
0.5% and 10% depending on the orbital inclination.



Equations (25) through (28) define the position
of the required launch site and the azimuth of
launch both in space and relative to the launch
site. However, if a particular launch site is to
be utilized, consideration must be glven to the
problem of matching the desired time of launch
with the t{me at which the launch site crosses the
desired orbital plane.

tL = t1
where
tL = the time of launch relative to the refer-

ence direction in the plane of the equator.

t, = the time from perigee In the final orbit
to the vehicle at the launch of the shuttle.

Now
JAR 4
tL = t2f - tt - talscent T o7, [1 +T]
where (20)

t* = time required by the satellite to travel
from the projection of the perigee radius
in the equatorial plane to the reference
direction (all times are thus related to
a common base).

n = number of revolutions in intermediate
orbit,

AT = oblateness correction to orbital period.

Numerical data can be generated for the time
of ascent once it is known what the intermediate
orbit will be and to what extent the trajectory
from launch to burnout is shaped by the guidance
law. It should be noted that since the selection
of an intermediate orbit will depend on the dura-

tion of t , iteration for this quantity will be
ascent

necessary.

This time must be matched with the followingJ
if no error in the orbital plane is permissible,

(tanLL
. “1 =
_(-QJ-nQI)-ALi:sin t.'a.n1 + o7

tL = (30)

2
e
where 6 = | for southerly launches, 0 otherwise,

QZ = secular regression rate in the intermediate

-3m J2 cos i

EHES

and where the plus value of sin_

orbit = 0 < i< 180°

1 ftan L

tan 1
for northerly launches and the minus for southerly
launches.

is used

It should be noted at this point that range
safety restrictions at both AMR and PMR current-
ly restrict all launches to those in a southerly
direction. For this reason only southerly launches
are given attention, and therefore, only the nega-
tive sign is utilized. For convenience, the term
7 will also be combined with the angle Q.
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Since the solution of Eqs (29) and (30) mayre-
quire that the satellite remain in the low altitude
orbit for a long period, it may be possible (if small
errors in the nodal position are acceptable) to
launch at a time when the desired launch site is
arbitrarily close to the desired plane. This is
done in the following manner.

tan LL
(Q‘*nb)-AL-sin—l fan 1
t. - (31)
L Q
e

< allowable nodal error

Q
e

Since rendezvous cannot occur until this error has
been removed, maneuvering is implied. Equation
(31) thus introduces the concept of launch time
tolerance (or launch windows as the subject is
sometimes called) since

AR
AtL Rl cum
e

It should be noted that the perturbing influence
of the earth's oblateness has been included only
In those terms Involving the low altitude circular
orbit. This assumption is reasonable, though not
precise, If the final and initial orbits differ mark-
edly in size. However, if more accuracy is de-
sired, or if the various orbits are essentially the
same size, the following equations should be em-
ployed.

O b4
bty PR am (Z‘w‘) T4t oan (Tn)
AT
nTy, [l Y= - tascen‘c (32)

. 9t . ef .
Loy L) o, (7)),

tan L 1
-1 L ——
" A - sin ,: tan i } e,

Because of the large number of variables, it
is impossible to obtain an intuitive feel for the
manner in which the time in the intermediate or-
bit varies, However, if certain restrictions are
made, a feel can be obtained for certain classes
of orbits. If it is assumed that the orbits of
interest are both circular and that the transfer
is via the Hohmann ellipse, and if it is further
assumed that perturbations are neglected be-
cause of plotting accuracy, then

-
]

(33)

0
o = t2f Tt _ Tt _ tascent
TL 2'rL 'TL
tan I,
-1 L
. (o) AL) sin (Tan‘T‘)
Qe T L

(continued)



. 3
- t2f+ v tascent _ 1 ay
L kA a
1L
tan L
-1 L
(-A;)-sin ( )
- L fan 1 (34)
Qe TL

Since the equation generally results in a nega-
tive value of tL, the significance of such values

must be discussed. Negative times simply imply
that the shuttle vehicle is launched at a time prior
to the beginning of the time record; negative times
can be avoided by increasing t2f by some integer

of the orbital period (1, 2, 3, ---).
b. Sample problem

The rendezvous problem, exclusive of the
final closure discussion, has been presented in
the precedng sections. A numerical check of
the flexibility, accuracy and utilization of the
approach is in order. For the purposes of il-
lustration, a target orbit of a 24-hr period is se-
lected. In addition it is assumed that the latitude
of the point of injection into the transfer orbit is
the latitude of the launch site. The numerical
analysis follows.

roe = 42,400 stat mi = 68, 300 km

Tor = 10,000 stat mi ~ 27,900 km
e, = 0.61832

L, = 28.5°N

L, = 28.5°N

f, = 1, =70°

wp = -77.46°

rpt = 4500 stat mi = 7250 km

Elliptical orbits are tangent at point of rendez~
vous., In addition it is assumed that the type of

transfer is specified and the time of ascent is
known.

tascent = 1000 sec
sin L2

sin (m + 6) =W
(0w + 62)24 = 30.52°

(8y),, =107.98

Zra r, r,
T AT +1)  + |5 -1 cos (ay)yy
an p 24 p

r = 20,000 stat mi = 32, 200 km
tan
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x"can
r
r.,= pt

at ra 24 ‘1
Ttan - érPgZ4 s
(*a)24 (Fp)24 (Fa)24 ot

= 23,623 stat mi = 38,000 km

-1

Tat
2 x5.24956
pt
Tat -1
Tpt
e, « Pt  _ =0.67998
at +1
rpt
2r r
at _( at +])
T T
pt
cos et = = -0, 31474
T
at
- - 1
pt
B8y = 156,17
y = 8y = Pog = 48,19°

W *Woy -y = - 125,685°

4

r +
. lat t T
a, .._rL 7.42447 x 10’ ft = 22, 600 km

(T) = ‘/a§ = 5391, 75 sec/rad
-f;t T . e a

-1 | [Tt i
Et = 2 tan }:t-— tan 7 = 2,24059rad

T
tt = P [Et + e, sin Et] = 9206.6 sec

r 0
E,, = 2 tan 1[‘% tan _,22-5] =87.60°

=1,17978 rad

24

talog = 25 [E24 T egq 80 E24]
= 83390.5 sec
3

T, =24 & _

£ H

ty - (t2)24 "t - tagcent T 2

Since LL = Lz, tL may be written as

tL = - 1867.1 - 6133.2 n!

(neglecting perturbations)



This launch time must be made to correspond
with that of the launch point as it crosses the or-
bital plane. This equation, which has all times
referenced to the projection of the perigee radius
on the equatorial plane, 18 as follows.
tan L

-1 L
(Q-AL)-sin ‘m——v]

t =
L Q

e
) (- AL) - 0.19897

0.729214 x 10°%
So@- ALY =-nt (0.44724) + 0. 06282

This equation is immediately recognizable as
that of a straight line with a slope of -0, 44724
and an ordinate intercept of 0, 06282 radian, This
equation can be solved for integral values of nt
to determine if the desired trajectory can be ob-
tained with the given bits of data, It is obvious
that only a few launch sites provide the required
timing considerations for this problem. oW -
ever, if the time in the low altitude orbit is al-
lowed to change by varying the period of this or-
bit, different results are obtained. This proce-
dure was repeated and the altitude of the circular
orbit allowed to vary. The results of these cal-
culations are presented in Fig. 3. This figure
shows the limitations on the altitude of the low -
altitude orbit. It must be noted that these curves
are not, in reality, continuous and that only the
points of intersection of vertical lines for integral
numbers of revolutions, and the horizontal lines
for constant launch site latitude provide the re-
quired solution.

42,400 stat mi =

¢

68, 300 km

-~
e}
V)
~
[

10,000 stat mi = 27,900 km

—
™
T
]

t = 1000 sec
ascent

No perturbations

The effects of perturbation were not included
in this analysis primarily because the magnitude
is such that they are rounded off in plotting.
However, for comparison purposes these calcu-
lations were made for the assumption that all of
the influences are encountered in the low -altitude
orbit. This assumption is believed to be reason-
able because the time in the low-altitude orbit
will probably be large compared to that in the
transfer orbit, and the effects of the earth's
oblateness fall off as the square of the semi-
latus rectum. However, by using Chapter IV, it
is possible to account for the cyclic perturbations
occurring within fractions of revolutions, thus
making it possible to account for the perturbing
influence of the earth's oblateness for the entire
time of flight,

The result of these computations is a slightly
different slope for the lines of Fig. 3. The mag-
nitude of this difference is approximately 0. 0027
rad/rev and the maximum error produced is 0, 046
rad (or 2.6 deg). Although this error is small

VII-9

it should not be neglected since it is capable of
producing a linear displacement of approximately
900 stat mi or 1450 km at a radius of 20, 000 stat
mi or 32,200 km.

3. Compatible Orbits

If rendezvous is seen as a requirement prior
to the time the target vehicle is launched, its or-
bit can be selected in such a manner that the cor-
rect relative position between the launch site and
the satellite exists at a prescribed time. The se-
lection of such an orbit enables the launch vehicle
to utilize a direct ascent trajectory requiring a
minimum amount of fuel and guidance. The orbits
which satisfy these conditions are referred to as
compatible orbits and the periods of such orbits
are defined as follows.

A
T

-1 (tan LL)
} (QO +nQ)-AL1=£ 8in tan T/ temm

AtL = Ata.scent +tnT [1 + (35)

At =
L 2
tan Ly
- L2
g~ Ayt sin (tani )
- (36)
Qg
where

the subscripts 1 and 2 refer to the station
from which the first and second satellites were
launched in a southerly direction,

The term At is an approximate correction to
the orbital period over a spherical earth to account
for the earth's equatorial bulge.

Equations (35) and (36) can be solved for the or-

bital period required to produce rendezvous from
a given pair of launch sites after a given interval

of time. The result is
tan L
_ Lo~1 Ll)
) :Zm'rH-(AL2 A Ll) + sin (?ni'

T_
nﬂe [l-i- Ay :l

T

an

-1 tan LL2 .
Fsin tanT—/ - QeAtasc +ng (37)
+ rog -
nQ [1 + —
e T

To thls point no constraints are placed on the
values which n can assume. This is accomplished
by referring to the spherical triangle shown below.




-1{sin L
¢ = sin (s’I_'I_n

For northerly launches from the northern hemis-
phere,n must be of the form

n=p- (d)i - ¢R)
and for southerly launches,n must be of the form
n=p+ (¢i - ¢R)

where p is an arbitrary integer and the sub-
scripts i and R refer to the points of injection

and rendezvous, respectively. As may be noted,
the solution for » is ambiguous unless an additional
parameter is specified. The most readily avail-
able bit of information is the quadrant (relative to
some point in the orbit) of ¢ or of the related

angle . This information is known for any de -
sired case.

Now, if one simplifying assumption is made,
Eq (37) can be peduced to a form which is appli-
cable for the case of a single launch site (i.e.,

Lig=Lpgs A -89

2mm - QeAtasc + n$2
T = (38)

nQ |:1+~A——T]
e T

Because of the interdependence of QandT, an
iterative solution to this problem is generally
required. However, because Q1is very small,
it is generally sufficient to use the value of 7,
obtained,neglecting perturbations,to estimate the

value of $: and then to correct the orbital period.

Figures 4 and 5 show the variation in the
required semimajor axis for different values of
n/m,neglecting perturbations and variations in
the ascent trajectories. The auxiliary scale
adjacent to the scale for semimajor axis presents
the altitude of a circular orbit of the same period.

Table 1 (obtained from Ref. 1) presents the
set of orbits obtailnable from a launch site at
28.5° (AMR) which makes 15 revolutions per
effective earth's rotation as a function of the
time interval between easterly launches. The
effectlve rotation of the earth is defined as the
time or angular interval between successlive
passes of a point on earth through a given paint |
in the regressing orbital plane (l.e., t = ZLJ—%.

e
Fifteen orbital periods per effective earth's rota-
tion are selected for this presentation because
for smaller integers (i.e., 14, 13, etc.), most
of the orbits lie in the Van Allen radiation belts,
thus making them unsuitable for many satellite
missions, and because the only lower orbit suit-
able (i.e., 16 periods per effective rotation) pre-
sents problems due to the extremely short life-
time. Reference 1 also has this to say about the
interval between the launches: ''The selection of
the value of N (the number of revolutions between
launches) depends on the specific purpose of the
space station. If the orbital inclination of the
satellite must be large, a value of N approaching
7 is required. Orbits of this type have the ad-
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ditional advantage that the two possible launch
times during each effective earth's revolution are
more nearly equispaced; but as N approaches 1,
the time spacing between the two possible launches
becomes very unequal. "

gwanson and Petersen have extended the work
published in Ref. 1. This work is presented be-
low as it appeared in Refs. 2 and 3.

For an orbital pericd corresponding to N revo-
lutions every m earth revolutions to make a south-
going pass over the launch base n revolutions after
the north-going pass,the following relation must
be satisfied.

- () - et b2 ]

where M = integer number of earth revolutions
completed between the north-going and south-
going pass. For every value of n there is only
one value of orbit inclination, i, that will satisfy
the equation. No correction for finite burning
time is included.

-1
tan [tan$ cos i]
@ [sin L/sin il
L = latitude of launch base

i = inclination of orbit plane

<
il

=  sin

South-going pass

Launch base
latitude

Earth equator

The relationship between n and N/m is presented
in Figs. 6a, b, ¢, d and e.

The preceding figures neglect the effect of
finite burning time on the problem. These effects
can be observed from the following sketch and
Figs. 7a and b,

These figures which present data for Canaveral
launches show the effect of both burning time and
the number n on the selection of orbital inclination.
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= latitude of launch base i =orbit inclination

= burning time measured in degrees of travel
of the target satellite. This angle is assumed
to be a reasonably small quantity

L
q,;]:

Ascent
Launch site trajectory
at launch

Target Launch
at launch site parallel

4. Direct Launch

This technique can be analyzed by referring to
the development for the intermediate orbit case

t (40)

1

L te (th) B tBO - tascent

. -1 ftan L
t = « —ALtsm (tan 1) 4y 20 (41)
L B Q ¥
e e

The significance of all terms in these equations
with the exception of the AQ term has been dis-
cussed in previous paragraphs. The significance
of the final term and the energy requirements can
be obtained from the following discussion.

(AL—Q): v

"o -1 {tan L _ -1 tan L
An = tan (sinv tan (m)

(42)

Reference

This angle (A7 ) is the projection of the actual
change in yaw on the earth. The actual change may
be seen from the {ollowing sketch to be

1
Am = 2 sin-1 (cos ‘(t sin e;—) (43)
£
1T
/] )
/ |
7 1
/ |
y
/ 1
’ )
/ |
AT i |
-7 .
/ :
// |
// ,—v-J\
2 ot - \\\
Y At
—

Now the velocity increment to produce this change
is

- . An
AV —2Vts1nT

. Anm
2 Vt cos Yt sin ——

o1 -1 ftan LL
= Y el =
2 Vt cos ¥, sin % [tan (s'fn V)

_ -1 tan L
tan <§m TN ) ):l (44)

If the change in yaw is small, and if the correction
is made near apogee where the velocity Vt is mini-

mum (just prior to injection into the final orbit),
the relationship between the velocity increment and
the change in node is

fvn - tan" ] (tan L) - tan"} tan L
V sin v sin (v + A QY

a
(45)

AV
The significance of negative values of -—v——n is
a

simply that the sign of AQ is negative or that the
inclination of the transfer orbit is less than that

of the desired orbit. A graphical solution to this
equation is presented as Fig. 8.

This nodal and inclination correction results
in a tolerance in the time of launch assuming that
some specified amount of propellant is available
for making such a correction.

Aty =g (46)
e
sin (v + A9Q) = tziwll Ltan L AV
tan [tan (-SIHT -v—]
a
(47)
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sin (v + AQ) = sin v cos AQ + sin AQ cos v

~ sinv + AQ cos v

. tan L
SO AQ = - tan v;
cos v tan [jcan_1 (t_a*n%]'_,) - AV']
sin v Va
(viz3) (48)
and
tan L - sin v tan l:tam_1 (t_a'rlL) - av
sin v \"
aty, = T7ER Ty AV
Qe cos v tan [tan (sm V) - Va—J
(49)
As an example, consider the case
L = 30°
*
v = (AL -Q) =30
Avmax = +1000 fps = 305 mps
Va = 10,000 fps = 3050 mps
At = x1800 sec

Should L have been negative in this example,
v would have remained unchanged because of the
definition of Q% which is measured from the refer-
ence direction to the last nodal crossing, thus
restricting the value of v to less than 180°. Mathe-
matically this says

QF = Q 0<L§_90

G% = Q- 180 O>L2—90

With these restrictions, the launch tolerance
remains unchanged.

The resultant change in inclination can also
be obtained, but it is of lesser significance since
its effect on the energy requirements is already
included.

From the sketch with Eq (42) and spherical trig-
onometry

tan L. = tan i sin v {50)

or

tan if sin v = tan (if + Ai) sin [v + AQ]

but

sin (v + AQR)

= + i
ST cos AQ+ cot v sin AQ
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tan Ai
tan (i + A1) . tan1i - 1
tan 1 I -tan1tan A1 1 - Altan 1

(51)

This final approximation is valid under the assump-
tion that the orbital inclination is greater than 30°
and that the change in inclination is small,
Thus

1 -Aitani=cos AR+ cot v sin AQ

Ad ~ 1l -cos & Q- cotv sin AQ
i= -
tan i

(52)

If the nodal change is also small, this equation
reduces to

Afx -AQcosy i40
tanisinv v #0

(53)
C. THE TERMINAL MANEUVER
The preceding discussions have been directed

toward the placement of the shuttle or homing
vehicle in the vicinity of the target. The following
material is intended to provide an insight into the
subsequent motion leading to docking or closure.
The discussion proceeds as follows.

(1) Relative motion.

{(2) Terminal guidance schemes,

(3) Closure times and energy requirements.

(4) Terminal guidance smoothing techniques.

(5) Long time closures.

(6) Homing phase errors

1. Relative Motion (Ref. 5)

In this section, the general relative equations
of motion for the rendezvous maneuver are de-
veloped and explained. The purpose of this section
is to show how the rendezvous dynamics are af-
fected by orbital aspects as well as by vehicle-
induced accelerations. The effects of initial
conditions on the rendezvous problem will be
discussed with respect to velocity and time re-
quirements in sample problems.

a. Motion relative to target

Consider the earth-centered inertial frame
shown in the following sketch. The target vehicle



is located by the position vector ?t’ and the
homing vehicle by r_')h. The relative range vector

s is defined from target vehicle to homing vehicle.

Z
Homing —
vehicle

Target
vehicle

Earth's
center

Let
g(r) = gravitational acceleration for a
spherical earth.
Et, Eh = thrust acceleration of target and

homing vehicles.

P(r, T) = perturbative acceleration due to earth
oblateness, moon, sun, atmosphere,
and nearby planets combined.

Motion relative to the target, neglecting mutual
attraction of the vehicles, is thus governed by

9

d”s — - == —

= = |a,_-a, +glr ) - glr)

dtz [h t h t] (54)

+[PE,, T - PG, )

Simplification of Eq (54) results if the following
assumptions apply:

(1) s<<rt.

(2) ry and rp sufficiently large such that

drag effects are small.

(3) Total rendezvous time sufficiently
small so that the perturbative accelera-
tions have only first order effects on the
motion of each vehicle.

Then, the difference of perturbative accelerations
appearing in Eq (54) may be neglected as second
order in the perturbation. This follows since the
proximity of the two vehicles in space and time
yields

P(r,, 7))~ P, )+ dP (¥, 'Ft)

Inasmuch as P is itself of first order, dP is of
second order.

Similarly, if E(Fh) is developed in a Taylor

series about Ft’

26 s BE) G MEE) 5GP EE)
where

v = gradient operator.

Neglecting second and higher order terms

BE,) - () = G- D Ery.

Substituting
— GM -
gr) = - O ¥

r
where

GM = Universal gravitational constant times
mass of the earth.

= 4.
— (s -r
g - M -
S
t t Ty

(55)

Thus Eq (54) becomes, valid to first order,

2

5 [ -1 .6M [5 . &7
- at] 2 FOU e T
Tt

(56)

This is the equation derived and discussed by
Hord in Ref. 4.

The exact solution of Eq (56) for the general
case is a difficult analytical task. Aside from the
thrust accelerations which are general functionals
of § and ds/dt, the orbital nature of the problem,
reflected through the gravity terms, complicates
the analysis. This complexity, however, under-
scores the fact that the orbital aspects of the
problem should never be overlooked in the general
case. To cite an example, consider a coplanar
rendezvous in which homing starts when the target
is at the apogee of its assumed eccentric orbit.
Assume the homing vehicle to be slightly behind
the target, at the same altitude, and at sufficient
overspeed to be closing on the target. On the



basis of rectilinear considerations one may com-
pute a total closing time by dividing the initial
relative range by the closing rate. This time,
however, may be completely erroneous and more-
over the vehicles may never close to a sufficiently
small range for rendezvous purposes. The reason
for this is seen by noting the orbital aspects of the
situation. The target, initially at apogee, begins
to speed up as it travels toward perigee; the
homing vehicle, depending on the overspeed, may
be at apogee of an elliptic orbit, in a circular or-
bit, or at perigee of an elliptic orbit. Clearly,
the latter two conditions cause an expansion of

the homing time, since the homing vehicle either
remains at the same speed or slows down as it
travels toward apogee. Hence, rendezvous may
never occur, or, if it occurs, may undergo ex-
treme time expansion.

Conditions permitting neglect of orbital aspects,
If Eq (56) is infegraied once with respect to time,

t t
ds _ (ds _— -
ds . (at_)0+§ AT dt ‘YAg(s, £)dt (57)
0 0
where
Aa = a, - =,

S (s-r)

—= =y _GM |5 .- t
Ag (s, rt) = —2_1- I:—rt 3 ry —3—r :l
i t

then the condition allowing neglect of the orbital
aspects of the problem is obvious, since orbit
parameters such as GM and r, are vested solely

in Ag (s, Ft). Hence, if

Ty

Ty
AT ds -
g dt| << I or Aa dt (58)
0 [V
0

Eq (57) becomes

t

ds _ (ds -

T = d—t-)o + S‘ Aa dt (59)
0

and permits rectilinear analysis. Note that Eq

(58) is a condition on the integrated effect of the
gravity differential rather than on the magnitude
of AE itself.

b. Analysis of relative motion

Certain important special cases of Eq (56) can
be analyzed by the method of Gilbert (Ref. 5). One
such case is that of thrust-free motion. The
method presented below is valid for thrust-free
motion, but is easily extended to motion in the
presence of impulsive thrusts.

The form of Eq (16) to be analyzed is
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2— - (s-r,)
d_z_ +92M [ri - 37, _g_t] =0 (60)
dt vy t r

The analysis for a target in circular motion is
studied first and later extended to targets in or-
bits of small eccentricities.

(1) Target in circular orbit. Let there be a
rotating, relative coordinate frame centered at
the target, whose axes as shown in the following
sketch are defined by

T
X
11_y completes the right-handed set
i—z = unit vector normasl to target's orbit plane.
}Normal to
orbit plane
z
I -
Wy v
ﬁt
Target
X Target orbit
plane
x

The vector s may be resolved into the three
orthogonal directions and three coupled second
order differential equations obtained.

Since
2— 2— —
d”s _ §'s — s — - —
52- = 52— +(2000 X gf—)4‘(wox W X S)
where
g—f = rate of change of s relative to observer
in rotating frame
55 _
— = acceleration of s relative to observer
5t in rotating frame
:;0 = angular velocity vector of target in cir-

cular motion

Equation (60) becomes

2— — —
6%s — 85, (—~ .— .=}, GM |s
—y +(‘2w0 X R_>+(w0 X wO X S)+ — [r_
6t ry t
G- T
- SFt — = 0. 61)
r
t

= unit vector along target's radius vector, r

t



Whence,
(62a, b, ¢)

These equations have the solution

X M
_ 0 _ 0 .
X —(2 JO— 3y0>cos “’Ot + — sin uot h

“0
2x
0
+<4y0—w———0>
—2-21(1—3 sinwt-fﬁ)- coswtg
S Yo 0w 0
ZyO

0
+ (Swo Yo~ 3x0)t +<x0 + _‘“—0—>

z
t +;— sin wot J
0 (62d, e, f)

ZO cos wo

These equations have been presented in numerous
references, among them Refs. 6 and 7, and have
been utilized in connection with various terminal
guidance studies. However, the present goals
are best served by altering the form of these
equations by introducing a set of normalized
variables.

= *

P =T

O’EFt
(63)

)\Eri

t

TEth

Note that o is the downrange angle of the homing
vehicle relative to the target, while X is the cross-
range angle. The normalized time T is actually
the angle of travel of the target from t = 0.

It is also beneficial to define the following
normalized rates,

dz v
A L _a N
-V '&’_T_VO—
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g o ©o¥ _dp _ _ VR
-V, dT "‘VK
d
+w, X v
CEE%—V——O—-—S%-F;)EVQ— (64)
0 0
where
Vo=w0r,c
_ _ N
v _<drh _ dt).r
C at at y
v _<drh ) drt>‘1’
R qat gt X
v =<drh A P
N \g "3 ) 'z (65)

Note that VC' VR’ VN are the instantaneous

differences of the inertial velocity vectors in
the circumferential (y), radial (x), and normal
(z) directions, respectively. Hence, C, B, and
A are the normalized instantaneous differences
of the inertial velocity components.

If the normalized position variables of Eq (63)
are substituted in Eq (62), Eqgs (66) result.

2
d%p da 3
-3p - 2= =0
dT2 dT
2
d”o dp _
+ 22 = 0
4T’ d
2
d”a
-5 *t X\ =0 (66)
dT J

Solutions of Eqgs (66), in terms of initial normal-
ized positions and rates, are

p = 2(p0 + CO) +(By + ao) sin Tw
-log *+ 2C) cos T

a = —(aO + ZBO) - 3(p0 + CO) T
+ 2(By + ay) cos T (67)
+ 2(p0 + 2C0) sin T

A= Agcos T+A0 sin T.

J

Also by straightforward differentiation,

d .
7= C-p=-3py+ Cq) - ABy + ag) sin T

+ 2(p0 + ZCO) cos T



‘a’,‘I’, = B+a=(By+agcosT

+(py + 2Cg) sin T

-g:f A = Agcos T - A sin T, (68)

Inasmuch as Egs (67) and (68) specify three in-
dependent position coordinates and their rates,
the analytic solution of Eq (60) is complete, The
value of the solution, however, is further en-
hanced if we utilize Gilbert's Method of Circle
Diagrams, Ref. 7, to describe the motion,

(2) Gilbert's Method of Circle Diagrams.
The information in Eqs (67) and (68) may be por-
trayed with two phase-plane plots. The out-of-
plane variables, A and A, may be plotted para-
metrically in a A-A phase-plane, The remaining
variables may be incorporated in a p versus a/2
Plot wherein the complete in-plane behavior is
displayed. With such phase-plane plots, the or-
bital aspects of the problem will be made evi-
dent,

In order that we may assign special orbital
significance to the normalized variables, the fol-
lowing assumptions are made:

(1} The inclination of the homing vehicle's
orbit plane with respect to the target's
is small.

(2) The eccentricity of the homing vehicle's
orbit is small.

These assumptions are valid for a wide class of
rendezvous missions and allow the following in-
terpretation.

A = homing vehicle's yaw or velocity azimuth
angle with respect to the target's orbit

X = homing vehicle's cross-range angle with
respect to-the target's orbit plane

@ = homing vehicle's downrange angle with
respect to the target

P = normalized altitude of homing vehicle in
excess of r,.

C = normalized speed of homing vehicle in
excess of VO = wgly
Y = B+ e=homing vehicle's flight path angle

(positive if measured upward from its local

horizontal),

Out-of-plane motion, By elimination of T between

X and A, there resulls

2

_ A2
A “+2\° = AO + >‘0 (69)
But for small inclinations io,
2 .2 2
ig = Ag+ g (70)
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Thus,

2 2_.2

A% 427 =48 (71)

The locus of Eq (71) is a circle of radius iO in

the \-A plane, The argument of the locus point

is T. Hence, in one complete orbit revolution

on the part of the target, T changes by 2%, return-
ing the locus point to its initial location. The
following sketch shows the circle diagram of out-
of-plane motion,

The time history of the homing vehicle's cross-
range and azimuth angles are portrayed conven-
iently in the sketch. The angle of travel of the
radial segment iO is T and is related to time by

Eq (63). The value T = TN corresponds to the
crossing of the positive A -axis and defines the
ascending (from -z to +z) node.

Important characteristics of the out-of-plane
motion are easily obtained from the circle. For

example, Z ax - Rt)‘rnax = Rtl() and (dz/dt)max =
VOAmax = V010'
} Nodal crossing
(ascending)
T = TN
_______ T=20
AO A ;
o !
|
1
% A
o

Clockwise rate

of 2 7 rad/orbit—}
In-plane motion. The homing vehicle's in-

plane orbil elements may be written directly in

terms of the normalized variables in view of the

interpretations allowed by the assumption of

e<<1,

Hence,
E - E
AE = 0 = -
E, " TE, 2ACqy * py) (72)

where E = energy of homing vehicle's orbit,

E,=- 1/2 V02 = energy of target's orbit.

2

e? = (py + 20 + y, (13)

where e = eccentricity of homing vehicle's

_ -1 Yo
Tp = -tan ?O—;—Z-CE (74)



where Tp = normalized time to perigee from
T=0

ap = @ - 2y - ey + Co) T, (75)
where ap = downrange angle of homing veh-
icle at perigee passage (T = Tp)'
Equations (72) through (75) permit the solutions
of Eqs (67) and (68) to be written in terms of orbit
elements of the homing vehicle,

@ = ap - 3(p0+C0) (T - Tp) + 2e sin (T -~ Tp)

©
1]

2(p0 + CO) -ecos (T - Tp)

C=-(pO+C0)+ecos(T-Tp)

y=ecos (T - Tp). (76)

Portrayal of in-plane mation is obtained by a plot
of p versus «f2. The parametric relation is

o
[p—z(po+c0)]2+§§-[-29

-Sp T -T2 = e’ (77)
or,
2 o %
[~ 20y +Cy] 5-lr
3 ;2_ 2
“ Yo 3 lpg + Cp T = €% (78)

Equation (77) or its equivalent, Eq (78),repre-
sents a circle of radius e in the p - of 2 plane.
The center of the circle is located at 2(p0 + CO) and

[ 20 -3+ o 7]

in the p and af 2 directions, respectively, As the
target moves in its orbit an angle T, the point on

the circle representing the moving vehicle's relative
coordinates travels an angle T counterclockwise.
Simultaneously, the center of the circle drifts in

the positive a/ 2-direction at the rate of —3/2(p0

+ CO) radians per unit T. The idea of a point tra-

versing a circle of radius e, which drifts at a uniform
rate along the of 2-direction, is the process by which
the p - af 2 trajectory is most easily visualized.

This circle diagram generatrix is shown in Fig. 9.

The locus of relative motion in the p - of 2 plane

ig, in general, a trochoid. For 3 ,po + C()I < 2e,
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the generated curve has loops. For 3 Ipo + CO‘ =
2e, the curve reduces to a cycloid and has cusps.
For 3 |p0 + CO‘ > 2e, the curve has neither loops
nor cusps and tends toward a straight line for

3 lp0+co|> > Ze.

The values of the in-plane relative coordinates
p, C, v, and a are readily obtained by circle dia-
gram sketches using the generatrix of Fig. 9. The
value of « is slightly more difficult to obtain since
the simultaneous motions of translation and rota-
tion must be considered. On the other hand, the
values of p, C, and y are obtained by simply con-
sidering motion along the circle, The value of p
at any time is equal to the p-coordinate of the
locus point, and C is equal to (p0 + CO) - p. The

value of y is merely equal to horizontal displace-
ment of the locus point from the vertical line
joining apogee and perigee (line of apsides). In-
asmuch as the argument of the locus point along

the circle is T (the angular travel of the target),
the values of p, C, and y may be readily calculated.

(3) Sample analysis using circle diagrams.
The convenience afforded by Gilbert's circle
diagrams in establishing functional relations be-
tween various parameters and in generating tra-
jectory requirements overshadows the desir-
ability of graphical plots for the relative motion.
In this section the application of Gilbert's method
of circle diagrams as an analytical tool is illus-
trated, For purposes of illustration, the initial
conditions will be

(1) Target in circular orbit with radius, ry

(2) Homing vehicle injected ahead of target

with
3

Xy = 0
Yo T 8g > 0
zq =0 (19)
VN =0
VC = -WO; W0 >0
VR = —uO; Uy >0 )

The situation is shown in the following sketch,

Out-of-plane analysis. Since

Zg =0
dz

vy - (HT)O - 0.

Equations (63) and (64) yield

Ay = A= 0. (80)

Accordingly, Eqgs (70) and (71) yield

i, = A(T>0)=x(T>0)=0. (81)



Target

The out-of-plane circle diagram thus degenerates

to a point at the origin of the A-A phase plane,
indicating coplanar motion.

In-plane analysis. From Egs (63) and (64)

po =0 ~N
.50
QO = —rt_
W (82)
c. =29
0 VO
s u
_ 70 0
Yo Bt %7 o~ - ¢
¢ o)
Equations (73}, (74) and (75) then yield
2w 2 s u 2
e2 - 0 4 -0 0 (83)
Vo T Vo

s,V u
T - n+tan_1< 00 _ 0 > (84)

Yo
ap:(zv—o-r T . (85

The in-plane circle diagram is shown in Fig, 10
assuming

It is of interest to consider the following
special cases
(1) Yo * 0 (homing vehicle's flight path

angle is zero)

(2) W, = 0 (no speed deficit)

(3) Combination of sg» Wys ¥ which
causes locus point to pass through
origin (coincidence of vehicles),

The circle diagram for Yg = 0 is shown in

the following sketch. As can be seen, there
exists the possibility of a being always posi-
tive, i.e., nonclosure, in spite of the speed
deficit, WO' The limiting condition for down-

range angle closure (e = 0) is obtained by lo-
cating the locus point having minimum

% and requiring it to be zero. This point oc-

curs when the circle's drift rate cancels out
the "speed'' of the tip of the radius vector in
the negative a/2-direction. Since the radius
vector rotates at angular rate of 1 rad/unit 7
and the radius is e = 2W0/VO, the speed of the
tip of the radius vector is 2WO/VO. Thus, its
rate in the negative o/2-direction is 2W0/V0

cos T. Equating the rotational and translation
rates in the a/2-direction,

2W0 WO

_ 3
VO cos Tmin -z VO

or

3
5. (86)

N &

NOTE:
. ; 3 70
Center drifts to the right 3 vo_

units per unit T

The value of ( £) at that point is
2

= -0.24V0_ ] (87)

For the limiting case of downrange closure

(amin = 0).



W s
<‘v’0‘) -2.26 2 (88)
0 . Ty
min

That is, if closure is to be obtained,the speed
deficit W, must be greater than the minimum

value specified in Eq (88). The limiting locus is
shown in the following sketch along with the locus
expected on the basis of rectilinear considerations.

The sketch shows that a rectilinear analysis
for the specific injection conditions of ¥; =0
and Wy = W .0 As indi-

cated,the actual crossover time is given by
Tmin = UOtmin = 0.724 compared to TG = thG =

0. 442, where tg = SO/WO is the rectilinear

is far too optimistic.

time-to-go. For the limiting case, the time ex-

pansion is

t . T .
min min
= = 1,64, (89)
tG 'IG
o]
(TG= 0. 44’zy—Rectilinear locus
[+3
2
0
S0
Zr
Actual locus
Sol (T_. =0.724
-1.13 0} (T, =0.729)
r
t
If W0 < (WO)min the expansion would be infinite

since downrange closure cannot occur. Note
also that the orbital nature of the problem causes
the homing vehicle to be low in altitude by 1,13 S

at closure, while rectilinear analysis predicts no
altitude deviation, This effect is due to the fact
that the speed deficit causes the homing vehicle's
injection point to be apogee. The homing ve-
hicle's altitude thus decreases as it progresses
toward perigee, This same effect accounts for
the expansion in the time of downrange closure,
since the homing vehicle's speed increases as it
progresses toward perigee,

For the special case of (W0 = 0) the general

circle diagram of Fig. 10 reduces to that of the
following sketch.

It is evident that by proper choice of the flight
path angle, Yo+ complete coincidence of the

VII-20

vehicles can be obtained. By inspection, the
circle will pass through the origin at T = r for

(90)
Thus, coincidence occurs after the target moves

through T = 7 radians or 180 degrees, if the
homing vehicle is lofted an angle

S0 _ %
41‘t !
i |
| Center does
| not drift
| 8¢
| 7T,
" t a
0 I o 2
|
|
|
I |
v, 70

Rendezvous of the vehicles for the more
general case of S WO’ '}’0 $0 may be obtained

by considering the general circle diagram of Fig.
10. The first crossing of the «/2-axis (p = 0)
for T > 0 is at

T1 = 2TA (91)
where
T, = normalized time to apogee = TP -7
=tan”! ;%;;—0 . (92)
For complete coincidence we require
@ (Tl) = 0. (93)

Hence, the drift of the circle must be such that
at T = Tl’ % = 0, In Fig. 10, symmetry shows
that the o/2-component of the radius vector at
T = T1 is Yo Considering the fact that the
circle's center was initially at (sO/Zrt) -7y
and drifted (3/2) (WO/VO) T1 units in the plus

a/2-direction during the travel from T = 0 to
T = Tl’ the value of a (Tl)/2 is

a(T,) w

1 3 Yy

Yo) t3 v, Ty -7
(94)



Substituting Eqs (91) and (92) into (94) and in-
voking the requirement of (93), the following
parametric relation is obtained.

s w Y
0 . 2y, -3 0 tan”! 0
2y 0 Vo W, IV

(95)

This relation is analogous to the "Hit Equation"
of ballistic missile theory (Ref. 8). Figure 11
shows a plot of Yo and so/rt for various values
of WO/VO. The required rendezvous time, tR’
is given by

Y
- - _ -1 0
TR—thR—Tl—Ztan “ZWOTVO—'.
(96)
Thus, in terms of the target's orbital period, Tq
l—cﬁ - L tant YO 97
7o ™ 2Wo Vo
On the basis of rectilinear analysis, the initial
time-to-go is,
S
"0
tG = WO . (98)
Hence
KT I (99)
To) T I TV

The ratio of the actual rendezvous time to the
initial time-to-go based on rectilinear analysis
is thus

tR _ 2W0/V0 tan_l Yo
tG 3071"t 12W07V0§ ¢

(100)

The ratio is plotted in Fig, 12 as a function of
WO/V0 and ag = (solrt). The dependence on g

was introduced by utilizing Fig. 11 in a crossplot
so that Yo could be expressed in terms of a, and

Wo/V,.

Note that in this example time compression
occurs since tR/tG < 1. This is explained by

the fact that for Wy > 0 and Yo > 0, the homing

vehicle is on its way toward apogee at the start
of the problem. This is obvious in Fig, 10,
Thus, the homing vehicle's speed over the lofted
flight is less than its initial speed, causing more
rapid closure than expected on the basis of recti-
linear analysis.

Figure 12 may be used to compute the required
rendezvous time, First compute tG = sO/WO;

then locate the appropriate WO/V0 curve, inter-
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polating if need be. The value of t then

r'tG
gives the attenuation factor for a particular
@y = so/Ty.

(4) Circle diagram extension to eccentric
orbits. In the following paragraphs the basis
upon which Gilbert's Method of Circle Diagrams
can be extended to targets in eccentric orbits
is presented. The eccentricity, however, must
be small in order to retain a linear or first-
order analysis. Only the in-plane motion is
treated since out-of-plane motion is unaffected
by target orbit eccentricities.

Circle Diagram of Target Motion. Previously
the motion of the homing vehicle relative to a
target moving in a circular orbit was analyzed.

In this section all motion is referred to the tar-
get's mean motion, For small eccentricities

the target's mean motion is circular with a
radius equal to the semimajor axis, Thus, to
obtain a circle diagram of eccentric target
motion, it is merely necessary to replace the
homing vehicle by the target vehicle and the
target vehicle by the mean target in the previous
results., The Circle Diagram of Target Motion re-
ferred to the mean target is shown in the follow-
ing sketch., All the features of the in-plane circle
diagram which were mentioned in previous sec-
tions still hold except that motion is strictly
periodic. The center of the circle generatrix
does not shift in time,

p
Apogee
Y - - - T =
to | 0
|
|
|
1 a
ato V)
-2
Counterclockwise rate
of 2 r radians per orbit
revolution of mean target

Composite Circle Diagram of Relative Motion.
If the homing vehicle's circle diagram, referred
to the mean target, is superimposed upon the
target's, the composite circle diagram of the
following sketch is obtained. Note that the circle
diagram differs from that of Fig. 9 merely by the
fact that the target locus is a circle of radius e,

(target orbit eccentricity) rather than the origin
of the p - @/2) plane. As e, approaches zero

the locus shrinks to a point at the origin, yielding
the circle diagram of Fig, 9.

The relative motion is obtained by plotting
both the target and homing vehicle loci and noting
the differences in relative coordinates as a
function of T (time).



Center drifts - g—(pn + CO)h radians

per unit T in 0’7 direction
)

Homing vehicle
T=0

(5) Motion in presence of impulsive thrusts.
In the presence of impulsive thrusts, there exists
segments of thrust free motion which are separated
by discrete changes in velocity. Hence complete
motion is obtained by regarding it as a succession
of thrust free segments under various initial con~-
ditions. Inasmuch as the position coordinates
cannot change instantaneously, the final position
coordinates before the impulse become the
initial position coordinates after the impulse,
The complete motion is readily obtained by
sketches of circle diagrams. Each impulse changes
the size and location of the circle generatrix, The
effects of velocity increments in the normal,
radial, and circumferential directions are dem-
onstrated below,

Normal velocity increment, For small in-
clinations between the orbit planes of the target
and homing vehicle, a velocity increment, AVN,

normal to the target's orbit plane produces an
increment AA in the homing vehicle's velocityy
azimuth relative to the target's orbit plane. The
relation is linear for small inclinations and ve-
locity increments.

AvVy

AA = T (101)

The relative out-of-plane motion is illustrated
in the following sketch, This sketch shows the

situations just prior to the impulse (T = 07) and

just after the impulse (T = O+). Since position
cannot change instantaneously, the crossrange
angle, A, remains unchanged, However, the

azimuth angle changes bv the amount given in

Eq (101), The result is a change in inclination
angle, Out-of-plane motion is thus typified by
motion along the circle of radius, iO’ until the
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N

Center does
not move

impulse is applied, After the impulse, the
locus point moves along the circle of radius, il'

From this sketch it is apparent that incli-
nation may be completely removed by applying
a normal impulse at AA = iio and A = 0. The

velocity increment required would be

AV, = TV i

N olo (102)

This corresponds to a velocity increment at the
nodal crossings equal and opposite to the ex-
isting normal velocity.

A




Radial velocity increment, A change in the
homing vehicle™s velocily vector by an incre-
ment, AVR, parallel to the target vehicle's

local vertical yields a change in the homing ve-
hicle's flight path angle, B, measured with re-
spect to the target's local horizontal.

AVR
Yo
Inasmuch as the homing vehicle's flight path
angle measured with respect to its own local

horizontal is given by

AB = (103)

Y =B+«
then, since o does not change instantaneously,
./_\.VR
V0

AY = AB = (104)

The effect of a change in ¥ is shown in the
following sketch, As shown in this sketch, a
positive change in the flight path angle causes an
increase in the horizontal displacement between
the locus point and the center of the generatrix,
Inasmuch as the position coordinates cannot
change instantaneously, the center must move to
the left by the amount, A7y. This causes the
radius to increase, indicating an increase in ec-
centricity, The center does not shift along the
p-axis,since the location of the center in such a
direction represents the orbit's energy level
which is invariant for flight path angle changes,

Generatrix
before impulse

Generatrix
after impulse

LB

The complete relative motion is thus given by
the locus of points generated by the circle of
radius €y before the impulse and that generated

by the circle of radius e after the impulse.

Since the energy level is unchanged by the radial
impulse, both circles drift in the negative o/2-
direction at the same rate, It should be noted
that if it is desired that the homing vehicle's or-
bit be circular using a single radial impulse, one
should wait until
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and produce
AY = T e
by applying
AVR =3V (105)

These points correspond to points 90° away from
the apsides where the flight path angle possesses
extreme values,

Circumferential velocity or speed increments.
A change in the homing vehicle's circumferential
velocity, AVC, is synonymous with a change in

its orbital speed and, hence, a change in orbital
energy or period, In terms of the normalized

rate, C,
AVC
AC = —~ (106)
0

The effect on the relative motion is indicated in
the following sketch, Since the position of the
generatrix's center represents the homing ve-
hicle's orbit energy, an increase in the homing
vehicle's speed, AVC, causes a vertical shift

of the circle's center by the amount 2AC =
2(AVC/VO). This has two effects, First, the

orbit eccentricity changes in general; secondly,
the center drifts at a different rate in the o/2-
direction. As shown in the sketch, the energy
level before the impulse is characterized by the
p-position of the circle's center, 2(p0 + CO).

This energy causes the circle to drift in the
negative o/2-direction at a rate of 3/2 (pO + CO).

The increase in energy yields a new energy
level, 2(‘00 + CO) + 2AC, and causes the new

circle to drift in the negative o/2-direction at a
rate of 3/2 (po + CO) +3/2 AC. Thus, for a

positive AC the new circle moves at a faster
rate in the negative o/2-direction,

Generatrix after impulse

2(p0+ C0
+ 2 C)

2(py + Cy)

Generatrix before impulse

=)
NS



Note that,if desired, orbit eccentricity can be
made zero by waiting until the locus point is
either at the highest or lowest point of the circle
of radius, eqe If the locus point is at

Prmax = 2Pg + Cod + €g

max

the resulting eccentricity, e,. can be made zero
by making 24C = ey or
V.e
_ 070
AVe = —5— (107)

If the locus point is at Prnin’ €1 c@R be made zero
by 2AC = -e4 or
V,e
_ 070
AVC =-—a (108)

Comparison of either of these velocity increments
with Eq (105) shows that for control of eccentricity
circumferential increments can be twice as ef-
ficient as radial increments. Note, however,

that circumferential increments also produce
changes in the orbital energy or period, while
radial increments affect only eccentricity.

(6) Sample problem. Assume the vehicles are
in circular orbits of equal radii which are inclined
at an angle i,. Assume the phasing to be such that

the homing vehicle crosses the target's orbit plane
an angle qa ahead of the target, This is shown in

Fig. 13.

Suppose it is desired that rendezvous be ac-
complished with only two thrust applications of
an impulsive nature. One method by which this
may be accomplished is to wait until the situation
of Fig. 13 occurs and apply a velocity increment
which rotates the homing vehicle's velocity vector
into the target's plane while simultaneously chang-
ing the flight path angle so that a lofted flight is
obtained. The loft should be chosen so that the
two vehicles coincide when the homing vehicle
returns to its original altitude, The trajectory
is shown in Fig., 14. At coincidence, the second
impulse is applied to restore the flight path angle
to zero and, hence, restore circularity, Since
no period changes are involved, the two vehicles:
will subsequently move in identical orbits and,
hence, be in coincidence thereafter,

Another method also converts the situation
depicted by this sket_h into a coplanar situation
but involves changing the flight path angle and
period with the first impulse and restoring to
the original values with the second impulse upon
coincidence. The trajectory is shown in Fig. 15.
It is similar to the method of Fig. 14 except that
the required rendezvous time is reduced through
the use of speed (period) changes as well, Re-
call that this situation was partially analyzed
previously.

Both methods are analyzed below with respect
to velocity and time requirements.

Method A: yaw and loft. To convert the
situation of Fig. 13 into a coplanar situation a
normal velocity component is required. According

VII-24

to Eq (102) we require

AVN = Voi0 (109)

Initially, the p - a/2 phase diagram is as
shown in the following sketch. To cause coin-
cidence with a pure radial increment (flight path
angle change) requires a flight path angle change
of

%o
AY =Yy 7 (110

Initial circle diagram
{(no relative motion)

o
0 Q’o Z

The resulting relative motion is shown in the
following sketch. Note that rendezvous occurs
at T = 7 or one-half period later, At this time
the second impulse must be directed radially
outward to remove the existing flight path angle
(reduce the ensuing circle diagram to a point at
the origin). The second impulse must produce

a

_ _ 0
’AYZ-YO‘T (111)
Y
Apogee
Center does
| not drift
& Y2 A Y1 o
1 z
0 | 1
ag ap
T 7z

Thus, the actual radial components are

i)
(AVR)1 = VgAY, = Vo —



o
- - 0
(AVR)2 = V0A72 = V0 - (112)
Assuming an orientated thrust vector, the
radial and normal velocity components of the
first impulse require

AV1 = (113)
The second impulse requires
0

AV2 = (AVR)2 = VO 5 (114)

Thus,
(AV)Orien = AV, + AV,
a (04 ZJ
. 0 2 0 )
Wl Ve, ()]

If separate nozzles are used for increments in
the various directions,

2g
AV, = Vo (10 o ) (118)
a
) 0
avy = Vo o
Hence,

a
_ _ . 0
(AV)Sep =Av, +aAv, = v <1o + )

(117)

in either case the total rendezvous time, as indi-
cated in Fig, 14 and the preceding sketch (T = 7),
is

70

- (118)

tR=

where again
To = target's orbital period.
Method B: yaw, loft and period changes, In

either method the yaw velocity required is the
same,

AV (119)

N~ Yolo
The radial and circumferential velocity incre-

ments depend on the desired time of rendezvous,
Let us suppose that a rendezvous time of 70/4

is desired, That is, rendezvous after the target
moves through 90° rather than 180° as in Method
A, Equation (97) shows that

t \%
RY_1 -1
<7_> =5 tanT P (120)
0 0
where Vp =Yy VO
W( = speed (circumferential velocity) re-

duction.
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Thus, for tR = 70/4
\'
P _ K.
W, 2tan g =2 (121)

The ratio of the radial velocity increment to the
circumferential increment must, hence, be
equal to 2 for rendezvous after the target moves
through 90°,

Equation (95) shows that for this ratio

W

(o4
0
e (- ) (122)
0
is the condition for rendezvous. Thus,
Vo%o
WO = 8__37 = -Avcl (123)
2
and
v . 0% Av
p 4 .31 R, (124)
4

Equations (119), (123) and (124) are thus the
yaw, speed reduction, and pitch components of
the velocity increment applied at point in
Fig. 15.

The pitch and speed components at point @
(Fig. 15) by symmetry are

Voa

- 0 -
WO F - G AVC (125)
8 - & 2
2
VOQO
Vp T ey = AVR (126)
4 - 'y 2

This may also be obtained from the circle dia-
gram of the following which shows the flight path
angle and energy changes required to reduce the
circle generatrix to a point when the locus point
is at the origin,

As shown in the following sketch,the generatrix

is reduced to a point at the origin by shifting the
center to the left by AY =Yg and upward by
2

2aC, = 2(WO/VO). These correspond to the ve-
locity components of Eqs (125) and (126).

For an oriented engine nozzle, velocity re-
quirements are as follows.,

2 2
[avy?s (+vc.)

1/2
+ (AVRI)z]

(Av)1

It
<
[ww]
| —
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\\\ ’//
and
\/1 oq
(AV)2 = \/5 V0 <8—-——37) (128)
2
Thus,
(Av)orien (AV)l * (AV)2
1/2
2 %o
= VO [ 1 ) + 5 <—g-—-37> ]
S
(129)

For separate nozzles the absolute values of
the components are added directly, yielding

a
(AaV) = Vg [10 +6 (ﬁ) ] (130)
T

By comparing Eqs (129) and (130) with (115) and

(116) the reduction of rendezvous time from
70/2 to 7-0/4 can be seen to involve a consid-

erable increase in velocity requirements., As-
suming iO =0

4 537r = 2,72 for oriented
(AV) 8- - nozzle
70/4 )
( }70/2 12
35~ 3.64 for separate
8 - - nozzles.

2. Terminal Guidance Schemes (Ref. 10)

In the previous section the general linear
differential equation of relative motion was de-
rived as
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s - 5 .GM |5 4 (s- ()
w? h % TTT T Tt 3
rt i r't
(131)
where
s z?h - Ft = relative position of homing

vehicle with respect to
target,

Equation (131) was derived in terms of motion
relative to the target. In this section it is as-
sumed that the homing phase is conducted by the
homing vehicle utilizing an onboard guidance
system and that the target does not execute
thrust maneuvers of either an evasive or coop-
erative nature.

It is convenient to re-express the differential
equation of relative motion so that the target's
motion relative to the homing vehicle is obtained,
This is readily obtained from Eq (131) by replac-
ing s by -R where

R=T -r

4 = range vector of target with

respect to homing vehicle
(132)

Thus, since the thrust acceleration of the target

18 Zero

(133)

and the differential equation of motion relative
to the homing vehicle is

2R - oM | R 4y BT
dtz - h 2 |r, t 3
ry t ry
(134)

The effect of the gravity vector differential is
obtained by inspection of Eq (134), that is, the
apparent target acceleration is of magnitude

(1) 91\24 (—E—) directed inward along the
r
t
line-of - sight.
R-T
(2) G—I\; (3 —?—t—> , directed upward
r r
t t

along the target's local vertical,

Both effects decrease linearly with range. Note
that they are not necessarily orthogonal unless
the line of sight is normal to the local vertical.
For such a situation, however, the vertical ac-
celeration vanishes since it is proportional to
R-r,.
t

A convenient description of the apparent tar-

get acceleration is obtained by resolving it into



components parallel and transverse to the line pf
sight. This is shown in the following sketch,

Targetts local vertical .
Homing
M. oM R vehiclets
Line of /|3 =5 (&) cos© local
sight o r t vertical
% LU /
Target 2 r
ry t (_\wy
w
p

Homing
vehicle

As may be Heen in the sketch several new var-
iables have been introduced. These are

6 = angle between target vertical and
line-of-sight

wp = pitch (angular) rate of the line of sight

wy = yaw (angular) rate of the line of sight,

The apparent acceleration outward along the line
of sight is

_ GM R 2
AgR = - r—g— (r—t) (1 - 3 cos” 8) (135)
t

The apparent acceleration normal to the line of
sight tending to increase the pitch rate of the
line of sight is

Agp = ng- (rit) - 3 sin 6 cos © (136)
r
t

Note that the apparent gravity effects act solely
in the plane of the line of sight containing both
the target and homing vehicle local verticals.
Thus,

Ag =0 (137)

a. Formulation with respect to line of sight
Since
R -1

where i-R = unit vector along line of sight

R (138)

-y ARG xR) (139)

where w = angular rate of line of sight in inertial
space

and
2= 2 _
d°R _—~ [d°R 2 _ dR dw]—,
w2 R [_d? 'R“] + [Z“W+HFRX1R
(140)
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Equation (134) may be resolved into components
along (parallel) and transverse to the line of
sight,

The equation of motion along the line of sight
is
d"R

—2— - Rh)z = —aR + AgR (141)
dt

where the subscript "R' denotes components
along the line of sight and the superfluous sub-
script "h'"' on the thrust acceleration has been
dropped.

The equation of motion transverse (normal)
to the line-of-sight is

dh
P ) .
-5 - R (Agp ap) (142)
dh
_ 2y :
T C Ra‘y (143)
where
i/ L
hw =R wp = angular momentum in pitch:
p
(144)
h =R = i :
wy = y angular momentum in yaw:
(145)

Note that in the absence of transverse thrusts
szy is conserved, while R2wp is not generally
conserved due to the torque, RAg , exerted by
the gravity differential. p

b. Transverse corrections

The general transverse command logic takes
the form

*
AVT = klw + k2 VT + k3 (146)
where

AV; = desired transverse velocity
increment

kl' k2 = constants of proportionality

VT = velocity of homing vehicle trans-
verse (normal) to line of sight

k3 = bias term.

Equation (146) may also be considered a vector
statement wherein AV,’%, W, VT and k3 are two-

element column vectors whose components are
those of yaw and pitch. That is,

N
AvE - p (147)
y



w
w :< p> (148)
(7]
Y
(v
V., = (149)
y
kg
k3= . > (150)

3y

The "constants of proportionality’

"are then 2 x 2

matrices

p ¥
Klp Klp

k1 =| kP Ky (151)
ly ly |
p Y 7
K2p K2p

kg = 152

5 P o (152)
2y 2y~

where the subscripts indicate those elements be-

longing to the pitch or yaw velocity command, and
the superscripts indicate the elements which scale
the pitch and yaw components of w and VT‘ Except

in cases where the homing vehicle is called upon
to execute roll maneuvers, there will generally
be no interchannel crossfeed terms in the com-

mand logic. Hence, in most situations the elements

outside the principal diagonal are zero.

If k2 and k3 are zero while kl is equal to the

instantaneous range to the target, a collision
course results. A lead-collision or biased-colli-
sion course may be generated by defining k3

appropriately so that the homing vehicle in effect
steers on a collision course to a point offset from
the actual target, If k2 and k3 are zero while kl

is a constant other than the instantaneous range,
a proportional navigation results if k3 is other
than zero. For kl and k3 equal to zero while k2
is -1, a pure pursuit course results since the
homing vehicle is directed to fly along the in-
stantaneous line-of-sight. Thus, by proper
selection of the constants of proportionality all
types of homing schemes are possible including
hybrid schemes which do not completely fall into
the above classes. It is also possible to fly a
slightly different course in pitch than in yaw by
choosing the constants of proportionality for the
two channels differently, Moreover, the complete
homing phase may be a blend of various types by
varying the constants of proportionality as a func-
tion of range or some other appropriate variable.

Collision course. If range information is
available a collision course may be flown. This
will tend to minimize the homing time since in
nonrotating relative coordinates the motion is
completely along the line of sight, which main-
tains a fixed direction in inertial space. Thus,
in nonrotating relative coordinates the motion of
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the target is radially inward toward the homing
vehicle,

Integration of Eqs (144) and (145) with respect
to time yields

J£ t
sz:Rw +S R ag dt - Ra dt
p 0 7py . p p
(153)
t
sz = ng —S Ra dt (154)
Yy Yo ; y

If proportional transverse jets are used (alter-
nately, a gimbaled nozzle) the thrust accelerations
are of the form

AV Ruw
a_ = P - b (155)
P T T
P p
AV¥ Rw
a Y- X (156)
y o Ty Ty

where -rp and 7. are the pitch and yaw channel

time constants. Substituting Eqs (155) and (156)
into (153) and (154) yields

g . L
- 0 Ty
wy = wyo (T) e (157)

t
g - =
T

t T p
wp:<wp R(2)+SRAgpepdo>e 5
0 0 R

(158)

Note that if the time constants are small enough
R

that _Fg does not build up appreciably within, say
three time consgstants, the initial rates pr and uyO
are steered out exponentially, In fact, if 7, Ty’
and the range rate are small enough such that
values of range separated in time by time con-
stants are nearly equal,

-tfr
W W e Y (159)
Yy Yo

-t/T Ag -t/
wpwwpoe p+?—p—7p <l—e p

(160)
Thus, in the steady state

w,_=0 (161)

Y

(a)pz AR-RTP (162)



Note that a pitch rate exists due to the pitch com-
ponent of the gravity differential, This empha-
sizes two significant points?

(1) A nonzero steady-state pitch accelera-
tion of

R
a_ = —— u
p 'Tp p

A 163
£, (163)

will exist,

(2) A precise collision course cannot
be realized in pitch if Eq (155) is used,
since the gravity differential causes
a small steady value of pitch rate to
exist. For extensive homing time the
pitch displacement of the line-of-sight
may be appreciable,

The first point is, of course, clear upon inspec-
tion of Eq (142). The obvious remedy for the
second point is to make o sufficiently small so

that the total displacement is negligible. This,
however, is not always possible, since high con-
trol loop gains may result in control instability.
In the next topic, "Biased-Collision Course, "

a solution to this problem is indicated.

If impulsive thrusts are used for transverse
corrections, the accelerations assume the forms

H
= AV _s(t) = t 64
a, p (t) ey 6(t) (164)
*
= AV §(t) = 6(t 165
a, ¥ (1) oy (t) (165)
where

§(t) = Dirac delta or impulse function.

Hence, Eqs (153) and (154) for t> 0 become

X
2
N A
R u S R g dt (166)
0
RZu =0 (167)

y

Thus, w_ does not require further corrections
in the ideal case, but wp soon builds up such that

if a set of transverse corrections are scheduled
at t = ti’ the required velocity increment is

t.
N
av, 4 - - g R ag, dt (168)
0

In many cases a control deadzone is used such
that corrections are made whenever up exceeds

some threshold value. Equation (168) may be
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used to compute the range at which this occurs.
Thus, if the previous correction occurred at
t= ti_1 when R = Ri-l’ then the threshold value

will be exceeded at the range R = Ri given by

2 _ 1
R o (169)
p
where
Qp = deadzone threshold value for wp
5 _dR
R = range rate = J {(assumed to be
negative),

The magnitude of the correction at such a time is

AV.=R. Q (170)
i 1°p
Hence, the total pitch velocity increment is
n
(AV ) =R0w +$‘ AV,
Ptotal Po & !
i=1
n
= R +Q R 171
0 wpo P_E i (171)
i=1
The total yaw velocity increment is
(AV ) =R, w (172)
total 0 Yo

Thus, the total transverse velocity requirement
is
n
(AVL) =R, (b, +w + ? R,
Thotat "2\ Po Yo Qpi_:,l i
(173)
where it is assumed that w
0

if they are not positive, absolute values are to be
used in Eqs (171), (172) and (173).

and wy are positive;

Biaged-collision course, In this method the
line-of-sight rates are controlled to appropriate
bias values, If the biases are zero, a pure colli-
sion course results. One particular application
of this technique is that which maintains the line
of sight at constant angles with respect to the
target's local vertical and orbit plane normal,
Thus, if the target's body axes are maintained
at fixed angles with respect to its local vertical
and orbit plane normal, the homing vehicle ap-
proaches the target at a fixed aspect in target
body coordinates. This is shown in the following
sketch for a coplanar situation,




For a target in a circular orbit, the local
vertical has an angular rate of

Thus, assuming coplanar rendezvous, the line-
of-sight rate in pitch must have a magnitude ;.

If the homing vehicle is behind the target the
sign of wp must be negative (downward rotation);

if ahead, positive. The yaw rotation must be
zero in the case of coplanar rendezvous. Thus,
there exists biased-collision steering in pitch
and pure collision in yaw.

For continuous, proportional steering

o

5
AV _
: p _ R (wp wb)
ap p = T (174)
p P
avy
. y Ruw
ay - = — (175)
Y Yy
where
Wy, = desired bias rate
= iwt.

Substituting the above into the general equations,
Eqs (153) and (154) yields upon solution of the
differential equations

()

= 176
Wy wyo (176)
(R())z “thr, gt
W =W e + S R &g
P "py \R. 2 5 p
{t-0)
Rw T
+ b> e P 4 (a1
p

Ag before, if the ratio of range values separated
in time by three time constants is approximately
unity,

-t/
W, vw, e y (178)
Yy Y
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-t/'rp
(wp S w) v (wpo - wb) e +

-t/
e 7p)

Lg
p'T
R

(179)
Thus, in the steady state
w_ =0 (180)
y
Agp
wp=wb+T 'rp (181)

This equation shows that the steady pitch rotation
obtained using conventional collision steering can
be removed by w_ = -& gp/R L8 and implies use

of angular acceleration measurements.

Using Eq (136) in Eq (181) yields

_ GM .
wp—wb+3 r—g 'rpsm 90 cos 60
t
=W +3u27 sin 8, cos B (182)
b t 'p 0 0
Then, for N =iwt
(183)

W, = tw, (1 F 3wy T sin 8, cos 60)

Since the maximum value of sin 60 cos 60 is 1/2

and 7_ is usually on the order of seconds, the

bracketed term is approximately unity. Thus,
in the steady state w_ T w,_ = tw,.
p b t
For impulsive thrusts,
- avi s = R (- w) 6(t 184
ag p6() (W, wy) 6(t) (184)
sk
a = AV_ 6(t) = R 6(t 185
v ¥ (t) W, (t) (185)
Hence, after such a correction
2 t 2
R 7w _= RAg dt+ R w 186
p S &p b (186)
0
R2u_ -0 (187)
y

As in the case of the collision course, the
gravity differential requires subsequent correc-
tions in pitch, Thus, if corrections are made
whenever w_ deviates from wy by Qp, the range

at the time of each correction is given by Eq (169).
For the present case since

Agp = 3R wtz sin 8, cos 8, (188)
Equation (169) becomes
2 Swtz sin 60 cos 60 R. R2 dr
R.“ = S 2% (189)
i Q .
P R. R
i-1



where the absolute value signs on the right mem-

ber are implied. 1If the closing rate, (-R), is
constant between the ith and (i - 1)st corrections

2 .
g W, sin 00 cos 60

R.” = R, -R.Y) (190)
i . i-1 i
9, (-R),_
The total pitch and yaw velocity increments
are
n
Aav.) =R,Aw_ +Q S‘ R, (191)
totat 0 Py P i
i=1
(AV ) =R, w (192)
Ytotar 0 Vg
Hence,

VAV =R, {Aw_ +w + 0 5\ R.
Tiotar 0 Py Vg Pigl 1

(193)

By comparison of Eq (193) with Eq (173) it
might be inferred that ""biased-collision" is most
efficient for a coplanar rendezvous since Awp

0
is involved in biased-collision; whereas the full
initial pitch rate, w_ , is involved in "pure colli-

0

sion." This is deceiving unless it is realized
that faster range closure occurs in pure collision
and hence fewer number of pitch corrections are
required, since the time-integrated effect of
gravity is smaller. Thus, biased-collision does
not necessarily require less velocity.

Proportional navigation. Proportional navi-
gation involves transverse accelerations pro-

portional to the line-of-sight rates. That is
ay =K, w0, (194)
P
a_=K 195
y ay wy (195)
If
K =X (196)
a T
p p
K =R (197)
a T
Y y

then a collision course results. However, in
the absence of range information a collision
course may be approximated by Eqs (194) and
(195) when Ka and K are constants. This is

P
the prime purpose of proportional navigation,

Substituting Egs (194) and (195) in Eqgs (153)
and (154) yields

(o)
“’yo R/

oy = Q, (1) (198)
tRAg Q. (1)
I p p
vy [RO %0, +SO o dt:] . (199)
where

LK

Q (1) = exp (3 -P?dt) (200)
0

Explicit solutions of Eqs (198) and (199) re-
quire knowledge of the time variation of range,
If we assume that proportional transverse jets
are used, then in the absence of accelerations
along the line of sight,

R'\-RO+ Rot (201)
It is also assumed that the initial closing rate
(-RO) is high enough so that Eq (201) is true in

spite of gravity effects and line-of-sight rotations,
With Eq (201), Eq (200) becomes

R\
Q (t) = (R——) (202)
0
where
K
m=_2 (203)
(-Ry)
yielding
R m-2
wy = wyo (ﬁ;) (204)
t Ag 2-m m-2
o oy § TR () dt](a)
P [po Ry Ry,
(205)

If the closing rate is sufficiently high so that
Ag
-—R—p can be taken outside of the integral

SENESEINOR
W, W + 1-
p Py (R—O) - ap R_O

(206)
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Note that in order to be effective

K 2 for yaw
(207)

) 3 for pitch

Thus, by choosing m sufficiently high (implying
high K ) in the steady state
p

Ag
W, = K;E (negligible for Kap high enough).
P

1t is seen then that the proportional navigation
course can adequately approximate the collision
course for sufficiently high gains and closing
rates,

Biased-proportional navigation. This tech-
nique 1s a generalization of proportional naviga-
tion, analogous to biased-collision in its general-
ization of collision steering. If this technique is
applied to the coplanar situation analyzed for the
case of biased-collision, one obtains

o —w R m-2
vy “yo \Rg.
Agp+Ka wb

o § = )6

(208)

(209)

under the same restrictions imposed on the ex-
plicit analysis for proportional navigation. For
this case

Agp 2 .
- Bwt sin 60 cos 90.
Therefore,
2 .
m-2 w, sin6, cos®
W= W R +3( m At 0 0 1
p Py \Rg m - 3/ K
P

T L) e

Thus, in the steady state

no

2 . 0
.3 m h)t Sl OCOS 0+ m
Yo m -3 K, m -2} %

p

(211)

For wp ~ iwt, it is required that

wZSine cos 0
v - tw m-2:L m -2\t 0 0
b t m m -3 Ka

(212)

where m > 3. For large m (large K )
P

W, = tw, (213)

As in the case of proportional navigation, this
technique can adequately approximate its collision
counterpart for sufficiently high gains and closing
rates.

c. Homing flight paths

The flight paths produced by the transverse
steering techniques presented are simple to
derive. For example, in the steady-state,colli-
sion and proportional navigation maintain the
line of sight in a fixed inertial direction, as-
suming the flight times are small enough to war-
rant neglect of the gravity effect. Thus, ina
nonrotating frame centered at the target, the
homing vehicle closes radially on the target. On
the other hand, for the coplanar biased-collision
and biased-proportional navigation examples
presented, the line of sight is maintained fixed
in a rotating frame centered at the target. In
this frame the biased-collision and biased-pro-
portional schemes produce an apparent homing
vehicle motion radially toward the target. The
following two sketches show the flight paths in
these frames. The mapping of a flight path from
one frame to the other is relatively simple since
the two frames differ by a rotational rate.

Y
Target's vertical
Biased collision
w .
Homing
vehicle
Collision
Target
Y
Biased Homing
collision vehicle
Collision
Target
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Note that if the target's body axes are con-
tinuously aligned with its local vertical, an
observer on the target will see the homing vehi-
cle approach along an apparent straight line if
biased-collision is used. To this observer the
collision course will appear curved. However,
assuming no thrust accelerations along the line
of sight and identical initial conditions, the hom-
ing vehicle reaches the target sooner along the
collision course,

d. Motion along the line of sight (longitudinal)

The governing differential equation for this
maneuver is Eq (141) which is repeated at this
point,

2
d” R 2 _
- - Ruw” = aR+/_\.gR (214)
where
_ _GM /R . 2
Agp = -~ <T)(1 - 3 cos” 0) (215)
r‘t t

For a target in circular orbit, the differential
equation can be written as

2 2
9§_+th2 I}l - 3(:052 0) -wiQJ: “ap
t

(216)
where
W = target's angular rate,

For the cases treated it was seen that biased-
collision and biased-proportional navigation yield

2
%{— - R wtz (3 cos2 90) = -ap

(217)

whereas collision and proportional navigation
yield

2
d°R 2 2
j—dt +th (1 -3cos” 9= ap

(218)

The above equations show that the gravity effects
reduce the closing rate in the case of biased-
collision and biased-proportional navigation.
However, the gravity effects may actually in-
crease the closing rate or at worse reduce it to
a lesser extent in collision and proportional
navigation. Hence, all else being equal, the
latter produce shorter homing times. The dif-
ferences are small when rapid rendezvous is
involved, However, for extended or long-time
rendezvous the differences may be significant.

Neglect of orbital aspects. The homogeneous
solution of Eq (217) admits hyperbolic functions
whose arguments are proportional to w;. For

Eq (218) since 0 = 80 + wtt, Mathieu functions,

whose arguments are likewise proportional to Wy

are admitted. These homogeneous solutions
represent the perturbative effect of the orbital
aspects of the problem. If the homing phase is
restricted to small homing times such that the
arguments of the homogeneous functions differ
negligibly from zero, the range variation will be
approximately that which is obtained by letting
W = 0 in Egs (217) and (218), In such instances

all techniques analyzed in subsection d have range
variations governed by

R

-a (219)
dtZ R

In all ensuing work in this chapter it is assumed
that Eq (219) is valid. The condition which must
be satisfied for this to hold is

w, tR < <1 (220)
or
70
tR < < E (221)
where

tR = rendezvous (homing) time,

This implies, of course, that the initial closing
rate must be sufficiently high so that the integrated
effects of the gravity differential are negligible,

If this is not the case, the problem becomes one

of extended or long-time rendezvous, requiring
the use of Eq (217) or (218).

e. Single longitudinal correction

Satellite rendezvous requires closing rate
control and differs from interception because of
this requirement. It is assumed that the homing

vehicle possesses an initial closing rate (—RO)

such that longitudinal corrections may be devoted
solely to closing rate reductions or braking. The
initial closing rate is established either by the
booster or homing vehicle upon injection.

The most obvious technique is one involving
a single thrust application at the last possible
moment, such that range and closing rate go to
zero upon completion of the correction. This
technique produces minimum flight times since
the initial closing rate is not reduced until just
prior to rendezvous.

Impulsive thrust. In the ideal case of an im-
pulsive thrust, the initial closing rate is removed
at R = 0. Thus, the rendezvous and interception
problems are virtually identical in this ideal case.
The rendezvous time is the same as that of inter-
ception, That is,

(222)
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where

t = initial time-to-go.
Go

The longitudinal velocity requirement is just

AVL = (-RO) (223)
Constant acceleration. Physically all thrusts
are Tinite and, hence, regard must be given to the
resultant nonzero braking distance. For constant
thrust and negligible mass change, the braking
acceleration is constant. The distance traveled
over the time it takes to remove the closing rate
is defined as the braking distance b and is given by

< 2
(-Rg)
b = _2____a0 (224)
where
Fo
2y s = initial thrust-to-mass ratio,
0

Thus, the homing vehicle is allowed to close
at the rate (-RO) until R = b, whereupon the brak-
ing acceleration a, is applied so that R = 0 when

R = Q0. This results in a rendezvous time of

Atb
tg = tGO +* — (225)
where .
(-Rg)
Aty = braking duration = (2286)
0

Constant thrust. For the general case of
constant thrust wherein mass variation is non-
negligible

F

4]
an, (1) = - —— (227)
R mg m t
where
r'no = mass flow rate > 0.
. F(t)
g0 sp

For this case, the required braking distance is
Refs. 10 and 11,

b= (eRO/C -1+ Iio/c)) ( 9%)

where

(228)

(o]
1}

effective mass exit velocity.

= g lgp

The rendezvous time is

.
to=t, + S-S i+ & efto/ < \(229)
R "Gy 3 {(-r R

0) 0

The following sketch shows a typical R versus

R phase plane for this closure. Impulsive, con-
stant acceleration and constant thrust braking
are illustrated. It is noted, however, that the
difference between the latter two is exaggerated.

-R Impulse
Negligible mass change,
constant thrust
® Sizable mass change, constant thrust

=]

o} © ®

| |
| |
| i
| |
| |
| 1
| |
i Ll

0 bF ba
0 o}

Multiple longitudinal corrections. There are
many reasons for reducing the closing rate in
multiple steps rather than ina single step. The
most obvious reason is the presence of system
errors which can cause significant range and
range rate dispersions if large closing rates
are removed in a single step. Therefore, there
exists the possibility of biasing the nominal point
of closing rate reduction so that the closing rate
is nominally zero at some range Rb. Small

vernier jets can then be used to adjust for position
and residual range rate errors. However, for
large initial closing rat€s, the residual errors
may be quite high and may require considerable
expenditure of gas since the thrust level and
specific impulses of pneumatic jets are low,
Compounding this is the weight penalty incurred
by the tankage to contain such large pneumatic
volumes. Thus, even if such fine jets are used,
there still exists the desirability of multiple step
reductions so that the single step braking thrust
will not leave large residual errors for the vernier
system.

The underlying idea of multiple step reduction
of the closing rate is this: divide up the total
closing rate to be reduced in smaller increments
and allocate these increments at various ranges
so that percent-type errors in the velocity incre-
ments are also allocated rather than occurring all
at once near the target. Errors in each correc-
tion are than removed by each subsequent correc-
tion, assuming that sufficient time exists between
corrections for closed-loop control.

If done properly, the closing rate control can
be effected without need of a bilateral thrust
capability during the multiple step reductions.
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This is done by constraining each correction to
yield a certain minimum closing rate even in the
presence of system errors, Thus, each suc-
cessive correction need only decrease the closing
rate. This permits the use of a unilateral thrust,
resulting in a weight saving since a comparable
rear-mounted longitudinal engine is not required.
In addition, since the closing rate decreases
monotonically, the longitudinal velocity require-
ment is no more than the initial closing velocity

(-RO). There is the matter of the differential

gravity effect and injection dispersions. However,
these are also required of the single step tech-
nique,

It should be made clear that these refinements
occur at the expense of a longer flight time. That
is, under the constraint of minimum velocity re-
quirement and unilateral thrust, final dispersions
are traded off against time. However, except for
emergency rendezvous, the longer homing time
is usually more acceptable than the weight penalty
which otherwise occurs.

A method for selecting the nominal closing
rate profile which utilizes the minimum number
of reductions is now described. To simplify the
presentation, impulsive corrections are assumed.
This is not a restriction, however, since, for
nonimpulsive thrust, it is only necessary to start
each correction at a range which is greater by the
amount of distance traveled during each thrust
period. Thus, if it is required that the closing

rate be reduced from (-RO) to (-Rl) at some

range, the difference between the braking dis-
tances bO and b1 vields the amount of lead dis-

tance. The corresponding difference between
the stretch-out times yields the amount by which
the total homing time is increased over the im-
pulsive case,

Suppose the final braking correction is
scheduled at a range RB which provides a suit-

able bias such that errors in range measurement
do not cause an overshoot in position and, pos-
sibly, premature impact, In addition, suppose
the nominal closing rate at this point is made
sufficiently high to ensure against negative clos-
ing rates in the presence of system dispersions.

The following sketch shows this in the (-R) versus
R phase plane. The 30 contour of dispersions is
shown, assuming a bivariate gaussian distribu-
tion in closing rate and range.

It is implicitly assumed that the range dis-
persion is acceptable with regard to specifica-
tions or that use of small bilateral verniers for
clocking maneuvers can comfortably accommo-
date the range errors. The primary concern
then is to ensure that the closing rate dispersion
is also within allowable limits. From this sketch

it is apparent that the closing rate bias (-RB)

must be at least equal to the expected 3o closing
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(-R) Nominal closing
. rate prior to nth
(_RN-I)_—— correction
Nominal nth (final)
correction
- A
( RB)
h 3o contour of dispersions
0 R

rate error if range is to decrease monotonically,
Hence, for large dispersions in the final closing

rate (—RN) the bias becomes large and may be

unacceptable in terms of vernier fuel and tank
weight requirements, To avoid this the following
process may be used to obtain the desired closing
rate profile. Let

N = total number of required correc-
tions (to be determined)

Vi = closing rate following ith correc-
tion

AVi velocity increment of ith correc-
tion

AV = commanded velocity increment of

ith correction

=
w®
i

proportional (percent-type) and
additive errors in execution of
av¥

i
D. = desired or nominal closing rate

following ith correction

€5 = error in measurement of Vi'

The proportional error ki is the per-unit error
*
in execution of AV; and may result from either

accelerometer bias, scale factor errors, or
from thrust and IS variations if corrections are

metered on a time basis. The additive error Bi

is the effect of residual impulse uncertainties.

Since
V=V, -Aav (230)
AVI =V te - D, (231)
and
AV, = (1 + k) Av;" + B, (232)



It is possible to write for the general correction

Vi = Di - k.1 (Di-l - Di) - (Ei—l + Bi) (233)

if all cross-products of errors are assumed to be

negligible, In particular for the Nth (final) cor-
rection,
Dy = (-Rp)
yielding
[VN - ('RB)] = “kn [DN—l - ('RB)] " ey
(234)

where

[VN - (_ﬁB)]: closing rate error after Nth
correction

ay = total additive error of Nth
correction
S ey + BN (235)

Hence, if the 3o dispersion in the final closing
rate is allowed to be no greater than C [and by

the preceding sketch (- -R ) = C] then it is re-
quired that

2 2 1/2

D < C+ (236)

Thus, if a single step correction (N = 1) is to be
used, the following relation must hold.

1/2

Dy = (-Ry) < C+ (237)

If this is not the case, then a single step correc-
tion cannot be used and hence N must be greater
than 1. This implies a prior correction at a
range

R = RN—] > RN = RB'
For this prior correction, the unilateral thrust
constraint is invoked, requiring that VN 1> 0.

Using Eq (233) with i = N - 1, this is established
with 30 probability if

2 2 2 4.2

D% _. > 9a (D, - Dy _)°+ 90

N-17 %%ky_ " N-2 7 N-1 oN-1
(238)

If Doy is assumed to be at the maximum value

allowed by Eq (236) (to minimize the nominal closing

time),
1/2
D12\I_1 - 902
Dy.g< Do |Py-1* e
N-1 on
N-1
(239)

where the notation implies the maximum value
with respect to Dy _;. Thus, in order for a

two step reduction to be possible,

1/2
Df - 905
Max 1
= (- R ) < D, +| ———=
90
k
1
240)
where (Dl) is given by Eq (236) for N = 2.

max

Usually, it is not necessary to proceed beyond
the case of N = 2 since the presence of a small

number oi in the denominator of the square root
1

expression in Eq (240) yields a very large number.

In addition, the fact that the maximum value of

D1 is involved in Eq (240) further enhances the

situation. However, should the initial closing
rate be extremely high, so that Eq (240) does
not hold, N must be made greater than 2, This
implies a prior correction at

R=Ry_p>Ry ? Ry = Rpg

Again for this prior correction the unilateral
thrust constraint is invoked, and an expression
similar to Eq (238) results. If the maximum
value of Dy _, is used, a constraint on Dy _q,

similar to that of Eq (239), results.

5
2 2 1/2

Pn-2 9%,

Max N-

Dnos< D Dyogtl——7————

N-2 90k
N-2

(241)

where (DN_2) is given by Eq (239). If three
max
reductions are to suffice, then Eq (241) requires

that

1/2
D% - 902
Max 1
= (-R )< D, +| ——g—
1 jeTe)
Ky

VII-36



which is identical to Eq (240), except that the unity
subscripts apply to the first of three scheduled
reductions, and, if written out cumulatively in-
stead of recursively, implies

. Max Max
D, =(-R,) <
0 0 D, Dy
1/2
2 /D% . - 96®
N-1 aN-i
D_ + Z (242)
2 9¢
i=1 Koy &
N-i
where (Dl) and (Dz) are given by Eqgs

max max
(236) and (239) for N = 3,

What has taken place so far is an exercise
in dynamic programming (Ref. 12) to determine
the minimum number of reductions N necessary
to satisfy the criterion C under the constraint of
unilateral thrust. By inference, the general allo-
cation policy for N reductions may be written as

1/2
D12\1—1+1_902
D.. . < Max . AN -i+1
N-i " Dy _j4q [ N-i*1 9012(
N-it+1
(243)
for
i=2, 3, , N
where
DO = (-RO) (244)
1/2
C2 - 9¢
B N
Max Dy_; = C + —z (245)
k

The process is continued until it is found that

D0 = (—RO) < Max DN-i (246)

whereupon N is determined, The process also

yields the desired closing rates at each step.
Hence, upon satisfaction of Eq (246) all Di's

are determined,

There now remains the problem of allocating
the desired set of closing rates at appropriate
times or ranges. Generally, the choice should
be made so that a sufficient amount of tracking
and smoothing time exists between consecutive
step reductions, Also, the reductions should
be spaced so that the transverse channels have
sufficient time to steer out errors. The non-
impulsive nature of each thrust application must
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also be taken into account.
time between reductions is

Thus, generally, the

Ati = Ats. + Atﬁ_ + AtB. (247)
i i i
where
Ati = time between ith and i - first
reduction

Ats = ith smoothing time
i

Atﬂ = ith lag time (computing time, valve
i lag, etc.)

AtB = burning time of ith correction

i
The range difference between the ith and (i - 1)st
correction is thus

AR, = (Atsi + Atﬂi) D, , + 2b, (248)

where

Ab. = distance traveled in braking from
i
D, , to D..
(249)

Equations (248) and (249) then allow for the com-
putation of the spacing of step reductions and,
hence, the generation of the nominal closing rate
profile, For any given set of spacings between
corrections, the closing rate profile is the
minimum time profile under unilateral constraints.
This follows, since at each step the closing rate
is assigned the highest possible value under uni-
lateral thrust constraints,

g. Other rendezvous schemes

So far the work presented in this section has
been based on the differential equations of rela-
tive motion. This approach is, however, not
necessary as will be illustrated in the two re-
maining schemes to be discussed.

Combined injection and terminal guidance.
By timing the initiation of thrust and providing
thrust of a variable magnitude and direction, it
is possible to perform the injection and any
maneuvers necessary for closure simultaneously.
The most notable studies conducted for this
scheme have been conducted at the MIT Instru-
mentation Laboratory (see Refs. 13, 14, 15 and
16). These studies are concerned with a guidance
equation of the form

f.=8 4, [F.‘ * f(R)] * 5, [R wLS]

where

(250)

g

c = commanded acceleration vector

Sl’ Sz= sensitivity coefficients



R = range rate

R = range

GLS = angular velocity of the line of sight

f(R) = desired range rate as a function of
range

ZR = unit vector along the line of sight

For the studies conducted to this date, the

f(R) utilized has been KV/I-{_ This selection was
made based on trials of several functions satis-
fying the boundary conditions for f(R) (namely
that f(R) be defined for all R and go to zero at
R = 0). A variety of values have been investi-
gated for Si and for K. With regard to K, the

implications are that some linear function of

the required velocity increment (i.e., a + bAv)
may be advantageous from the standpoint of pro-
pulsion system performance.

Because of the extreme initial closure veloc-
ities (as great as 4500 mps) and the limited
range of the radar unit, it is, in general, nec-
essary to begin the injection maneuver with a
programmed thrust. Then at some time during
the maneuver after the target is acquired, the
guidance equation must be utilized. This
sequencing is desirable in other respects as
well, since it allows the planar change to be
made while the velocity is near minimum, thus
conserving the energy available.

A single variable thrust gimbaled motor (along
with an adequate control system) comprises the
propulsion system. The utilization of a single
motor is made possible by restricting the initial
conditions for closure to lie within a region ahead
of and slightly below the target. Under these
conditions the target overtakes the shuttle during
the injection maneuver. The energy require-
ments for these maneuvers closely approximate
the minimum (for small changes in the plane of

The purpose of the variable thrust motor is to
provide additional tolerance in the relative posi-
tion of the two vehicles at the time the injection
maneuver is initiated. In this manner it is possi-
ble to simultaneously compensate for errors in
the ascent trajectory and launch timing,.

The data obtained for the necessary compu-
tations are taken from a single radar unit mount-
ed to the vehicle on a set of gimbals. The range
and range rate are measured directly, whereas
the angular velocity of the line of sight is com-
puted from signals taken from the dish gimbals
and the inertial platform.

An elementary functional block diagram of this
system is shown in the following sketch.

Positive closure. Utilizing the analytic solu-
tions for posilive and velocity presented in the
discussion of relative motion for nearly circular
orbits, a purely numerical study of rendezvous
has been conducted. The guidance scheme for
this technique requires that the vehicle be acceler-
ated toward the target with some given velocity.
Then at a specified distance and range rate, thrust
is again initiated to drive both the range and range
rate to zero, This scheme has been investigated
in studies conducted within the Martin Company.

In order to maintain the vehicle antennas in
known orientations with respect to the earth, and
to simplify the attitude control function to one of
stabilization, the vehicle considered is assumed
to be aligned with its fore and aft axis parallel to
the orbital plane of the target satellite, Further-
more it is assumed that the fore-aft axis and the
lateral axis lie in the plane normal to radius
vector to the satellite, Thrust units are located
so0 as to provide fore-aft, left-right and up-down
accelerations, The attitude reference for this
orientation is provided by an inertial platform.

Analog studies have been conducted to investi-
gate vehicle to target closure employing on-off
thrusts applied through the cg of the shuttle ve-

motion). hicle. The basic scheme utilized in these runs
Guidance
equation
Acquired
Programmed Motor Variable
Radar " search pattern Timer gimbal thrust motor
Not
acquired Programmed
> thrust profile

magnitude and direction
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is illustrated in the following sketch. This sketch
shows the relative range and range-rate phase
plane (where Points A and B are two representa -
tive conditions existing at the time of radar lock ~
on).

Switching line
T (R=+KR)

———Relative range rate

\ LRelative range ®B

Rd . -——-———-{:—-\

Thrust is applied in all cases to produce a given
specified closure rate, rd. The vehicle is then

allowed to coast until the switching line conditions
are reached. At this point thrust is again initiated
and the range and range rates are nulled to zero,
The choice of K in the switching line equation is
determined by knowledge of the acceleration avail-
able from the motors. Thrust must be initiated
sufficiently early to avoid overrunning the target.
Because of the on-off nature of the propulsion
system, a dead spot must be provided to prevent
chattering. In addition, it is necessary to bias the
preselected closure velocity since the relative
velocity components will change even in the ab-
sence of thrust due to slight differences in the
orbits of the two vehicles and the differences in
the perturbations effecting them.

The guidance law for each thrust component
(neglecting the velocity bias previously discussed)
is of the form

T

+To| [R-0)+kR] D & > - Ry
or
[(R—E)+KR]<—D;R>Rd

T=-T, [R-¢)+KR|>D;R<-R
0 d

[(R-e)+KR]<-D;R <Rd (251)

T =0 -D< [(R-s)+KR] <D
where

€ =stand off distance

D = dead spot (%) about ¢

Rd = preselected closure rate.

It can be shown that closure from any point in
a region about the target vehicle is possible.
However, the most economic utilization of the

propellant occurs when the shuttle is initially
ahead of the target with a slightly lower velocity,
If the vehicle is initially behind the target, two
possibilities exist, First, thrust can be applied
to produce closure without regard to propellant
consumption. Or Secondly, the orbital period of
the shuttle vehicle can be adjusted so as to pro-
duce a gradual closure with respect to the target,
and then at such time as the vehicles are appro-
priately located, the previous routine can be em-
ployed.

Studies conducted with initial separations of
approximately 32 km and velocities of approxi-
mately 90 mps indicate that thrust-to-weight ratios
of 0.1to0 0.2 g are quite adequate for control,
Closure times for these runs were generally in the
order of 400 to 800 sec with a fuel requirement

of approximatel 0 which checks very closel
Y g Y

to the estimate obtained from

1
Av = gOIspEn T-%

The motion of the shuttle vehicle under the in-
fluence of this set of control laws is illustrated in
the following sketch which shows the projected
motion in the vertical-longitudinal plane and the
lateral longitudinal plane,

Vertical

Longitudinal (-y)

Latera]

Longitudinal (-y)

Signals for implementing this guidance law are
derived from the radar data, Range (r) and range
rate (r) along the line of sight ar