
NASASP33 PART2

SPACE FLIGHT HANDBOOKS

Volume1

OrhitalFlightHandbook

NATIONALAERONAUTICSANDSPACEADMINISTRATION





SPACE FLIGHT HANDBOOKS
Volume1

OrbitalFlightHandbook
PART 2 - MISSION SEQUENCING PROBLEMS

Prepared for the

GEORGE C.

MARSHALL SPACE FLIGHT CENTER

Huntsville, Alabama
Under Contract NAS 8-5031

_ Officeof Scientificand TechnicalInformation 63NATIONAL AERONAUTICSAND SPACEADMINISTRATION
Washington,D.C.19





FOREWORD

This handbook has been produced by the Space Systems Division of

the Martin Company under Contract NAS8-5031 with the George C. Marshall

Space Flight Center of the National Aeronautics and Space Administration.

The handbook expands and updates work previously done by the Martin

Company and also incorporates, as indicated in the text, some of the

work done by Space Technology Laboratories, Inc. and Norair Division of

Northrop Corporation under previous contracts with the George C, Marshall

Space Flight Center. The Orbital Flight Handbook is considered the

first in a series of volumes by various contractors, sponsored by MSFC,

treating the dynamics of space flight in a variety of aspects of

interest to the mission designer and evaluator. The primary purpose

of these books is to serve as a basic tool in preliminary mission plan-

ning. In condensed form, they provide background data and material

collected through several years of intensive studies in each space

mission area, such as earth orbital flight, lunar flight, and interplan-

etary flight.

Volume I, the present volume, is concerne_ with earth orbital

missions. The volume consists of three parts presented in three separate

books. The parts are:

Part i - Basic Techniques and Data

Part 2 - Mission Sequencing Problems

Part 3 - Requirements

The Martin Company Program Manager for this project has been

Jorgen Jensen, George Townsend has been Technical Director. George

Townsend has also had the direct responsibility for the coordination

and preparation of this volume. Donald Kraft is one of the principal

contributors to this volume; information has also been supplied by

Jyri Kork and Sidney Russak. Barclay E. Tucker and John Magnus have

assisted in preparing the handbook for publication.

The assistance given by the Future Projects Office at MSFC and by

the MSFC Contract Management Panel, directed by Conrad D. Swanson, is

gratefully acknowledged.
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VI. MANEUVERS

SYMBOLS

Right ascension

Throat area

Semimajor axis

Coefficient of Thrust

Drag force

Velocity increment due to impulsive thrusts

Eccentric anomaly

Eccentricity

Hypergeometric series

Force; Function

Gravity acceleration

Altitude

Modified Bessel function of the first kind

Specific impulse

Inclination

First coefficients of the potential function

Latitude

Mean anomaly relative to the injection point

Mean anomaly relative to perigve;
Mach number

Mass and mass rate

GeneraIized Legendre poiynomial

Semiparameter of ellipse

Range, equatorial radius

radius

Apogee and perigee radii

Period of sustained lifetime

Time

Burning time

Potential function

V

V
C

W
O

W
P

X K

x,y,z

E

e

V

p

(X

T

¢

¢T

e.

¢0

Velocity

Circular speed _7-r

Initial weight

Propellant weight

Acceleration

Coordinate components

Azimuth relative to north point on horizon;

Log-log slope of atmospheric density ap-

proximation

Flight path angle relative to local horizon-

tal; ratio of specific heats for a gas

Base oI natural logarithms utilized to prevent

confusion with eccentricity

Mass ratio Wp/W °

Central angle measured from perigee, i.e.,

true anomaly

Gravitational constant = GM ; statistical
mean

Angle in the equatorial pIane measured from
the ascending node to the intersection of the

equatorial plane and the instantaneous meridi-

an

Atmospheric mass density

Variance of a statistical density function

Orbital period

Central angle measured from the ascending
node = 8 + c0

Thrust orientation angle relative to velocity
vector

Right ascension of the ascending node

Rotational rate of the earth

Secular regression rate of the line of nodes
due to the earth,s oblateness

Argument of perigee

Secular precession rate of the argument

of perigee due to the earth,s oblateness
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A. INTRODUCTION

Because of many reasons, including guidance
inaccuracies in launch and ascent, change of
mission for the satellite, and evasion or rendez-
vous maneuvers, a requirement exists to transfer
from one position and velocity in space to another
at some subsequent time. This chapter treats
some of the problems associated with such ma-
neuvers and presents computation routines and
data useful in analyses of these maneuvers.

Due to the fact that two general trajectories
do not intersect, it is necessary to perform at
least two maneuvers in order to produce the de-
sired trajectory. Thus, the first order of busi-
ness is the analyses of impulses {the mechanism
of investigation) and of the independent adjust-
ment of the six constants of integration or ele-
ments. These discussions will be followed by
the analysis of small maneuvers in nearly cir-
cular orbits, a general two-impulse transfer
discussion, propulsion requirements for cor-
recting the effect of atmospheric drag and the
earth's oblateness. At this point, the emphasis
changes slightly to the presentation of materiai
pertinent to differential corrections, the errors
in the final orbit and trajectory optimization.
These discussions are followed in turn by the
analysis of the effects of finite burning time and
the in-orbit propulsion system. The chapter con-
eludes with a discussion of the adaptability of
microthrusts for orbital corrections.

B. IMPULSIVE CORRECTIONS

Because the impulse is the medium of analysis
in these discussions, the accompanying assump-
tions and methods will first be reviewed. Be-

cause the burning time is infinitesimal, the ef-
fects of gravity, variations in position due to
thrust, etc. , can be neglected and the governing
law considered to be the law of cosines.

By this law, the characteristic velocity of
the maneuver (AV) may be expressed as a func-
tion of the velocity vector prior to maneuver

(V1), the velocity vector after the maneuver

(V 2), the turning angle of the maneuver (@) and

the angle of thrust application relative to the

initial flight direction (*T).

V 1

2 _ 2V 1 V2 cos q_ (1)AV 2 = V 2 + V 2

where

AV (1)= go Isp _n _ (2)

1 - _00

= the ideal velocity increment obtainable.

A convenient graphical representation of this law
can be found if it is first nondimensionalized.

(v). (v)= 1 + - 2 cos q_

(3)

Similarly the law of sines is:

AV V 2

sin CW = _ sin qJ
(4)

These equations are presented in Figs. 1 and
2. The veIocity increment itself is related to

the mass fraction \ m0] in Fig. 3. The form

of these figures is the nomogram; the philosophy
of construction along with a general description
of the utilization of such a figure is presented in
Chapter III. The effects of errors in AV and

4_T on the final velocity V 2 can be seen immedi-

ately from the law of cosines to be

(O_y__) y + cos _T
OPT x (5)

(2-_T) = - xY-sin_T (6)
Y

( ¢}.._..) sin CT-- -----2---- (7)

_T x

°(<):x'- ,.,
y ¢'T

where

V 2
X -

V 1

and the subscript on the partial derivative
indicates the parameter held constant.

Figures 4 through 7 show these error
coefficients.
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C. INDEPENDENT ADJUSTMENT OF

ORBITAL ELEMENTS

The impulse having been considered, atten-
tion can be turned to the correction of the or-

bital elements. This series of corrections will

be treated first for the case when the target

orbit is circular then for the case of elliptic
orbits. (The distinction is made because of

minor differences in the maneuver formulation. )

I. Circular Orbits

In general, the ascent guidance system will

not be capable of placing the vehicle in a speci-

fied precisely circular orbit (even for a spheri-

cal earth). Therefore, maneuvers to change
each element must be defined.

a. Correction of eccentricity and semimajor
axis

The first of these maneuvers is the placement

of the satellite in the proper orbit. This prob-

lem is considered in three cases, in which the

planar orbit will be described by apogee and

perigee radii and the time of perigee crossing.
The three cases are:

(1) r a > r n > rp

(2) r
>rp >ra n

(3) r n >r a >rp.

The r is that radius which is specified for the
n

satellite.

Case 1--r a >r n >rp. Consider first the

pulse necessary to change an initially elliptical
orbit to a circular orbit.

From the law of cosines

AVE2 =V: +V2 - 2VcVn nC°S A'l

where

Ve =

V n = velocity in the incorrect orbit at
r

n

A_ = change in flight path angle

This expression may be written in terms of the
knowns by considering

V
n

_ = COS
-1 _ r a rp(r +r -

rn a p rn)

(r)V 2 = pp _ 2V 2 _ n

2 2 c r -7- rpn r cos A_ a
n

2 V c V n cos /xy = 2 r cos /x'_ cos A
n n

2 _r 2rarp
= 2 V c n ira + rp)

Then, the nondimension solution for the correc-

tive pulse may be written so as to involve only
two ratios.

r __-_pi-_ )

3 rp r

=2- r--_a + 1 +
rn ra (9)

rp

The direction of thrust application is determined

by noting that

_V sinCt - V sin _7E E C

or

= sin A'_ (10)

If a timer signal is used to trigger the pulse, the
time to make the correction must also be com-

puted.

3/2

/r +r \ [E - E]
r a + rp p

(11)

where

= r n [rsin E r a - rp

r(r )+ P 1+2

r a
+

(continued)
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-2 (1 r a

+2 rn

1/2

and t is the time to initiate the correction.

The orbit resulting from the correction (s),

the magnitude, direction and time of which are

given by Eqs (9), (10) and (11) is acircular orbit

of the desired period. However, this orbit may

be slightly in error due to inherent inaccuracies.

For this reason, the followimg error analysis for

changing the size and sl_ape of the orbit to a
circular orbit was condhcted.

sin /x'_ = AV
V-- sin %t

C

0 (AV) sin Ot + AVcos A'Y O (A,t) = _ V-- cos d_t 0O t
C e

_7

- _ sin *t ZXVe
C

whe re

V
C

0V
e

0r

= _ and

V
e

-'2-'f

Thus,

6 (Av) /W
cos A_ 5 (&'0 - sin _t + cos _t z_tv V

C C

_V Ar
+ _ sin _t

C

or

cos Ay 5(/'W) _ 6(AV)

sin (bt V c

t]+_ +cot _'t A_ .

It is noted that both sides of the last equation be-

come infinite as *t goes to zero. This problem

may be resolved by going back one step to the

preceding equation and noting that for 0t = 0,
AY=O.

AV AO t

6 (h'0 = _7--
C

b. Correction of the plane

The second maneuver to be considered is

that necessary to change the orbital plane. Con-
sider the case of maneuvers in circular orbits to

change orbital inclination or the node (Fig. 8). A

vehicle in a circular orbit with inclination angle

(i) and nodal longitude (_) is given a horizontal

thrust pulse (Av, the characteristic velocity of

the maneuver) at latitude (L) so that the orbital

velocity remains constant in magnitude, but

changes in azimuth by an angle A6. (Azimuth is

determined by the intersection of the meridian

at the point of the maneuver and the great circle

projection of the orbital path.) Using primes to
indicate quantities after the maneuver,

g' = B + &6.

A new node (_') and new inclination (i') re-

sult from such a maneuver. If d is the longitude

of the maneuver, measured from the reference

axis, then

v =gl±d.

(Note: Use a plus sign if g_ and d are on opposite
sides of the reference axis, and a minus sign if

they are on the same side.)

Since d is fixed, the longitude of the new node
is

_l = I/I - d.

From spherical trigonometry,

cos i = cos L sin fl

sin v = tan L cot i

cot g = sin L cot v

These expressions can be manipulated by main-

taining L constant to yield

v' = tan -1 (sin L tan B'), (12)

and

.I -1
t = cos (cos L sin g'). (13)

The energy requirement to accomplish this

constant speed turn is then simply

&V
= 2 sin Aft /2V--

C

(14)

and the impulse must be directed according to

°t:* (#
in the plane normal to the radius vector.

Thea..\error derivatives _ L = constant

and _-_-I may be readily determined
_0/ L = constant

as

0i _ = _ cos Lcos B = - sin L cot i cot v

0---ff] L sin i

(15)
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and

_[_[) = sin L sec 2 /3 =c°s 2
L sec 2" v

sin L +-

2
sin v

sin L "

(16)

At this point, it is of interest to note that if it

is desired that the nodal position be maintained

constant, the maneuver must occur at one of the

equatorial crossings. If, however, the inclina-

[ion is to be maintained constant, all maneuvers

must be made at +-_ (sign depends on the

direction of the z_) from the longitude corre-

sponding to the maximum latitude.

Equation (14) shows the very large energy re-

quirements for significant changes in azimuth
at low altitudes where V is of the order of 8000

c

raps and suggests that a more efficient procedure

might result if the maneuver could be made at

a point where the velocity is low. Pursuing this

thought further, consider the following sketch.

/
J

/

j q. bit
A! (\ Earth _)--

Initial
circular

\

\tAv2

h a _Apogee

/
/

-/'Maneuvering
J

orbit

The philosophy is first to inject into an elliptic

orbit the parameters of which will be investi-

gated, secondly to change azimuth at the maxi-

mum radius (minimum velocity) and thirdly, re-
establish the desired circular orbit but in a

new plane. Now

or

= + &V 1Vp V c

z)
2

2V

V = c - V
a V p

P

Having reached apogee, the second increment

of magnitude defined by

AV 2 Ag 2

= 2 sin --g--
a

is applied.

Then at perigee, the initial velocity adjustment
must be canceled; thus

AVtota 1 = 2AV 1 + AV 2 •

By combining the above equations, the foilowing

explicit expression for AV T in terms of the

radius of the circular orbit and the ratio of

apogee to perigee radii can be obtained.

AV T = 2 V c + ra • sin

(r a 2 r e) (15)

This function has been plotted in Fig. 9 (r a > rc)

in nondimensionalized form (by dividing through
by V ) for various values of Aft. For the smaller

C

values of Aft, the impulsive incremental velocity
required to perform the transfer maneuver is

seen to be greater when the vehicle is injected
into an elliptie orbit, that is, when the nodal

point is stretched or lengthened. On the other
hand, for the larger values of &f_0 the three-im-

pulse maneuver becomes more efficient, and, in

fact, there is a definite ratio of r /r at which
a c

the total energy required for the maneuver is a
minimum.

This condition is more clearly illustrated by

analyzing the variation of AV T with respect to r a

for a given value of r c. Performing the indicated

differentiation yields

VclE ra(l÷ra
-3/2

. - + 2 sin

(16)

This function defines the minimum points when

(AV T)

--3r
a

= 0 (17)

that is, when

ra - 1 + 2 sin -2-
r c

(18)

VI-5



or when
Z_

ra sin -2-
r ,51_

c 1 - 2sin_
Z

(19)

The right-hand side of Eq (19) is plotted in Fig.

10 for the range 0"< Ai < 90 ° and also in Fig. 9
as a dotted line. T-he va-_ues given by the curve

are the minima, while values selected within
the shaded area represent choices which

require more energy than the minimum, but less
than that required to make the correction on the

initial circular orbit itself. Another factor which

in inferred from this curve is that since r a _> r c,

the value of Aft, at which the function is exactly

unity (about 39°), defines the minimum azimuth

change for which it becomes profitable to effect
the transfer to an eccentric orbit.

The vertical boundary at _ = 60 ° arises

because of the fact that the formulation breaks

down at this point because the vehicle is re-

quired to transfer to infinity (i. e. , escape)

maneuver, then return. In this region all

maneuvers will require the same energy, since

the velocities at these large radii are essentially
zero. However, this solution is of academic

interest because of the impracticality of such an

approach.

Another factor of interest in this study is the

period T of the elliptical orbits being considered,

since one would normally want to keep the transfer

time within reasonable limits. The equation for

the period of a vehicle in an elliptic orbit about

the spherical earth is

2rr 3/2

T = _ a
(20)

which may be reduced in terms of the variables

used in the previous equations to the form:

T =
2vr 3/2 [_ (101/2c +rarc/j_]

3[2

3/2

. (21)

where T is the period of the (target's) circular
C

orbit. Figure 11 is a plot of the nondimen-

sionalized orbital period of the interceptor

3/2

T _ [_ (l+rd) ] (22)"r e

as a function of the parameter r /r for the
a c

same range as was considered previously, with

the same equation applying in this case, for the

entire range of ra/r c.

The factor of interest here, however, is the

additional amount of time required to perform

the eccentric maneuver, as compared to the

period of the circular orbit. This factor is

given by

- - T (23)
T - "r e C

The new circular orbit may also be described

in terms of the lateral separation from the old

orbit as a function of the central angle from the

point at which the maneuver is made (_0) if the

maneuver is small. Let the spherical separation

of the new orbit from the original orbit be z ex-

pressed in radians.

Then

sinz sin _0

--

but sin /xf_ = AV/Vc sin tT from pulse geometry.

Therefore,

sin z =
AV

sin ¢0"
C

For small angles (z < 0.1 radian) sin z t z

(radian) _- z (kin)
(k-'_-_' and with a maximum error

of about 1% we have:

z _ AV

r 0 V 0
sin ¢_0 (24)

The separation z (kin) versus mass ratio re-

quired is plotted in nomograph form in Fig. 12

for circular orbits at altitudes of 0,200,400,600,

800 and 1000 km for various ¢0 and Isp = 200,

250, 300, 350 and 400 sec. The maximum separa-
tion between the orbits is seen to occur at

¢0 = (2n - 1) 90 ° , n = 1, 2 ....

This fact is true because both orbits must con-

tain the original radius vector.

There is no time separation between satellites

because the satellite is in a circular orbit at the

same altitude with the same period both before

and after the maneuver.

c. Correction of position

The equations to correct the position of the

satellite in its corrected circular orbit are

derived as follows. If it is assumed the satellite

is displaced A0 from some desired position, then

the time in which the satellite passes through

A0 is

At = TyT Ao (25)
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This At must be lost or made up, depending upon

whether the satellite is ahead of, or behind its

desired zenith. The simplest solution, from the

standpoint of computations involved, is to cause

the satellite to enter an elliptical orbit possess-

ing a period ? + At/n (with perigee or apogee, as

the case may be, at the altitude of the desired

orbit) by a pulse tangent to the original orbit,

and to re-enter the original orbit by an equal and

opposite pulse after n periods of the transfer

orbit. Then, if7 t and a are parameters of the

transfer orbit,

Combining Eqs (25) and i26) and noting that

(26)

Pr n

a =

2_ - r V 2 '
n n

V is determined as
n

2 3

Then.

vo
m = __ - =

nV c V e /x@ + 1) 2/3

-1

(27a)

and

AVo 2 = - AV0 1

whe re :

AVe 1' AV0 2 are the first and second cor-

rective pulses applied tangentially at an

interval nT + _ .

n = number of revolutions in transfer

orbit

A0 = + if vehicle is to move backward in

orbit (i. e., AV along velocity

vector)
- if vehicle is to move ahead in

orbit (i. e., AV opposes velocity

vector)

Equation (27a) is presented in Fig. 13.

For large values of &e, AV approaches

which is the difference between escape and circu-
lar orbit velocities. For small values of A0,

The time required for carrying out the maneuver
is

1S 2. - r iv + z_v) 2

where 4V is negative if 40 is + and positive if
40 is -.

The more general case where thrust is not

assumed to be along the velocity vector results

in the following expression

/x0 = il - K 2) _ I 1 1

(2
ttan-1 tana ++ 2 K 2

Ot

!

E - e sin E

21 3/2

K2J
(27b)

where

and

_lJ(K2- K 1) Isin_TI }w = tan { 1 + (K 2 - K1) cos CT

K_' -K

E = tan -1 (K2 - K1) K 2 - 1

This relationship is presented in Fig. 14.

Equation (27) assumes that the maneuver may

be initiated at any time and considers only the

magnitude of the error in the central angle. If it

is desired to produce a specific node ion a rotat-

ing earth) at a specified time, the basic approach

must be altered. The new problem may be re-
stated as follows: Assume that it is desired to

move from a known position B (relative to the

ascending node) to a nodal position f12 on a rotat-

ing earth in the same time that it takes to move

from a position a to the node _1" This problem

is illustrated in the following sketch.

_0

--l-

n 2

"\
I
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For the case of nearly circular orbits, this im-

plies that (t 1 =t2):

v [2Trn+_-n&] = v'_ [2_n' +B - n'$o']

(28)

If n --n' and &' _ &,

v n' (2_ -5') +B

-r = n (2_ - &) +c_

S - _2,

= 1 +n (2_ -&) +a

Another relationship between T and T' can be

obtained by observing the nodal motion as a func-

tion of period change:

nAv_ = A_2 +_n
e

and

v /x_ + n_2
7 = 1+ n_ 7,

e

Equating

B - _ A_ + n_
=

n (2 = - e) + a n9 v'
e

(29)

The angle a is included in the analysis for the
sole purpose of providing a means for including

errors in the time of passage through the node

0" Therefore,

2 _At 0

a = f (terror) = T

Substituting this relationship into Eq (29) yields

B _ 5 /ito] I] A_2 +n__]/Xtoj +
2-_ = - _-_ + -6-_. A_ +--_--

e v +_

(30)

Thus, the position of the point at which the first

corrective pulse is to be made is defined, but

the magnitude of the correction itself has not yet

been evaluated. This portion of the analysts can

be accomplished when it is noted that the orbits

of interest for this study are circular.

Thus,

If the period change is to result solely from a
velocity pulse (that is, no change in radius during

the application of the pulse), the period change is:

3 v/',V
A v =__

V
C

Again,

A_ + ngi
A v -

nil
e

Therefore,

/iV - 6_r--_- / nee (32)
L_

This equation defines the first pulse, which alters

the period to produce the desired position change.

However, a second pulse approximately equal to,

but in the opposite direction from the first, is

required at the desired node to produce the cor-

rect orbit• Both of these pulses should be di-

rected along the velocity vector• The magnitude

of this second pulse is:

AV 2 = AV 1 +-(V c - 6Vl)

where the corrective term is included to com-

pensate for the small radius and velocity errors

which produced the initial displacement.

Case 2. r > r >r . For this case, the
a p n

determination of /iV must be modified as fol-
E

io ws :

AV
E

2Cv
ca

= 1 1 (33)

+1 +1

P

/iV 2 = 1 -I-

V c

:Cwhere Vca

/iV 2 ) are applied at

tp {__

and

2

r
n

l+--

r a

(34)

Tangential pulses (AV e I and

3/2

3/2

-- , respectively.

tp

The subsequent corrections for i, e proceed

exactly as in the first case.

Case 3. r n >r a >rp. Proceeding in a

manner similar to Case 2,

1 1
= (35)

+_P +_£
r n r a

v lVc ¢2 - 1

2

r

n + 1

rp

(36)
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= r_p andwhere Vcp AVe 1

tangentially at times

and AV are applied
_2

2# /ra + rp_

tp + (T- U -r-]

3/2

and

_r /rn +rn _ 3/2

tp +

The subsequent corrections for i, t2 proceed

exactly as in the first case.

2. Elliptical Orbits

The presentation here considers the orbit to

be defined in terms of the six usual elements a,

e, tp, i, co, _ and discusses the adjustment of

each.

a. Transition from incorrect orbit

The first step inthe final correction of an

elliptical orbit is a transition from the incorrect

orbit to an orbit of the desired size and shape in

the plane of the incorrect orbit, but rotated in the
plane through an angle co - co', where co' is the

angle from perigee to node for the incorrect orbit
and _o the angle from perigee to node in the orbit

ultimately desired.

F n

"---O

' r;, r a,Known or calculable quantities are r a'

rp, c_ and co' , where primes denote quantities

in the incorrect orbit. The angle from perigee

to intersection in the original orbit (e) may be
determined as follows.

p'r = - P
n l+e' cos e 1 +ecos (0 -co +co')

Writing this expression in terms of the known

radii,

fra - 1) r'a r'a rI___eosO+% +l----ra +1
(37)

where

= CO -- COl°

This expression can be easily solved for 0 by an

iteration technique. However, a direct solution
is also available

cos 0 -B (1 - A cos 4_)

1 +A 2 - 2A cos

e F B2 (1 - A cos 4) 2 - (1 +A 2

t_ 1/2

- 2A cos 4) (B 2 - A 2 sin 2 "_)_

• (1 + A 2 - 2A cos ._)-1

where

A = 1/rp - l/r a e' p

I/r_- 1/r_ e p'

r !

__a + 1
+ 1/r r'

1/ra p p = e' p' 1
B=

i/r, - I/r' r' p - e-7
p a a

r I

P

qQ = CO _COl

The change in flight path angle in the maneuver
is

A_ =cos -1 J ,ra/rn

Vr_/rp - (rn/r ?) + 1

-1 I ra/rn

- cos --- - (38)

ra_rrn+lp
The characteristic velocity necessary to effect

the maneuver may be determined from the law
of cosines.

2
AV

£

Vcrg = 22

-2

1 1

rt r t r r

a+__p a + _p_p
r r r r

n n n n

- r' -r r a r -
a +

cos A y,

(39)

where &V is the characteristic velocity of the
E

correction and V is the circular velocity at r.
cr

Thus, if rp, r a, r a, r;, co and co' are known,

0 (and hence r and the time for correction), AV
n

and /x ? are determined.
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b. Correctionof inclination

After the size and shape correction is com-

pleted, it is possible to correct inclination to
the desired value by a constant speed turn at the
node (_). The error in inclination (At) will be

determined as data. The characteristic velocity

of the inclination correction is then

&i (40)
AV i = 2V n sin "2--

where the velocity at the node (V n) is determined

as

V n = p

(Vca

r ..7112

:v +,+_

is circular velocity at r a. )

Then, the inclination correction may be expressed

in nondimensional form as

t_ (rr-_a _ r

2a
AVi - 2 sin At r rp
_----- _- + 1 + - cos_- r

ca \ p a+ 1
r

P

(41)

and the direction of thrust application is

Ai

-_ti = -2- + 90° (42)

from the initial direction of motion because the

thrust possesses no component along the principal

normal to the orbit.

The thrust is applied at a time

T

t - tp = 2_- (En - e sin E n)

where

c. Correction of nodal position

(43)

The next corrective maneuver is the correc-

tion of nodal position.

The inclination (i) is to be maintained and the

latitude of the satellite at transition is L. Con-

sider the spherical triangles formed by the pro-

jections of the original and corrected orbits on a

spherical earth.

/ I

N 2

tan L tan L

tan i -- sin (v 2 + Ag) = -61-6 V 2

sin (v 2 + A_) = sin v 2

Thus

Am

v2 = 90° - -2--

Let the angle from node to transition (x) at the

incorrect orbit be Cx"

Then,

The velocity at x should be changed to the velocity
Af_

possessed in the original orbit at 90 ° - T longi-

tude from N 1. To obtain this condition, a con-

stant speed turn, the change in yaw angle at x in
the actual orbits (A-q), and a consequent rotation

of the orbit through an angle in its plane is nee-

essary.

Again considering spherical trigonometry,

the projected change in yaw angle is

An' = 180 - 2 cos -1 in 72-- sin (44)

The actual change in yaw angle is given by

An = 2 sin -I "_c°s _x sin _2 _)
(45)

where "/ is the flight path angle in both orbits
x

at the transition point.

The first pulse required in the nodal correc-
tion is then

A n A_2 .
sin = 2V cos _ sin --2---sln t.AV'n --2Vx -2-- x x

COS _/ = _-_.However, r x V x x

VI-10



Then,

__ A_AVI n = 2 (i + e cos 8x) sin_-- sin i

(46)

where _x = _x - _1 and A _, is given by Eq (44).

The time for the correction is determined by 0t.

Since the orbit is elliptic and since this orbit

rotates about the line through the point of thrust

application and the center of the earth, the line

of apsides is rotated in the orbit plane during this

maneuver. For some satellite applications, this

rotation is very objectionable and must be can-

celed. Therefore, a second pulse is required

(AV") to rotate the orbit a specified angle (_) in
n

its plane. If r I is the radius at transition, AV"
n

= 2 V I sin y'.

But, V' = P/_ =
r t cos Y_ cos _v

and, therefore, since tan _' - ot

1 -ecos_

Then

_-(-e \ sin Y'/sln_

_eAV" = 2V' sin'S' = -2 sin2 (47)n

where p, e are parameters of the desired orbit,
and a is determined as

(00V a = 180 ° - 2 tan -1 cos t (48)

The corrective pulse is applied at

T
t =-2-_- (E, - e sin E,)

seconds after the time of perigee passage, where

E' = 2 tan -1 P cot (49)

Note is made at this point that the analysis

of the second nodal pulse is identically that which

is required to change the argument of perigee an
amount /x_ for the case where this element alone

is to be changed.

d. Correction of position

The elliptical orbit is now correct with the

exception of the position correction or analogously

the correction to the time of perigee passage.

Since the orientation of the orbit is correct, this

final adjustment must be made either at apogee

or perigee.

If the observed time of perigee passage is t'
P

and the time at which the satellite should cross

perigee is tp, the period of the transfer orbit

tangent at perigee is T +_t, where _t = t' - t .
P P

And, the corrective pulse to be applied at perigee

AVt- r_p It2-rp(n p_-(v2_ t)+/X 2/3

is

(50)

An equal and opposite pulse applied at t + n (7 +
P

At) completes the maneuver and prevents further
drift.

Equations (10) to (50) comprise a method of

correction calculation which is theoretically suf-

ficient to achieve the desired properties in a given
orbit.

Repetitions of the various maneuvers may be
required to achieve desired accuracies. The

number of repetitions will depend on sensor and
control accuracies, and on the mission itself.

3. Sequence for Corrections for Maneuvers

Several requirements restrict the selection of

a routine to correct the positions of a satellite.

Since the mission of most satellites is intrinsically

one of long duration, and corrections to an ac-
curate orbit might be required daily, economy is

an important factor. Secondly, the transfer or-

bits involved in the correction should closely ap-

proximate the nominal orbit, so that the mission

(communication, surveillance, etc. ) will not be

interrupted. Also, the correction routine should

be as simple as possible with the other imposed

conditions. The following correction calculation
routine has been selected on the basis of these

requirements.

VI-11



Atanygivenreferencetimeto, thedatafor
thecorrectioncalculationarea0, e0, 10,_0'
_0' 00" Thesequantitiesare in error compared
tothecorrespondingparametersof thenominal
orbit atthesametime, an,en, _2in, On' _°On_

Oon-

Because of their frequent occurrence in the

correction equations chosen, it is convenient to
define six parameters, 'L X, _, a, ×, q_. These

parameters are defined (for the case of the in-

correct orbit, denoted by subscript "0") as fol-
lows:

_0 = cos _o0 sin flO + cos i 0 cos _0 sin _0

X0 = - sin _0 sin _20 + cos i 0 cos _0 cos _0

%0 = cos _o0 cos _0 - cos i 0 sin _20 sin w 0

(;0 = - sin _0 cos __0 - cos i0 sin _20 cos '_0

×0 = sin i0 s_n w 0

40 = sin i0 cos _0 (51)

Then the incorrect orbit may be expressed in

spherical coordinates (r, A, L) by the three

equations:

a 0 (I - e:)
r -

1 + e 0 cos 0

_0 cos 0 + ?_0 sinh
A = tan -1 0 cos 0 + _0 sin_]

-I

L = sin ( ×0 cos 0 + 40 sin O) (52)

Z

Although all six orbital elements may require

correction, economy can be improved by correct-

ing more than one element with a single thrust.

The corrections of inclination and the node,

which are both nonplanar corrections, can be

simply combined, as can the planar corrections

(size, shape and position of the satellite within

the orbit). Although, for maximum economy,

the order in which the planar and nonplanar cor-

rections are made depends on the energies of the

incorrect and required orbits, the increased

economy derived from employing separate cor-
rective routines for each case is not sufficient to

justify the increased complexity of the routine

(for small changes in the orbital elements). For

example, in the case of circular orbits of radii

r = 5. 488164 x 107 + 6000 ft (1. 672792 x 107
n

_= 1830 m) the velocity increments required to ro-
tate the orbit planes through 0.10 ° are 27. 961 fps

and 27. 965 fps (8. 5225 and 8. 5237 raps), a differ-

ence in the fifth significant figure or third decimal

place. Even though the error in radius should

approach r n± 25,000 ft (7620 m), the difference

in the increments is in the fourth place. Thus,
for orbital maintenance the order of correction

for the nodal and inclination changes has very

little effect on the resultant energy requirement.

Even though the errors to be corrected during
initial placement are much larger and the differ-

ences in the velocity increments more significant,

the order still produces only minor differences.
For this reason the position of the planar change
in the routine will be considered inmaterial for

simplicity.

The first thrust in the corrective sequence is
chosen as a thrust to eliminate error in inclina-

tion and node by a constant speed turn at the in-
tersection of the incorrect orbit and the nominal

orbit plane. If quantities associated with this in-

tersection point are denoted by the subscript I,

this point may be determined by setting r = r I,

0 = 01 in Eq (52) and simultaneously solving this

equation and Eq (53) of the nominal orbit plane

for 01 and rl

cos L cos A sin i n sin DOn

- cos L sin A sin in cos D0n+ sin L cos in=0

which yields (53)

(60 cos O 1 + _0 sin 0 I) sin in sin [2n

- (N0 cos 01 + k 0 sin 0 I) sin in cos [2On

+ (X0 cos 01 + $0 sin 01 ) cos in = 0

Solving this equation for 01 gives

cos 01 = + Q (54)

_'_+ Q2

where

Q= o 0

+*0

sin in sin i20n- k0 sin in cos [20n

cos in,

T = 60 sin i n sin _20n - N0 sin i n cos [20n

+ X0 cos in,

and the sign chosen in Eq (54) is that which sat-
isfies

cos 01 = - Q sin 01.

In computing the velocity increment required

at the intersection point, latitude, flight path

angle, orbit velocity and change of flight path

azimuth during the maneuver are necessary.

LI= sin -I [sin inSin (01 +_i)_ (55)
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where

co1 'n'°s'n'°' Sinfn
"_I = tan-l_ e 0 sin 91 ]1 + e 0 cos 01

1

The magnitude of the velocity increment re-

quired to correct the orbit inclination and node is

(56)

(57)

(58)

_i

V I = 2V l sin --2--- cos Y1 (59)

The parameters in the corrected orbit corre-

sponding to Eq 51 are:

_]i = cos L, 1 sin_in + cos in cos f21n sin_ ]

k I = -sin col sin_in + cos i n cos _In cos _i

1 = cos _ 1 cos f21n - cos in sin _In sin u,I

_1 = -sin _I cos _In- cos in sin_in cos _ I

kl = sin in sin _oi

qJl = sin in cos _01 (60)

The orientation of the corrective thrust can then

be obtained. Since the general elliptical orbit in

three dimensions may be expressed as:

[6 cos 0 sin 9 ]_= P 1+ e cose + _P l+ecoso

(continued)

+

+

the orbita]

cos O sin O ] .'*_P I + e cos O + _p 1 +- e cos O 3

cos 0 + _VP sin 0 ]XP 1 7- _ cos O 1 + e cos 0 '

velocitv maw be determined as _- .

_f= _ [_(eos8+ e)-E, sine] 7

+ _F_ [_ (cos O + e) - "q sin O ] j

+ _p [_ (cos O + e)- X sin 8 ] k*

Orbital velocity in spherical coordinates may
then be expressed as:

(62)

v

[_ (cos@+ e)-n sin__O'lv = tan-i (cos O + e) _ sin 0 j

[1C{ }]= sin _ (cos O + e) - X sin O •

where (63)

X

Corresponding to Eq (63), the orientation of the

velocity increment & V 1 is given by:

Cv 1 =tan -1 (kl - k O) (cos O 1 +e O) - (rll

-?0 ) sin 01] [((_1 - aO) (COS O I + e O)

-('1- E_O, sinel]-I 1

* .-I[ ,n¢ I = sin S-_-- 1 - _0 ) (cos O 1

+ eo)- (XI - XO) sin Of} ]

(C4)

After addition of the velocity increment de-

fined by Eqs (59) and (64), the vehicle occupies

an orbit which lies in the correct plane, but which

has the original incorrect size and shape. The

next step in the selected correction routine is a

transfer from apogee of the incorrect orbit to a
point in the nominal orbit (for this case assumed

VI-13



circular). This approach is not always the most

efficient means of making a transfer_ however,
for the small period changes required (even for

the initial placement problem), the energy dif-
ferences are extremely small. The equations
defining this correction are:

z_V2 = _r_a ' nr a + r n

)'1

A¢ 2 = sin -1 (-_1), (65)

where

r a = a 0 (1 + e 0)

When the vehicle completes the transfer to
nominal orbit altitude, a tangential thrust could
be applied to cause the vehicle to enter a circular
orbit at this altitude. However, the vehicle would

still not be synchronized because the orbital cen-
tral angle would remain uncorrected• Correction
of this quantity, which is discussed earlier, in-
volves two thrusts applied tangentially at any

point in the circular orbit. Selecting the terminus
of the Hohmann transfer orbit, i.e. the point at
which the vehicle first reaches nominal altitude,

as the point for initiating the change of position
improves the economy of the correction routine
in certain cases. For example, if the vehicle

reaches the nominal radius, r n, with a velocity

greater than circular velocity, and the vehicle
is ahead of the nominal position desired in the

orbit, part or all of the excess velocity can be
used as part or all of the first velocity increment

of the angular position correction.

The third corrective thrust, computed as the

combination of the tangential thrust to achieve
circularity and the first of two tangential thrusts
to change the orbital central angle, is

 n<i2
* -i _(___i)/_v3 _ tan + 180 °

* -i
A_ 3 ---sin (-_i) (66)

The direction of AV 3 is opposite to that of /_V 2.

In Eq (66), the angle of required position change,
AS, is positive for the case in which the vehicle

lags its nominal position in the pattern orbit. The

first equation of (66) holds whether r a > r n or

r
n

> r . The final corrective thrust is
a

A v 4 = tan

* -1
A¢ 4 = sin (-_i). (67)

As noted, economy can be improved by substitut-

A8 integer)for Aft in the first equa-ing nkn = an

tion of (67) and increasing the transfer time by
a factor of n.

If the value of A0 in Eqs (66) and (67) is to be

computed from the initial data (e 0, e n, a0° a n,

etc. ), the time interval from the time of data

sensing to the time of initiating the correction
of orbital central angle is

I - e0 sin 8 >
At a0 _0 sin_l( _ 2

= - 1 + e 0 cos 80

e0{;o:  'n°ol+ l+ coso ,,l
e 0

u ]

r)+ 2 + V_k -w:-%-o+ (68)

The location of the nominal position at the time
of initiation of the angular position correction is:

r3n = r n

AtL3n-- sin-1 in Lon cos _nn 2

+ tsin 2 zn' - sm2• L0n sinqAt 2

= F cos i n l
A3n tan-I [ysin t n z

LV_in L3 ) - 1]
n

Aon- 'n-' (69)

and the position of the vehicle at this time is

given by:

r 3 = r n

• -1

L 3 = sm (×i)

A3 = tan-l(']_ll_ "
(70)
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The required change in central angle is then

Lcos L 3 cos L3n cos (A 3 - A3n )
COS -1DO

+ sin L 3 sin L3n j

The four maneuvers given by Eqs (59), (65), (66)

and (67) comprise the complete correction routine.

Although the proximity of the correction trans-

fer orbits to the nominal orbit means that the

difference in perturbation of the transfer and

nominal (perturbed) orbits is negligible, the

perturbations affect the times of correction

initiation and must, therefore, be included in

the routine. This may be done by considering

the orbit parameters _z and 12 involved in the

equations as functions of time and adding a per-

turbation correction to the computed times.

A sample problem has been calculated using

this routine in order to provide an appreciation

of the magnitude of the propulsion requirement

for each correction. The data for the sample

problem are:

a0n = 5.488164 x 107 ft a 0 = 5.4889664 x 107 ft

(1.672792 x 107 m) (1.673037 x 107 m)

COn = 0 e 0 = 0.0001

iOn = 54. 736 ° i 0 = 54. 741 °

i20n = 0 _0 = 0.005 °

¢Z0n = 0 w 0 = -60 °

00n = 0 00 = 60. 005 °

The radius at this time is r 0 = 5. 488692 x 107 ft
7

(1.672953 x 10 m) which is r plus 1 stat mi or
1. 609 km. n

Proceeding through the correction routine

yields the following correction magnitudes.

_V 1 = 1.804 fps (0.5499 m/s)

zxV 2 = 0.185 fps (0.0564 m/s)

zxV 3 = 1.899 fps (0.5788 m/s)

_V 4 = 0.914 fps (0.2786 m/s)

Total ±V -- 4. 802 fps (1.463 m/s).

Thus if the satellite possesses propellants

capable of supplying a total of 5000 fps (1524

m/s) and 5 fps (1.524 m/s) is assumed to be

the average correction required twice per day,

the system can function for about 500 days.

Thus, the routine seems adequate to satisfy

the requirements of economy and proximity of

the transfer and nominal orbits with a reasonably

simple calculation routine.

D. SMALL MANEUVERS IN NEARLY

CIRCULAR ORBITS (REF. 1)

1. Linearization of Maneuvers

The discussions of Section B have been

general and are not restricted to small eccen-

tricities. Generally, however, for the cases

in which the target orbit is circular and no

intermediate orbits are utilized, the actual orbit

obtainable will deviate slightly from circularity.
If this deviation is to be corrected, some of the

maneuvers of the previous discussions can be

simplified using first order differentials. This

approach has two major advantages:

(1) The functional form of the solution

can be simplified.

(2) The roundoff error arising from sub-

tracting to nearly equal quantities can
be reduced.

As before, the discussions will be divided into

three cases for investigation:

(i) Correction by means of two velocity

increments tangent to the flight path,

the first impulse (_-V 1) being applied

at apogee in the incorrect orbit and
the second at the altitude of the

nominal circular orbit.

(2) Correction by means of two tangential

impulses, the first (/_V1) being applied

at perigee in the incorrect orbit.

(3) Correction by means of one impulse

(AV) applied at the intersection of the

incorrect and correct orbits, if the
orbits intersect.

AV
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It is noted that while the circular orbit is shown

within the ellipse for Cases (1) and (2), the
cases for exterior circular orbits will also be

discussed.

Consider

z_a = a - r 0

2
&e = e e << 1

for Case 1

r 1 = a(l+e)=r0+Aa+e(r0+Aa)

r0+Aa+er 0

_0 ; _0

2

_ _ &a (1 - e , 2

_a << 1

The latter approximation utilizes the following

expansions.

(1+_) -1 = 1 ; e+_2t: _3 +...

2 3

)1 e E _(1_ /2 = 1 ±_ [ ]-_ - . . .

Then

112

Z_V2 = I r-_ [

Loj r 0 [-(1 +_--_)(1 +e) +

L o

/2

The procedure is similar in Case (2), the re-

sults being summarized below. For Case (3),

AV 2 r0 _ 2 r0/

AV 2 =. -Pr0I3-(1A___a_a+r0

AV2 r0 - 717

The final results are as follows. For Case (1):

_ Z_a)
AV1 _ _ r_ 0 (e r_0 (71)

Aa)
_V2"_ _ r_--0 (-e- -_0

AVT= I_Vl + I_v_

e 2 << 1,

ha =a - r 0

Case (2):

(72)

Z_V I = e -

2
e << 1

(73)

(74)

Case (3):

I[2

AV= [_011/2[e2 -_ - (_-0) 27

2 /',a
e << lj --

r 0
<e

(75)

The symmetry is obvious in Cases (1) and (2),

and the total velocity requirement is the same
in these cases:

AVtotal _ 1 Aa

VO _ e, -e < r0 <e

_'_- -_0 ' >e

Since for intersection of the correct and incor-

rect orbits
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a(1-e) = rp <r 0 <r a =a(l+e)

then

r 0+ Aa - er 0 < r 0 < r 0 + Aa + er 0

or

and, from Eq (75), the impulses required for

Case (3) have the range

e r_0 < /xV < e r_ 0

However, if the orbits intersect (i.e., e > ]A_anal

the total velocity required for correction by two

tangential impulses at extrema, Case (i) or

Case (2), is

e<AVtota 1 -_ g

which indicates the anticipated superiority of ef-

ficiency in Cases (1) and (2). Equations (71)

through (74) are plotted in Fig. 15 for the error

ranges of interest. Equation (75) is plotted in

Fig. 16. As an example, consider the following
table.

Errors in Original Orbit

Aa

(km)

10

9.3

0

O. 00167

O. 001

0.001

Veloeity Increment

Required for Cor-

rection AVtota 1 (mps

6.72

5.44

3. 91 2 pulse

7.77 1 pulse

2. Error Analysis

Orbit correction sensitivities will also be

developed for the case of correction of a

slightly eccentric orbit to a circular orbit by

two impulses tangent to the flight path. The

following nomenclature will be involved:

V 1 =

!

V 1 =

AV 1 =

r 2 =

orbit speed at r 1 before the

first correction

orbit speed at r 1 after the

first correction

characteristic velocity of the

first corrective impulse

radius at extremum where

second impulse is applied

(nominally r 0)

J

V 2 = orbit speed at r 2 before the

second correction

V 2 = orbit speed at r 2 after the

second correction

AV 2 =

=

characteristic velocity of the

second corrective impulse

flight path angle with respect
to local horizontal

OT = thrust attitude angle

Primes will denote corrected parameters.

The errors in the final orbit parameters,
Aa' and e', will be functions of errors in the

injection parameters (Ar 2, AV 2 and "_2 ), which,

in turn, willbe functions of errors in the magni-
tude and orientation of the second corrective

thrust and errors in the conditions r 2, V 2 and

"_2 before thrust. The errors in r2, V 2 and Y2

are functions of errors in magnitude and orienta-
tion of the first corrective impulse and errors

in the determined values of rl, V 1 and 71 .

Therefore, the error equations are conveniently

developed in several steps.

a. Errors contributed by corrective thrusts

The orbit errors contributed by errors in the

corrective thrusts may be induced intuitively,

but a rigorous general analysis is not difficult.

The equations describing addition of a vector
impulse AV are

fl = -AV2 +V2 +V'2 - 2VV' cos ('_'- 7)=0

(76)

f2 = - AV sin_b T + V' sin (7' - 7) = 0 (77)

Symbols are consistent with previous notation
and are further defined in the sketch.

%---<
f_\ J-

Errors in V' and "¢1 are to be determined as

functions of errors in V, _, *T and AV. From

Eqs (76) and (77) the error relationships, to
the order of linear differentials, can be ex-

pressed as follows.

- AVd(AV) + V' dV' + VV'Fsin (_' -'/)

.(d,'-d'f)]-_os (_/' - _)[-

, J,t -1 ,

.(VdV +V d¥]+_ dV = 0
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and
- sin _T d (AV) - AV COS _TdCT

+ sin (Y' Y) dV' + V'Fc- os ('_' - `7)

h

• (d`7' - dY)_:O

Terms may be collected, and the resulting ex-

pressions solved by application of Cramer's
1 !

rule for the errors dV and d'7 : In this solu-

tion the Jacob[an

8 (fl' f2 ) [

O (V',`7') : 2 I
= 2V'

V' -Vcos(Y' - y) VV' sin('/'- Y)[

sin (`7' - `7) V' cos(`7' - "7)[

v]
is useful. The results are

dV' : V' cos 1`7' - `7) - V d(AV)

+cos (_ -`7) dV - V sin (Y' - `7)d CT

I 9'7d`7' - sin (Y' - y) {V' - V cos(Y'- Y} 2_ -AV

V' V' cos (`7'- ¥) - V]

sin (`7' - `7) [1 v `7tV' dV + -VT cos (y' - d<b T

d (Av)

+dy

In terms of (`7' - `7) or, in terms of <_T'

G vdV' : AV +-V1- cos ¢ d(Z_V)
(78)

+ AV cos CT + dV-V-vT sinCTd_ T

: V
d'/' V---_-sinCTd(AV) -_V sin0TdV

+V--72-AV(av +Vcos ¢) de T +d`7

(79)

For the case of interest, tangential corrective
impulses applied at orbit extrema, the follow-

ing nominal values are involved in evaluation
of the sensitivities.

cbT : 0

V' : V + AV

yi _ `7 = 0

Then Eqs (78) and (79) become

dV' = d(JV) +dV (80)

AV
d`7' :-V--. T dO+d`7 (81)

(tangential impulses at extrema)

which agree with intuition for this simple case.

b. Errors prior to second impulse

Errors in the orbit conditions r 2, V2, '/2

prior to the second impulse will be developed

from a general analysis giving errors at ex-

trema in terms of errors in any injection con-

dition r, V, `7. Specification of the conditions

(r, V, y) at any time completely determines

the planar properties of the orbit. From the

energy equation and the geometry of an ellipse,

simple expressions can be developed relating

r a, rp, v a and Vp to a and e:

r :a (1 + e) (82)
a

r =a (1 - e) (83)
P

Va = I_ (_ (84)

: t_ l fl+ehVp _ \r-:_) (85)

Then

dr = (1 + e) d a + ade (86)
a

dr = (1 - e) da - ade (87)
P

V V
= a p

dv a - _- da - e-2-) d e (88)(1+

V V

% da+ de(1-

(89)

In turn, from the energy equation,

-1

a = [r 2- ?] ,

and Kepler's second law, which can be re-

stated in the form

e : 7 I - (r2--- V_) (r2V: cOs2Y )

the differentials of a and e are

da =

de =

2a 2 2a2V

-------_ dr + -- dVP
r

1 (__ 2-- cos Ysin,/d`7+

(continued)
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+cos2 __ <2rv2dr+2vr2dv))
2v2r cos 2 d r - -- d

P r P

which, after simplification and substitution of

a (1 - e 2)
r -

1 +ecos 0

give

da =
2 (1 +e cos 0) 2 [C

(1 - e2) 2 dr + 2a

1 +2e cos 0 +e 2 ]
1 - e 2 dV

(90)

de = (e +cos O) (1 +e cos O) dr

a (1 - e 2)

+ 2 (e +cos e) J a (i - e 2)

Y (1 + 2 e cos 0 + e 2)

dV

sin 0
+ (I - e 2) 1 +e cos 0 dV (91)

Substitution of Eqs (90) and (91) in Eqs (86)

through (89) gives the required error relation-

ships:

_ I +e (i +ecos 0) (2 +e _ e2 +ecos 0
dra (I - e--_)2

+ cos O) dr

1 +cos O
dV

Ii +2 ecos 0 +e 2

e 2) sin 0
+ a(1 - 1 + e cos 0 d ,¢ (92)

dr
P

1 -e 2
--w-n ( 1 +e cos O) (2 - e - e + e cos 0

(1 _)_

- cos 0) dr

+2a

_-i11 -e)2 1- cos O
e 2 11 +2 e cos 0 +e

dV

dV
P

11+2ecos0+e2
1 - e 2

+ 2Vp_ (e +cos O) 2]dV

(l+e_2 _1 +2 ecos 0 +e J

2
1 - e sinO

- Vp (1 +e) 2 1 +e cos 0 d_ (94)

_ (i +e cos 0) fVp (1 +e cos 0)

1 - e 2 I-a 1 - e 2

Va (e + cos 0)_ dr
a

(1 - e)2J --

P l-e"

If - e 2 (e +cos 0) dV

- 2 Va (i _ e_2 _1 +2 ecos O +e z]

1 + e sin 0
+Va _ 1 +e cos 0 d,t (95)

These equations relate errors in conditions at

orbit extrema to errors in injection conditions

(r, V, V)-

For e 2 << 1 Eqs (92) through (95) reduce to

dra- E2+cos 0 +2 e (3 +cosO) cos2_-]dr

+cos0+2e(2-cos0,oos2 ]dV

+Ea sin 0 ea 0]
- --2- sin 2 d _ (96)

drp*, E2 -cosO- 2e (3 -cos O) sin2_]dr

+2 a _-EI- cos 0- 2 e (2 +cos O) stn2_]dV

+[ -asinO ea 01+ -2- sin 2 d ,/ (97)

,ff- (1 +cos O) (1 +e cos O) dr
dV a

- [_1- ecos 0, (, +2cos O,+e]dV

- _a_-- sin 0 (1 - e cos O - e) d V (98)

e 2) sin 0
- a(1 - 1 + e cos 0 d _,

(1 + e cos O) Iv. (1 + e cos o)

dVa = - 1 - e 2 J 1 - e 2

Vp (e + cos 0)]

+ a ( 1 - e) 2]

dr+

(continued)

(93)
dVp,_-_- (1 -cos O) (1 +ecosO) dr

- [(1 -ecosO) (1 - 2co._ 0) -el dV

+ _--sin 0 (1 + e - cos O) d ,/ (99)
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For e 2 << 1 and impulses applied near apogee or

perigee (0 = 0 ° or 180°), the case of interest for

the two-impulse correction previously described,

Eqs (96) through (99) reduce still further to the
2

following results: perigee injection,e <-<- 1:

,, + 4 a _--(1 +e) dVpdr a (3 + 8 e) drp

2 C( 1 +e) dr - (3 - 2 e) dVdV a _ - _ P P

2
apogee injection, e << 1:

(100)

(101)

+ 4 a _-(1 - e) dV (102)drp_ (3 - 8 e) dr a a

2 K - (3 + 2 e) dV (103)dVp_ - _ (1 - e) dr a a

For e, ___a < 0. 001 the errors are given to three
r.

significant figures by the following very simple
formulas.

dr 2 dr 1 dV 1
_3 -- + 4--

r 0 r 0 V 0
(104)

dV 2 dr 1 dV 1

. 2 ro (lO5)

The relation of errors in conditions before

the second impulse to errors just after the first

impulse must also consider errors in orbit

central angle, 0, and local flight path angle, -¢.
Because the orbits of interest are nearly circu-

lar, a variational approach is necessary to

define errors in these angular quantities. There-

fore, a general analysis of errors in r, V, 0 and

y anywhere in a near-circular orbit as functions
of launch errors will be performed, and the

results for r and Vwillbe compared to Eqs (104)

and (105).

Series expansions for the variables of interest

are available in Chapter III.

2

r _ 1 - e cos M e (cos 2 M - 1)
K - --2-

3
- e

(3 cos 3 M - 3 cos M) -...

2

v-- -- 1 +ecos 0 + (3 - cos 2 O)

ff
3

e

+-8- (4 cos 0 - cos 3 0 - 7) +
...

0 = M + 2 e sin M + 5_ sin 2 M

3
e

+'I"2" (13 sin 3 M - 3 sin M) +...

2 3

e= e sin 0 - sin 2 0 +-2- sin 3 0 -...

M = mean anomaly = a_ (t - tp) (106)

For e 2 << 1, approximate relations can be written.

r ,_ a (1 - e cos M) (107)

_C(1 +e cos M) (108)V

0 _ M +2 e sin M (109)

_ e sin M (110)

Deviations from the nominal circle r 0 and v 0

at launch are 6r l = r 1 - r 0, 6V 1 = V1 - Vo' 671

= 71 and 60 1 = 0 1 - 00. From Eq (47)

M = M0+±M = lr03(1 +-to)Aa_ 3 (t -tp°- ±tp)

or

3 /_a MO -{r/'_3 /_tp.aM=-2 _ 0

(111)

The errors at any later time 6r 2, 5V 2, _ and

502 will be deterrnmed by varying one in-

jection pararneter at a time and assuming a linear
combination of the individual errors.

Case (1) ESrl = 0, 5V 1 = 0, 5Y1_0 ]. If _1

is the only launch parameter which is in error,

6r 1 = O, ,5\: 1 = O, Y1 = 5"_1" and from Eq (133),

e _ .I 6_11. , where 5_1 is an error due to a velocity

component normal to the desired circular orbit

velocity at launch. For the circular orbit, M
and t are referenced to the perigee direction in

P
the incorrect orbit. Since the semimajor axis

a is a function oft and Vbut not ,/, 5a =0 for

this case. That is, if only the orientation of the

injection velocity is varied, there will be generated

a family of orbits in which the eccentricity varies,
but the semimajor axis remains constant. Then,

from Eqs (107) through (111),

5r(1 ) _- er 0 cos M0= - r 0 [6Y1 cos M 0

6V(1 )
I 6Y1 cos M 0-%-0

68(1 ) , - r_ n _tp + 2 6_ 1 sin M 0

6Y(1) "_ 6_1 sin M 0

From the 6r I equation, 5r = 0 when cos M 0 = 0.

Therefore, for Case (1), M 0 = 90 ° (for Y1 positive)

or M 0 = 270 ° (for Y1 negative). The absolute

magnitudes in these equations may be removed by
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defining a mean anomaly }_0' referenced to the

launch point. Then-_0 = M o - 90 ° for positive

6? 1, and 27/0 =M0 + 90° for negative 671. Sub-

stitution in the previous equations gives, for

either positive or negative 6y 1.

6r(1) ,_ ±71 sin )_0 (112)
r 0

6V(1) sin 9/_'0 (113)
V0 "_ - AyI

50(1 ) ,_2 A?I (cos ??_0 - 1) (114)

87(1) _ ±?1 cos 22_0 (115)

In derivation of Eq (114) use is made of the fact

that 50(1 ) = 0 at 2_0 = 0 since the correct and in-

correct orbits intersect at launch.

Case (2) [6_1 = 0, 6V 1 = 0, 5r 1 # 0]. For

6? 1 = 0, 6V 1 = 0, 6r 1 ¢ 0, F'qs (90) and (91)

give 5a (2),_ 2 6rl

r 0 r 0

e(2) _ _0 "

' V 0

Ar 1

Then, from Eqs (48) through (52)

6r(3) "_ 2 6rl 16r11
r0 r0 r0 cos M 0

5V(2) _rl I grll cos M 0
% _- r---0- + r_-

50(2 ) ,_- 3 6rl M 0r_- - _tp

+ 2 6r-----11 sin M 0
r 0

I,r11
_Y(2) "_ r_- sin M 0

But M 0 = 0 ° for _r 1 positive, andM = 180 ° for

8r 1 negative. Then, for ;)7/0 = 0 ° at launch,

5r(2 ) 5r 1

r0 ,_ _ (2 - cosY_0 ) (116)

6v(2)

V o

0(2 )

6_(2 ) ,_ __

Case (3)

6rl (cos _0 - 1) (117)
r 0

6r I
(2 sin _0 - 3 _0 ) (118)

r 0

6rl
sin )_(0 (119)

r 0

[6r 1 : 0, 6? 1 : 0, 6v it0] For

the remaining case, where 6r t = 0, 5"g 1

6V 1 i_ 0, Eqs (90) and (91) give

6a(3) -, 2 6V1

- r0

e(3 ) ,_ 2 i 6V1
-VTo.

= 0 and

A procedure similar to that used in Cases (1) and

(2) gives

8V 1
6r(3) _ 2 (I - cos )N O ) (120)
r0 _o0

6V(3 ) sV 1

_0 '_ _0 (2 cos )']70 - 1) (121)

6V 1 6V 1

60(3 ) ,_ - 371_0 _ + 4-_0 sinT_(O (122}

6V 1

6?(3 ) _ 2 W_ 0 sin 9710. (123)

The total error solutions are obtained by adding
Eqs (112), (116) and (120); Eqs (113), (117) and

(121); etc.

6r 1

6_r ,_ sin-trL 0 6y 1 + (2 - cos2_l 0) r_-r 0

8V 1

+ 2 (1 - cos _0 ) V0
(124)

6V
% - sin )7_0 5? 1 + (cos-)_0 - i) 6r----llrO

6V 1

+ (2 cos 7Z_O -I) V_
(125)

60 _ 60 1 + 2 (cos _0 - 1) 671

8r 1

+(2 sin_o - 3 _O ) ro

6V 1

+ (4 sin_ - 3)rL O) VO

6r 1

6_ _ e°s_i 0 671 +sin_ 0 ro

8V 1

+ 2 sin-h{0 V 0

for e 2 << 1

(126)

(127)
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For theproblemof relatingerrors at oneorbit
extremumto thoseat thepreviousextremum,
_0 = 180° in Eqs (124) through (127).

6r 2 6r 1 5V 1
--_ 3--+4

r0 r0 _0
(128)

5V 2 6r 1 6V 1

%o _ -2 ro 6%-°

6r 1 5V 1

502 _ 5() 1- 45Y 1 - 3_ r--o- 3u'_0

(129)

130)

5Y 2 _ - 5,( 1 131)

e2<< 1, points 1 and 2 extrema

Eqs (128) and (129) agree exactly with Eqs 104)
and (105), in which the errors were derived as
differentials.

c. Errors in final orbit elements

Errors in the final orbit elements 66' and e'

may be determined as functions of errors in the

orbit conditions just after the second impulse,

r2' V'2' Y'2 by letting r = r 0 + 6r, V = V 0 + 6V

and cos2y = 1 - _/2 + . . . in

e2--1-(2-___ (r2V2p_ c°s2Y)

(neglecting terms of third and higher orders) and
in

-1

a= (2 _ V_)

(neglecting terms of second and higher orders).
The results are

r 0

±a _26r + 2 _ 6V (132)

2( 26V 5r_2 _/2r(1, /e ,, _0 + + (133)

d. Combination of the errors

The errors in the final orbit parameters can

now be written completely in terms of errors in

tracking and prediction of the original orbit and

errors in the corrective thrusts by adding the
individual errors derived previously. Let the

errors in tracking and prediction of the original
orbit at the time of the first corrective impulse

be 5rl, 6V10 and 5Yl, and let the errors in the

first corrective impulse magnitude and orienta-

tion be 6(_V 1) and 5¢ 1 . Then, from Eqs (80) and

(81), the errors just after the corrective maneu-
vers are

6r 1' _ 6r 1

6V 1' ,_ 6(_V I) + 6V 1

6(}I' _ 60

z,V 1

,_ + 6Y I •6y' -V-0-0 6@T 1

These errors are transformed to errors at the

next orbit extremum, where the second correc-

tive impulse is to be applied by Eqs (104), (105)

and (128) through (131).

!

@2 6rlr 6V1 6rl F6(/_ V1)

--,_3 -- +4 ,_ 3-- +4L 0-V-_--
r 0 r 0 W_0 r 0

5V 2 6r 1t 6V 1' 6r 1 F6(A V 1 )

_- 2ro - 3%-0 .- 2 r-;- 3L%

6V_

6r 1_ _ 6V 1'

602 _ 501' - 46_' - 3w r0 3_

(/_VI ) [ 6rl
,,_ 501 - 4k_?-O--0 5_T1 + 5y - 3w[__O

&V 1

6Y2 _ - 5YII _ - _0 6@TI - 6_I

Equations (80) and (81) are then applied to these

equations to include the errors in the second im-

pulse magnitude and orientation, 6(_V 2) and 5OT 2

@2' 5r2 @I f6(_Vl) 5Vl_

.... 3--+4_,-V_ 0 - +_0 ]r 0 r 0 r 0

5V 2' 6(_V 2 ) 5V 2 5(/\ V2) 6r__1_1

Vo" _ + "%-0_ %-o - 2 ro

/_V1 +
_°2' --_(}2* _°l - 4(,-_0_*T1 _Y1)

f_r 1 6('_V 1) 6Vl_
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_V2 + ±V2
6_2'_ _T 2 5Y2_ 5_T2

_V1
V0 5CT1- 6y 1

Finally, these errors are transformed to the

errors in final orbit elements by Eqs (132) and
(133).

6a._' ,_ 2 --

r0 Lr0

e'2 I

5V 1 6(_V 1 ) 5(z_V2) _

-_0 + _ + _J (134)

6r 1 6V 1 6(AV1) 6(_ V2) _ 2

rO - 2 V--O + J

I dV2 ±V1 6C, T - 5¥_ 2- l
(135)

Equation (134) is plotted in Fig. 17. For the

assumption that 6(AV 1) = 6(z_V2).

E. GENERAL TWO-[MPULSE MANEUVERS

For the case where it is desired to transfer

between orbits and where the maximum change

in the azimuth is not large, it is possible to ae-

eomplish the transfer efficiently with two impulses.

This may be visualized from the following sketch.

Desired trajectory -_

Point of transfer -_ _2

ky/
Point of Earth _'2

_initiation _//

Line intersection _./'_ trajectory
of two planes n

The plane of the transfer is thus defined by r- _1

x = 0 where r is a general radius vector for

points on the transfer trajectory. However, this

expression will not serve the purposes we desire.

Thus, consider the unit vector _ along the inter-

section of the planes.

r I • 6

cos a I - rl - _I " _

A A

cos a 2 = r 2 • n

A

cos a 3 =_i " r2

sin _2

sin _] = sin A_* sin o_,
o

where 6/_* is a known angle for the two orbits as

a function of the latitude at which the planes inter-
sect.

Now at this point, the plane of motion is de-

fined. The initial and final radii and the angle
between are known_ however, the transfer has

not been uniquely defined because many elliptical

trajectories eould be constructed to satisfy these

conditions. To completely define the problem,
one additional parameter must thus be selected.

This parameter could be a geometrical element

sueh as a0 p, or e, a time variant parameter at

r 1 or r 2 at the time of transfer. Since the latter

piece of data is more general than the others, it

is assumed to apply for this purpose.

Thus the problem evolves into the solution of

a set of simultaneous equations for the planar
elements of the orbit.

ix t = tarriva 1 - tinjectio n

_3 =02 - O1

-1 a(1 - e 2) - r2]

= COS e r2 J
-11 a(1 - e 2) - r

- cos _r 1

sin E

where

a - r 2

cos E 2 e a

2 -r 1

cos E1 - e a

This solution is transcendental and thus requires

the simultaneous iteration of 4 equations unless

Lambert,s theorem (discussed in Chapter III) is

utilized in place of Kepler,s equation. (If Lambert,s

theorem is utilized, the semimajor axis is eval-
uated by an iteration which does not involve ec-

centricity, and the equation for a 3 can then be

utilized to define eccentricity. ) Two iterative

processes are valid for this solution and are suf-

ficiently simple that their use is justified in auto-

matic computation. The first such process is the

Newton-Raphson iteration. This procedure is ap-
plicable for functions

Yl = fl (El' E2' a, e) = fl (xi) =0

i = 1, 2, 3, 4

Y2 = f2 (El" E2' a, e) = f2 (xi) _'0

Y3 = f3 (El' E2" a, e) = f3 (xi) =0

Y4 = f4 (El' E2' a, e) = f4 (xi) -= 0
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Now assume

Xl --Xl, 0 + h

+k
x2 = x2, 0

+m

x3 = x3, 0

x4 = x4, 0 + n

Thus

fi (Xl, 0 +h' x2, 0

x4, 0+n) =0

etc.

+ I% x3, 0 + m,

Expanding these fi in Taylor series and neglecting

higher order terms in h, k , m and n now yields

fl(xl, 0 + h, • • • x4, 0 + n) =

fl (xl, 0' x2, 0" x3, 0 ° x4, 0 )

(% l flh
+h \ X_l] + k \ x_2]

xi =xi, 0 xi =xi, 0

+ + c fl
m k_-_3] n ka--_41

X i = X. Xil, 0 = xi, 0

and similarly for f2' f3 and f4" Now treating the

coefficients h, k, m and n as the unknowns, the

solution is

fl afl/0X2 Ofl/dX3 0fl/0x4

f2

f3

f4 Of 4/Ox2 _f4/ax3 8f4/0x4

h = "-" J '

0f 1/0x 1 0f 1/Ox 4

0f4/_x 1 8f4[8x 4

and k, m and n are determined in a similar man-

ner (i.e., by replacing inturnthe second, third

and fourth columns of the determinant by the

column fl' f2' f3' f4 and dividing the resultant

determinant by the same denominator as pre-

sented above). Once the process is completed

numerically, it is repeated until the values of the
increments h, k, m and n are smaller than som_

value which must be specified.

This solution has been tested and proven to

converge; however, it must be noted that the

functions which are being iterated are of a very

complex nature and have many relative minima
and maxima. Thus, uniess the first guesses for

a and e are reasonably valid, the method will not

converge to the proper root. First estimates

may be obtained from series expansions or ap-

proximate forms discussed in Chapter III.

The second iterative solution which has been

checked is a purely numerical evaluation and

proceeds as follows. First, the variable E is

eliminated by direct substitution into the equations

for /_t and /_e. Then functions fl' f2 and f3 are

defined as follows

fl = (btgiven - Dtcomputed) 2_r[v

f2 = _0given - _0computed

As before, a value for each of the variables a and

e is guessed, but this time one value (say a) is

incremented positively and negatively and the

function f3 evaluated for each set of variables

(a + /_a, e); (a, e); and (a - na, e). The value

of a which results in the smallest value of f3 is

then selected and the process is repeated after

incrementing e. A fairly coarse grid (i.e., large

Ca and zXe) can be utilized initially, and this grid

is halved each time the previous root is selected

as the minimizing value. Once the grid is suf-

ficiently small or once the value of f3 (which is

the total error of the solution) is less than a

specified number the solution can be halted. In

all cases f3 should be checked because unless it

is nearly zero, the set of variables selected cor-

responds to a local minimum, not the true root.

In such cases, botha and e can be incremented

varying amounts to see if there is any set of roots

in the vicinity yielding a smaller f3" If so, the

procedure continues. This solution is illustrated

below for the case in which point A represents

the first repeated root

e 2 -

e 1 - •

e 0 - •

e_ l- • •

A

e_ 2-

e-3- ooo

e-4 l i i u u i

a_ 2 a_ 1 a 0 a 1 a 2 a 3 a 4

This solution was found ideally suited to auto-

matic computation, since no functions other than

those required in the definition of the problem
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need be programmed and since the logic involved

is very simple. In addition, it is possible to as-

certain whether convergence to the proper roots

has been obtained by checking the value of f3"

This method also proved to require less accurate

initial estimates of a and e and was never subject
to the problem of division by zero as is possible

[nthe definition of h, k, m and n of the Newton-

1Raphson method.

Once the elements a and e are known to the

desired accuracy, the development of the maneu-

vers can continue. The term /x_, was defined

previously; therefore, consider the azimuths in

the two orbits at the point of the second maneuver

cos i
1

sin -_l = COS_

COS i2

sin 132 =

cos i 1

sinj31=cos _ sint3 2

but

AI? 2 = 132 - /31

Thus

] =--

or

cOS lcos % os A_ 2 + sin A_ 2 cot

COS i2

- cos + sin cot /31cos 11 A;32 /xt32

/"_2 can be evaluated directly from this equation_

however, unless /"132 is small a simple solution

would be to evaluate both S1 and ]32 then subtract.

For the case where A]32 is small {as is in general

true)

1/2

(c°s i2 _ _(cos L_ 2 -

But the velocity vector must be rotated through

another angle (A _) in order to change the direction

of the velocity in the plane to attain the correct

ellipse. This angle is obtained from

-1 [a2(1 - e 2)
AY 1

cos Vrl(2a _ rl )

_ -1 ,/a02(1 - e02)

cos Vrl(2a 0 _ rl )

,[
AY2 cos -I af 2(1 - ef 2)= +

(continued)

_ -1 ]a(1 - e 2)

cos Vr2(2 a - r 2)

where: the absence of a subscript denotes the
transfer orbit

subscript 0 denotes the initial orbit

subscript f denotes the final orbit

Now the total turn angle for the velocity vector is

obtained from the foilowing sketch to be

-1
¢1 = cos (cos /' Y1 cos A/31)

_P2 = cos- 1 (cos A "/2 cos /x ]32)

and the changes in the required velocities are:

AV12 cos=V02 +V12 - 2VoV1 ¢1

and

AV2 2

=,u a 0 a

ICr 
=t_ - a- a_-

No provision has been made at any point in this

analysis for nonzero burning times. Actually,

however, these equations have been utilized in a
digital program to simulate powered maneuvers.

The process was as follows.

(1) The impulsive analysis was made.

(2) A finite burning simulation was attempted.

(3) The erro.r in the position and velocity at
burnout was determined from the com-

puted position and velocity and the values

were predicted for the transfer orbit the
same number of seconds after the im-

pulse.

(4) The magnitude of the errors was utilized

to adjust the time for initiating the thrust

and the thrust program.

(5) The process was repeated until the de-

sired transfer orbit was obtained to a

specified accuracy. The allowable

errors for the initial computations were

(Ax, Ay, AZ)B0 _< 1000 ft (or 300 m) and

(/x:_, /',_r, z',_)B0 _< 0. 1 fps (or 0.03 raps).
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Thevalidityofthe impulsiveanalysiswasin this
mannerprovenfor moderateto largeaccelerations.
Thelowaccelerationruns,however,required
morecomputationsin orderto convergetoa proper
thrustprogram. This factshouldbeexpected,
sincetheaccuracyof the impulsiveanalysisde-
terioratesasthetimeofthrustingincreases.The
resultsof theserunsindicatedgenerallygood
agreementfor thecomputationoftheactualpro-
pellantmassrequiredbutindicatedthatthema-
neuvershouldbeanticipatedin orderto findthe
properthrustprogramina limitednumberof
trials. Thephysicalsignificanceofthis statement
is seendirectlyfromthefollowingsketch.

Desired Originaltraek_/

track_ _
x_Thrustingtrajectory

F° PROPULSION REQUIREMENTS FOR

CANCELLING THE EFFECTS OF
DRAG AND OBLATENESS

For most earth satellites only two relatively
large perturbing accelerations act on the vehicle,
the first due to earth' s oblateness and the

second due to atmospheric drag. Generally these

effects are sufficiently large that it is necessary

to accept them; howevec0 for some orbits and for

some specific satellite applications it may be
desirable to cancel them. This section treats

these two problems.

1. Counteracting the Effects of the Earth's
Oblateness (Ref. 2)

The potential function of the earth in Jeffrey's
notation is:

IrR__ JR 3U(r, L) = -_ +_(I - 3 sin 2L)

+ O(j2 t

whe re

J -- 3/2 J2

and where terms of the order j2 have been

neglected

while for a spherical earth it is

U =-K
S r

The gravitational force acting on the satellite

is given by the negative gradient of the potential

function. In polar coordinates

 u÷t 1
grad U = _" _ F _ _ 0-_

therefore

Fob = - gradU (r, L) =- _

+4(1 - 3 sin 2L_

P .J

+ L _ J sin 2L

(136)

and

F = - grad U =-_ P
s s R 2 2P

where

r

P - R (137)

The corrective force which must be exerted

on the satellite to remain in an unperturbed orbit

is the difference between these two forces repre-

sented by Eqs (136) and (137).

Fre q = - m (Fob - F s)

Ceq = m (grad U - grad U s )

so that the general force equation giving the cor

rective force per unit mass is

Ceq : ix p_ _(l -3sin2 Lt

-L _ J sin 2L

(138)

Consider the following sketch which shows the pro-

jection of the actual orbit on a sphere of radius

equal to that value of r occurring at the highest
latitude of the orbit. The X-axis in this case is

90 ° out of phase with the ascending node.

By inspection, the relation between the latitude

L and the angle from perigee 0 is

sin L = sin i cos v (139)

where

T = O - ot

a = 90 - _o

From the standard form of the conic for the

orbit of a satellite about a spherical earth,

r - P (140)
1 +ecos O
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Substituting these expressions into the force

equation per unit mass (Eq (138)) yields

req = _ _ (1 +ecos 0)4 [J (1
P

- 3 sin 2 i cos 2 (0 - a))]

_'2JplR2 (I + e cosO) 4 sinieos (e

P

a) i I sin 2' 2- - t cos (0 - _)

(141)

Now to relate the force to tim_ rather than true

anomaly, replace 0 by E, using the geometric re-

lationship

cos E- e (142)
cos 0 1 - e cos E

and

H (143)
cos (0 - a) -- 1 - e cos E

where

H = (cos E - e) cos a + _i - e 2 sin E sin

(144)

Substitution of Eqs (142) and (143) into Eq (68)

to get the corrective thrust requirements in terms

of obital elements gives

- ( )= + L F L (145)Fre q m _ F r

where

F
r

and

=T -ecosE
P

3 H 2 sin 2 i q

(i - e cos E) 2 J

F L

J2gR 2 H sin i
=

4
p (1 - e cos E)

H 2 sin 2 i -_

(I - e cos E) 2 J

1 e2(] - e cos ti'
1

1

Now the mass of the satellite must be considered
a function of time. If the mass rate is small rela-

tive to the mass of the satellite, this time varia-

tion can be written as

m = mo - m---'O+ 0 (m/m)

or as a function of the eccentric anomaly

dm dE
m = m ° a-_-- _d_- t

dm (_-F_ -1-- m ° - W t. (146)

But for a spherical earth,

T

t = _ (E - e sin E)

so that

(147)

dt _ v (1 - e cos E) (147a)
dE 2W-

•and hence m (and therefore W in units of weight)

can be expressed as a function only of the eccen-

tric anomaly:

E - e sin E dW
W

W0 I - e cos E _ "
(148)

Substituting Eq (148) into the force equation

(145) gives

= 1 [W E -esinE <E_FFreq _ 0 - I - e cos E r

+ _ FL] (149)

Now expressing the thrust as a function of the

specific impulse

Fre q = Isp @

or as a function of eeeentrie anomaly and weight
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Fre q = Isp _--

-I

(15o)

Therefore

_W (I - e cos E)
dW T

Isp _ = _ 0

- (E - esinE) d_-_--] tFr2 +Fd

(151)

thus,

2 + FL 2dW W 0 (1 - e cos E) F r

dE 2_ Isp go _Fr2 FL 2+ (E - e sin E) +
T

(151a)

Integration of Eq (151a) over limits of one
revolution (0 to 2 rr) gives the amount of propellant

used in that orbital pass

2_

= _ dW dE (152)
Wp d--_J0

Also, by a slight rearrangement of terms, using

Eqs (147a) and (151), the integral equation for the
corrective thrust is

Freq [ =

E IFr 2 + FL 2

O o+ • (E -e sinE) F +
sp

dE

(153)

Both of these equations are difficult [f not impos-

sible to integrate analytically. However, a sim-

plification will result if the mass of the vehicle

is assumed constant for a complete revolution.

The magnitude of the error of this assumption is

small as will be apparent in subsequent discus-

sions.

Each component of the force can be related to

the propellant flow by Eq (151)

dW
I r = WT (1 - e cos E) F (154)
sp dE _ r

dW L W_"

Isp dE 2rr go (1 - e cos E) F L (154a)

The actual propellant flow rate is

dW WT (155)
Isp_ _- = _(1 - e cos E) Fre q

or upon substituting for Fre q in terms of its com-

ponents

dW W T _Fr 2
Isp _ = _ (1 - e cos E) + FL2

(155a)

so that

dW _L (156)=

and hence, the weight of propellant consumption

per revolution is

Wp=

2T, gel a 4 Isp J(I (l - e cos E

• ESH4 sin 4 i - 2H 2 (1 e cos 1:2) 2 sin 2 i + (1 - e cos E) dt_2

(157)

Probably the most common case for which
the oblateness correction will be made will be

for satellites in circular orbits. It would there-

fore be of interest at this time to determine the

thrust and propellant equations for circular or-
bits.

The simplifying conditions for circular orbits

are: (1) eccentricity is by definition zero, (2)

perigee is undefined and may be selected to make

the angle a zero, and (3) the eccentric anomaly
E and the true anomaly 0 are coincident. Then

= gR2 J (1 - 3 sin 2 L) (158)
F r 7_

a

F L = - _ J sin 2 L
a

(158a)

Fre q = m _Fr 2 + FL 2 (158b)

2w

R2j_ W _p 5 cos 4 E sin 4 i

Wp 2_ g0a4isp 0

- 2 cos 2 E sin 2 i+_ 1[2 dE
(159)

Also, for circular orbits, the true anomaly
is related to the time since perigee passage by
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2Trt
O -

T

Thus, the corrective thrust F
req

from Eqs (158) and (159) as

can be rewritten

_ _ R 2 J 2 2
Fr T (1 - 3 sin cos 0) (160)

a

FL -2u R27_ J cos= sin i 0 1 - sin 2 i cos 20

a

(160a)

Fre q = M IFr 2 + FL2 (160b)

The variation of the absolute values of these

functions as functions of the true anomaly @, and

orbit inclination i are illustrated in Figs. 18 and

19. The parameter for these figures is a non-
dimensional acceleration x defined as follows:

_ a 4 Fr
Xr p R2_J

_ a 4

x0 Iv0
/.1

: a4 I
Xreq _ Freq

Estimated average values derived from these

curves are illustrated [n Fig. 20 as a function of

the orbit inclination i. The curve for x
req

represents the averages derived from the

curves in Fig. 19, not from x r and xL, since

Xreq _ _Xr2 +XL 2

but rather

or

W _ W7 UR 2 J x
4 req

P gO [sp a

where x is as illustrated in Fig. 20.
req

Example 1. Consider a 10,000-1b (44, 500

newton) satellite on a 300-naut mi or 556-km

equatorial circular orbit. The parameters for
this case would be as follows:

m = 311 slugs = 4530 kg

I = 500 sec (assumed)
sp

6
R = 20. 9264 x I0 ft = 6378.2 km

a = 22.72 x 106 ft = 6930 km

= 1. 407645 x 1016 ft3/see 2 =

398601.5 km3/sec 2

i = 0 deg

T = 5740 sec

-3
J = 1.637 x I0

For this ease

x = 1
req

and

F = 11.8 lb (average value) = 52.5 newton
req

W = 136 lb/orbit = 605 newtons/orbit
P

Example 2. Consider the same 10,000-1b

(44,500 newton) vehicle on a 300-naut mi

(556-km) polar circular orbit. The param-

eters are the same as before, except that now,

i = 90 ° .

For this case

= _ r2 + XL 2 x req = 1 31greq x

Evaluation of the propellant requirement is

now a simple matter, since

W T

p =

Isp dWp Fre q dt

hence,

=ZL_
Wp is p Fre q

Henc e o

F = 15.5 lb (average value) = 69 newton
req

W = 178 lb/orbit = 794 newtons/orbit
P

Example 3. Consider the same 10,000-1b

(44,500 newton) vehicle on a 300-naut mi (556-

kin) circular orbit inclined 28 ° to the equator

(east-launching from the AMR). The param-

eters are the same as in Example 1, except
that now,

i=28 °.

VI-29



For thiscase

x = 0.935req
Hence,

F = ll. 05 lb (average value) -- 49.2 newtons
req

W -- 127 lb/orbit -- 566 newtons/orbit
P

Example 4. Consider the same 10, 000-1b

(44, 500 newton) vehicle on a ,, 24-hr" circular

equatorial orbit. The parameters are the same

as in Example 1, except that now,

a = 1.4 x 108 ft = 0,42 x 108 m

= 86,164 sec

For this case

x =1
req

Henc e,

F -- 0.00815 lb (average value) =0.0363 newton
req

W -- 1.4 lb/orbit = 6.24 newtons/orbit
P

Conclusions. Some general observations may

be made from Figs. 18, 19 and 20.

(i) In an equatorial orbit, the corrective force

required to maintain an unperturbed orbit

is constant and directed away from the

earth (Fig. 18). As the inclination of the
orbit is increased to about 30 ° the radial

component of the force decreases some-
what, indicating the diminishing effect of

the equatorial bulge as the vehicle gets
farther away from it. Beyond an inclina-

tion of 30 °, the vehicle begins to feel the

full effect of the oblate shape of the earth

and results in the high values of Fre q

(Fig. 19) for low values of 9.

(2) The correction required on a polar orbit

is greater than that required on an equa-

torial orbit. As an illustrative example,

consider a satellite on a polar orbit. Be-

ginning with its position at e = 0 (over

the earth's North Pole), the field is sym-

metric, and only a negative component of
radial force exists (i.e., thrust directed

toward center of earth). As the vehicle's

latitude decreases (increasing 0) the force

decreases and rotates away from the center
of the earth until at 8 -- 55 °, it is tangent

to the orbit, and directed away from the

equator. Finally, as the vehicle passes

over the equator on its way toward the

South Pole, the only force is the radial

component acting away from the earth.

(3) Another result is that an orbit inclination

of about 30 ° requires the least amount of

energy expenditure to maintain the orbit

(Fig. 20).

2. Propulsion Requirements for Counteracting

Drag

Corrective propulsion needed for drag can-

cellation may be al_plied either by a continuous

thrust device or in discrete impulses. In the

first case, either thrust must be varied in such

a manner that the drag is balanced at every

instant or the time integral of the thrust dotted

into the velocity around the orbit must be equal

to the work done by the drag force. This drag

force is

D _ I CD.____
_ = '2- m p(V+VaT)-(V

v_aT ) V + VaT

V+VaT

where

VaT

V

P

Thus

= the velocity of the atmosphere

= the velocity due to elliptic motion

= mass density as function of position

m m

Assuming that the orbit is specified (both planar
and orientation elements) and that a model of

atmospheric density is available which includes

as many of the effects due to solar radiation, atmos-

pheric oblateness, etc., as desirable, and that

the product CDA can be defined with some accu-

racy, the time history of thrust can be computed.

This procedure would best be handled numerically

though the possibility exists that series expansions

in the various terms might also prove useful.

The major drawbacks, however, that the method
is cumbersome and requires a variable thrust,
are sufficient to eliminate this method from con-

sideration in a parametric study of this nature.

The time integral approach to drag cancella-

tion may be stated as

Wthrust = _ Wdrag

T '7"

F. (_/ + _T ) dt -- _" D. (_+_JaW) dt

0 0

2

where v is the orbital period
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But if

(V'+ %T )

where

F = scalar constant

The left-hand side of the previous integral re-
duces to:

_ __ dt

which is by definition

T

F _0 1_+ V'aTI dt

Similarly the right-hand side of the equation is

T

This solution, like the first, is such that a

numerical solution is quite attractive for the

general case. For special cases when the term

VaT can be neglected or considered to be colinear

with _ (that is for very high satellites or nearly

circular equatorial orbits), The general order of

complexity can be reduced and analytic solutions

become attractive. Material pertinent to these

cases is covered in Chapter V. Because of the

restrictive nature of this material it is not pre-

sented here. Rather, it is no.ted that the pro-
cedure is simply the matching of the work done

by thrust and by drag. The matching procedure

is at times very tedious but may nonetheless be

accorhplished. An approximation to this impulse

could be obtained by integrating the drag force

over a revolution and observing the change in the
orbital elements; then via the methods described in

previous sections the impulse required to correct
elements could be computed and the average thrust

obtained by dividing by the orbital period,

The final approach to this maintenance
maneuver is one in which the orbit is allowed to

decay until one of the elements has changed an

amount eq, lal to or greater than a prescribed
tolerance for that element, At this time a two-

impulse maneuver is initiated which transfers the

vehicle back to the original orbit. Since atmos-

pheric velocity is small compared to the vehicle
velocity, the perturbing forces occur approximately

in the plane of motion and thus the transfer will

be approximately coplanar. Chapter V again pre-
sents all of the data pertinent to the decay of

satellites and the first section of this chapter ties

these changes into the propulsion requirements.

Thus, the procedure to be followed for an analysis
of this nature is:

(1) The specification of the geometrical
elements.

(2) The establishment of tolerances for the
elements.

(3) The evaluation of the rates of change
of the elements.

(4) The assessment of the times at which

corrective action is required, the same

maneuver being required each time.

(5) The calculation of the maneuver re-

quirements.

Since each of these discussions is presented

in detail in the respective sections of pertinent

chapters repetition of this material for the general

solution is superfluous. However, hecaus_

circular orbits pose a unique problem the solution

of which can be obtained, the following paragraphs

are presented for this restricted problem. The

discussions follow those of Ref. (3).

The total required velocity, z_V, is the sum

of the separate velocity additions AV 1 and £_V2,

where AV 1 refers to the velocity addition necessary
to obtain _ Hohmann transfer back to the desired

altitude, and where AV 2 is the velocity addition

necessary to circularize the orbit having once

reached the desired altitude. The total required

velocity for a single two-impulse correction

maneuver is just AV. The following sketch de-

scribes the geometry of these maneuvers.

2nd velocity addition

. .---_--'_V 2

/ / / )_ _Initial

0 \
t:}bntfer__ R_''_/''_\ t_

\ ' lorYiYed

The separate velocity additions, AV 1 and

AV 2, may be determined from the energy equation

to be

{(1 1)AV1 = P _ + h 0 - Ah R + h 0 - /Xh/2

1 (161)
R + h O- _h
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__J __

AV 2 :

R+h 0

(162)

The velocity addition available from a given

engine is related to the propellant mass fraction,

Wp/W 0, by the familiar rocket equation

1
= (163)

&Vi Ispg01n 1 - Wpi/Woi

or

Wpi -- 1 - e - AVi/IsPg0 (164)

where AV. is the ith total velocity addition and
1

W . is the amount of propellant required for that
pt

particular velocity addition.

Since all the AV requirements are the same for

each maneuver, it follows that

Wpl = W]_2 _ Wp3

W0 - Wpl W 0 - Wpl - Wp2

= 1 - e -AV/IsPg0 (165)

where the subscripts 1, 2, 3, etc., denote successive

corrective maneuvers. The total amount of pro-

pellant used after n maneuvers is then,

n

-- _ w. (166)
Wp i- 1 pl

where,

W
pl

Wp2

W
pn

- AV/Ispg0) (167)= W 0 -e

= (W0-Wpl)(1 . e'AV/IsPg0t

I(W - Wpl - Wp2 - . • • •

I1-exp( Av/Isp g0)_}

(168)

- Wpn__

(169)

The total time elapsed after n maneuvers is
the summation of the increments of time between

successive maneuvers, where it is recalled that
the amount Ah has been lost in altitude from one

maneuver to the next. This time may be found as
follows:

dE T _ pm dh (170)
2 (R + h) 2

(where E T is the total energy of a satellite of mass

m in a circular orbit at an altitude h. )

From the drag force D acting on the satellite.

-- DVdt = ½p V3CD AdtdE T (171)

(if the atmospheric velocity is neglected).

Now combining Equations (170) and (171) with the

expression for circular velocity, and approximating

the atmospheric density, to make integration

possible, by

P = PO e-_h (172)

yields

h o - Ah AT

(W/CDA) _h e_hdh= - S dt
g0P0 P_- 0 0

(L <<R) (173)

which after integrating and rearranging is the

time interval between maneuvers

(W/CDA ) flh 0AT = e (1 -e-_Ah)

/3g0p 0 (pR

+ _ _ (R + h)- _h]3
#

where the corrective term is I[2 of the period

of the transfer orbit.

(174)

An appreciation of the validity of the density
approximation may be seen in Chapter V. It is

noted, however, that generally good agreement
between the true density and that predicted can

be obtained for an altitude range from 185 km to
370 km and from 370 km to 750 km using

P0 = 1.60 x 10 -10 slugs/ft 3 or 0. 824 x 10 -7

kg/m 3

/3 = 7.21 x 10 -6 ft -1 or 23. 7 x 10 -6 m -1

and

P0 = 1.92 x 10 "12 slugs/ft 3 or . 988 x 10 -9

kg/m 3

/3 = 3.58 x 10 -6 ft -1 or 11.74 x 10 -6 m -1

respectively.

Now, denoting successive maneuvers by the sub-

scripts l, 2, 3, n, it follows that

_T n --{W 0 - Wpl - Wp2 . . . - Wpn_l)

(continued)
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Thus the total time elapsed after n maneuvers is

n

= _ &T.Ts t (176)
i=l

Now if the corrective term for transfer time is

neglected as being small compared to the total time,

and the equation for T divided by the total amounts

of propellant used after n maneuvers, the series

common to both,equations (involving the weights)

may be eliminated to arrive at the desired ex-

pression

W 0 Wp [flTs/ = %-o gooo

e 13hO (1 - e-_Ah) ]

.(2-ff (1 e-aV/IsPg_J

(177)

This relationship between the propellant mass

fraction required to sustain a satellite a specified

lifetime is explicitly independent of the number of

impulse corrections, and like the continuous thrust

method, shows a linear dependence of the pro-

pellant mass fraction, Wp/W 0, upon the sustained

lifetime, T s, for a given set of initial conditions.

Figures 21 through 24 show the linear relation-

ship as predicted by Eq (177) as a function of the

ballistic coefficient for various Ah/h 0' and

initial altitudes for a specific impulse of 300 see.

One of the values on these curves is for the

case where Ah = 0. This curve was obtained as

follows.

1
F = _r CD ApV2 = @ Isp

1 CDAP V2
=

Wp -_- I Ts
sp

T 2W I 2W I (l:t + h)
s p sp p sp

W0/CDA = W 0 0V2 =-_0 P"

Although it will not be shown here, this is the
same limit that wouId be obtained if Ah and the

various maneuver increments (AV i) were alIowed

to approach zero simultaneously in Eq 177 with

the corrective term for time being neglected,

(the corrective term must be neglected because

the vehicle is never coasting back to the initial

orbit; i. e., there is no Hohmann transfer).

These figures show that the longest sustained life-
time per unit weight of propellant is obtained from

the continuous thrust sustaining method. In the

case of satellites utilizing the discrete velocity-

addition sustaining method, longer lifetimes are

realized (for a given propellant mass fraction)

as the increment is decreased in altitude, Ah,

the point below the desired altitude at which the
first and successive corrective maneuvers are

initiated.

Another interesting fact which may be ob-

served by comparing the sustained and un-
sustained lifetimes is that the advantages of a

sustained satellite over an unsustained satellite

are greatest at the lower altitudes, where they
are needed most.

G. DIFFERENTIAL CORRECTIONS

IN ORBIT TRANSFER

The fundamental goal of space vehicle guid-

ance is placing the vehicle at a certain point in

space at a certain time, perhaps with a partic-

ular velocity. An approximate method of com-

puting guidance commands to accomplish this

objective is by differential corrections based

on the ideal transfer profile. The sensed data,
in the form of deviations from the ideal transfer

orbit, are transformed into the desired vehicle

velocity component corrections by a matrix of

precomputed error sensitivities stored in the

vehicle-borne computer.

The primary advantage of the differentiai

correction technique is a simplification of guid-

ance system input calculations performed aboard
the vehicle. These calculations involve only

matrix multiplication, which can be mechanized

in a simple, lightweight vehicle-borne computer.

The technique is feasible wherever deviations
from the desired transfer orbit and perturbations

to Keplerian motion are reasonabIy small. Orbit
deviations must be small to admit the use of a

linear differential approximation. Also, if the

deviations are small, the effect of srnall pertur-
bations on both nominal and incorrect orbits is

essentially the same, i.e., the deviation is inde-

pendent of small perturbations. The orbit cor-
rection, being dependent only on the deviation,

is thus independent of small perturbations.

The problem may be formulated in several

ways (Refs. 4 and 5), depending on choice of co-
ordinates and orbital elements. The formulation

considered is that of Lawden (Ref. 4), the solu-

tion being obtained by a somewhat different
mathematical approach. Let the center of co-

ordinates be located at the center of the force

field, the X-axis be the Iine of intersection of

the ideal vehicle transfer orbit and the orbit

plane of the target point, the Z-axis be normal

to the target point orbit plane, and the Y-axis

complete a right-hand system, as shown in the
sketch.

Z

X

/_ Incorrect

vehtc le

I orbit
i // "J'x/-- Vehicle at

J / /A correction

Olin
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The following nomenclature will be used

x 0 SemimaJor axis of the preselected transfer
orbit

x 1 Eccentricity of the preselected transfer
orbit

x 2 "Curly pt" or sum of the longitude of as-
cending node and argument of perigee of
the transfer orbit

x 3 Eccentric anomaly of the vehicle position
at the time of correction

x 4 Eccentric anomaly of the vehicle position
in the transfer orbit at the time of ren-

dezvous with the target point

x 5 Inclination of the preselected transfer
orbit to the target point orbit plane

x 6 Sum of x 2 and the true anomaly of the

vehicle at the time of correction

x 7 180 ° + longitude of the ascending node of
the transfer orbit

x 8 Radius at the rendezvous point

x 9 Eccentric anomaly of the target point in
its orbit at the time of rendezvous Y4

Yl Radius to the vehicle at the time of cor- - _-0
rection

x6-x 2 _fl + x 1 x 3

Y2 Angle in the XY-plane from the X-axis to _1 = tan-- --_
the projection on the XY-plane of the re- 2 1 - x 1 tan-_

hicle radius at the time of correction

Y3 Angle measured in a plane normal to the
XY-plane from the XY-plane to the vehicle
at the time of correction

Y4 Time between correction and rendezvous

u 1 Radial velocity component of the vehicle
at the time of correction

u 2 Vehicle velocity component normal to u 1

and parallel to the XY-plane (at the time
of correction)

u 3

v i

Velocity component which completes a
right-hand system with u 1 and u 2

Velocity components of the vehicle in the
transfer orbit at rendezvous (directions

analogous to u i)

w i Target point velocity components at ren-
dezvous

a 0 Semimajor axis of the target point orbit

e 0 Eccentricity of the target point orbit

E 0 Eccentric anomaly of the target point at
the time of correction

¢0 0 Angle in the XY-plane from the X-axis to
perigee of the target point orbit.

The problem may be stated as follows. At a
certain preselected time, at which errors are to
be determined and corrections executed, the ve-

hicle position (Yl' Y2' Y3 ) is found to be in error

relative to the preselected transfer by amounts

dYl, dY2, dy 3. The velocity components at this

point are in error by AUl, AU2, AU 3. If the de-

sired velocity at the incorrect point (the velocity

to rendezvous Y4 + dYu later) is u i + du i, the cor-

rection to be applied is du i - Au i, where the cor-

rection relative to the programmed velocity (du 1,

du 2, du 3) is to be determined as a function of the

dy, s. If the velocity, as well as the position,
the vehicle is to be matched to that of the target

point, a second velocity correction, to be added
to the programmed thrust at rendezvous, must
be computed.

The required transformation matrix may be
obtained by differentiation of the following func-
tions, which describe the Keplerian motion of
the vehicle and the target point.

_0 = x4- x3 - Xl (sinx 4- sinx 3}

x 7 - x 2 __1 + x 1 x

_2 = tan----_-- --¥'_-_1 tan--_

_3 m x8 - x0 (I - x I cos x 4)

_4 = Yl - x0 (I - x I cos x 3)

Y4

_5 = x9- E0 - e0 (sin x 9 - sin E 0) -_0-0 _a0

x7-_0 4P + e0 x9

_6 = tan 2 -_T - e 0 tan-'_2-

_7 = Xs- a0 (1 - e 0 cos x 9)

¢8 = tan (x 7- y2 )- tan (x 7- x 6) cos x 5

_9 = sinY3- sin (x 7- x 6) sinx 5

U 1 = u I - x I sin (x 6- x2) # F
v x 0 (i - x12)

cos x50 _/_x 0 (l-Xl 2)

U2 = u2 cos Y3 Yl

tan Y3 _ _tx 0 (1-Xl 2)

U 3 = u3 - tan (x 6-x 7) Yl

(178)
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The desired velocity components are u k + du k

where u k are the programmed velocity components

at correction and (in Einstetnian summatton nota-
tion)

du k

du k =-- dYm, k = 1,2,3; m = 1,2,3,4.
8Y m

(179)

The solution of the problem ts then complete upon

evaluation of the partial derivatives of this ex-

pression. These partials are obtained immediately
from the Jacobian

A =

where

8@.
1

a,. -

13 _xj

U .-

_J _x.
J
I0r _

0 : LOJ3

i,j=0, 1 ..... 9

L= 1,2,3

3
I = [I]3

8u k
The partial -- of Eq (179) is obtained by dividing

8Ym

the negative of the determinant A into the same

determinant with the (10 + k) th column replaced

by the column vector

8Ym 8Ym }

For exam >le,

aij

8Ul 1

-_Yl A .....

%j

o o

841

o o

849
0 0

SYl

OU 1
0 0

8Yl

8U 2
1 0

0Y 1

8U 3

0 1

This completes the solution for the components
of the midcourse differential correction. The

thirteenth order determinants (_ and substituted

A, s) may be evaluated for a particular mission

by a computer program and the resulting matrix

au k

stored in the vehicle-borne computer memory.

However, for hand computations, the solution
can be expressed in a more convenient form.

This is possible because of the large number of

zeros in the determinant A . Specifically,

a00 a01 0 a03 a04 0 0 0

0 all a12 a13 0 0 a16 0

0 a21 a22 0 a24 0 0 a27

a30 a31 0 0 a34 0 0 0

a40 a41 0 a43 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 a67

0 0 0 0 0 0 0 0

0 0 0 0 0 a85 a86 a87

0 0 0 0 0 a95 a96 a97

0 0

0 0

0 0

a38 0

0 0

0 a59

0 a6 9

a78 a79

0 0

0 0

(180)

which, by Laplace's development of the first five
columns, reduces to

a00 a01 0 a03 a04

0 all a12 a13 0

0 a21 a22 0 a24

a30 a31 0 0 a34

a40 a41 0 a43 0

aij = a59a67(a85a96

- a86a95 )

-512
Y4

where

3

a00 = _/_-x 0

- sin x 4a01 = sin x 3

Yl

a03 = " x 0

x 8

a04 - x0

1 -x 1 ]

l+x 1 (l-Xl)2

all = - tan-_---
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a12 = __sec2 x6-_x2

IFJ:x,

x 4 .t/-i-=- x 1

a21 = _ tan--2--lr-f_Xl

1 2 x2
a22 = -_- esc ---2--

I__ I+ Xl 2 x4

a24 = -_ T_ 1 sec -_

J

1

(i-xl)_

a31 = x0 - x 8

a34= - x 0 x I sin x 4

Yl

a40 = - X--o-

a41 = Xo - Yl

a43 = - x0 x I sinx 3

1 2 x6-x2

a16 = _ sec

1 2 x 2
a27 = "2"csc --2-

a38 = 1

x 8

a59 = a0

1 2 _ 0
a67 = _ csc

1_ - x 9
a69 = _ _ _-TE-_-_- see2

U

a78 = 1

a79 = - a 0 e 0 sinx 9

a85 = - tanx6stnx 5

2
a86 = sec x 6 cos x 5

2 2
a87 = sec Y2 - sec x 6 cos x 5

a95 = - sfnx 6 cos x 5

a96 = - cos x 6 sin x 5

a97 = _ a96

Also

Ul0 Ull u12 0
_uljl= u20 u21 0 0

u30 u31 0 0

where

u 1

Ul0 =

0 0

0 u25

0 0

u16 0 00_

0 0 0 0

u36 u37 0 0

(181)

u 1
Ull =

Xl(1-x] 2)

u 2 x 1
u21 - 2

1 - x I

u3x 1
u31 = _2-

1 - x 1

u12 = - u I cot (x6 - x 2)

u25 = u 2 tan x 5

u16 = u12

u36 = u 3 sec x 6 csc x 6

u37 = . u36

and

Yl

0.0,0,0,1,0,0,0,0,0,0,

Yl

= {0,0,0,0,0,0,0,0, -sec 2 Y2'

0,0,0,0)

0,0,0,0,0,0,0,0,0, cos Y3'

0, -u 2 tanY3, -u3 sec Y3cscY3}
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= 1
(8_-_4t8_i aU_0y4 --_0 x_ 0 , 0,0,0,0,

-_ _o"ao o,o,o,o,o,o,o

The determinant aij is interesting in itself

since the differentlals in the transfer orbit geom-
etry

Ox.

dxj = _Oy i dY i (182)

are given by .,laij[ in the same manner that the

corrections in vehicle velocity are given directly

by Zk. From ]aij] , after simplification and fac-

toring, the following error sensitivities are ob-
tained.

d04

dll

d13

d21

d24

x 8

x 0

1
--_/ sin (x 6 - x2)

1 -x 1

41 - X I + 2Xl COS 2 _-_)

1
= --_ sin x 2

1 -x 1

: sin2

j=0 ..... 4 J=5 ..... 9

ax. M4j

Y_I = (-1)J+l

axj = (-l)J +I C4 _M_

axj = (_l)j+ 1 c5 ___

3

Oxj = (-l)J _ C k Mkj

k--O

OX,

J

_x 5

ax 5

_3

_x 5

=0, j=5 ..... 9

ax 6 _x.

=- kl' _ =k2' Y_2 = O, j =7, 8, 9

k 2 k 3 ax 6 Ox.

= --k-_4 , y_ 3 = kl k3 k4, x_ 3 = O, j=7, 8, 9

ax6 ax7 _x8 ax9 _88_qO-0= k 1 k 5, _ = k 5 (1 - k2), _ = k5, -- = C3, = 1aY4

(125)

where M. are the 4 x 4 minors of the determinant
13

n =

d00 d01 0 d03 d04

0 dll -1 d13 0

0 d21 -1 0 d24

d30 d31 0 0 d34

d40 d41 0 d43 0

and

3Y4 _ #

d°° "  X-Co

"!(Y4 +x3 x4)d01 Xl _0

Yl

d03 = x0

d30_ = - d04

d31 * x 0 - x 8

d34 = - x 0 x 1 sin x 4

d40 = d03

d41 = x0 - Yl

d43 " -x 0x 1 sinx 3

1 p
co - _o_X_

C I - K 5 (i - cos x5)

C 2 = _ K 5
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i _ a 0 e 0 sin x 9
C3 = X-8

c 4 = cos x 5

c 5 = klk3k 4

sin x 5

k I = a_x6

k 2 = cos x 5

2
cos Y2 cos Y3

k3 = 2

cos x 6

k 4 = sin x 6

=__, I'./,-eok5 x 8 tl +I'-v-6_-o
+- sln 2

_/I- e02

The orbit to be achieved by the velocity correc-
tion is thus determined in terms of the data.

Special note is made at this point that further

development of these determinants is possible

resulting in a set of analytic expressions for the

corrections. Some of these expressions, how-

ever, are very complex in form. For this

reason, it is felt that the present form of the
solution is most useful.

As an alternative to evaluation of the velocity

corrections (dUk) from the 13 x 13 A determi-

nants as previously outlined, the corrections

may be determined as functions of the orbit
element corrections since

0Uk _i
du k = _ dy i (184)

where _ are given by Eq (183) and

from Eq (181) .

If the velocity, as well as the position, of the

vehicle is to be matched with that of the target
point, the required correction to the programmed

velocity increment at rendezvous may be deter-

mined as follows. The velocity components of

the vehicle just before rendezvous are

v I =_ _ x I sin (x 7 -x 2)
x 0 (I - x12)

v2 = _/gx 0 (1- Xl 2)
cos x 5

x 8

= 4_x 0 (I - x12)

v 3 x8 sin x 5
(185)

The deviations of these components from those of

the preselected transfer are given by

8v i 8x k

dv i = _ _ dyj (186)

8x k
where the -- are given by Eq (183) and the

aYj

Bv i

-_k are, from Eq (185)

8v I v I 8v I v 1

°x0 _ ' -_-1 x 1 (1 - xl _)

8v I Ov I
=

Bx 2 - v I cot x 2 ; Bx 7 - v I cot x 2

_v 2 v 2 Bv 2 v 2 x 1

: x' - 7o; l-xi 

Bv 2 Bv 2 v 2
-- o -

Bx 5 v 2 tan x 5 , _x 8 x8

8v 3 v 3 8v 3 v 3 x 1

BXo - _0 ; -_I - 1- Xl v

8v 3 8v 3 v 3

-_5 = v3 cot x 5 ; 8x 8 x8

Similarly, from the velocity components of the

target point at rendezvous,

w I P e 0 sin (x 7 - _o0)

a 0 (I - e02)

w2 = _ a 0 (I - eo 2)
x 8

w3 = O, (187)

the change in the desired rendezvous velocity

from the programmed value is given by

_. _ 0x 7

dw 1 - w 1 cot (x 7 - _0 ) dx 7 = - w 1 cot ¢o 0 yb_ 4 dy 4
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w 2 w 2 8x 8
-- __ =

dw 2 = x8 dx8 x 8 BY 4 dY4
(188)

The partials are given by Eq (183).

Then the required velocity correction to the

stored velocity increment at rendezvous is

A v i = dv i - dw i

In the previous analyses dy 4 has been con-

sidered as an arbitrary increment in the time
between correction and rendezvous. If the time

of rendezvous is to be maintained at the pro-

grammed value, dy 4 = 0 and the computations

and storage requirements are simplified. On

the other hand, if some flexibility is acceptable,

then the increment in time may be selected so

as to minimize the energy requirement of the

correction. Lawden (Ref. 4} gives the value of

dy 4 which minimizes the propellant expenditure

as

63 ;60 62- 612 51
dY4 =- 5-O 50_ 532 " --

60 (189)

where

[aUl_ 2 I_u2) 2 (8u3) 26° " \ y4/ + \V y4 + \v 74

8u i /Su i 8u. au.61 _ +
= 8Y4 \-_-_i-idyl +-- 8y 2 dy_ _ dy 3

i s 1

- _ ui)

3 _ 8u i Bu i 8u i

62 = _ \8-_1 dYl + -_2 dy2 + "_3 dy3
i=l

8v

6 3 =
BY 4

dy 1, dy 2, dy 3 = position component errors at
correction

A Ui = velocity component errors at correction

v = velocity increment at rendezvous

Many formulations of the differential correc-
tion technique are possible. Reference 5 pre-

sents rectangular coordinate routine. However,

regardless of the form of the data, the approach

presented is applicable. By modification of the

@ functions, transformation matrices for any

adequate data system may be obtained.

This formulation has been checked for efficacy

in several specific examples, one of which is
transferred to a 24-hr orbit. The results of

these checks indicated a very high degree of

approximation in the commanded velocity cor-

rections. In no case were the resultant position

and velocity errors greater than 10% of the un-

corrected value for errors in position less than

100,000 ft (or 30 kin) or more than 3% for errors

in initial velocity as large as 20 fps (or 6 mps).

In fact the general order of the resultant errors
was approximately 3% for errors in initial position

in this range and 0.5 to 1% for errors in initial

velocity less than 20 fps. The method is thus

seen to be ideally suited to midcourse guidance

problems and to the problem of small maneuvers.

H. THE STATISTICAL DISTRIBUTION

OF THE ELEMENTS OF

THE FINAL ORBIT (REF. 6)

Preceding discussions (for example Eqs 134
and 135) related the errors in the resultant orbit

elements due to a combination of tracking and

control errors. However, these relationships

provide no insight as to the probability of occur-

rence of a given error. This additional infor-

mation is obtained by relating the probability
distributions of the total errors Aa' and Ae' to

the distributions of the individual tracking and

control errors. The development of these dis-

tributions will be based on the customary assump-

tion that the individual errors (At 1, AV 1, etc. )

are independently and normally distributed.

Since the forms of Eqs 134 and 135 are different,

i. e., A a' is the sum of linear differentials and

Ae' is the square root of the sum of the squares
of differential terms. The distribution of both

forms will be derived. Consider

u = _ a i x i,

l

i=l, 2 ..... k

where the a. are constants and the x. are inde-
l 1

pendently and normally distributed with means
2

_i and variance a i . Then the moment generating

function m (t) for the distribution of the variate

u is given as follows:

m(t) <_r-_) g (_-_) . . . exp
i = 1 -_ -_

1 xi - Pi 2

i 1 i=l

where c is the base of natural logarithms (utilized

to differentiate from eccentricity).

Transformation to the standard form is convenient.
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Nowletting_ bethebaseof naturallogarithms
(todifferentiatefromeccentricity)and

xi - _i

Yi -
a i

then

k K SI taim(t) =(_) _" _-_

i=l -_

1 2

- _Yi
dY i

K

=_ r-_ _taiPi ½t2ai2(_i21

i=l

'Z i2 t2 ai2_i_

E d

aiPi +-2- . ai 2 ai

(190)

However, the moment generating function for
the normal distribution is

m n (t) = t_ +½t 2a 2

Therefore, Eq (190) is the moment generating
function for a normal distribution with mean and

variance given by

= _ aiPi

i

(191)

2 _ 2 2c = a i a i (192)

i

In particular, application of this result to Eq (134)
provides the distribution of the error A a'. The

error in semimajor axis of the corrected orbit

is normally distributed with zero mean and
variance

2

r0 _ 2

2 2
+4 2 +

aAa, = 4 arl _ 6V 1 a6(AVI)

2

+ _r6(AV2) )

That is, the distribution of Aa' is

3

f(Aa') = 8w a 2rl +_ 6V I + ff6(AVI)

Aa 2 (_ 2

-1 rl

2 + eb(AV1) + °6(AV2---_-- 6v 1

The distribution of the eccentricity error is

mare difficult to obtain because Eq (135) is not

linear. Equation (135) is of the form

2 + x22U = X 1

where x 1 and x 2 are assumed normally and

independently distributed, i. e.,

n(x I, x 2)
= 2,r(_x 1 ax2 \Xl/

Y-CJ
The distribution of u may be obtained by elimina-

ting either x I or x 2 in terms of u to obtain a

density

g(u, x2)= _n IXl (u, x2), x21 t_--_1
i i

where each term in the summation represents one

branch of a possibly nonmonotone function U(Xl).

The desired distribution, g(u), may then be ob-

tained by integrating over the x 2 in g (u, x 2).

g(u) = I" g(u, x 2) dx 2

-co

In particular, for

u = IXl 2 + x22

x 1 = ± _u 2 - x22

i xl I u

Since the function g(u) is not single valued,
it must be evaluated on each branch

[ _xl+ Ig(u, x 2): f(xl +)

But

f(xl +) = f(x I-)
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Thus

g(u, x 2)

g (u, x 2)

g(u)

I oxl I
= 2 f (x 1) I-TU-I

_2 1
= 2 Tr (_Xl

2

1 x2

- g ----Z-

Crx 2

2 2

U - X 2
1

2
-5 cr

(7 ( Xl
x 2

u ]12 2u - x 2

2
i u

g

u(_xl Crx 2 _

1 1 }Ex2 <2  xl)]dx2

After the transformation

2
t=x 2

this expression may be integrated to yield the
required distribution

g(u)

- _ (193)

2 2
= 0, x 2 >u

This g(u) (and, in particular, the distribution of

corrected orbit eccentricity error) is a skewed,
single-sided distribution w_th positive mean and

and a shape similar to that of the gamma distribu-
tion.

i

In manipulation of the distribution g(u) the

following definitions are convenient.

I

K1 -= cr

x 1 x 2

•xx 1

The distribution is then

g(u) - K 1 u c - K2u2I 0 (K3u2)

This final form has been checked both analytically

and numerically utilizing randomly selected var-
iates from normal distributions. The results show
excellent correlation.

Quantities of some significance in describing

the properties of the distribution (e.g., central
value, spread, skewness, etc, ) are the moments

of the distribution. The rth moment of g(u) is

P'r = ff ur g(u) d u

0

c_

= K1 _" u r + 1 - K2u2 (K3u2)I0 du

0

(194)

After the transformation t = u 2, the integral can
be evaluated in various forms.

t n - K2t I v (K 3 t) dt :

0

1 (n + 1)
-5

F (n + v+ I) (K2 2 - K3 2)

p-Z,/ K 2

n <_K2Z _ K3"Z)] K2 > IK31
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where the generalized Legendre function is given

by

m

n F (1 -m) 2 1 n, n+l;

and the hypergeometric series is given by

7m n (al ..... am; _1 ..... Yn' z) =

(al)i. • . (am) i z i
(Yl)i . •. (Yn)i

i=O

The second moment is of interest in determina-
tion of the variance of g(u).

72

K1 [ 3('K3NI2 1 3 5fK3"_
2K_ _ +_\_2] +_ _'_\_2 /

+ _. • _-_-_ + ...
(197)

Then 1) ____

K1 +
_r = -'2- r

K2 _- + 1

K1 +0 V v-_
T +I _

J
i! (I; I; i)

(195)

In particular, the mean of the distribution g(u)

is given by

K] F(3/2) _ (K3'_2 1

2 K3 2

, 5 3 5K1 _ T'I (K3_2+_ "_'_"

4 K2 _r 1-" 1 (2') 2

3 7 11 5 9 13 /w "x
_" _" ' --4- ' _-" _- ' -4"-

(3,) 2

6

(196)

Then the variance is

_u 2 = P'2 - (_-1)2 (198)

Another factor of interest is the probability of

occurrence of extreme values of u. Direct compu-
tation of areas under the distribution of Eq (193)
is rather tedious. However, for large values of
the variate u, the modified Bessel function of the

first kind of order zero may be approximated by

.the following series.

x 12 12 . 32

lo(X)_2_._,_ (l+_-_-_+ 2:(8x)_

12 3 2 52 N
+ ' • +. __

3: (8x) 3 -/

(x large)

If only the fundamental term of this series is
retained, the distribution of Eq(193) becomes

2
u 1

1 - _ -'-"-"J-
g(u) v_ E (7

2 2 Xl_x2

(u larg o (i99)

Thus, available tabulations of the normal density
area

2
Y

= _ _ dy

can be used to evaluate probability of occurrence
of extreme values of u with good accuracy.
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I. TRANSFER TRAJECTORY OPTIMIZATION

i. Variational Approach

The problem of trajectory optimization has

received attention in much of the literature ref-

erenced. However, the work of D. F. Lawden

(Refs. 7, 8, 9) is felt to be particularly meritor-

ious. For this reason, his work has been fol-

lowed quite closely in this material which is in-

cluded to provide insight into the general maneuver
problem and the basis for the formulation of the

differential correction routine discussed later.

The general problem of optimizing a maneuver

trajectory with respect to the energy requirement

may be expressed as: it is required that two

points in space be connected by a curve along
which the vehicle can be maneuvered with a min-

imum energy expenditure. Because aerodynamic,

electromagnetic and other forces are extremely

complex in nature, only thrust and gravity forces
will be considered.

Consider the reference frame in the following
sketch:

x 3

x 2

• x3

x 1

x 2

We have

m r = T + m g : _ - _ (200)

r

where the symbol ^ denotes a unit vector.

If fi (i = i, 2, 3) denote the gravitation components

along the three axes at the point (x I, x 2, x 3) and

the time is t we can assume the f. are known func-
i

tions oft, to, tl, Ak, x i(where tO is the time of

departure, tI is the time of arrival and the A k

are parameters whose values change for different

problems). Now we can form the following func-

tions:

¢i = Vi -roT _i - fi = 0 (201)

¢i + 3 = xi - Vi = 0 (202)

where again

fl = ft (t, to, tl, Ak, x i) (203)

t i = the direction cosines of the thrust vector

I =1,2, 3.

Now noting that T = c$ (where _ is the mass rate

of change) and utilizing the cosine identity we can
form the following functions:

= -iTl c _- m _ Ii fl = 0 (204)

¢_1 + 3 -- kl - Vi = 0 (205)

$7 = _:n + ;3 = 0 (206)

3

_>8 =). tl.2 _ 1 = 0 (207)

i=l

But 13 is positive and bounded (ill -< j -< $2 ) to over-

come problems arising from the fact that the
i

are undefined when _ = 0. However, we shall let

E 1 _0 to allow for unpowered flight, f_ is assumed

to be a monotonically increasing function of some

parameter of no physical significance [o = a (t)]

such that as _ changes from -_ to _, f_ changes
d_

from fll to f_2" Thus, 7_ = 0 for some large value

of 141.Conversely,thev=tshtngof tmplies
either maximum or minimum thrust (Ref. 10).

These eleven functions oft (x i, V i, t i, aand

m) must be chosen in such a manner that the energy

(or characteristic velocity of the maneuver) is

minimized, subject to a particular set of boundary

conditions.

Now the boundary conditions for the problem

are xi00 xif , Xl0 and Xlf. These conditions can

be stated as

_t = xi0- d i = 0 (208)

_1+3 = xif-a i = 0 (209)

%1+6 = Vio-dl = 0 (210)

%i+9 = Vif- ai = 0 (211)

where the subscripts 0 and f indicate the initial

and final values of x. and i., respectively, and
l I

the d and a denote the points of departure and

arrival, respectively• If, in addition, the times

of departure and the time of transfer are speci-

fied, two additional boundary conditions are

_13 = to - TO = 0 (212)
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_14 = tf - Tf = 0 (213)

Now we introduce 8 Lagrangian multipliers

(ki) and form the fundamental function

8

F = _ kj tj (214)

j--1

Using two sets of running indices (the summation
convention) the Euler-Lagrange equations can now

be written as:

_i + = 0 (i, k = 1, 2, 3) (215)k i + 3

af k

k_+ + = 0 (216)k k3
l

2 k 8 _ c_i -'-_ _ = 0 (217)

c_ (218)
k7 = 2"_)`i't i

dE c
_._ (k 7 -_ )`i _ i ) = 0 (219)

It follows from these equations that the k i must

satisfy

af k

_i = )`k _ (220)
l

and

2m

kl -- c---ff k8 [i (221)

This latter equation states that the vector composed

of the three components "hI (mutually orthogonal

and referred to by Lawden as the primer) is always

parallel to the thrust direction except in those
cases when _ = 0 (i. e._no thrust).

It further follows from Eq (219) that

d]3 _ 0 (222)
da

or

c
k7 = _ kit i (223)

The first alternative implies that fl __,0 or ]3 = flu

or again that the thrust level is either zero or
maximum. If ]3 = 0 the vehicle coast in an orbit

under the influence of gravity alone and k 7 = con-

stant, k 8 = 0 and thet tare not defined. If ]3 =_u,

the thrust is parallel to the primer as mentioned

previously and

)'8 _ _f_ (224)= 2m ki2

i=1

= ki2 (225)

m i=l
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The second alternative in conjunction with Eq (218)

yields

i7 = _ k7 (226)

which upon integration gives

constant
)`7- m

(227)

However

k t
t -

i V _ ki2

i=I

(228)

therefore

3

)`i2

i=l

=c (229)

This equation states that the primer vector has a

constant magnitude which is a contradiction to

earlier proofs of Lawden (Ref 8). Therefore, this

alternative is not possible, leaving the first alter-

native (Eq 222) as the only possibility.

Now since the Vi' ti and fl need only be piece-

wise continuous in the interval t O _< t _< tf, the

extremal arc may have corners. If such corners
exist, the Weierstrass-Erdman corner conditions
must be satisfied for the instants at which thrust

is applied or terminated. This implies that the

)`j (j = 1, 2, 3, 4, 5, 6, 7) must be continuous at

But since h I =-)`i÷3 (i = 1, 2, 3),these times.

the primer and its first derivative must be con-
tinuous. Now the corner condition must be

satisfied:

( F_ VI._Q_idF )+ = (F_ Vi a_Vi)_ (230,

This equation requires that the following function
be continuous

which in turn requires that

c]3
--_ ki tI- )`7]3

be continuous since fi and V i are by definition con-

tinuous, and since the )`i were shown to be con-

tinuous for this class of problems (Eq 91). This
function is shown to be continuous in Ref 7.

Further it is shown that

ki fl-iiVi+]3 (£)`i'i-k7) =constant

where the constant takes on the same value for

the entire minimum energy trajectory.

We now form another function, H, from the

constraints (Eqs 208 thrQugh 213) and the expression

for the characteristic velocity of the maneuver.



M 0

H : c lOg_l + ?i (xi0 - di) +qi+3 (Xil - ai)

+ ']i+6 (Vi0 - ;li)+ _i+9 (Vll - al )

+rll3 (t.0 - TO) +_]14 (tl -TI) (231)

At this point it is noted that if the time of transfer
and the time of initiation constraints are removed,

013 and rl14 are zero.

Now, from the generalized problem of Mayer,
the necessary conditions for the minimization of
H can be evaluated

rli - kl+3, 0 = 0 (232)

']i+6 - ki, 0 = 0 (233)

_i+3 +ki+3, f = 0 (234)

_i+9 +ki, f = 0 (235)

c = 0 (236)
M 0 -k7, 0

c + k = 0 (237)

Mf 7, f

tf Of i

St dt = 0 (238)k i

0

D13 • • c I¢i0
+ ni xi0 + hi+6 Vi0 + _00

fl f Dfi- ki-_0 dt=0
0

(239)

• c Mf
n 14 + hi+3 _: if + hi+9 Vii +

_t 8fitf ki -_f dt = 0 (240)

0

where the subscripts 0 and f refer to the initial

and final times for the orbital transfer. If the

time restraints are removed (to find the minimum

energy trajectory), '_13 and r]l4 are zero and ']i

and _i+8 can be eliminated from Eq (239) and

_i+3 and qi+9 can be eliminated from Eq (IIi)

yielding
Of.

_ c_q_ _ k iki *i - ii Vi Moh4_ °ttf iE dt (241)

0

St_ _fi_ c _lf= Xi _f dt (242)h vi- iivi 0

The conditions of Eq 232 to Eq 242 must nec-
essarily be satisfied if the external arc is to be

optimum with respect to the energy requirement.

As is evident from the complexity of these ex-

pressions, exact solutions are not easily come

by, and general solutions to the optimum transfer
problem appear doomed. In fact, numerical

evaluation is generally necessary. This con-
clusion is strengthened when it is noted that the

absolute minimum energy maneuver is not the

only solution satisfying these conditions. Thus,

it is generally,, necessary to investigate each of
the resulting optimum solutions. However,
several conclusions can be drawn from this

work and that reported in Ref. 11.

(1) The optimum trajectory is composed of

maximum thrust arcs and coasting arcs.

(2) There are in general only 3 sub arcs in

the trajectory, 2 of which are thrust
arcs.

(3) The thrust arcs generally occur at the
two terminals.

To aid in the visualization of the transfer

problem and provide information which is of

value in the analysis of trajectory problems, the

general problem will be reduced to one of pulse

transfer. This assumption is valid for most ma-

neuvers since the magnitude of the correction

(A V) and the time of burning (t b) are generally

small compared to V 0 or V 1 and the time of trans-

fer, respectively. Under this assumption the

optimum trajectory connects the two specified

radii with impulses at either end.

Variations in all of the parameters during
thrust periods are assumed small. This infers

that since the primer vector and its derivatives

are continuous during initiation and termination

of a thrust phase, they are continuous across any
gull thrust arc. Thus, Eq 225 reduces to

Xi 2
A k 7 = Z_ -_ (243)

i

By considering the equations for A it can be

shown that Eq 223 implies that 7

_ i ki2 = 1 (244)
i= 1

at the beginning of the maneuver.

Now, since the Xi are the direction ratios for the

thrust vector, this equation states that.for the

pulse case, they are equal to the direction cosines

of the impulse. The other constraints are

kiV t = "_ B + :ki fi (245)

C

kif i -hvi= __ _i-_o dt (246)
t 0
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tf

• _ afi
ifi "_iVi = - ;_i _f

to

dt (247>

ifi - _iVi = constant (248)

where to and tf are not specified, and the con-

stant of Eq 248 is zero if the fi components are

time invariant and independent of tO and t1.

Investigations of these equations are reported
in Ref. 7 for motion in Keplerian orbits. There-
fore, it is not deemed necessary to repeat this

material. Rather, conclusions pertaining to
these investigations will be presented for the
case of transfer between elliptic orbits.

(I) If the orbits intersect, a single im-
pulse can be used to effect the maneu-
ver, and the conditions for optimum
transfer are satisfied. However, in

some cases this type of transfer is
not the absolute minimum energy
maneuver (i. e.. minimum of the

minimum energy maneuvers). For
this reason it is necessary to check
the energy requirements of each
solution satisfying the conditions for
minimum energy maneuvers.

(2) If the orbits do not intersect, two im-

pulses are generally required (one at
each terminal) to effect the maneuver.
This conclusion must be modified in
certain classes of transfers as is

indicated in the analysis of 3 impulse
transfers•

(3) If the eccentricities of the two orbits

go to zero, the optimum mode of
transfer is via the well known Hohmann

ellipse which is tangent at perigee to
one circular orbit and tangent at apogee
to the other. This conclusion is also
modified for certain orbits for 3

impulse -transfers.

(4) If the eccentricities of the two orbits
are small, the line of apsides of the

minimum energy transfer ellipse
aligns itself in the approximate direction
of the line of apsides of the terminal

ellipse (initialor final) having the
greater eccentricity.

(5) If the two terminal ellipses are not

coplanar, little in the way of a general
conclusion can be made. IL however,
the eccentricities of both the initial

and final orbits are small, the optimum
maneuver occurs when the transfer

orbit is tangent to the respective orbits
at the points of departure and arrival
and when the line of apsides of the
transfer orbit is the line of intersection

of the two orbital planes.

Utilizing the second of these ,, general rules,,
numerical data may be generated relating the
parameters of the ,, optimum" transfer orbit.

However, because of the number of variables

involved, parametric studies generally prove
extremely lengthy in all but the most simple
cases. Among these simple cases is the analysis
of transfer between circular orbits. For this

reason and for the reason that many satellite
applications require circular orbits, certain of
the parameters will be discussed in the following
paragraphs.

Consider the following sketches depicting
coplanar and noneoplanar transfer.

Vf

AO

The first of these sketches (showing transfer
between circular coplanar orbits) points up the

fact that the maneuver required must change
both the magnitude and the direction of the
velocity in the plane of transfer (both of the
effects have been discussed earlier). Thus, it

is desired to show what types of orbits will be

required to minimize zX Vtota 1 for various types

of transfer, The equation for this maneuver are"

& V T VO
= + 0

1 2 _ cosy

rr_ I C_2 )2 Vf+ 1 + - 2 -- cos Y2
Vc2
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tan_'0 _n r°

1-Tff
=

AO
-2--

I ro r0(i- _-_) 7-- ro _ ro

tan yf

t

sin A(?
--2--

1 -2"_-

A0
tan -2--

c°s2 -_)i

r r (i(i- r - rT_ ) _-_-o _ -_

sin A0
"2

2 1
v (F - E)" _ r

c II aT

Thus, if rf, r 0, rf and A0 are specified, the

quantity a which will require the smallest value

of LXV T can be determined. This was done

numerically in Ref 12. The results of these
computations are presented in Figs. 25, 26
and 27.

The second sketch shows the nonplanar
transfer between circular orbits. The equations
for this maneuver can be obtained in a simple
form if the second impulse alone is responsibie
for altering the plane of motion. This assump-
tion will not always yield a true minimum energy
transfer; however, more rigorous attention to
detail leads to a very complex form of solution,
thus making such an approach less suited to pa-
rametric analyses of this nature.

A0

V---0--0- I "2 sin -2---Vcl __r cos (AO - yf) cos yf

r0 cos yf

I /vo, 2
Z Vl 2 d
_Cl = 2 - r

r 0

= in
Vcl

V o

A 0 - 2 (_cl) cos ,/f

(sin 2 A @ - sin 2 _ )1/2

2

vo I[I.+ (V-_cl) sin ,",0 _00

03.sin A

zxV T AV 1 + AV 2

Vcl Vcl

These equations have also been solved numerically

to yield the smallest values of A V T. The re-

sults of these studies are shown in Figs. 28,
29 and 30.

As was noted in the discussion of the optimum

trajectories, and again in the previous paragraph,
these solutions may not in general be the mini-
mum energy transfers. However, in all cases,
this solution will belong to the set of relative
minima.

2. Minimum Energ,¢ Transfers

The preceding discussions present the
variational formulation of the general maneuver
optimization procedure along with several con-
clusions derivable therefrom. The solution,

while rigorous, does not provide data which
would be of general interest due to the fact that
a lengthy numerical evaluation is necessary to
evaluate each optimum solution. This being the
case, numerical data for the special case of
transfer between circular orbits was also
presented. However, two questions arise in

regard to the application of the "rules,' for ap-
proximate maneuver optimization. These
questions are:

(1) Under what condition is the two-pulse
transfer between circular orbits mini-

mum energy?

(2) What is the minimum energy two-
impulse transfer between circular and
elliptic orbits ?

To answer the first of these questions con-
sider the three-impulse maneuver.

a. Three-pulse transfers between circular
orbits

Some of the orbits which have been proposed
for various satellite missions require large
amounts of energy for the ascent and injeetion
maneuvers because of their extreme altitudes.
Thus the three-impulse maneuver philosophy
can be divided into three classes:

r 2 >_ r 3 > r 1

r 3 > r 2 >_ r 1

r 3 > r 1 > r 2

where

r 1 = radius of the initial circular orbit

r 2 = apogee radius of the first transfer
orbit (the intermediate radius)

r 3 = radius of the final circular orbit.

The transfers have all been assumed to be of

the 180 ° type since any other transfer would re-
quire more energy, and since the primary pur-
pose of this material is to show the existence of
three impulse optimum solutions.

VI-47



Case No. 1 {r 2 > r 3 > r 1)

The velocity increment required for this case
is defined by the difference in the circular veloc-
ity and the perigee velocity for the first transfer
orbit, plus the difference in the apogee velocity
in the first and second transfer orbits, plus the

difference in the perigee velocity in the second
transfer orbit and the circular velocity in the
desired orbit; i, e.,

AV t : IAVll + I,',V2! + IAV3I

= (Vpl - Vcl) + {Va2 - Val)

+ (Vp2 - Vc3)

Z_Vt [,[ 2r2 - 11 Vc2 r[_ 3=Lv<-'-"* +

J- ] [l--r 2 + r 1 Vcl r 2 + r 3

This equation is presented graphically in Fig. 31.
The dashed curve denotes the Hohmann transfer.

Curves for all r3/r 1 originate at this single curve

since it is, in essence, the limit of the family

(i. e., r 1 = r3). The investigation must now be

turned to the problem of determining whether or
not any of the curves of this family eventually
diminish by an amount sufficient to result in a

Z_V t

value of-_, less than that of the Hohmann

transfer; {data for this type of transfer are

presented as Fig. 32).

This has been accomplished in Ref. 13, where.

AV t

the equation for _ is differentiated with re-

spect to r2/r 1 and the resultant equated to zero.

The complete solution thus found is:

r 1
3+--

r 2 r 3
x

rl r 1 ] 2r 1

3{1+_33 ) - 2 _3 - r3

r._22 r3

Now by using the constraint rl >_ _11 > 1, which

is a restatement of the condition assumed in form-

r 3 r3*
ulating this case, the value of, -- i.e., for

r 1 '

which the three-pulse approach is more efficient
is obtained as 15. 582 approximately.

r 3 r3*

For sdl _11 -> rl--' the curves possess no re-

lative maxima or minima and the curves con-

tinuaLly decrease. Therefore, the three-pulse

method is always more efficient than the

r 3 r3#
Hohmann transfer. If 11.939 <-- < -- , the

r 1 r 1

r_ A V t

solution for those values of --2-°rlfor which

is less than that for the Hohmann transfer can

r 3
also be found. However, this value of -- is a

r 1

function of the altitude of the intermediate point
which must be placed above a critical altitude
greater than the altitude of either of the circular

r3
orbits and approaching infinity as -- approaches

r 3 rl
11.939. If-- < 11.939, the Hohmann two-pulse

r 1

transfer is always the more economical approach.

Case No. 2 (r 3 >_ r 2 >_ r 1)

The velocity increment required for this
case is defined by the difference in circular

velocity at the first altitude and the perigee
velocity of the first transfer orbit, plus the
difference in the apogee velocity of the first

transfer orbit and the perigee velocity of the
second, plus the difference in the apogee velocity
of the second transfer orbit and the circular

velocity of the second circular orbit.

AV t

1I rl +r2J + - V%V 7

When this equation is differentiated with re-

r 2
spect to the radius ratio --, it can once again

r 1

A V t

be shown that the quantity _ is a single zero

derivative which for this case corresponds to a
maximum. Further it can be shown that the end

points of the curve correspond to the energy re-
quirement for the Hohmann transfer; therefore,
this mode of transfer is always less economical
than the Hohmann transfer.

Case No. 3 (r 3 > r I > r 2)

The velocity increment required for this
case is defined by the difference in the circular
velocity of the first orbit and the apogee velocity
of the first transfer orbit, plus the difference in
the perigee velocity in the second and first trans-
fer orbits, plus the difference in the circular
velocity in the final orbit and the apogee velocity
of the second transfer orbit; i.e.,
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rl + Vc----_3 I 1 -

The curves obtained from this equation in-

crease for all r 2 < r I and have no maximum

value. Thus, this approach can never be as

efficient as the Hohmann transfer.

b. The two-pulse transfer between coplanar,

circular and elliptic orbits

This problem has been formulated in Refs.

14, 15 and 16 and, therefore, will only be sum-

marized in this presentation. Detailed proofs

of each step in the formulation are left to the

reader•

The problem is that of tra_nsferring from one

terminal (definud by a scalar distance and a

velocity vector) to"another. If Vnl and Vrl are

the normal and radial components of velocity at

the first position and Vn2 and Vr2 the components

at the second point, the total velocity pulse re-

quired for the transfer (assuming two pulses) is

A V = I (Vno - Vnl)2 + (Vro - Vrl)2

where

+ I (Vnx - Vn2)2 + (Vrx - Vr2 )2

Vro, Vno denote velocity components
following first pulse (that is,
at burnout)

denote velocity components just
Vrx' Vnx prior to second pulse.

Now assuming a conservative field, this equation

can be reduced to nondimensional form by using
the conservation of angular momentum

A V n/{V Vnl_ 2 {Vro Vrlh

+, rlVno Vn2 2 1 Vr2 

where

Vcl = circular speed at the distance r I

r 1, r 2 = radial distances for the two term-
inals.

The problem is now to minimize this quantity

under the constraint that the radial velocities

are always real, i.e.,

2 2 2

(i r_-2-->{ Vn° '_ +{ Vr°7Vcl / \w d/

+ _ 20

(This is a restatement of the conservation of

total energy)

where

r 1
0< I <1.

r 2

This minimization is accomplished as follows

since in the region of interest the function is
differentiable•

JAvk
= =

jVro /Vnoh
\W%Tc,) a<ov -]

Justification for this step is shown in Ref. 15
AV

when the function -- is shown to have a relative
Vcl V

minimum interior to the limits which _ can
V _cl

assume, e., 0 < r......__x< __ . Performing
• Vel Vcl

this differentiation and simplifying the resultant

equations leads to the conclusion that A(V-_,]
rain

must be compatible with one of the following

equations

rVo Vn=Vx  Vrx
After combining terms and using the equations

for the partial derivatives obtained previously,
four pairs of expressions are obtained

Vrx - Vr2

Vnx - Vn2

Vr2

_1) 2r2Vn2 ±

Vro - Vrl Vrl

Vn° - Vnl rl I/J _ 2r2

Vnl ± _22 V_-I)_ rl + r2
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When these four equations are divided into
two sets both with positive {or negative) radicals

V V
no ro

and solved for the values of _ and _cl' four

independent solutions are obtained (two for each
quadratic equation). The smallest of the four
solutions is then the minimum energy (two-pulse)
maneuver between the two terminals. This is the

basic approach and the solution to the problem
first formulated in Ref. 14. In general, it is not
possible to select the correct solution analytical-
ly; however, in particular cases this selection
is possible.

Investigation of these equations is now directed
toward the definition of the type of transfer which
is most efficient. First, it is obvious that un-

less the relative radial velocity approaches zero
at a given terminal, the condition defined is not
one of tangential transfer from the circular orbit
or arrival at apogee or perigee in the elliptic
orbit, Additional investigations reveal that for
nonintersecting circular and elliptic orbits, the
optimum path is tangent to the circular orbit but
is not, in general, tangent to the elliptic orbit.
This fact is illustrated in the following sketch.
Numerical studies of the parameters of the
optimum path must, of course, be deferred until
such time as the orbits in question are completely
specified.

Tangential departure

J. THE EFFECTS OF FINITE BURNING TIME

The simplest means of evaluating the effects
of burning time on a maneuver in space is to
study the numerical simulation of a maneuver,
that is, to program a set of equations which
describes a maneuver and compare th.e results

to those predicted by an impulsive analysis.
This approach, however, is somewhat restrictive
because:

(i) The results of the analysis are valid
only in the neighborhood _f the
maneuvers which were simulated.

(2) The results are strongly dependent
upon the manner in which the thrust

vector is controlled to yield the
desired maneuver.

(3) Unless large numbers of simulations
are made it is quite possible to over-
look the effects of particular variables
and trends in the results.

For these reasons, the approach taken here will
be to present an analytic approximation to the
equations of powered motion which will yield the
desired information in a form which exhibits

the necessary functional relationships. Consider
the following sketch.

R

/
/

Y

R = r 1 -r 0

R = a T + r 1 - r 0

where a T = the thrust acceleration and where

the acceleration due to the mutual attraction of

the vehicles and the differences in the pertur-

bation accelerations have been_eglected. But
the radial acceleration vector r can be de-

1

veloped in terms of r 0 to be

_ ".

r 1 = r 0 + (R "_) r 0 + . . .

where

r 0 = acceleration due to the central force

• =

r 0 = r3

Thus

R -- aT- r0-%- ro3

Thus, for motion in a nearly circular orbit the
small displacements from the unperturbed
position are"

"x" = 3¢o2 x+ 2_ y+ a x (along radius)

"y" = -2_0 x + a {along velocity
Y of origin)

"° 2

z = -_ z+ a {normaI to plane)
Z
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where _o is the angular rate of the origin about

the earth = r_. Now, following the method of
,-u

Darby (l=tef 17), assume that the thrust is applied
as a series of small impulses of magnitude

AV = aAT

Thus each of the equations listed above can be

considered to be unperturbed for a time (i. e.,
the thrust acceleration is zero) then at a small

time later the velocity is changed and the process

repeated. Consider the equation for Z.

z'+ _o 2z =0

z = A sin _0 (t - T) t 1< t < t 2

z = _A cos _ (t - T)

= B cos_ (t- T)

1 = (B+ a z T) cos .(t - T) t 2 <t <t 3

d_ = lira (_ 1 - _') = az cos _ (t- T) dT

_t 0 _0

Thus

z = a cos _ (t - T) dT 0
0 z

'S'z = -- a sin_ (t - T) dT
0 z

and similarly

Y = J'ta t4 sin_(t- T) - 3(t-T_aT0 Y _

- -- a x - cos _ (t - T dT
cJ ,0

= ay 4 cos _o (t - T) - dT
0

t Esa x _ ]- 2 _J in (t - T) dT
0

x = -- a x sin_ (t - T) dT

. oCtaG-c°S'yL (t- T)I
t

= _ a cos ¢0 (t - T) dT
J 0 x

dT

t

2 _ a sin_o (t - T) dT+

•0L Y

At this point the solution is no further progressed

than would have resulted if the functions x, y, z,
and _ had been expressed as inverse Laplace

transforms since the time history of ax, ay and a z

has not been specified. However, if it is assumed

that once firing is initiated the direction of the
thrust vector is unaltered, then, the acceleration

will vary with time according to

a (t) = a (0)
1-tinT

1 dm
where: rnis the % change in mass, i.e.,--

m 0

At this point tire terms cos _c(t - T) and sin _(t - T)

can be expanded in a power series to yield

2
4 (t - T) 4cos _(t - T) = 1 _ (t ° T) 2 + _ ....

2 -2-4

3 (t - T) 3 + ___
sin_(t - T) =_(t - T) - _ _-6 _-

Thus, since _ is a constant, the solution evolves

into the evaluation of integrals of the form

jt dT n = 1 2, 3, 4, ---
(t T) n

1 - r_] T
0

If only two terms of each expansion are retained

(i.e., n <4) the results of Darby can be obtained

as :

t

0 1-r_T r_

A
--._y

m

t (t -T) 2 dT = 1 I( 11 - r_ _ 1 - rot) 2 in _ _ rr_t
0

r

1
tn

i - _ht

-rot + (r6t)2 - (rht)

m

dT (1 - rot) 4 inrh 1 - fnt

and

]= D- rnt +_-(rnt) 2 -_3_ (l:nt)3 + _ (r_nt)

axo 2 ) ayo ( x =.--2 " 6.--_--2m + .---:-3--m m 12rn _
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m m 12m

z=-7_
m

_¢ axo _n 1 °_2 B)

2ay0_(A ¢z2 C)
+_m -6--_

m 1 - rht

2ax0_ (A _2 C)
-'----:-2--- -6--_m

_ az0_n l . w2 )=-_-- 1 - fiat 2_rn _ B

As is done in Chapter VII (Rendezvous), the
set of definitions for A, B, C and D can be

simplified for the case where rhtma x (or rht b)

is smallcompared to 1, for then

1
In _ = - in (1 - fiat)

= r_t + (m__ + (_ + ---

Thus

A = r_nt - (1 -r_nt) _mt +_2 (_+ +---_

B = ---3--- +_t -+ + +--

Now since the motion of the origin of the
relative coordinates is known to move in a circle,
the position and velocity of the vehicle are known
as a function of time. In particular, they are
known at the end of burning. Thus, the effects

of the burning can be computed by comparing the
position and velocity vectors at this time with
those that would have resulted at the same time

if the maneuver had been impulsive. It is further

possible to determine the effect on the six orbital
elements since the position and velocity at the
end of burning determine these constants uniquely
via the equations of Chapter III.

The accuracy of this solution is limited or
restricted by four assumptions.

(i) The locus of the origin of coordinates
was assumed circular. This assumption
can of course be violated if the interval

of burning is known by using the average

velocity corresponding to that interval
and correcting for the radial motion of

the origin. The resultant accuracy will
of course deteriorate.

(2) The vehicle is assumed to be at the

origin with zero velocity at time = 0.
Should these conditions not be satisfied,
however, suitable constants can be in-
troduced via the medium of the Laplace
transform. A similar solution employing
nonzero initial boundary conditions is
illustrated in Chapter VII (Rendezvous).

(3) Only first-order terms were carried in

expansion of _1 - r0" This assump-the

tion effectively limits the allowable
deviation of the vehicle from the origin
of coordinates. Although no analysis of
this restriction will be made here, it is
noted that for single thrust periods
of no more than approximately 2 to 4% of
the orbital period and accelerations no
larger than 1 g, the total displacements

will be no more than 106 ft or 0.3 x 106m.

For such displacements the accuracy of
the method is still adequate for hand
computations of first-order effects.

(4) Higher order terms in rht were neglected
in the series for A, B, C and D. This
assumption is generally not serious due

to the rapid convergence of the series
for most values of this parameter. How-

ever, should this convergence problem
be such that additional terms would not

resolve the difficulty, the original
definition of these constants could be

utilized at the expense of simplicity in
the form.

Because of the manner in which the variables

are related and the large number of ways which
can be used to assess the effects of finite burning
times, parametric data based on these solutions
will not be provided. Rather it is suggested that
the computations be made as outlined and that the
results be compared to the unperturbed solution
utilizing the equations of Chapter III or the dif-
ferential expression relating elemental errors
to position and velocity errors of Chapter VII.

Reference 17 does, however, present a set of
figures which relate to the time interval necessary
to "anticipate" a maneuver (or lead time) and the

difference in the magnitude of the ideal and actual
velocity increments as functions of specific im-
pulse, acceleration level, azimuth and flight path
angle. Because of the interest in these results
they are included.

Figures 33 and 34 show the approximately
linear manner in which the lead time varies with

both acceleration level and specific impulse. In
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both cases the curvature is the result of mass

changes and is less noticeable for the small

maneuvers.

Figures 35 and 36 show the effects of finite

burning time on the magnitude of the velocity

increment. These figures show the importance

of consideration of these effects in any com-

putations beyond those of a preliminary nature.

Though not shown in figures, several trends
can also be noted.

(i) Finite burning times tend to result in

a smaller value of eccentricity for a

given mass fraction due largely to the

fact that work is generally done against

gravity forces.

(2) These times tend to produce perigee

radii which are greater than their

impulse counterparts.

(3) The change in inclination of the plane

will tend to be larger for the finite

burning time case than for the im-

pulse case.

K. IN-ORBIT PROPULSION SYSTEM

1. Propulsion System Requirements

Each of the maneuvers to be performed in

orbit (including injection into the various transfer

orbits) requires the application of corrective

impulses. The control of these impulses is the

determining factor in the evaluation of the utility

of the satellite in performing the particular func-

tion. In the navigation problem, the control

tolerances are specified (based upon some maxi-
mum allowable drift rate for the satellites with

respect to each other) and the subsystem require-

ments remain to be evaluated. In order topro-

vide insight into these problems, the following

analysis of two different types of propulsion

controltechniques has been made. These
techniques are:

(1) Monitored propulsive inputs.

(2) Monitored velocity increment.

The first of these techniques attempts to

control or at least compensate for variations in

each of the parameters contributing to the velocity

increment. Therefore, errors in each of the

parameters will be reflected directly in an error

in the velocity pulse. These effects may be

evaluated from the following equation (where the

loss due to finite burning time is neglected):

&V = -go Isp In (1 - r) (249)

o (Av) a (zw) a;,
6(Av) = t_ b At b + 0,_ P

P

+_AI + 0 (AV) AW 0
sp sp _0

_E Atb /x w
= -z--- + P (250)

% ;v
P

/xW0 q- _(i - _)_nCa- _)--..-.
w0J

go _ ZX&p_ (T/W0) g0Atb + Isp
I-% 1-W-zW-- :

w
P

Alsp _ go Isp _ AW 0_2+ T--
sp --I-=-_

This equation may be reduced to a more sirnple

form by employing data which is representative of

current technology for each of the control param-
eters. These data are:

At b _ 0.030 sec

A& = 0. 005
P P

AI

-1_ _ 1/260
sp

Thus, for a specific impulse of 300 sec:

0.966 T/W 0 0. 161 Isp _ _2 AV
6(AV) - i - _ + f- % +

n A_/ + _ Atbi AW0_go Isp _(_ tbi Pi Pi

i=l t
(25D

where AW 0 is the initial error in the weight of the

vehicle. The last group of terms in this equation
(the summation) "is small compared to the other

three for small or even moderately large incre-

ments; therefore, it may be neglected. The maxi-

mum magnitude of the remaining terms is pre-
sented in Fig. 37 as a function of the initialthrust-

to-weight ratio. As m_y be noted from this figure,
a system of this type would have difficulty in satis-

fying extreme accuracy requirements since to

limit a maximum error in the velocity increment

to less than 0.5 fps appears difficult.

If the velocity increment itself is monitored by

integrating the acceleration due to thrust, the

maximum error in the increment ts a function oniy

of the error in the time of burning and that tn the

integration itself. Assuming that the integrated

accelerometers are accurate to 1 part in 105 g

(which is the expected accuracy of future integrat-

ing accelerometers), the error in the integrated

acceleration should be accurate to approximately

1 part in 104 . Thus, the maximum error is

AV 0. 966 T/W 0

6 (AV) = 10--_ + 1 -
(252)

This equation has also been plotted and appears

as Fig. 38a. This figure shows that with control
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parametersasquotedtheerror in thevelocity
pulsecanbecontrolledto wellwithin0.5 fpsfor
thrust-weightratiosashighas0.4 (AV< 100fps).
Thus,theprecisionrequiredfor smallcorrections
canbeobtainedwiththis system. Sincetheerror
plottedin this figureis themaximumexpected,
this figureimpliesthattheerror will generally
benegligible. Figure38bshowstheeffectof re-
ducingtheerror in theshutdowntimeonthe
resultantvelocityerror. Theparameterin this

T
figure(Atb W0 ) is immediatelyrecognizable
astheerror in thetotal impulse.

2. Selection of Thrust Level and Propellants

While the detailed design of a propulsion sys-

tem is obviously beyond the scope of an effort of

this type, the general sizing and capabilities of

such a system can be established.

As shown in Eq (252), if the velocity increment

is to be controlled within 0. 1 fps for increments
of less than 500 fps, the ratio of the error in the

impulse to the initial weight must be

TAtb _ /xVl 1 - _< 6(Av)-_ go

0.05 (] - _) = 0.05
<

- g go

< 0.0015 (for I = 300 sec)
- sp

From this it may be seen that (for reasonable

errors in the shutdown time, say 0.05 sec) the

thrust-to-initial-weight ratio should be < 0.03.
It should be noted, however, that the thr-ust

levels should not be extremely low because of

the assumption made in the formulation of the
corrective maneuvers. For these reasons, an

initial thrust-to-weight ratio of say 0.01 should
be selected. If this ratio were maintained con-

stant, the thrust for successive corrections would

have to decrease according to the following equa-
tion.

T =0.01

However, since the vehicles in orbit will possess
fuel fractions of less than 2/3 in order to assure

reasonable payload capabilities, the thrust-to-

initial-weight ratio for each correction will always

be >0.03 which is the allowable upper limit. Thus,

no provision for thrust variation is necessary.

With thrust level thus established, the remain-

ing propulsion parameters can be evaluated once

the propellant characteristics are known. This

requires the selection of a propellant or propellant

combination capable of performing as required.

These considerations are beyond the scope of the

present effort and will not be discussed.

The second step in the analysis of the propul-

sion system is the sizing of the rocket motor a0d

nozzle. This will be accomplished through the

utilization of the theoretical relationships develop-

ed in gas dynamics and the experimental propulsion

systems data available.

The first assumption concerning the motor
which must be made pertains to the expansion

ratio which is feasible for the nozzle of a motor

operating in a vacuum. From this ratio and the

average value of the ratio of specific heats for the
products of combustion, it is possible to determine

the pressure ratio across the nozzle.

Pe Pe

Pc

AT

(253)

where y is the average value of the ratio of

specific heats of the products of combustion.

This equation is of the form

3,/-i

\per c o

The simplest solution to this equation is by
iteration. Newton's method will be utilized

because of convergence

f (X n)

Xn + 1 = Xn

where, for this solution, X is the nth estimate
n

of pc/Pc . This solution results in the following

equation

3y- 1

X 2 -X "/ -C
- n n

Xn+ 1 =Xn 2y- I

2X 3y- 1 X Y
n y n

If pe/Pc is assumed to be << 1, the first trial of

pe/Pc should be approximately the square root

of C.

From this point, it is possible to establish

the theoretical thrust coefficient of a gas with

the given value of the ratio of specific heats.

/y2 2 2 _ P Y
C F --V _

Pe A
+ e

Pc _i (254)
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Nowfromthedefinitionof thethrustcoefficient

C F = T/AtP c

it is possible to size the nozzle for any selected
chamber pressure. First, however, it should

be noted that the theoretical thrust coefficients

are approximately 5% higher than indicated from
experimental data, thus a better estimate of

these areas should account for this discrepancy.

The length of the nozzle may be obtained once

the equivalent value of the half angle of divergence
has been selected. Care must be exefcised in

this selection to assure that the flow doesnlt

separate from the nozzle, and that the nozzle is

not excessively long. The length is then obtained
as follows:

2

A e
Ae-At = _ _'_e2- rt_ = t[Crr7 ) - 11

but

re = rt ÷ L tan

thus

( L tan o)2 l_A e - A t = A t I + r-t

L = (255)
-tan c_

These data define the general size of the

nozzle; however, due to the fact that the optimum

nozzle is not conical but rather more nearly a

segment of a paraboloid of revolution, they do not

define the optimum geometry. This refinement,

however, is not deemed necessary due to the fact
that the thrust levels are small.

4. Combustion Chamber Sizing

The combustion chamber to be fitted to the

nozzle, which has been described in terms of the

design parameters utilized, must now be investi-

gated. This may be done through the investigation

of an additional parameter, the characteristic

chamber length (L*). This parameter, which
affects the cycle efficiency, is defined as the ratio
of the chamber volume to the nozzle throat area

and is a function of the oxidizer-to-fuel weight

ratio of the propellants utilized. Experimental
data must be utilized for this determination. One

such curve is presented in Fig. 39. The curve

presented here is an average value curve since

the data available were for slightly different pro-

pellant combinations operating in different test

facilities under different pressures. Nonetheless,
these data are sufficient to indicate a characteristic

chamber length of approximately I00 in. or greater

is recommendable. Similar data for any other
propellant combination thus yield the chamber
volumes :

V c _ L* A t

Before the motor can be sized, however, the
geometry of the combustion chamber must be

specified as either cylindrical or spherical.

I I

t" C

t
I_ L _ rI-

I

I

The former is particularly well suited for small

motors since production is greatly simplified;

the latter is a better design for larger motors
due principally to the fact that the surface area

exposed for heat transfer within the chamber is

minimized for a given volume. Both of these

chambers may be defined when a restriction is
placed on the ratio of the chamber-to-throat area

ratio of the cylindrical motor. This may in turn
be accomplished by investigating the pressure
drop through the chamber.

2

Ptnj _ 1 +'/M1

]:r 1 1 + _/M. 2

mj

(256)

where the point 1 is a section passing through
the nozzle throat.

,/

(257)

Thus

PT tnJ = Ii +'_M12 ] Fl+'t -1/ M2inj[']
+ yM2injl L1 +_-_ MI2 J

If now Minj 2 is small compared to M12.

2

PT inj = I + 7MI

--l_ T

+ _2--- M1

This is also the ratio of the total pressure at the
throat of an ideal motor to that of a tubular motor.

This ratio may be related directly to the chamber-

to-throat area ratio from the continuity equation
aN

"l
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A1 1
¥41

(258)

The graphical relationship between the total

pressures at the throat for tubular and ideal
motors and the chamber-to-throat area ratio

can thus be plotted in a figure similar to Fig. 40,
A

C

and the minimum ratio _ assessed. Once this

is done, the geometry of the chamber is:

* 4 3
V c = L A t =_-_r (spherical chamber)

=(_AtL (cylindrical chamber)

Thus

, A t

L=L K--
C

Note is made that since, as is shown in Fig. 40,

A
C

_t should be equal to or greater than 3.0 and

since this ratio corresponds to an awkward

length-to-diameter ratio for the chamber (approxi-

mately 30), the length may be selected based on
other criteria.

5. Propellant Flow Rates

The propellant flow rates for the range of

chamber pressures can be obtained once the

variation in specific impulse for a given oxidizer-

to-fuel weight ratio is established. A review of

the abundance of data available will generally
reveal no well defined curve for this variation

due to differences in assumptions, fuel properties,

etc.; therefore, an average curve such as

Fig. 41 must be utilized.

Now

w = T/I
p sp

and

@f =_1 Wp -- +TWTI T lisp

Wo = +]--$--_r _Vp = _r T lisp

The propellants may be fed to the motor by any

of a number of types of pumps. However, two

schemes appear particularly attractive for small

thrusts. The first utilizes positive displacement

pump (which can be electrically driven), a hydrau-

lic accumulator and a pressure regulator to sup-

ply the propellants to the nozzle under a constant

pressure. This system can have one significant

advantage due to the fact that the utilization of
the accumulator makes it possible to employ a

very small pump which operates between the

corrections to keep the system charged. This

possibility results in a reduced peak power re-
quirement and a reduced pump-drive unit weight

without increasing the size of the accumulator

beyond allowable bounds. However, due to the
fact that the unit will be constantly pressurized,

the seal between the diaphragm and the propellant

will require special attention. The second tech-

nique utilizes a small vane-type pump of such
size as to make an accumulator unnecessary. The

accumulator could be used in this application as

it was in the other; however, the positive displace-

ment pump is more efficient for this type of opera-
tion. Note should be made at this point that a

positive propellant feed system is required to

assure flow to the pump tn either case.

Pumps of both these types exist in the sizes

required though it is probable that special ma-

terials would be required because of the corro-

sive nature of the fluids.

The piston pumps are available in a variety

of sizes capable of providing exit pressures up

to approximately 3000 psia (20.7 x 106 newtons/

2
m at overall efficiencies varying from 85 to
92% (see sketch) for 500< p < 3000 (3.5 to

20.7 x 106 newtons/m2).

_ 03 -

_91
O

_ 89

O

_ 87

85
I I I I I I

500 1000 1500 2000 2500 3000 psi

I 1 I J
5 10 15 20

Exit Pressure newtons/m2

The required power input for these pumps is
obtained from the following equations.

hp = 0. 000583 (psi) (gal/min) =

0. 00419 (psi) (lb/sec)

(density) (overall efficiency)

(in. 3/rev) (psi)
Torque - 2

rpm = (lb/min) / (in.3/rev) (lb/in.3)

(volumetric efficiency)

L. MICRO-THRUST STUDY

The purpose of this study is to evaluate the

performance and applicability of micro-thrust
devices for small corrections in various orbital

parameters. For each specific correction ma-

neuver, a definite thrust orientation law (con-

sidering thrust magnitude, direction and duration)

exists. The analytical expressions derived from
the basic laws of celestial mechanics are obtained

and their applicability in case of micro-thrust

maneuvers investigated. Solutions in closed form

are obtained in several cases. Low thrust systems
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capableof producingthesethrustsarediscussed
conceptuallyaswellasin detailin theliterature.
Forthis reason,suchdatawill notbepresented
here,

i. Planar Study of Radial Circumferential and

Tangential Thrusts

Consider a set of equations of planar motion in

polar coordinates. If i% is used as the sum of
radial accelerations and T as the sum of circum-

ferential accelerations, then

r r02+% =R
r

FEE =T

(259)

It is noticed from Eqs (259) that angular momen-

tum is conserved only if there is no component of
the tangential thrust applied to the satellite.

Several special cases for thrusting in the two-

dimensional micro-thrust problem are discussed

in the literature. The most important results of
these solutions are summarized below and will

serve as an introduction to further discussions.

a. Radial thrust

This problem is treated in Refs. 18 through

20. The outline presented here follows basically

Ref. 20.

Equations (2595 for the given case become

r02 +4 = R
r

(2605

2 _ _- constantr = --

where p is the semiparameter at the instant.

Now introducing nondimensional variables

defined in terms of the instantaneous orbital

elements.

R': _ = R-R- (acceleration compared to gravity at a)

ga

r ;_

t*

= r (distance in number of semimajor axes)
a

= t/_ ga (time compared to the orbital
period)

By these substitutions, the Eqs (260) become

(neglecting e 2 terms)

2 1
r * - r * 0 +

r _',:

rg2 _ = 1

(26 1)

where differentiation is with respect to t*.

Now eliminating 0 in Eq (26 i) yields

'" 1 1
r*- _ + --_ = R* (262)

Eq (262) can now be integrated assuming an

initially circular orbit at r* = 1 to yield

r*2 _ 2 1
- _ + 2R* (r*- 15- 1 (263)

From Eq (263), it is apparent that the radial veloc-

ity is zero at the radial distances where

2R* r* 3 - (2R* + 1)r* 2 + 2r _I, - 1 = 0 (2645

or

r* = 1

and

r* = 1 ± {1 - 8R*
4 R -':-" (265)

From Eq (2655, the fact is seen that the orbit

remains bounded for radial accelerations R'-:' < I.
O

opposite case, R*>_, no real roots existIn the

in Eq (265), which indicates that large changes in
the planar elements are possible or that escape

from the earth, s gravitational field may occur if
a constant radial acceleration is applied for a

sufficiently long time period.

i
The condition for critical acceleration R":" =

implie s

2

i 1 # 1 (r_R = R* ga = _ ga = 1_ --_ = 1_ g, g
a

R 0 = radius of @

g0 = surface gravity.

Sihee the micro-thrust d_vices have, in general,

a thrust level of 10 -4 to 10 -5 go' they are obviously

not adequate for large orbital changes employing

radial thrust applications. Nevertheless, as

shown in Ref, 19, such radial micro-thrust can be

used effectively to change the eccentricity of an
orbit.

If x 1 > x 2 > x 3 are the roots of Eq (2645, the

solutions for a central angle and flight time as
functions of the radial distance are:

(i_ Radial inward thrust, R* < 0

e(r*) = _-_ _(*'7' k) + eF(,, k +
eonst.

(266)
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f-

t*(r*) = __26 Iz
L 3

F(47, k) + (xI - x3) E (4, k) +

(xI -x 2) sin24 ]+

"2_I - k 2 si 2¢J const

where

a = -x3k2

= X2

_ k 2
5 = (x2 x 3)

r* = a sin2_ +/3
• 2

csm @+I

- k 2 _R* -
y = (x2 x 3) (xI x3)

xI - x 2
c = -k 2 =

xI - x 3

F (4, k), E (¢, k) and w (4, _ • k) are elliptic

integrals of the first, second and third kind•

1
(2) Radial outward thrust, 0 < R* < ]_

0 (r*) - 262 t_ k) + const.

t*(r*) - 26 Ix 1 F (4,, k)

- (xI - x3) E (_0 k)] + const.
where (26 7)

a -- x 2 - x 3

= x 3

r =a sin 2 (¢ +_)

6 = x2 " x 3

Y --(x2-x 3) 1/2_*(x l-x 3)

x 2 - x 3
k 2 -

x I - x 3

• 2
r,=_sm ¢+fl

c sin 2 4 + 1

b. Circumferential thrust

This problem is also solved in Ref. 18, using
a series expansion method for large thrust ratios
and a simple first order approximation for the

very small thrust ratios. For circumferential

thrust_ the equations of motion corresponding to
Eq (26 1) are

• 2 1
r* - r* e +- = 0

r, 2

(268)

d (r .2 _ ) = r* T*
dt*

where

T* = T/g a (269)

Eliminating O from Eqs (268),

d (r *3"r'* + r*) 1/2 = r* T*
dt*

(270)

for very small accelerations, r* 3 _: * << r* and
the approximate differential equation is

d r* I/2 T* (271)
dt*

and

r* =
(1 - T* t*) 2 (272)

which is a good approximation.

c. Tangential thrust

The problem of tangential micro-thrust appli-
cation is treated in Refs. 21 through 23. It is
shown that the mass ratio is slightly smaller for
tangential than for circumferential micro-thrust
for all but circular orbits. The approximate

solution for radius is basically the same as Eq

(270), if the first order approximation in Tt* is

considered (T t = tangential acceleration):

r* = 1

12
(273)

where s = distance traversed by the rocket•

In Ref. 16 the altitude change per revolution
is given for the tangential micro-thrust as:

Ar = 4_ T * r (274)
rev t o
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and the number of revolutions to reach a certain
altitude is

I + rll
1 ro Ar (275)

n = 8r Tt* r_

If r I tends to infinity, this last equation tends
to

1
nc_ =

This equation states that the number of revolu-

tions to escape is inversely proportional to T*.
The following sketches obtained from numerical

integration exhibit this behavior. Also shown is

the fact that the orbit grows in such a manner

that most of the revolutions approximate concen-
tric circular orbits. Thus a tangential thrust is a

very simple and accurate means of changing the
radius of a circular orbit.

Radii

i0 15

= 6.30 days

= 4. 10 days

= 2.97 days

2O

Escape

T = 8.70 days

T = 91.91 days_

i_ Radii '_

30 4,o 50 6,0 70
T = 72.66 days /

T :541 10 days /
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2. The Equations of Motion

The preceding discussion (Eqs (259) through

(275)) showed the motion of the vehicle in polar

coordinates under the influence of a micro-thrust.

Unfortunately, this formulation is not always

satisfactory for presenting the most readily com-

prehended information pertaining to the micro-

thrust problem. For this reason, the equations

have been written in terms of osculating orbital

elements (i.e., the elements of the instantaneous

elliptic orbit resulting from thrust termination

at that time). This derivation is presented in

Chapter IV.

d a = 2 {e sin O • R + t-_ T}

dt .[ 2 r
n In - e

de [._- = na in O • R +

di r cos (¢0 + 0 }
-- = W
dt

na 2 (I-e 2 )

sin [ d7______ = r sin (_ + 0 )

dt na2

d_ i d_a__
_- = 2 sin 2 2"- dt

(cos 0 + cos E) T

+ CO8 8 " R+8/Zl 0 +
na¢

d,__ = r e 2 dE_ 2 . R+

dt na2 l+_ dt

where:

2 i dfl* 2 - e sin 2 ff -_ (276}

¢o = c0 +_

and where R, T and w are the components of ac-
celeration along the radius, the normal to the

radius in the plane in the general direction of

motion, and normal to the plane in the general

direction of north, respectively (see sketch).

Z

T
W

R

Y

_d

X

Equations (276) are the basic Lagrange planetary

equations, from which special cases for a single

component of disturbing acceleration can be de-

rived. The resulting set of differential equations

for the orbital parameters can be programmed

for a digital computer, and the variations in the

orbit computed as a function of time.

The equations can, however, be integrated un-

der several conditions. The resulting equations
are presented in following paragraphs. It should

be noted, however, that, in certain cases, angular

momentum is not conserved for long periods of

time (tangential thrust) and that the integration

formulas give a good approximation for only a few
orbital revolutions.

a. Acceleration perpendicular to orbital plane

In this case both the radial and circumferential

components of the acceleration are zero (i. e.,

R - 0 and T = 0), and the planetary equations for

the disturbing acceleration fbl_ow from Eqs 276

simply as

da

dt

d_
dt

de
- =0

dt

r cos (_ + 0 )
=

2 _i e 2na

r sin (_ + 8)

2 -_esna in i

d_____= 2 sin 2 l_ dfl
dt 2 dt

W

W

(277)

Define a nondimensional acceleration

W
W* = _ (278)

ga

where ga is the gravitational acceleration at a

distance corresponding to the semimaJor axis.

2 3
Since_ = n a , this acceleration is equal to

2
= ---_ = n a

ga 2
a

and (27:-_
2

W = n aW*

From the conservation of angular momentum,

d.._0 = p_p

dt 2
r

it follows, by using p = a(1 - e2), that

2
dt r

do 2na

(280)

Substituting Eqs (279) and (280) into Eqs (277):
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di
-- =

do

3
r cos (co + e)

3
a (1 - e 2)

2 2
(1 -e ) cos (co+ o)

d_

do

(1 + e cos 67 )3

2 2
(i - e ) sin (w + 6?)

sini (1 + e cos 0)3

d_ - 2 sin 2 i d_
do 2 d67

L dc _ d_o
d67

(281)

Assuming the variation in i during a revolution

to be extremely small, such that sin i can be

considered essentially constant, these expressions

can be integrated with respect to the central angle

8.

First, expand the sines and cosines:

\

cos 6? + cosco sin (9t

cos 0 - sin_ sin O

(282)

Substituting this into Eq (281),

0, 2 2 [c l, cos0 d6?(l+ecoso ) 3At_ t. di= W* (1 -e ) osco

0 0

/ ' sin 0 d67 ]]0-sinco o (7::c20)3 (283)

O0

0

zSf_ = _ d_

0
O

2 2

- IS _ cos 0 do
= W':" (1 e ) in co ......

sin i (1 + e cos 0) 3

o(;7; 67 3 (2841
0 0

Both equations can be integrated by the use of the
folIowing integration formulas:

)3
(l+e cos 67 2e (l+ecos6?) O0

" d_o _ 1 -e - e sin 0
(l+e cos 0)2 (1 _ e2)3 2 " l$-ecos6?

i

' cos 0 do _ 1
(1 + e cos 0 )2

3 / 2

(1 -e 2)

- 2e tan tan

0

cos 0 do = 1 |. sin O
P

)3 k )2(1 + ecose 2(1 -e 2) (1 + e cos e

"3

+_'-2e + cos 0 01 1 sin 6?
2(1- e 2) (1+ e cos 6?

(1 + 2e 2) sin 6?

2(1 -e2) 2 (1 + e cos 0 )

3e2 5/2 tan-1 (_l_el - e tan \|2)I 0j

(i - e ) O0

(285)

After some simplification, the change in orbital

inclination caused by a constant micro-thrust

perpendicularly oriented to the orbital plane is

given by
{

e 2 )

Z_i = W':: ) (1 - /

)2 sin 0 cos co2(1+e cos e k

1_@) co] (1 + 2e 2) sin 0 cos cosin +
J 2(1 + e cos 0 )

3e cos co tan-i {I/]1 - e k_¥1 + p (rad/rev)
2 1/2 x._ . _ tan

(1 - e ) O0

(286)

and the change in the longitude of the ascending

node is given in the form

W* I 2(l+e(1 - e2)cos [sin 0 sinA_ = sin i X 0)2 co{

/1 - e 2 _ ] (I + 2e 2) sin 0 sin*_--7--/c°_ + _(i+_o_ _)

(1 - e ) 00

(tad ,' rev)

VI-61

(287)



Theintegralsfor the longitude of perigee (_)

and the mean longitude of epoch (_) are both equal
i

and are simply Eq (287) multiplied by 2 sin 2 _.

Of course, if i should be varying very rapidly,

then sin i could not be taken outside the integral

sign in Eq (172), and a closed form solution would

be extremely difficult, if not impossible, to obtain.

b. Radial acceleration

Setting T = 0 and W = 0 in Lagrange, s plane-

tary equations, the following results are obtained:

da 2 e sin e

_- = _R

2de _ - e sin e

dt na
R

di d_
- = 0

dt dt

i 2
dEj = - - e cos {9 R
dt nae

dt na a 1 + _ii - e 2

(288)

At this point it should be noted that for radial

acceleration there is no change in the orbital

inclination and in the longitude of the ascending

node. The orbital plane remains essentially fixed

in the inertial space, and only the shape and size

of the ellipse are altered.

Now introduce a nondimensional acceleration,

R* _- R . Thus as before

ga

R = n 2 a R* (289)

For the case of a radial acceleration, the

angular momentum is conserved. Thus

2
dt r

de a n -e

and Eqs (288) become

da
m =

do

2ae (1 - e 2) sin e

(1 +e cos e)2

de

do

_ (I - e2_sln e

(I +e cos e)2

R*

d_
-- = -

dO

2 2
(1 - e ) cos @

e (1 + e cos e )2

R ;_-"

25/2

d_c = .V 2(I - e )
I

)3d@ h(l + e cos e

e (1 - e2) 2 cos e

J R_,,

_/1- )2(1 + e 2) (l+e cose
(290)

As for micro-thrust applications, the changes

in orbital parameters during one revolution are

extremely small; thus it is possible to assume

e = e 0, a = a 0, etc., and consider these variables

as "almost constants" in integrating Eqs (290).

This assumption can be proven analytically for

certain cases, and it is a close first approximation
for all cases.

The change in semimajor axis during one
revolution in the orbit is found as

Aa .. (" da =
0

2 aeR* (1 - e 2) [si_n_0 de _- 2aR* (1 -e 2)

)2 (1 + e cos e )"J (l+e COS_

(291)

Similarly, the change in eccentricity for intervals
up to 1 revis

R* (I - e ) ") e0- _[_-_ ,

(292)

22 1Ae- de = R* (1 - e ) " sin 0 de

)2(l+e cos e

If e = 0, the equation simplifies to

Ae = f de = R* _sino dO. = -R, cos O l o

8
0

The variation in the longitude of the perigee
again for intervals up to 1 rev is

l' S---Z_- dff = (1 - e 2) R* cos0 do

- e (1 + e cos e

or

i
A_ = - R* - e sin e

e _ . Y_cos e

- 2e tan "1 tan (293)

MIe 0
Finally, the change in the mean longitude of epoch

for this same interval is

[ 2 5/2_( do2 (i - e ) )3
1 + e cos 0

/_{ II _'_ d{ = -
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2
e(1 - e2) 6' cos e d 0

+ _ --- __

1 + _/1 - e _ (i + e cos 0)2

Integrating and collecting terms,

Ac = - R* _ _ -........e (I - e 2) sin 0

(i 4-e cos 0 )2

t_ _'1 _ e2 1 +_/1 - e

"L[-el + e-cose _?sin @ + 2 tan -1 1 - e tan

o
0

(294)

Equations (291), (292), (293) and (294) define

all the changes in orbital parameters for a con-

stant radial micro-thrust applied during a known

change in the central angle during i orbit.

c. Circumferential acceleration

Last, the case is considered for radial and

the normal components of the micro-thrust ac-

celeration equal to zero; i.e., only the component

in the orbital plane perpendicular to the radius

vector exists. Then, Eqs (276) reduce to

da 2

dt n

d__e.e _ - e 2
(cos o + cos E) Tdt na

di d_.
- 0

dt dt

1 2

dt nae

2
( ) +na 1 + ¢1 -e 2

T

(295)

Once more, using a nondimensional acceleration

T* = T, substituting T = n 2 a T* into Eq (295)
ga

and remembering from the definition of semipa-
rameter that

L : (1 - e 2) a_
r r

the following set of differential equations is ob-
tained :

do 2r T* 1 + e cos 0

de T*
a--;--

= (1 - e2) 2 (cos 0 + cos E)

(1 + e cos O )2

d_ _ sin______@ + T*

da e

d__de 1 + ;+ 2 <1+_--)lar-)e

r ;I<

-- (296)

Here, also, the assumption is made that the

changes in orbital parameters during one revolution

are extremely small. Thus, Eqs (296) can be

integrated as follows, giving the change in semi-
major axis

Aa __ da = 2 pT* 1 + e cos 0

+ e cos O]]O (297)

Now 0

e + COS 0
COS E =

1 + e cos 0

Therefore, the change in eccentricity becomes

Ae___ de = (1 .e2)2 T, {_ cos 0 d0
)2(1 + e cos 0

(1 + e cos 0 )3 )_" (1 + e cos O

A e =

(I-e2) 2 { I 2

T* 1 _ll - e sin 0

(1 e2) 3/2 1 + e cos 0

- 2 e tan" tan
e

I 2

1 -e_l -e sin0

312 )2
2 (i - e 2) (i + e cos 0

(continued)

VI-63



l_e 2 T+ec_)s_ +2taa-l/11_e e tan

- 2 tan -1 1 - e tan + 1 _ (1 - e_) sinQ

2 (1 - e2) 5'2 (i + e cos _)2

(i + 2e 2) i - e 2 sin O

(1 _- e cos e )

(298)

The change in the longitude of perigee is

m2 = dS= -e .... +
(1 + e cose)2 (1 + e cose}

and, thus,

]1T*(1 -e ) 1 + l 0

2 (I + e cos _ ) _)_ e0e 2 (1 + e cos

(299)

The change in the mean longitude of epoch is

/k_ =_ f d_ - T*e (1 - e2) 2 IS do
1 + (i + e cos O

(l + e cos e)3

and, finally,

i 2T*e - e
= .

+ 2 tan- -l_e tan 2)]

2 3
e - e sin 0 +

)2 2(i + e cos e 1 - e

.-e T_I.+- e 2 sin O
e COS 0

,-_ ° (co ntinue d)

-I (_i - e tan \2)
+ 2 tan \ li_e

 )jll°- 2 tan \II_ tan O0

(300)

d. Conclusions

The equations of the preceding discussions

are in the strictest sense only approximate, since

the coupling of the equations has been neglected.

However, if the interval of time is sufficiently

small, the results will be quite accurate. The

implication of this is that these expressions could

be used to evaluate secular changes and a program
written for an electronic computer to sum the
various contributions. This is indeed true. The

procedure has much to recommend it since the

time of computation will be much reduced and the

problems of numerical roundoff almost eliminated.
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_I. RENDEZVOUS

SYMBOLS

Symbols used frequently in this chapter are
listed here•

semimajor axis (ft or m)

A right ascension relative to vernal

equinox; homing vehicleN ya_

relative to target orbit

b braking distance

e

E

eccentricity

eccentric anomaly (deg or rad)

F thrust (lb or Newton's)

g gravitational acceleration =

GMo/r2 (fps 2 or mps 2)

G Newton's Universal Constant of

Gravitation

h angular momentum (ft2/sec or
2

m / sec)

I
sp

J2

inclination to the equatorial plane

(deg or tad)

specific impulse (lb-sec/lb)

coefficient of the potential func-

tion = I. 0823 x 10 -3

L latitude (deg or rad)

m mass (slugs or kg)

M mean anomaly (deg or rad)

M_3

n

P

r,r,F

mass of earth (slugs or kg)

number of revolutions; mean

motion (_)

semilatus rectum (ft or m)

radial component of position,

velocity and acceleration

r a, rp

R
e

R

f_

S

apogee and perigee radii

equatorial radius of earth

radius of equivalent sphere for

earth; relative range

relative range rate (R • V)/R

relative position vector

t time

t b

t G

burning time; braking duration

rectilinear time to go (R/t_)

T

u 0

V

V C, V R, V N

W 0

X, y, z

0l

9/

0

A

l/

P

£

a

T

(0

_00

tO

h

e

Subscripts

a

normalized position variable for

relative motion study = oa0t

deviation in radial velocity for

closure = -V R

velocity

velocity components in the
circumferential direction, radial

direction, and normal to the plane,

respectively

initial weight; deviation of velocity

from circularity in discussion of

relative motion = -V C

Cartesian components of position

nondimensional position parameter

for relative motion study (y/r)

azimuth relative to local north

flight path angle relative to local

horizontal

central angle from perigee to
instantaneous radius

nondimensional position parameter

for relative motion study (z/r)

longitude relative to prime meridian

earth's gravitation constant -- GM(_

longitude of the satellite relative

to the ascending node

nondimensional position parameter

for relative motion study (x/r)

ratio of propellant mass to initial
vehicle mass

standard deviation

orbital period

argument of perigee; angular rate

angular rate in a circular orbit

change in argument of perigee per
revolution due to oblateness

right ascension of the ascending
node

change in f_per revolution due to
oblateness

rotational rate of the earth 1 rev
each 86164. 091 mean solar sec

apogee

VII - 1



b

BO

f

h

L

n

P

bias

burnout

parameterin final orbit; final

homing
launch
lowaltitudeorbit

node;nominal;runninginteger

perigee,proportional

R

S

t
T

Y
0

@

<

along range vector

smoothing

value in transfer orbit; total; target

transverse

rotation about local vertical

initial, at time = 0

earth

moon
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A. INTRODUCTION

With the advent of large instrumented and

manned satellites, a requirement has been gen-

erated for bringing two or more vehicles together

in space. This maneuver is referred to as ren-

dezvous and is differentiated from intercept by

the fact that at the time of closure the velocity

vectors of the two vehicles must match. The

procedure for matching these position and veloc-

ity vectors is the subject of this chapter, and the

various phases of the maneuver will be studied in

detail.

Rendezvous can be broken into a series of

problems for the purposes of discussion, these

problems being:

(1) The gross maneuver.

(2) The terminal maneuver.

The gross maneuver refers to the powered and

coasting periods necessary to place the shuttle or

homing vehicle in the vicinity of the target satel-

lite. This maneuver can be performed in a num-

ber of ways, among them being:

(1) Rendezvous utilizing an intermediate

orbit.

(2) Direct ascent.

(a) Rendezvous compatible orbits.

(b) Direct ascent coupled with plane

change maneuvers.

The first of these techniques concerns itself with

the reduction of a three-dimensional problem to

one of two dimensions by the simple expedient of

launching into the plane of motion at the time the

launch site is in the plane. Time then passes un-

til the desired relative positions of the two vehi-

cles are obtained; then a planar transfer is initi-
ated.

A second approach (Rendezvous Compatible

Orbits) is an attempt to once again reduce the

problem to two dimensions but without utilizing

the intermediate or parking orbit. This is pos-

sible if the orbital elements of the target satel-
lite are judicially selected. Thus, the whole

philosophy is predicated on the premise that

rendezvous will be required at some future date

and the orbit of the target selected accordingly.

The third approach treats the problem as one of

three dimensions and allows for the expenditure of

propellant to turn the velocity vector at the time

the vehicle enters the desired plane. Each of

these approaches is investigated.

The terminal maneuver refers to the analysis

of the procedures necessary to reduce the rela-

tive position and velocity of the shuttle vehicle

with respect to the target to zero. Because the

distances involved are small, this portion of the

analysis is conducted utilizing the equations of

relative motion which are derived and discussed

in the text. The discussions pertain to the vari-

ous guidance schemes which can be employed

utilizing these equations and the behavior of the

vehicle under the influence of such a law. Materi-

al is also presented which relates the energy and

time of closure requirements for such motion,

and schemes for data smoothing during closure.

The chapter ends with a discussion of long time

closure trajectories, and an analysis of homing

phase errors.

B. THE GROSS MANEUVER

The analysis of closing with another vehicle

requires that the velocity and radius vectors of

the target vehicle be matched. In the process,
however, it is generally required that as little

propellant as possible be expended for maneu-

vering (i. e. , changing the orbital inclination or

nodal position). Thus, while not always practical,

it is desirable that the analysis be reduced to the

problem of nearly coplanar orbital transfer. Two

schemes for defining the launch timing for nearly

coplanar transfers and the general case of non-

coplanar transfers are presented in the following

paragraphs. These are:

(1) Launch utilizing parking orbits.

(2) Direct ascent to a rendezvous compat-
ible orbit.

(3) Direct ascent to orbit considering

planar adjustment.

The method of approach neglects the pertur-
bative accelerations due to the sun and moon and

assumes that the orbits are Keplerian ellipses

(making adjustments for the secular perturbations

due to the earth's oblateness). Similarly, the

orbital decay rates in all orbits are assumed

negligible (thus the analysis is restricted to or-

bits of greater than 200-mi (320-km) altitude or
to short times at lower aItitudes). And finally,

the burning time of the rocket stages is assumed

to be short (making it possible to treat the velocity

increments obtainable from rocket stages as pul-

ses). Justification for the final assumption is

shown in Chapter VI.

I. Development of Equations To Be Utilized

The studies of orbital injection are directed to-
ward the evaluation of the parameters affecting or-

bital injection and the establishment of the sensor

accuracies and computer requirements necessary

to produce a desired orbit. For this analysis the
transfer orbit is assumed to be an ellipse, and the

final orbit either circular or elliptical. To assure

the maximum degree of flexibility, injection (i. e.,

the point at which the final trajectory is obtained)
is assumed to occur at a point corresponding to
the intersection of the transfer orbit and the de-

sired orbit rather than at apogee of the transfer

orbit or at the point of tangency of the two orbits.

However, it must be pointed out that both of these

methods of injection can also be obtained from the

generalized approach as outlined. An of the equa-
tions derived are reduced to the fewest variables

possible, thus maintaining simplicity both in the

analysis and in the application of the equations to
a vehicle-borne computer. While not absolutely

necessary, the equations are reduced to a non-
dimensional form, thus assuring that the analysis
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is capable of handling transfer between any two
elliptical orbits around any central body. The
following sketch defines a typical transfer and
points out the parameters which must be deter-
mined to define the maneuver.

! av

vt-/

@* ot - of (I)

aY'Yt- Yf (2)

AV 2 *Vf 2 + Vt 2 - 2VfV t cos _¥ (3)

@_z-__ _ ) g Isp _ sin ,_
AV = go Isp{n F/W0

(4}

O = cos -I ]__r_]

___ - a +

=cos -1 (5)

a

L_ -i

¥ " r ra/r p
(6)

[ F!r a \ ra/r ]

d (% + ("
-- \rp /

The determination of the radius of intercept is
in reality a fairly complex solution since the exact
size, shape and orientation of the transfer orbit
are not known until the vehicle has been tracked for

some interval of time. However, since the actual

orbit differs but little from the predicted orbit
and since there is an interval of time during coast
when tracking data may be processed, it seems

reasonable to assume that the actual transfer or-

bit is defined. Now, since the required informa-
tion is available, the radius of interception may be
evaluated as follows.

Pt
r =.i+ et cos ot

Pf Pf

-1 +efcos Of " 1 +el cos (0 t - _ ) (8)

Therefore:

/:_.,+,) _,)co.
pf \rpf

r_tt _rpt \rpt

(9)

and:

\_ - cos°t ('°_

The solution for Ot from Eq (9) is somewhat

involved, and the type of solution may well de-
pend upon the material available for the solution
and the number of times that the equation must
be solved. If a small digital computer in the
vehicle is programmed to handle the solution,
an Iterative solution would probably be the sim-
plest. A direct solution may also be obtained for

e t after manipulation of the terms in Eq (9); this

direct solution is to be preferred for accuracy for

manual evaluations of e t even though the form of

the equation is complex.

cos et = - A e B_

CD

A " 1+---2_c

1 - D 2

B " 1+---T_c

C= ..x-yz cos _,
yz sin _

D= (x+2) - z (y+2)
yz sln,

X

y i

rat

raf

(11)

(12)

(13)

Z •
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Timing for the injection pulse can be obtained

by matching tracking data for the radius to the sat-

ellite with the value of the intercept radius as

calculated, or the pulse may be initiated at some

specified time corresponding to the time of flight

from cutoff to the intercept radius. This time of

flight may be computed by subtracting the time of
flight from perigee to the cutoff radius from that

corresponding to travel from perigee to the inter-

cept radius. The time of flight from perigee may
be determined as follows.

This approach is entirely general so that the

case of tangency of the two orbits can also be

evaluated. That case, however, provides another

restraint (the flight path angle identity).

cos V /rat r__/r .
_ a1 pi

/_r-_ li at/r

= r /r
at pt

at + -

_r_t fir- _-

rta n = ra f rat

rpt rpf

(14)

The equations of this section have been plotted

in nomographic form and are presented in Chap-
ter III. The accuracy afforded by these figures is

inadequate for most detailed analyses: however,
preliminary calculations are greatly simplified

by their use.

2. Launch Utilizing the Intermediate Orbit

a. Formulation

Since the majority of the missions envisioned

for satellites suggest orbits inclined at greater

than 3 0" to the equator and since in-orbit maneu-

vers are not necessary for these orbits, the first

approach to be analyzed is that which requires
accurate control of the time and azimuth of launch

and which utilizes the intermediate orbit.

Kepler' s equation defines the time the vehicle

coasts in the transfer orbit. This time plus the

total time in the intermediate orbit, the time of

ascent to the intermediate orbit, and the time from

perigee to the point of rendezvous in the target

orbit, defines the time (in the target orbit) from

perigee to the position of the target vehicle at the
time of launch. This time in turn defines the

position of the vehicle in its orbit. However, this

reverse solution of Kepler 's equation is trans-

cendental and requires an independent investigation.

The time from perigee in the final orbit at the

time of launch can be computed as

tlf " t2f -t t - n vi -tascent (15)

where

t2f
_f

=_ [E2f - ef sin E2f ]

E2f = 2 tan -1 I r_aP_ tan _-_]

e2f = e t - $

Now

Elf - ef sin E 1 = tlf(2_)
Tf = Mlf (16)

This equation can be solveO using any of a num-

ber of iterative processes; however, Newton's

method appears to possess best convergence
properties.

f (E k)

Ek+ 1 = E k - --_

f (E k) = E k - e sin E k

f (E k) = 1 - e cos E k

- M 1

and

e [sinEk-EkCOS Ekl +M

Ek+l .... 1 - e cos E k
(17)

This series has been shown to converge for all

E k and to converge very rapidly if a reasonable es-

timate of E k is utilized. Pursuing this thought fur-

ther, it may be seen that Kepler' s equation can be
divided into two terms, each of which defines a line.

y =sinE

1 (E-M)
y=-_-

The intersection of these lines Is the required

solution. This graphical solution, presented in

Fig. 1, would be employed as the first estimate

of E. (The nomogram of Kepler's equation,
Chapter III, may also be utilized. ) Once this solu-

tion converges for E l, the initial position of the

target vehicle may be evaluated.

81f-2tan-I Vr_--f-tan -_I (18)
LT -pf
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To illustrate the power of this method, consider

the following sample problem:

[0.980823 - 1.29 (0.277174)]+ 1.0

i. 0 - 0.3 (0.277174)

= I. 288087

0.3 [0. 980294 - 1. 288087 (0. 278991)]+ i. 0
E k+2 = 1.0 - 0.3 278991)

= I. 288088

These equations only partially define the ren-

dezvous problem since only the position of the

target vehicle and the corresponding time of launch
are evaluated. Consideration must now be given

to the position of the launch site. This can be

accomplished with spherical trigonometry; how-

ever, several quantities, shown in the following

sketch must be defined before proceeding.

Sample problem

M=I.0

e =0.3

Ek_ 1.29

0.3
Ek+ 1 =

Projection j/
of the perigee__J "'r
radius in the

equatorial plane __ Rotating
reference

The angle from the ascending node to the ra-
dius at wb_ich transfer into the final orbit occurs

(projected along the equator of a nonrotating
earth) is

As-g2 =tan -1 [cosltan(_ t +0t) 1 (19)

where A is the right ascension of the satellite at
s

the point of injection into the final orbit, and the

latitude of the point of injection is

Ls =sin-I [sinlt sin(cot+0t )] (20)

Similarly, the angle from the node to the peri-

gee of the transfer orbit and the latitude of peri-

gee may be computed as

Ap-_2=tan -I [cosi ttanc_t] (21)

Lp= sin -I [sin i t sin coil (22)

Continuing, the position of the required point

for injection into the intermediate orbit is

ABO- _ =tan -l [cos it tan (_t- ¢)]
(23)

LBo. Sln-I [sinlt sin(cot-,) ] (24)

The last remaining step is to define the posi-

tion of the launch site and the azimuth of burnout.

This problem requires the value of the ground

range attained in ascent to the low altitude orbit

over a nonrotating earth (x).

A L - f2 =tan-1 os i t tan - _- Re

LL =sin -I [sinlt sin(_t -¢ -_--)] (26)
e

]3L = sin-I L j (27)

If the assumption is made that the distance and

time spent during ascent to the point of burnout

are small, the azimuth in which the vehicle must

be fired can be computed. This solution follows

from the laws of sines and cosines and Eq (27).

J
9.

R cos L
e

VBJ = VBJ + (ne Re cos LL )2

-2 VBO_e R cos L sin

= VBO 2 + (_e lie cos LL )2 - 2 VBOi2e li cos i

cos _' = VBO cos fl [VBo 2 + (fie Re cos LL)2

i] -1/2- R cos (28)2 VIM ) 9e e

The uncorrected launch azimuth (t. e., Eq (27)

is presentea in Fig. 2. The value of azimuth ob-
tained in this manner is quite close to the corrected

value since the velocity component produced by

the earth's rotation is only 1524 cos Lfps or 465

cos L mps. The magnitude of this vector is, thus,

approximately one-tenth of the magnitude of the

burnout velocity for most orbital shots with a re-
sultant effect on the cosine of the azimuth between

0. 5% and 10% depending on the orbital inclination.

VII-6



Equations(25)through(28)definetheposition
oftherequiredlaunchsiteandtheazimuthof
launch both in space and relative to the launch

site. However, if a particular launch site is to

be utilized, consideration must be given to the

problem of matching the desired time of launch

with the time at which the launch site crosses the

desired orbital plane.

tL =

where

t L =

t I =

Now

t I

the time of launch relative to the refer-

ence direction in the plane of the equator.

the time from perigee in the final orbit
to the vehicle at the launch of the shuttle.

F _

tL = t2 f +t,_tt_tascent_n_ _ +_z_j

where (20)

t* ,, lime required by the satellite to travel

from the projection of the perigee radius

in the equatorial plane to the reference
direction (all times are thus related to

a common base).

n = number of revolutions in intermediate

orbit.

A¢ = oblateness correction to orbital period.

Numerical data can be generated for the time
of ascent once it is known what the intermediate

orbit will be and to what extent the trajectory

from launch to burnout is shaped by the guidance
law. It should be noted that since the selection

of an intermediate orbit will depend on the dura-

tion of tascent, iteration for this quantity will be

necessary

This time must be matched with the following_
If no error in the orbital plane is permissible.

_a _ n a_)-A L • sin "1 _-ra_i----] + 6=
t L = (30)

e

where 5 = 1 for southerly launches, 0 otherwise.

_ = secular regression rate in the intermediate

-3_r J2 cos i
orbit = 0 < i < 180 °

(_) 2 (i-e2)2

• - i [_._tan L .

and where the plus value of sm Ita_-_ is used

for northerly launches and the minus for-southerly
launches.

It should be noted at this point that range

safety restrictions at both AMR and PMR current-

ly restrict all launches to those in a southerly
direction. For this reason only southerly launches

are given attention, and therefore, only the nega-

tive sign is utilized• For convenience, the term
will also be combined with the angle ft.

Since the solution of Eqs (29) and (30) mayre-
quire that the satellite remain in the low altitude

orbit for a long period, it may be possible (if small

errors in the nodal position are acceptable) to
launch at a time when the desired launch site is

arbitrarily close to the desired plane. This Is

done in the following manner.

tL- _2
e

< allowable nodal error
f2

e

Since rendezvous cannot occur until this error has

been removed, maneuvering is implied• Equation
(31 ) thus introduces the concept of launch time

tolerance (or launch windows as the subject is
sometimes called) since

A_2
At L = _ •

It should be noted that the perturbing influence

of the earth' s oblateness has been included only

in those terms involving the low altitude circular

orbit. This assumption is reasonable, though not
precise, if the final and initial orbits differ mark-

edly in size. However, If more accuracy is de-

sired, or if the various orbits are essentially the

same size, the following equations should be em-

ployed.

t L = t2f +t*+ A_-f - t t + _-r t

- n _'L (32)[1 + %-_--] - tascent

- [ _rTi ae (33)

Because of the large number of variables, it

is impossible to obtain an intuitive feel for the
manner in which the time in the intermediate or-

hit varies. However, if certain restrictions are

made, a feel can be obtained for certain classes
of orbits. If it is assumed that the orbits of

interest are both circular and that the transfer

is via the Hohmann ellipse, and if it is further

assumed that perturbations are neglected be-

cause of plotting accuracy, then

t2f + t* n-t tascent
n =

¢L 2¢L _'L

(f? - AL) - sin- 1 [tan LL__ \
e TL

(continued)
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t2f + t_¢ - tascent 1

T
e L

(34)

Since the equation generally results in a nega-

tive value of tL, the significance of such values

must be discussed. Negative times simply imply

that the shuttle vehicle is launched at a time prior

to the beginning of the time record; negative times

can be avoided by increasing t2f by some integer

of the orbital period (i, 2, 3, ---).

b. Sample problem

The rendezvous problem, exclusive of the

final closure discussion, has been presented in

the preceding sections. A numerical check of

the flexibility, accuracy and utilization of the

approach is in order. For the purposes of il-

lustration, a target orbit of a 24-hr period is se-

lected. In addition it is assumed that the latitude

of the point of injection into the transfer orbit is

the latitude of the launch site. The numerical

analysis follows.

raf = 42,400 stat mi_ 68,300 kra

rpf = 10,000 stat mi_ 27,900 kin

ef = 0.61832

L 1 = 28.5ON

L 2 = 28.5ON

if = i t = 70 °

_of = -77.46 °

rpt = 4500 stat mi_ 7250 km

Elliptical orbits are tangent at po}nt of rendez-

vous. In addition it is assumed that the type of

transfer is specified and the time of ascent is
known.

t - 1000 sec
ascent

sin L 2
sin (_ + 6) =

(_ + e2)24 = 30.52 °

(e2_4 = 107.98"

2ra (# 1> (r-_ _ (02)24
= + + - C'OS

rtan 24

rtan = 20,000 stat mi = 32,200 krn

rat =

rtan
-1

rpt ,

rtan _,"p)24 + 1__

(rJ24 (rp) 24 (ra) 24 rpt

= 23,623 star mi= 38,000 km

rat
= 5. 24956

rpt

rat

rpt
e t ,,

rat
_+1

rpt

2 rat _(ra___t + 1)
r \rpt

cos e t - --0. 91474
ra t

rpt

e t

= 0. 67998

= 156. 17 °

= _t - o24 =48'19 °

= _24 -@ " " 125.65*

rat+ rpt = 7. 42447x 107 ft = 22, 600 km
at 2

6
t

- 5391.75 see/rad

e.1
E t = 2 tan-1 ill pL tan +1LV

- 2.24059tad

t t = _ + sin E t = 9208.6 see

E24 = 2 tan-1 [6

= 1. 17978 rad

tan -_] = 87.60"

(t2)24 = _ 24 " e24 sin E24

t L - (t2)24 - t t - tascent - n "rI

Since L L = L2, t L may be written as

t L = - 1867.1 - 6133.2 n'

(neglecting perturbations)
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Thislaunchtimemustbemadeto correspond
withthatofthelaunchpointasit crossestheor-
bital plane. Thisequation,whichhas all times

referenced to the projection of the perigee radius
on the equatorial plane, is as follows.

62- AL)-sin -I [_I

t L f2
e

(_2 - A L} - 0. 19897

0. 729214 x 10 -4

• (f2 - AL ) = -n' (0.44724)+ 0.06282

Thls equation is immediately recognizable as
that of a straight line with a slope of -0. 44724

and an ordinate intercept of 0. 06282 radian. This

equation can be solved for integral values of n t

to determine if the desired trajectory can be ob-

tained with the given bits of data. It is obvious

that only a few launch sites provide the reguired
timing considerations for this problem. How-
ever, if the time in the low altitude orbit is al-

lowed to change by varying the period of this or-

bit, different results are obtained. This proce-

dure was repeated and the altitude of the circular

orbit allowed to vary. The results of these cal-

culations are presented in Fig. 3. This figure

shows the limitations on the altitude of the low-

altitude orbit. It must be noted that these curves

are not, in reality, continuous and that only the

points of intersection of vertical lines for integral

numbers of revolutions, and the horizontal lines

for constant launch site latitude provide the re-

quired solution.

i = 70 °

L L = 28.5 °

L 2 = 28. 5 °

(ra)24 = 42,400 stat mi = 68,300 km

(rp)24 = 10,000 stat mi -_ 27,900 km

tascent = 1000 sec

No perturbations

The effects of perturbation were not included

in this analysis primarily because the magnitude

is such that they are rounded off in plotting.

However, for comparison purposes these calcu-

lations were made for the assumption that all of
the influences are encountered in the low-altitude

orbit. This assumption is believed to be reason-
able because the time in the low-altitude orbit

will probably be large compared to that in the
transfer orbit, and the effects of the earth's

oblateness fall off as the square of the semi-

latus rectum. However, by using Chapter IV, it

is possible to account for the cyclic perturbations

occurring within fractions of revolutions, thus

making it possible to account for the perturbing
influence of the earth's oblateness for the entire

time of flight.

The result of these computations is a slightly

different slope for the lines of Fig. 3. The mag-

nitude of this difference is approximately 0, 0027

rad/rev and the maximum error produced is 0. 046

rad (or 2.6 deg). Although this error is small

it should not be neglected since it is capable of

producing a linear displacement of approximately

900 stat mior 1450 km at a radius of 20,000 stat

mi or 32,200 kin.

3. Compatible Orbits

If rendezvous is seen as a requirement prior

to the time the target vehicle is launched, its or-

bit can be selected in such a manner that the cor-

rect relative position between the launch site and

the satellite exists at a prescribed time. The se-

lection of such an orbit enables the launch vehicle

to utilize a direct ascent trajectory requiring a

minimum amount of fuel and guidance. The orbits

which satisfy these conditions are referred to as

compatible orbits and the periods of such orbits
are defined as follows.

AtL =Atascent+nT _ +-_] (35)

tan L L 1_
(120 + nf2) - A LI + sin- 1 \tan--/-n-f--/ +2m,r

At L =
qe

Ctan LL2 /
n0 - AL2 + sin-1 \ta-_-_i--/

_e

(36)

where

the subscripts 1 and 2 refer to the station
from which the first and second satellites were

launched in a southerly direction.

The term Ax is an approximate correction to

the orbital period over a spherical earth to account

for the earth's equatorial bulge.

Equations (35) and (36) can be solved for the or-

bital period required to produce rendezvous from

a given pair of launch sites after a given interval

of time. The result is

2mlr+ (AL2 -ALI ) ±sin -I (tan LLI _

T =

n_e [i+ AT1%r-

+

+ n5 (37)

To this point no constraints are placed on the

values which n can assume. This is accomplished

by referring to the spherical triangle shown below.

-
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/ sin L_
¢ " sin-1 ks-rE-F-/

For northerly launches from the northern hemis-
phere, n must be of the form

n = p - (¢i - CR )

and for southerly launehes,n must be of the form

n= p +(¢i- ¢a)

where p is an arbitrary integer and the sub-

scripts i and R refer to the points of injection

and rendezvous, respectively. As may be noted,

the solution for _ is ambiguous unless an additional

parameter is specified. The most readily avail-

able bit of information is the quadrant (relative to

some point in the orbit) of ¢ or of the related

angle k. This information is known for" any de-

sired case.

Now, if one simplifying assumption is made,

Eq (37) can be reduced to a form which is appli-

cable for the case of a single launch site (i. e.,

LLI = LL2; ALl - AL2 )

2mlr - fl LXt + n_
e asc

7 = ,. (38)

Because of the interdependence of _ and _', an

iterative solution to this problem is generally

required. However, because _is very small,

it is generally sufficient to use the value of %

obtalned,neglectlng perturbatlons,to estimate the

value of [_ and then to correct the orbital period.

Figures 4 and 5 show the variation in the

required semlmajor axis for different values of

n/m,neglectlng perturbations and variations in

the ascent trajectories. The auxiliary scale

adjacent to the scale for semirnajor axis presents

the altitude of a circular orbit of the same period.

Table 1 (obtained from Ref. 1) presents the
set of orbits obtainable from a launch site at

28.5 ° (AMR) which makes 15 revolutions per
effective earth I s rotation as a function of the

time interval between easterly launches. The
effective rotation of the earth is defined as the

time or angular interval between successive

passes of a point on earth through a given point

fn the regressizlg orbital plane (i. e., t = 2Trg n_ ).

e

Fifteen orbital periods per effective earth I s rota-

tion are selected for this presentation because

for smaller integers (i.e., 14, 13, etc.), most
of the orbits lle in the Van Allen radiation belts,

thus making them unsuitable for many satellite

missions, and because the only lower orbit suit-
able (i. e., 16 periods per effective rotation) pre-

sents problems due to the extremely short life-
time. l{eference 1 also has this to say about the
interval between the launches: "The selection of

the value of N (the number of revolutions between

launches) depends on the specific purpose of the

space station. If the orbital inclination of the

satellite must be large, a value of N approaching

7 is required. Orbits of this type have the ad-

ditional advantage that the two possible launch

times during each effective earth' s revolution are

more nearly equispaced; but as N approaches 1,

the time spacing between the two possible launches

becomes very unequal "

Swanson and Petersen have extended the work

published in Ref. 1. This work is presented be-

low as it appeared in Refs. 2 and 3.

For an orbital period corresponding to N revo-

lutions every m earth revolutions to make a south-

going pass over the launch base n revolutions after
the north-going pass, the following relation must
be satisfied.

n = + M+ W -_--

(39)

where M = integer number of earth revolutions

completed between the north-going and south-

going pass. For every value of n there is only

one value of orbit inclination, i, that will satisfy

the equation. No correction for finite burning
time is included.

-i
v = tan [tan,9 oos l]

qa = sin -1 [sin L/sin i]

L = latitude of launch base

i = inclination of orbit plane

North-going--__ _- South-going pass

oa2

.... .... 1 latitudo
Earth equator

The relationship between n and N/m is presented

in Figs. 6a, b, c, d and e.

The preceding figures neglect the effect of

finite burning time on the problem. These effects

(:an be observed from the following sketch and

Figs. 7a and b.

These figures which present data for Canaveral

launches show the effeet of both burning time and
the number n on the selection of orbital inclination.
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L =latitudeof launchbase i =orbit inclination
q_,==burningtimemeasuredin degreesof travel

of thetargetsatellite.Thisangleis assumed
to bea reasonablysmallquantity

v-Ascent
Launchsite--k \trajectory
atlaunch

/ \/\ ../-,

at launch site parallel

4. Direct Launch

This technique can be analyzed by referring to
the development for the intermediate orbit case

t L = t* + (t2f) - tBO- tascent (40)

f2 -A ± sin-1 /_tan L__

tL L f_ \t---if'n--f-] +
e e

(41)

The significance of all terms in these equations

with the exception of the A_2term has been dis-
cussed in previous paragraphs. The significance

of the final term and the energy requirements can

be obtained from the following discussion.

(A L - f_) = v

' (tan L._ -1 / tanL
zxn = tan-1 \si-Tff_-] - tan _sin (v + AM)/

(42)

Reference "" __ =

t

This angle (A q ) is the projection of the actual

change in yaw on the earth. The actual change may

be seen from the following sketch to be

_n = 2 sin -1 (cos Xt sin _)

/¢-.
/

,,I 2>
/1/ /

z/ /It

¢/

(43)

Now the velocity increment to produce this change
is

AV
n

A n
= 2 Vt sin -2--

I

An
= 2 V t cos "_t sin --2--

C

= 2 V t _t sin_ [tan-cos \_i_5 )

I (tanI

- tan-1 / tan(v L )]
(44)

_sin + Af2)

If the change in yaw is small, and if the correction

is made near apogee where the velocity V t is mini-

mum (just prior to injection into the final orbit),

the relationship between the velocity increment and

the change in node is

AVn (tan L_ -1 { tanL
-V_-a = tan-1 \s_WV/ - tan tsin (_ + a a-T]

(45)

AV
n

The significance of negative values of _ is
a

simply that the sign of A _ is negative or that the
inclination of the transfer orbit is less than that

of the desired orbit. A graphieaI solution to this

equation is presented as Fig. 8.

This nodal and inclination correction results

in a tolerance in the time of launch assuming that

some specified amount of propellant is availabIe

for making such a correction.

A:2
_t L = _ (46)

e

sin (v + A_2) =
tan L

K -1 /tan L\ AV]

tan Itan |--_-V| - ._-j

(47)
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sin (v + A_) = sin v cos &_+ sin &_cos v

sin v + A_ cos v

COS v tan

tan L

[tan-i /_an L_ _ _lk_) a J

- tan v;

W

(_ # + 2) (48)

and

At L =

tan L - sin v tan an-I (tan L_ _

[ (tan L_ A a]De COS v tan tan-1 \m---i-ff-_] -

(49)

As an example, consider the case

L = 30 °

v = - 30 °(A L f_*) =

AV = ±1000 fps = 305 mps
max

V = 10,000 fps = 3050 raps
a

At _ +1800 sec

Should L have been negative in this example,

v would have remained unchanged because of the

definition of f2* which is measured from the refer-

ence direction to the last nodal crossing, thus

restricting the value of v to less than 180 °. Mathe-

matically this says

f_* = _2 0 <L<90

fi* = _2- 180 O>L>-90

With these restrictions, the launch tolerance

remains unchanged.

The resultant change in inclination can also

be obtained, but it is of lesser significance since

its effect on the energy requirements is already
included.

From the sketch with Eq (42) and spherical trig-

onometry

tan L = tan i sin v (50)

or

tanif sinv = tan(if+&i) sin Iv +&_]

but

sin (v + A_) - cos A[2+ cot v sin Af2
sin v

tan (i + Ai) _
tan i

tan A i
i + -iH-6-f--
1 - tan itanAi

1

(51)

This final approximation is valid under the assump-

tion that the orbital inclination is greater than 30 °

and that the change in inclination is small.

Thus

1 - Ai tan i _- cos f_D + cot v sin &f2

i - cos /x _- cotv sin A_
A i = tan i (52)

If the nodal change is also small, this equation
reduces to

-A9 cos v i ¢ 0 (53)
_i~ iH-fflsmv v # 0

C. THE TERMINAL MANEUVER

The preceding discussions have been directed

toward the placement of the shuttle or homing

vehicle in the vicinity of the target. The following

material is intended to provide an insight into the

subsequent motion leading to docking or closure.

The diseussion proceeds as follows.

(I) Relative motion.

(2) Terminal guidance schemes,

(3) Closure times and energy requirements.

(4) Terminal guidance smoothing techniques.

(5) Long time closures.

(6) Homing phase errors

1. Relative Motion (Ref. 5)

In this section, the general relative equations
of motion for the rendezvous maneuver are de-

veloped and explained. The purpose of this section

is to show how the rendezvous dynamics are af-

fected by orbital aspects as well as by vehicle-
induced accelerations. The effects of initial

conditions on the rendezvous problem will be

discussed with respect to velocity and time re-

quirements in sample problems.

a. Motion relative to target

Consider the earth-centered inertial frame

shown in the following sketch. The target vehicle
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is locatedbythepositionvectorr t, andthe
homingvehiclebyr_h. Therelativerangevector
s_ is definedfromtargetvehicleto homingvehicle.

E arth ' _'

cen_a

Z
Homing

vehicle_arget

/f

Y

Let:

_(F) = gravitational acceleration for a
spherical earth.

at, a h = thrust acceleration of target and
homing vehicles.

P(7, r) = perturbative acceleration due to earth

oblateness, moon, sun, atmosphere,

and nearby planets combined.

blotion relative to the target, neglecting mutual
attraction of the vehicles, is thus governed by

(54)

Simplification of Eq (54) results if the following

assumptions apply:

(1) s < < r t.

(2) r t and r h sufficiently large such that

drag effects are small.

(3) Total rendezvous time sufficiently

small so that the perturbative accelera-

tions have oniy first order effects on the

motion of each vehicle.

Then, the difference of perturbative accelerations

appearing in Eq (54) may be neglected as second
order in the perturbation. This follows since the

proximity of the two vehicles in space and time

yields

i5(7 h, F h) _ l_(Ft, rt) + dl_(F t, r t)

Inasmuch as P is itself of first order, dPis of

second order.

Similarly, if g (r h) is developed in a Taylor

series about F t,

_ffh ) = _(F t)+(_, v)_(_t )+½(g.v) 2_fft )+...

where

_7 = gradient operator.

Neglecting second and higher order terms

_(7h)-_(5 t) = (_ v)2(Tt).

Substituting

_(F) = - G_ 7
r

where

GM = Universal gravitational constant times
mass of the earth.

= /_.

g(r h) - g(r t) = -
r

t r t _I

(55)

Thus Eq (54) becomes, valid to first order,

d2g [ah all GM F 3_-t (_'" rt) 1
r t

(56)

This is the equation derived and discussed by
Hord in Ref. 4.

The exact solution of Eq (56) for the general

case is a difficult analytical task. Aside from the

thrust accelerations which are general functionals
of g and dg/dt, the orbital nature of the problem,

reflected through the gravity terms, complicates

the analysis. This complexity, however, under-
scores the fact that the orbital aspects of the

problem should never be overlooked in the general

case. To cite an example, consider a eoplanar
rendezvous in which homing starts when the target

is at the apogee of its assumed eccentric orbit.

Assume the homing vehicle to be slightly behind

the target, at the same altitude, and at sufficient

overspeed to be closing on the target. On the
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basisofrectilinearconsiderationsonemaycom-
puteatotalclosingtimebydividingtheinitial
relativerangebytheclosingrate. Thistime,
however,maybecompletelyerroneousandmore-
overthevehiclesmaynevercloseto a sufficiently
smallrangefor rendezvouspurposes.Thereason
for this is seenbynotingtheorbitalaspectsof the
situation. Thetarget, initially at apogee,begins
to speedupasit travelstowardperigee;the
homingvehicle,dependingontheoverspeed,may
beatapogeeof anelliptic orbit, in acircular or-
bit, or atperigeeofanelliptic orbit. Clearly,
thelatter twoconditionscauseanexpansionof
thehomingtime, sincethehomingvehicleeither
remainsat thesamespeedor slowsdownasit
travelstowardapogee.Hence,rendezvousmay
neveroccur,or, if it occurs,mayundergoex-
tremetimeexpansion.

Conditions permitting neglect of orbital aspects.

If Eq (56) is integrated once with respect to time,

t t

:¢)-,-fA:-dt-fA:,:.r-O
0 0

where

":-°:h-:t

rt J

then the condition allowing neglect of the orbital

aspects of the problem is obvious, since orbit

parameters such as GM and r t are vested solely

in A_(-_, r--t) ' Hence, if

Eq (57) becomes

T o

or ,f

0

(58)

t

d_ d(d__ ) + _ A_dt (59)
dt 0

0

and permits rectilinear analysis. Note that Eq

(58) is a condition on the integrated effect of the

gravity differential rather than on the magnitude

of A_ itself.

b. Analysis of relative motion

Certain important special cases of Eq (56) can

be analyzed by the method of Gilbert (Ref. 5). One
such case is that of thrust-free motion. The

method presented below is valid for thrust-free

motion, but is easily extended to motion in the

presence of impulsive thrusts.

The form of Eq (16) to be analyzed is

d2: K -- -

dr---2- +rGt--_ Lr t - 3_ t _j-_)] = 0
r t J

(60)

The analysia for a target in circular motion is

studied first and later extended to targets in or-
bits of small eccentricities.

(1) Target in circular orbit. Let there be a
rotating, relative coordinate frame centered at

the target, whose axes as shown in the following
sketch are defined by

Tx = unit vector along target' s radius vector, rt

Ty completes the right-handed set

-z = unit vector normal to target's orbit plane.

Normal to

orbit plane

Z

T

X _r get

plane _,_

X

The vector s may be resolved into the three

orthogonal directions and three coupled second
order differential equations obtained.

Since

::(,,:)x: 7 + :0 x :r +(% _0

where

a_
-- = rate of change of s- relative to observer
5t in rotating frame

62_
= acceleration of g relative to observer

t -T in rotating frame

-_0 = angular velocity vector of target in cir-
cular motion

Equation (60) becomes

52s /2 5s_+l-- -[r-t-'t+ :ox:7 ,_oX:ox:>

=o.
r t 3

(61)
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Whence,

d2x 2
- 3_0x- 2co0_

d2
_tJ2_+2_0 dx_R-= 0

d2z 2

+o_0z = O.

= 0

(62a, b, c)

These equations have the solution

Y0 -) _x = 2 _0 - 3y0 eos _ot + c°0 sin coot

( xo o) -y = 2 \ _0 3y sin WOt 2Yo_o cos _0 t

(+ (6_oYo - 3k°)t + Xo + _o /

z 0

Z = Z 0
cos COot + _0 sin COot

(62d, e, f)

These equations have been presented in numerous
references, among them Refs. 6 and 7, and have
been utilized in connection with various terminal

guidance studies• However, the present goals

are best served by altering the form of these

equations by introducing a set of normalized
variables.

X

p _ --

r t

Z

r t

T _ _0 t

(63)

Note that a is the downrange angle of the homing

vehicle relative to the target, while k is the cross-

range angle. The normalized time T is actually

the angle of travel of the target from t = 0.

It is also beneficial to define the following

normalized rates,

dk VN

A - Vo : VT-0

dx

_- - _0 y
B-

V o

--_t +_0 x

C _ " v"'O
de +p_ VC= HT (64)

where

V o _ort

(65)

Note that VC, VR, V N are the instantaneous

differences of the inertial velocity vectors in

the circumferential (y), radial (x), and normal

(z) directions, respectively. Hence, C, B, and

A are the normalized instantaneous differences

of the inertial velocity components.

If the normalized position variables of Eq (63)

are substituted in Eq(62), Eqs (66) result.

d2p 3p - 2 da
d-T

d2a + 2dP

dT

d2k

dW--2+×

= 0

= 0

= 0 (66)

Solutions of Eqs (66), in terms of initial normal-

ized positions and rates, are

p = 2(p 0 + CO) + (B 0 + a0 ) sin T

- (P0 + 2C0.) cos T

a = -(s 0 + 2B 0) - 3(P0 + C O) T

+ 2(B 0 + a0 ) cos T

+ 2(p 0 + 2C0) sin T

k = k 0 cos T +A 0 sin T.

(67)

Also by straightforward differentiation,

d_

_1_=
C -p = - 3(00 + CO) - 2(B 0 + a0) sin T I

f
+ 2(p 0 + 2C 0) cos T
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_IT B+ _: (B0+ nO) cos T

+ (P0 + 2C0) sin T

dk

= A = A 0 cos T - k 0 sin T (68)

Inasmuch as Eqs (67) and (68) specify three in-

dependent position coordinates and their rates,

the analytic solution of Eq (60) is complete. The

value of the solution, however, is further en-

hanced if we utilize Gilbert's Method of Circle

Diagrams, Ref. 7, to describe the motion.

(2) Gilbert's Method of Circle Diagrams.
The-_nformation in Eqs (67) and (68) may be por-

trayed with two phase-plane plots. The out-of-

plane variables, _ and A, may be plotted para-

metrically in a A-A phase-plane. The remaining
variables may be incorporated in a p versus a/2

plot wherein the complete in-plane behavior is

displayed. With such phase-plane plots, the or-
bital aspects of the problem will be made evi-
dent.

In order that we may assign special orbital

significance to the normalized variables, the fol-

lowing assumptions are made:

(i) The inclination of the homing vehicle's

orbit plane with respect to the target' s
is small.

(2) The eccentricity of the homing vehicle's

orbit is sm_ll.

These assumptions are valid for a wide class of

rendezvous missions and allow the following in-

terpretation.

A = homing vehicle's yaw or velocity azimuth

angle with respect to the target' s orbit

k = homing vehicle's cross-range angle with

respect tot-the target' s orbit plane

= homing vehicle's downrange angle with

respect to the target

p = normalized altitude of homing vehicle in

excess of rt.

C = normalized speed of homing vehicle in

excess of V 0 = _0rt

= B + ¢t = homing vehicle's fligh t path angle

(positive if measured upward from its local

horizontal}.

By elimination of T betweenOut-of-plane motion.
k and A, there results

A 2 + k2 2 + 2 (69)
= A 0 k 0

But for small inclinations i0,

.2 2 2 (70)
l0 = A 0 + k 0

Thus,

A 2 + k 2 = i 2
o (71)

The locus of Eq (71) is a circle of radius i 0 in

the k-A plane. The argument of the locus point

is T. Hence, in one complete orbit revolution

on the part of the target, T changes by 2_*, return-
ing the locus point to its initial location. The

following sketch shows the circle diagram of out-
of-plane motion.

The time history of the homing vehicle's cross-

range and azimuth angles are portrayed conven-

iently in the sketch. The angle of travel of the

radial segment i 0 is T and is related to time by

Eq(63). The value T = T N corresponds to the

crossing of the positive A-axis and defines the

ascending (from -z to +z) node.

Important characteristics of the out-of-plane

motion are easily obtained from the circle. For

example, Zma x -- RtXma x = Rti 0 and (dz/dt)ma x =

VoAma x = V0i 0.

l /--Nodal crossing

/(ascending)

_= T_ 0 X

Clockwise, rat e

of 2 = rad/orbit-_ -

In-plane motion. The homing vehicle' s in-

plane orh_ elements may be written directly in

terms of the normalized variables in view of the

interpretations allowed by the assumption of

e<<l.

Hence,

AE E-E0 =

_00 -=_ -2(%+p0)
(72)

where E = energy of homing vehicle' s orbit.

E 0 = - 1/2 v02 = energy of target's orbit.

2 2C0)2 2e = (P0 + + ¥0 (73)

where e = eccentricity of homing vehicle' s
orbit.

-1 N0
T = -tan (74)

P P0 + 2C0
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whereTp=normalizedtimeto perigeefrom
T=0

pep = a 0 - 2Y0 - 3(P0 + C O) Tp (75)

where ap = downrange angle of homing veh-

icle at perigee passage (T = Tp).

Equations (72) through (75) permit the solutions

of Eqs (67) and (68) to be written in terms of orbit

elements of the homing vehicle.

c_= ap - 3(p 0 + C O ) (T - Tp) + 2e sin(T - Tp)

p = 2(P0 + CO) - e cos (T - Tp)

C = - (P0 + CO) + e cos (T - Tp)

"_= e cos (T - Tp). (76)

Portrayal of in-plane motion is obtained by a plot

of p versus a/2. The parametric relation is

Ot

[p- 2(0o+¢0)]2+ [?

3 _Tp)]}2 2- g(P0 + C0) (T = e (77)

or,

3 T]'2 2- Y0 - _(P0 + C0) [ = e . (78)

Equation (77) or its equivalent, Eq (78),repre-

sents a circle of radius e in the P - a/2 plane.

The center of the circle is located at 2(00 + C0) and

in the p and a[ 2 directions, respectively. As the

target moves in its orbit an angle T, the point on

the circle representing the moving vehicle's relative

coordinates travels an angle T counterclockwise.

Simultaneousi_r, the center of the circle drifts in

the positive a/ 2- direction at the rate of -3/2 (P0

+ C O ) radians per unit T. The idea of a point tra-

versing a circIe of radius e, which drifts at a uniform

rate along the a/2-direction, is the process by which

the p - a/2 trajectory is most easily visualized.

This circle diagram generatrix is shown in Fig. 9.

The locus of relative motion in the p - a/2 plane

is, in general, a trochoid. For 3 ,IP 0 + C01< 2e,

thegeneratedeurvehasloops or3 I00+C01:
2e, the curve reduces to a cycloid and has cusps.

For 3 P0 + C01 > 2e, the curve has neither loops

nor cusps and tends toward a straight line for

3 [P0+C01> > 2e.

The values of the in-plane relative coordinates

p, C, y, and a are readily obtained by circle dia-

gram sketches using the generatrix of Fig. 9. The

value of a is slightly more difficult to obtain since

the simultaneous motions of translation and rota-

tion must be considered. On the other hand, the

values of p, C, and y are obtained by simply con-

sidering motion along the circle. The value of p

at any time is equal to the p-coordinate of the

locus point, and C is equal to (P0 + C0) - p" The

value of y is merely equal to horizontal displace-

ment of the locus point from the vertical line

joining apogee and perigee (line of apsides). In-

asmuch as the argument of the locus point along

the circle is T (the angular travel of the target),

the values of p, C, and y may be readily calculated.

(3) Sample analysis using circle diagrams.
The convenience afforded by Gilbert's circle

diagrams in establishing functional relations be-

tween various parameters and in generating tra-

jectory requirements overshadows the desir-

ability of graphical plots for the relative motion.

In this section the application of Gilbert's method

of circle diagrams as an analytical tool is illus-
trated. For purposes of illustration, the initial
conditions will be

(1) Target in circular orbit with radius, r t

(2)

x 0

Y0

z 0

V N

V C

V R

Homing vehicle injected ahead of target
with

= 0

: s0 >0

= 0 (79)

= 0

= -W0; W 0 > 0

= -u0; u 0 > 0

The

Out-of-plane analysis. Since

z0 = 0

dz

VN = (-_) 0 = O.

Equations (63) and (64) yield

;t o = A 0 = O.

Accordingly, Eqs (70) and (71) yield

i 0 = A(T > 0) - X (T > 0) = 0.

situation is shown in the following sketch.

(80)

(81)
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X

_t = V0]

- W 0

U 0

The out-of-plane circle diagram thus degenerates

to a point at the origin of the X-A phase plane,

indicating coplanar motion.

In-plane analysis. From Eqs (63) and (64)

P0 = 0

s o

a 0 = r--_-

_W 0 (82)

CO : V--o-

s O u 0

Y0 = B0 + c0= r7 - %"

Equations (73), (74) and (75) then yield

uo) 
e = \--V_--O / + _-t - _0 (83)

u 0

Tp: =+ tan-i ( s0V02_0rt - _)
(84)

u 0 s o ) 3 W 0
= 2

p V0 rt V0 Tp. (85)

The in-plane circle diagram is shown in Fig. i0

assuming

s0_L- u0 so
2r t < _ < rt

It is of interest to consider the following

special cases

(i) Y0 = 0 (homing vehicle's flight path

angle is zero)

(2) W 0 = 0 (no speed deficit)

(3) Combination of s O , W 0, 70 which

causes locus point to pass through

origin (coincidence of vehicles).

The circle diagram for _0 = 0 is shown in

the following sketch. As can be seen, there

exists the possibility of a being always posi-

tive, i.e., nonclosure, in spite of the speed

deficit, W 0. The limiting condition for down-

range angle closure (_ = 0) is obtained by lo-

cating the locus point having minimum

g and requiring it to be zero. This point oc-

curs when the circle's drift rate cancels out

the "speed" of the tip of the radius vector in

the negative a/2-direction. Since the radius

vector rotates at angular rate of 1 rad/unit T

and the radius is e = 2Wo/V O, the speed of the

tip of the radius vector is 2W0/V 0. Thus, its

rate in the negative a/2-direction is 2W0/V 0

cos T. Equating the rotational and translation

rates in the a/2-direction,

2 W 0 3 W0

_0 cos Tmi n = _ _0

or

-i 3

Tmi n = cos _ . (86)

- 2W 0

V 0

S o

_- r t

NOTE:
3 W0

Center drifts to the right _

units per unit T

The value of (_-) at that point is

s O 2W 0

rain -%-Osin T
min

3 W0

+ 2 -_0 Tmin

so W o

- °'24v7o (87)

For the limiting case of downrange closure

(C_mi n = 0).
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(w 0) so= 2.26 rt (88)
rain

That is, if closure is to be obtained, the speed

deficit W 0 must be greater than the minimum

value specified in Eq (88). The limiting locus is

shown in the following sketch along with the locus

expected on the basis of rectilinear considerations.

The sketch shows that a rectilinear analysis

for the specific injection conditions of Y0 = 0

and W 0 = Wmi n is far too optimistic. As indi-

cated, the actual crossover time is given by

Tmi n = _0tmin = 0. 724 compared to T G = w0t G =

0.442, where t G = s0/W 0 is the rectilinear

time-to-go. For the limiting ease, the time ex-

pansion is

tmin Tmin
- = i. 64. (89)

tG --T G

(TG= 0. 442)_ F-Rectilinear locus

US

(Trni n = 0. 724)

\

If W 0 < (W0)mi n the expansion would be infinite

since downrange closure cannot occur. Note

also that the orbital nature of the problem causes

the homing vehicle to be low in altitude by i. 13 s o

at closure, while rectilinear analysis predicts no

altitude deviation. This effect is due to the fact

that the speed deficit causes the homing vehicle's

injection point to be apogee. The homing ve-

hicle's altitude thus decreases as it progresses

toward perigee. This same effect accounts for

the expansion in the time of downrange closure,

since the homing vehicle's speed increases as it

progresses toward perigee.

For the special case of (W 0 = 0) the general

circle diagram of Fig. i0 reduces to that of the

following sketch.

It is evident that by proper choice of the flight

path angle, Y0 ' complete coincidence of the

vehicles can be obtained. By inspection, the

circle will pass through the origin at T = 7r for

s O
(90)

Y0 = -_t "

Thus, coincidence occurs after the target moves

through T = _ radians or 180 degrees, if the

homing vehicle is lofted an angle

s o a 0

4r t 4

I

enter does

not drift

s O

So ]¥

2-_-_-0

Rendezvous of the vehicles for the more

general case of s o , W 0, Y0 _ 0 may be obtained

by considering the general circle diagram of Fig.
10. The first crossing of the a/2-axis (p = 0)

for T > 0 is at

T 1 = 2T A

where

(91)

T A = normalized time to apogee = Tp -

=tan-I YoVo

-2-W0 (92)

For complete coincidence we require

o_ (T 1) = 0. (93)

Hence, the drift of the circle must be such that

at T = T I, _ = 0. In Fig. I0, symmetry shows

that the _/2-component of the radius vector at

T = T 1 is -Y0" Considering the fact that the

circle's center was initially at (s0/2r t) - Y0

and drifted (3/2) (W0/V 0) T 1 units in the plus

a/2-direction during the travel from T = 0 to

T = T 1, the value of a (TI)/2 is

(s0) 3w0_-- = _- YO + _" VO0 T1- YO "

(94)

VII-20



Substituting Eqs (91) and (92) into (94) and in-

voking the requirement of (93), the following
parametric relation is obtained.

s o W 0 T 0

= 2)/0 - 3 _ tan -1 2Wo/Vo

(95)

This relation is analogous to the "Hit Equation"

of ballistic missile theory (Ref. 8). Figure 11

shows a plot of 70 and s0/r t for various values

of W0/V 0. The required rendezvous time, tR,

is given by

T R = _00t R = T I = 2 tan -I _0
2W0/V 0

(96)

Thus, in terms of the target's orbital period, 70,

tR) 1 Y0_0 = _ tan-1 2W0/ V0
(97)

On the basis of rectilinear analysis, the initial
time-to-go is,

s O

t G -= W0 (98)

Hence

(tG) 1 (s0/rt)-_0 = _ (Wo/Vo) . (99)

The ratio of the actual rendezvous time to the

initial time-to-go based on rectilinear analysis
is thus

tR _ ( 2W0/Vo ) T0t G s0/r t tan-1 (2W0/V0) •

(100)

The ratio is plotted in Fig. 12 as a function of

W0/V 0 and s 0 = (s0/rt). The dependence on s 0

was introduced by utilizing Fig. ii in a crossplot

so that 70 could be expressed in terms of a 0 and

Wo/V o.

Note that in this example time compression

occurs since tR/t G <__ 1. This is explained by

the fact that for W 0 > 0 andT 0 > 0, the homing

vehicle is on its way toward apogee at the start

of the problem. This is obvious in Fig. I0.

Thus, the homing vehicle's speed over the lofted

flight is less than its initial speed, causing more

rapid closure than expected on the basis of recti-

linear analysis.

Figure 12 may be used to compute the required

rendezvous time. First compute t G m s0/W0;

then locate the appropriate Wo/V 0 curve, inter-

polatingif need be. The value of tR/t G then

gives the attenuation factor for a particular

s 0 = s O / r t.

(4) Circle diagram extension to eccentric

orbits. Tn the following paragraphs the basis

upon which Gilbert's Method of Circle Diagrams

can be extended to targets in eccentric orbits

is presented. The eccentricity, however, must
be small in order to retain a linear or first-

order analysis. Only the in-plane motion is

treated since out-of-plane motion is unaffected

by target orbit eccentricities.

Circle Diagram of Target Motion. Previously
the motion of the homing vehicle relative to a

target moving in a circular orbit was analyzed.
In this section all motion is referred to the tar-

get's mean motion. For small eccentricities

the target's mean motion is circular with a

radius equal to the semimajor axis. Thus, to

obtain a circle diagram of eccentric target

motion, it is merely necessary to replace the

homing vehicle by the target vehicle and the

target vehicle by the mean target in the previous

results. The Circle Diagram of Target Motion re-

ferred to the mean target is shown in the follow-

ing sketch. All the features of the in-plane circle

diagram which were mentioned in previous sec-

tions still hold except that motion is strictly

periodic. The center of the circle generatrix
does not shift in time.

P

Apogee

CZ_enter_ _t
doe_

not Perigee
drift

---- T=0

I c_

J Counterclockwise rate

of 2 _ radians per orbit

revolution of mean target

Composite Circle Diagram of Relative Motion.
If the homing vehicle's circle diagram, referred

to the mean target, is superimposed upon the
target's, the composite circle diagram of the

following sketch is obtained. Note that the circle

diagram differs from that of Fig. 9 merely by the

fact that the target locus is a circle of radius e t

(target orbit eccentricity) rather than the origin

of the p - a/2) plane. As e t approaches zero

the locus shrinks to a point at the origin, yielding

the circle diagram of Fig. 9.

The relative motion is obtained by plotting

both the target and homing vehicle loci and noting
the differences in relative coordinates as a

function of T (time).
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Tpt °

Center does

not move

Center drifts- __ (p_ -_ C0) h radians

per unit T in_ directy _

00 =:%eJ
'_rg_t X I _ho _ /

Homing vehicle

!

_h 0

--2-

'2-

(5) Motion in presence of impulsive thrusts.
In the presence of impulsive thrusts, there exists

segments of thrust free motion which are separated

by discrete changes in velocity. Hence complete

motion is obtained by regarding it as a succession

of thrust free segments under various initial con-
ditions. Inasmuch as the position coordinates

cannot change instantaneously, the final position
coordinates before the impulse become the

initial position coordinates after the impulse.

The complete motion is readily obtained by

sketches of circle diagrams. Each impulse changes

the size and location of the circle generatrix. The

effects of velocity increments in the normal,
radial, and circumferential directions are dem-

onstrated below.

Normal velocity increment. For small in-
clinations between the orbit planes of the target

and homing vehicle, a velocity increment, AV N,

normal to the target's orbit plane produces an

increment _ in the homing vehicle's velocity¢

azimuth relative to the target's orbit plane. The
relation is linear for small inclinations and ve-

locity increments.

_V N

_A = _ (101)

The relative out-of-plane motion is illustrated

in the following sketch. This sketch shows the

situations just prior to the impulse (T = 0-) and

just after the impulse (T = 0+). Since position

cannot change instantaneously, the crossrange

angle, k, remains unchanged. However, the

azimuth angle changes by the amount given in

Eq (i01). The result is a change in inclination

angle. Out-of-plane motion is thus typified by

motion along the circle of radius, iO, until the

impulse is applied. After the impulse, the

locus point moves along the circle of radius, i 1.

From this sketch it is apparent that incli-

nation ma5 _ be completely removed by applying

a normal impulse at AA = ii 0 and _ = 0. The

velocity increment required would be

AV N = _-V0i 0 (102)

This corresponds to a velocity increment at the

nodal crossings equal and opposite to the ex-

isting normal velocity.

A

T=O +

iI
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Radialvelocity increment. A change in the
homing v_6_icle's velocity vector by an incre-

ment, AVR, parallel to the target vehicle's

local vertical yields a change in the homing ve-

hicle's flight path angle, B, measured with re-

spect to the target's local horizontal.

AV R

AB = V0 (103)

Inasmuch as the homing vehicle's flight pat}_

angle measured with respect to its own local

horizontal is given by

_/ = B+o_

then, since a does not change instantaneously,

AV R

A7 = AB - V0 (104)

The effect of a change in Y is shown in the

following sketch. As shown in this sketch, a

positive change in the flight path angle causes an

increase in the horizontal displacement between

the locus point and the center of the generatrix.
Inasmuch as the position coordinates cannot

change instantaneously, the center must move to

the ]eft by the amount, Ay. This causes the

radius to increase, indicating an increase in ec-

centricity. The center does not shift along the
p-axis,since the location of the center in such a

direction represents the orbit's energy level

which is invariant for flight path angle changes.

_ Generatrix /- Generatrix

after impul_se ____]_before impulse

The complete relative motion is thus given by

the locus of points generated by the circle of

radius e 0 before the impulse and that generated

by the circle of radius e I after the impulse.

Since the energy level is unchanged by the radial

impulse, both circles drift in the negative a/2-

direction at the same rate. It should be noted

that if it is desired that the homing vehicle's oz'-

bit be circular using a single radial impulse, one

should wait until

Y0 : i e 0

and produce

AT : _e 0

by applying

AV R = ¥ V 0e 0 (105)

These points correspond to points 90 ° away from
the apsides where the flight path angle possesses

extreme values.

Circumferential velocity or speed increments.

A change in the homing vehicle's circumferential

velocity, AVc, is synonymous with a change in

its orbital speed and, hence, a change in orbital

energy or period. In terms of the normalized

rate, C,

AV C

_c : _ (lO6)

The effect on the relative motion is indicated in

the following sketch. Since the position of the

generatrix's center represents the homing ve-

hicle's orbit energy, an increase in the homing

vehicle's speed, AVc, causes a vertical shift

of the circle's center by the amount 2AC =

2(AVc/V0}. This has two effects. First, the

orbit eccentricity changes in general; secondly,
the center drifts at a different rate in the a/2-

direction. As shown in the sketch, the energy

level before the impulse is characterized by the

p-position of the circle's center, 2(P0 + CO).

This energy causes the circle to drift in the

negative c_/2-direction at a rate of 3/2 (P0 + CO)"

The increase in energy yields a new energy

level, 2(P0 + CO) + 2AC, and causes the new

circle to drift in the negative a/2-direction at a

rate of 3/2 (P0 + CO) + 3/2 z_C. Thus, for a

positive AC the new circle moves at a faster

rate in the negative a/2-direction.

2(P0 + CO] Genera_trixbe_

0 2-
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Note that, if desired, orbit eccentricity can be

made zero by waiting until the locus point is

either at the highest or lowest point of the circle

of radius, e 0. If the locus point is at

Pmax = 2(Po + C0) + e0

the resulting eccentricity, e I , can be made zero

by making 2AC = e 0 or

V0e 0

_Vc = ----2- (107)

If the locus point is at Pmin' el can be made zero

by 2AC = -e 0 or

V0e 0

_V C = - _ (108)

Comparison of either of these velocity increments

with Eq (105) shows that for control of eccentricity
circumferential increments can be twice as ef-

ficient as radial increments. Note, however,

that circumferential increments also produce

changes in the orbital energy or period, while

radial increments affect only eccentricity.

(6) Sample problem. Assume the vehicles are

in circular orbits of equal radii which are inclined

at an angle i 0. Assume the phasing to be such that

the homing vehicle crosses the target's orbit plane

an angle a0 ahead of the target. This is shown in

Fig. 13.

Suppose it is desired that rendezvous be ac-

complished with only two thrust applications of

an impulsive nature. One method by which this

may be accomplished is to wait until the situation

of Fig. 13 occurs and apply a velocity increment
which rotates the homing vehicle's velocity vector

into the target's plane while simultaneously chang-

ing the flight path angle so that a lofted flight is
obtained. The loft should be chosen so that the

two vehicles coincide when the homing vehicle

returns to its original altitude. The trajectory
is shown in Fig, 14. At coincidence, the second

impulse is applied to restore the flight path angle

to zero and, hence, restore circularity. Since

no period changes are involved, the two vehicles

will subsequently move in identical orbits and,

hence, be in coincidence thereafter.

Another method also converts the situation

depicted by this sketch into a coplanar situation

but involves changing the flight path angle and

period with the first impulse and restoring to

the original values with the second impulse upon

coincidence. The trajectory is shown in Fig. 15.

It is similar to the method of Fig. 14 except that

the required rendezvous time is reduced through

the use of speed (period) changes as well. Re-

call that this situation was partially analyzed

previously.

Both methods are analyzed below with respect

to velocity and time requirements.

Method A: yaw and loft. To convert the

situation of Fig. 13 into a coplanar situation a

normal velocity component is required. According

to Eq (102) we require

_V N = V0i 0 (109)

Initially, the p - a/2 phase diagram is as

shown in the following sketch. To cause coin-
cidence with a pure radial increment (flight path

angle change) requires a flight path angle change
of

aO (II0)
A_I = }_0 = 4

Initial circle diagram

(no relative mo_ion)

c_0 '2-

-'2-

The resulting relative motion is shown in the

following sketch. Note that rendezvous occurs

at T = = or one-half period later. At this time

the second impulse must be directed radially

outward to remove the existing flight path angle

(reduce the ensuing circle diagram to a point at

the origin). The second impulse must produce

a 0
• A_2 = 70 = 4 (111)

P

® E ®
a 0 a0

-4- -2-

Center does

not drift

{T

Thus, the actual radial components are

a 0
(AVR)I = VOA$I = V0 4
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s0
(AVR)2 = VOAT 2 = V 0 _ (112)

Assuming an orientated thrust vector, the

radial and normal velocity components of the

first impulse require

I v0 2o+ 111 )
The second impulse requires

c_0

AV2 = (AVR)2 = V0 4 (114)

Thus,

(AV)orie n = AV 1 + AV 2

If separate nozzles are used for increments in
the various directions,

AV1 = V0(i0+ #) (116)

a o
AV2 : V0 ---4--

Hence,

(i17)

in either case the total rendezvous time, as indi-

cated in Fig. 14 and the preceding sketch (T = 7r),

is

"r0

tR = --2-- (iis)

where again

_'0 = target's orbital period.

Method B: yaw, loft and period changes. In
either method the yaw velocity required is the

same,

AV N = _0i0 (119)

The radial and circumferential velocity incre-

ments depend on the desired time of rendezvous.

Let us suppose that a rendezvous time of 70/4

is desired. That is, rendezvous after the target

moves through 90 ° rather than 180 ° as in Method

A. Equation (97) shows that

-_0 =_ tan-i
(12o)

where Vp : Y0 V0

W 0 = speed (circumferential velocity) re-
duction.

Thus, for t R = T 0/4

V
7r

P - 2 tan-_ = 2
W o

(121)

The ratio of the radial velocity increment to the
circumferential increment must, hence, be

equal to 2 for rendezvous after the target moves

through 90 ° .

Equation (95) shows that for this ratio

oo Wo_ _ -v--_o
(i22)

is the condition for rendezvous. Thus,

V0a 0

W 0 = --_- = -AV C (123)
8--2- 1

and

Voa 0

Vp 4 - _ = aVR1 (124)
4

Equations (119), (123) and (124) are thus the

yaw, speed reduction, and pitch components of
the velocity increment applied at point @ in

Fig. 15.

The pitch and speed components at point Q

(Fig. 15) by symmetry are

V0c_ 0

W0 = 3_ = AVc2 (125)
8- -2-

Vo _0

__ = AVR2Vp = 4- ---_ (126)
4

This may also be obtained from the circle dia-
gram of the following which shows the flight path

angle and energy changes required to reduce the

circle generatrix to a point when the locus point

is at the origin,

As shown in the following sketch_the generatrix
is reduced to a point at the origin by shifting the

center to the left by z_72 = F 0 and upward by

2AC 2 = 2(W0/V0). These correspond to the ve-

locity components of Eqs (125) and (126).

For an oriented engine nozzle, velocity re-

quirements are as follows.

(AV)I =[(_VN )2÷ (_Vc1)2

+
2 1/2

= V 0 i20 + 5 (127)
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Thus,

(AV)orie n (AV) 1 + (_V) 2

2 1/2

[ oo]v01 0+ ( 

(128)

(129)

For separate nozzles the absolute values of

the components are added directly, yielding

[ (o0)](AV)se p = V 0 i 0 + 6 _ (130)
8- --2-

By comparing Eqs (129) and (130) with (115) and
(116) the reduction of rendezvous time from

-r0/2 to 70/4 can be seen to involve a consid-

erable increase in velocity requirements. As-

suming i 0 = 0

/"-

I 4 _5 _ 2,72 for oriented

8- 3_

(AV)70/4 _- nozzle
=

(AV)r0/2 12 3.64 for separate
3y

8 - --2- nozzles.

2. Terminal Guidance Schemes (Ref. i0)

In the previous section the general linear

differential equation of relative motion was de-
rived as

d2[ : _h - it GM _ - 3r--T_ t
r t r t

(131)

where

-= rh - rt = relative position of homing
vehicle with respect to

target.

Equation (131) was derived in terms of motion

relative to the target. In this section it is as-

sumed that the homing phase is conducted by the

homing vehicle utilizing an onboard guidance

system and that the target does not execute
thrust maneuvers of either an evasive or coop-

erative nature.

It is convenient to re-express the differential

equation of relative motion so that the target's

motion relative to the homing vehicle is obtained.

This is readily obtained from Eq (131) by replac-

ing s by -R where

= Yt - Yh = range vector of target with
respect to homing vehicle

(132)

Thus, since the thrust acceleration of the target
is zero

_t = 0 (133)

and the differential equation of motion relative

to the homing vehicle is

d2R
- ah GM _ 3F t (_R0_)

_t-,_-= ---_-rt _ rt -_

(134)

The effect of the gravity vector differential is

obtained by inspection of Eq (134), that is, the
apparent target acceleration is of magnitude

%(I) _ directed inward along the
r t

line-of- sight.

(2) __ - , directed upward

rt rt -3---

along the target's local vertical.

Both effects decrease linearly with range. Note

that they are not necessarily orthogonal unless

the line of sight is normal to the local vertical.
For such a situation, however, the vertical ac-

celeration vanishes since Jt is proportional to

R- r t.

A convenient description of the apparent tar-

get acceleration is obtained by resolving it into
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components parallel and transverse to the line af

sight. This is shown in the following sketch.

Line of /

sight i/

Target,s local vertical
Homing

_t vehicle,s3 _- ( ) cos O local

r t vertical

GM ,R .

Up

_Homing

vehtcle

As may be l_een in the sketch several new var-

iables have been introduced. These are

@ = angle between target vertical and
line-of- sight

_p = pitch (angular) rate of the line of sight

_0y = yaw (angular) rate of the line of sight.

The apparent acceleration outward along the line
of sight is

oM (@AgR = - _2- (1 - 3 cos 2 O) (135)

r t

The apparent acceleration normal to the line of

sight tending to increase the pitch rate of the
line of sight is

G_I (__t)
Agp rt 2- • 3 sin O cos O (136)

Note that the apparent gravity effects act solely

in the plane of the line of sight containing both
the target and homing vehicle local verticals.
Thus,

Agy : 0 (137)

a. Formulation with respect to line of sight

Since

R = iRR (138)

where _R =- unit vector along line of sight

dtdR : ]R -_-dR +(_ x R) (139)

where w-= angular rate of line of sight in inertial
space

and

d2R: % - R da+ a]x%dt 2 _d

(140)

Equation (134) may be resolved into components
along (parallel) and transverse to the line of

sight.

is
The equation of motion along the line of sight

d2R

R to2 = -a R + Ag R (141)

where the subscript "R" denotes components

along the line of sight and tile superfluous sub-
script "h" on the thrust acceleration has been

dropped.

The equation of motion transverse (normal)

to the line-of-sight is

dh
to

dtp : R (Agp - ap) (142)

dh
td

- ira (143)
dt y

where

=-R 2
h0 Wp = angular momentum in pitch:

P

(i44)

R2_0 = angular momentum in yaw:h¢o --- y
Y

(145)

Note that in the absence of transverse thrusts

R2_0y is conserved, while R2_p is not generally

conserved due to the torque, RAgp, exerted by
the gravity differential.

b. Transverse corrections

The general transverse command logic takes
the form

AV T = kl_0 + k 2 V T + k 3 (146)

where

AV T = desired transverse velocity
increment

k 1, k 2 = constants of proportionality

V T = velocity of homing vehicle trans-
verse (normal) to line of sight

k 3 = bias term.

Equation (146) may also be considered a vector

statement wherein AVe, w, V T and k 3 are two-

element column vectors whose components are
those of yaw and pitch. That is,
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_)=(toP/ (148)
_Oy

VT =(Vp) (149)
Vy

k3= (150)
\k3y/

The "constants of proportionality" are then 2 x 2
matrices

[Kfp K p]
:LK y (151)

k 2 = (152)

LK y  YyJ

where the subscripts indicate those elements be-

longing to the pitch or yaw velocity command, and

the superscripts indicate the elements which scale

the pitch and yaw components of w and V T. Except

in cases where the homing vehicle is called upon

to execute roll maneuvers, there will generally

be no interchannel crossfeed terms in the com-

mand logic. Hence, in most situations the elements

outside the principal diagonal are zero.

If k 2 and k 3 are zero while k 1 is equal to the

instantaneous range to the target, a collision
course results, A lead-collision or biased-colli-

sion course may be generated by defining k 3

appropriately so that the homing vehicle in effect
steers on a collision course to a point offset from

the actual target. If k 2 and k 3 are zero while k 1

is a constant other than the instantaneous range,

a proportional navigation results if k 3 is other

than zero. For k 1 and k 3 equal to zero while k 2

is -1, a pure pursuit course results since the

homing vehicle is directed to fly along the in-

stantaneous line-of-sight. Thus, by proper
selection of the constants of proportionality all

types of homing schemes are possible including
hybrid schemes which do not completely fall into

the above classes. It is also possible to fly a

slightly different course in pitch than in yaw by

choosing the constants of proportionality for the

two channels differently. Moreover, the complete

homing phase may be a blend of various types by

varying the constants of proportionality as a func-

tion of range or some other appropriate variable.

Collision course. If range information is

availab_le a collision course may be flown. This

will tend to minimize the homing time since in

nonrotating relative coordinates the motion is

completely along the line of sight, which main-

rains a fixed direction in inertial space. Thus,

in nonrotating relative coordinates the motion of

the target is radially inward toward the homing
vehicle.

Integration of Eqs (144) and (145) with respect

to time yields

t t

2 + R _gp dt - Rap
R 2 Wp R0 WP0 0 0

(153)

2= - Ra dt (154)
R2toY R0 _°Y0 0 Y

If proportional transverse _ets are used (alter-

nately, a gimbaled nozzle) the thrust accelerations
are of the form

AV; R Wp
a - - (155)

p _p Tp

AV* R to

a : ___L = _ (156)
y • T

Y Y

where Tp and 7y are the pitch and yaw channel

time constants. Substituting Eqs (155) and (156)

into (153) and (154) yields

t

2 - 7-= e Y (157)
toy ¢°y 0

_9
P

t
O" - --

t -- ) "rp+_ R Z_p e _p da e R 2
0

(158)

Note that if the time constants are small enough

R 0

that _ does not build up appreciably within, say

three time constants, the initial rates ¢0p0 and toy0

are steered out exponentially. In fact, if 7p, "ry,

and the range rate are small enough such that
values of range separated in time by time con-

stants are nearly equal,

-t/_y
to _ to e (159)

Y YO

tO
P e -t/_'p _-_ Vp (I -t/Tp)"_ Wp0 + - e

(160)

Thus, in the steady state

: o (161)
Y

top = _-- "rp (162)
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Notethata pitchrateexistsduetothepitchcom-
ponentof thegravitydifferential. Thisempha-
sizestwosignificantpoints".

(1) A nonzerosteady:statepitchaccelera-
tionof

R
ap = y-- _)p

P

= & gp (163)

will exist.

(2) A precise collision course cannot

be realized in pitch if Eq (155) is used,

since the gravity differential causes

a small steady value of pitch rate to

exist. For extensive homing time the

pitch displacement of the line-of-sight
may be appreciable.

The first point is, of course, clear upon inspec-

tion of Eq (142). The obvious remedy for the

second point is to make Tp sufficiently small so

that the total displacement is negligible. This,

however, is not always possible, since high con-

trol loop gains may result in control instability.
In the next topic, "Biased-Collision Course,"

a solution to this problem is indicated.

If impulsive thrusts are used for transverse

corrections, the accelerations assume the forms

ap = AV; 5(0 = r_p 5(0 (164)

= AV* 5(t) = rWy 5(0 (165)ay Y

where

5(t) --- Dirac delta or impulse function.

Hence, Eqs (153) and (154) for t> 0 become

.t

R 2 Wp = I R Agp dt (166)

0

R 2 to = 0 (167)
Y

Thus, to does not require further corrections
Y

in the ideal case, but tOp soon builds up such that

if a set of transverse corrections are scheduled

at t = t i, the required velocity increment is

t.

AVp (ti) = _-7i R Agp dt (168)
0

In many cases a control deadzone is used such

that corrections are made whenever tOp exceeds

some threshold value. Equation (168) may be

used to compute the range at which this occurs.
Thus, if the previous correction occurred at

t = ti_l when R = Ri_l, then the threshold value

will be exceeded at the range R = R i given by

where

= _ A gp (169)

P Ri_ 1

f_ = deadzone threshold value for w
P p

dR (assumed to beI_I = range rate = -d_

negative).

The magnitude of the correction at such a time is

&V. = R. _ (170)
1 z p

Hence, the total pitch velocity increment is

n

= R 0 + _ AV"(AVp)tota 1 ¢°p 0 1
i=l

n

= + f_ _ R. (171)R0 _P0 P 1
i=1

The total yaw velocity increment is

= R 0(AVy)tota 1 _°y 0
(172)

Thus, the total transverse velocity requirement
is

n

(o(AVT) R0 + WY0 i= 1total PO

R.
1

(173)

where it is assumed that w and w are positive;
P0 Y0

if they are not positive, absolute values are to be

used in Eqs (171), (172) and (173).

Biased-collision course. In this method the

line-of-sight rates are controlled to appropriate

bias values. If the biases are zero, a pure colli-

sion course results. One particular application
of this technique is that which maintains the line

of sight at constant angles with respect to the

target's local vertical and orbit plane normal.

Thus, if the target's body axes are maintained

at fixed angles with respect to its local vertical

and orbit plane normal, the homing vehicle ap-

proaches the target at a fixed aspect in target

body coordinates. This is shown in the following

sketch for a coplanar situation.
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For a target in a circular orbit, the local

vertical has an angular rate of

Thus, assuming coplanar rendezvous, the line-

of-sight rate in pitch must have a magnitude cot.

If the homing vehicle is behind the target the

sign of to must be negative (downward rotation);
P

if ahead, positive. The yaw rotation must be

zero in the case of coplanar rendezvous. Thus,

there exists biased-collision steering in pitch

and pure collision in yaw.

For continuous, proportional steering

_ Z_Vp = R (C0p- wb)
a

P _p _p

/xV R co

a = --

y Vy -ry

(174)

(175)

where

cob - desired bias rate

= +cot"

Substituting the above into the general equations,

Eqs (153) and (154) yields upon solution of the

differential equations

2

= _) e -t/Ty (176)
coy Wy 0

_-_/2 e-t/_'P+-_l't R@g p
toP =COPo r 0

fit - a)

Rcob_ _p+-- e da

_'p /

(177)

As before, if the ratio of range values separated

in time by three time constants is approximately

unity,

-t/Ty
co _ _ e (178)

Y Y0

(Wp-tob) "_@p0- tob)e-t/_P+_r_Tp (1

-t / Tp)- e (179)

Thus, in the steady state

to = 0 (180)
Y

tOp = wb+ _-_ Tp (181)

This equation shows that the steady pitch rotation

obtained using conventional collision steering can

be removed by wb = _A gp/R "rp and implies use

of angular acceleration measurements.

Using Eq (136) in Eq (181) yields

GM

cop = cob + 3 _ _p sin 00 cos 00
r t

cob + 3 cot 2 sin O0 cos O0 (182)= "rp

Then, for cob = ±c°t

top = ±cot (1 :F 3to t _-p sin Oo cos 00) (183)

Since the maximum value of sin 00 cos 00 is 1/2

and _p is usually on the order of seconds, the

bracketed term is approximately unity. Thus,

in the steady state tOp = _0b = +cot"

For impulsive thrusts,

ap = AVp6(t) = R (tOp. - tOb ) 5(t) (184)

= AV* 6(t) : 13.tO 6(t) (185)
ay Y Y

Hence, after such a correction

_t R2R 2 cop = R Agp dt + tOb (186)

0

R 2 tO = 0 (187)
Y

As in the case of the collision course, the

gravity differential requir.es subsequent correc-
tions in pitch. Thus, if corrections are made

whenever cop deviates from cob by %, the range

at the time of each correction is given by Eq (169).

For the present case since

A gp = 3R tot 2 sin 00 cos 00 (188)

Equation (169) becomes

2 3tot2 sin 00 cos 00 _ R 2 dr

Ri - a _ h
P

Ri_ 1

(189)
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where the absolute value signs on the right mem-

ber are implied. If the closing rate, (-R), is

constant between the ith and (i - l)st corrections

2

R.2 = tot sin 00 cos @0 (R__ 1 _ Ri3 ) (190)

1 % (-R)i- 1

The total pitch and yaw velocity increments

aye

n

= RoAto + ___+ 1(AVp)total P0 % R. (191)
i=l

= Ro (192)(AVy)total toYo

Hence,

n

( 0)+z= + toy % R.(AVT) R0 A_p 0 1total
i=l

(193)

By comparison of Eq (193) with Eq (173) it

might be inferred that "biased-collision" is most

efficient for a coplanar rendezvous since Am
P0

is involved in biased-collision; whereas the full

initial pitch rate, toP0' is involved in "pure colli-

sion. " This is deceiving unless it is realized

that faster range closure occurs in pure collision

and hence fewer number of pitch corrections are

required, since the time-integrated effect of

gravity is smaller. Thus, biased-collision does

not necessarily require less velocity.

Proportional navigation. Proportional navi-

gation involves transverse accelerations pro-

portional to the line-of-sight rates. That is

a = K to (194)
p a p

P

a = K to (195)
y a y

Y

If

K =R__ (196)
ap _-p

K _ R (197)
a T

Y Y

then a collision course results. However, in

the absence of range information a collision

course may be approximated by Eqs (194) and

(195) whenK and K are constants. This is
a

p ay

the prime purpose of proportional navigation.

Substituting Eqs (194) and (195) in Eqs (153)

and (154) yields

to /Rob2
toY = Y0\T] Qy (t)

(198)

1= + gP d (199)

toP toP0 0 _ 1_2

where

(Ii')Q (t) _- exp T dt (20O)

Explicit solutions of Eqs (198) and (199) re-

quire knowledge of the time variation of range.

If we assume that proportional transverse jets
are used, then in the absence of accelerations

along the line of sight,

R_R o+h ot (2Ol)

It is also assumed that the initial closing rate

(-I_ 0) is high enough so that Eq (201) is true in

spite of gravity effects and line-of-sight rotations.

With Eq (201), Eq (200) becomes

(202)

where

K
a

iYl =

(-Ro)
(203)

yielding

to

Y

m-2

= toY0 (_0) (204)

top= +; IR,2-m]IR,m-2po o T k%/ dtk'KoJ
(205)

If the closing rate is sufficiently high so that

A gp
I_ can be taken outside of the integral

top "_ tOpo k_} + a - kE} -J
P

(206)
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Note that in order to be effective

I

K a )2 for yaw
m =-- > (207)

(-}_0) _3 for pitch

Thus, by choosing m sufficiently high (implying

high K a ) in the steady state
P

co =0
Y

A gp

cop = _ (negligible for K a
a p

P

high enough).

It is seen then that the proportional navigation

course can adequately approximate the collision

course for sufficiently high gains and closing

rates.

Biased-proportional navigation. This tech-

nique is a generalization of pr'opor'tional naviga-

tion, analogous to biased-collision in its general-
ization of collision steering. If this technique is

applied to the coplanar situation analyzed for the
case of biased-collision, one obtains

[R _m-2

coY =% k_]
(208)

[_ _i A gP + Ka cob "R'2-m ] IRwin-2COp PO R

(209)

under the same restrictions imposed on the ex-

plicit analysis for proportional navigation. For
this case

A gp 3wt2= sin 0 0 cos 0 0.

Therefore,

= t(R_m-2+ [ m _wt 2sinO 0 cos00 [1
cop Wpok_ ) 3 tm----7_- ] K a

P

_ (___.__)m-l]+ (m__m_______._)cob[I IR 'm-2l To/ j (21o)

Thus, in the steady state

2

COp "_ 3 tm-----:-__ _-[ m _COt s inKa00 COS 0 0 + (m-----_-)m cob

P
(211)

For cop _ ±cot' it is required that

]± wtL_ _n_____22¥[m (mm__-2)m-2 cot sin00c°s00KatDb

P
(212)

where m > 3. For large m (large K a )
P

_b = ±cot (213)

As in the case of proportional navigation, this

technique can adequately approximate its collision

counterpart for sufficiently high gains and closing
rates.

c. Homing flight paths

The flight paths produced by the transverse

steering techniques presented are simple to
derive. For example, in the steady-state, colli-

sion and proportional navigation maintain the

line of sight in a fixed inertial direction, as-

suming the flight times are small enough to war-
rant neglect of the gravity effect. Thus, in a

nonrotating frame centered at the target, the

homing vehicle closes radially on the target. On

the other hand, for the coplanar biased-collision

and biased-proportional navigation examples

presented, the line of sight is maintained fixed

in a rotating frame centered at the target. In

this frame the biased-collision and biased-pro-

portional schemes produce an apparent homing

vehicle motion radially toward the target. The

following two sketches show the flight paths in
these frames. The mapping of a flight path from

one frame to the other is relatively simple since

the two frames differ by a rotational rate.

Y

Target' s vertical

Biased collis ion

_ Homing

vehicle

_/I_ C°llisi°n _, X

Target

Biased _ Homing

col_ vehicle

/ / Collision

Target

X
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Note that if the target's body axes are con-

tinuously aligned with its local vertical, an

observer on the target will see the homing vehi-

cle approach along an apparent straight line if

biased-collision is used. To this observer the

collision course will appear curved. However,

assuming no thrust accelerations along the line

of sight and identical initial conditions, the hom-

ing vehicle reaches the target sooner along the

collision course.

d. Motion along the line of sight (longitudinal)

The governing differential equation for this

maneuver is Eq (141) which is repeated at this

point.

d2R

7 - R_o 2 = -a R + AgR
(214)

where

AgR = GM (T_t)(---2- i - 3 cos 2 0)

r t

(2i5)

For a target in circular orbit, the differential

equation can be written as

2"q

1 - 3 cos 2 o)-5_ = _ a R
-t -J

(216)

where

_0t = target's angular rate.

For the cases treated it was seen that biased-

collision and biased-proportional navigation yield

d2R 2
- R cot (3 cos 2 00) = -a R (217)

whereas collision and proportional navigation

yield

d2R (1 - 3 cos 2 O) = -a R
+ R cot2

(218)

The above equations show that the gravity effects

reduce the closing rate in the case of biased-
collision and biased-proportional navigation.

However, the gravity effects may actually in-
crease the closing rate or at worse reduce it to

a lesser extent in collision and proportional

navigation. Hence, all else being equal, the

latter produce shorter homing times. The dif-

ferences are small when rapid rendezvous is

involved. However, for extended or long-time

rendezvous the differences may be significant.

Neglect of orbital aspects. The homogeneous
solution of Eq (217) admits hyperbolic functions

whose arguments are proportional to cot' For

Eq (218) since 0 : 00 i cot t' Mathieu functions,

whose arguments are likewise proportional to L0t,

are admitted. These homogeneous solutions
represent the perturbative effect of the orbital

aspects of the problem. If the homing phase ks

restricted to small homing times such that the

arguments of the homogeneous functions differ'

negligibly from zero, the ran_4e variation will be

approximately that which i_ obtained by letting

at = 0 in Eqs (217) and (218). In such instances

all techniques analyzed in subsection d have range

variations governed by

d 2 R "_

= -a R (219)

In all ensuing work in this chapter it is assumed

that Eq (219) is valid. The condition which must
be satisfied for this to }]old is

cot tR < < 1 (220)

or

v0

t R < < _-_ (221)

where

t R - rendezvous (homing) time.

This implies, of course, that the initial closing

rate must be sufficiently high so that the integrated

effects of the gravity differential are negligible.
If this is not the case, the problem becomes one

of extended or long-time rendezvous, requiring
the use of Eq (217) or (218).

e. Single longitudinal correction

Satellite rendezvous requires closing rate

control and differs from interception because of

this requirement. It is assumed that the homing

possesses an initial closing rate (-R0)vehicle

such that longitudinal corrections may be devoted

solely to closing rate reductions or braking. The

initial closing rate is established either by the

booster or homing vehicle upon injection.

The most obvious technique is one involving

a single thrust application at the last possible
moment, such that range and closing rate go to

zero upon completion of the correction. This

technique produces minimum flight times since

the initial closing rate is not reduced until just

prior to rendezvous.

Impulsive thrust. In the ideal case of an im-
puls_e thrust, the initial closing rate is removed

at R = 0. Thus, the rendezvous and interception

problems are virtually identical in this ideal case.
The rendezvous time is the same as that of inter-

ception. That is,

R 0

t R = = (222)
tGo (__o)
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where

tG0minitial time-to-go.

The longitudinal velocity requirement is just

= (-lFl O) (223)AVL,

Constant acceleration. Physically all thrusts

are-_nite and, hence, regard must be given to the

resultant nonzero braking distance. For constant

thrust and negligible mass change, the braking
acceleration is constant. The distance traveled

over the time it takes to remove the closing rate

is defined as the braking distance b and is given by

(224)

where

F 0

a 0 = m0
-- = initial thrust-to-mass ratio,

Thus, the homing vehicle is allowed to close

at the rate (-R 0) until R = b, whereupon the brak-

ing acceleration a 0 is applied so that R = 0 when

I_ = 0. This results in a rendezvous time of

At b

tR + T= tGo
(225)

where ( _t_0 )

A tb = braking duration - a0 (226)

Constant thrust. For the general case of
constant thrust wherein mass variation is non-

negligible

F 0

a R (t) = m0 - m0 t (227)

where

m0 _ mass flow rate > O.

F (t)

For this case, the required braking distance is
Refs. 10 and 11.

cm (228)b : - (1 + .0/c

where

c - effective mass exit velocity.

= go ISp

The rendezvous time is

= tG0 _00 + (229)

The following sketch shows a typical R versus

I_ phase plane for this closure, hnpulsive, con-

stant acceleration and constant thrust braking
are illustrated. It is noted, however, that the

difference between the latter two is _,x:_ggerated.

®

ImpulseNegligible mass change,
constant thrust

_) Sizable mass change, constant thrust

///
I
1

b F b a
O O

R

Multiple longitudinal corrections. There are

many reasons for reducing the closing rate in

multiple steps rather than in a single step. The

most obvious reason is the presence of system

errors which can cause significant range and

range rate dispersions if large closing rates
are removed in a single step. Therefore, there

exists the possibility of biasing the nominal point
of closing rate reduction so that the closing rate

is nominally zero at some range R b. Small

vernier jets can then be used to adjust for position
and residual range rate errors. However, for

large initial closing ratgs, the residual errors

may be quite high and may require considerable

expenditure of gas since the thrust level and

specific impulses of pneumatic jets are low.
Compounding this is the weight penalty incurred

by the tankage to contain such large pneumatic

volumes. Thus, even if such fine jets are used,

there still exists the desirability of multiple step

reductions so that the single step braking thrust

will not leave large residual errors for the vernier

system.

The underlying idea of multiple step reduction

of the closing rate is this: divide up the total
closing rate to be reduced in smaller increments

and allocate these increments at various ranges

so that percent-type errors in the velocity incre-

ments are also allocated rather than occurring all

at once near the target. Errors in each correc-

tion are than removed by each subsequent correc-
tion, assuming that sufficient time exists between

corrections for closed-loop control.

If done properly, the closing rate control can
be effected without need of a bilateral thrust

capability during the multiple step reductions.
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This is done by constraining each correction to

yield a certain minimum closing rate even in the

presence of system errors. Thus, each suc-

cessive correction need only decrease the closing

rate. This permits the use of a unilateral thrust,

resulting in a weight saving since a comparable

rear-mounted longitudinal engine is not required.

In addition, since the closing rate decreases

monotonically, the longitudinal velocity require-

ment is no more than the initial closing velocity

(-R0). There is the matter of the differential

gravity effect and injection dispersions. However,

these are also required of the single step tech-

nique.

It should be made clear that these refinements

occur at the expense of a longer flight time. That

is, under the constraint of minimum velocity re-

quirement and unilateral thrust, final dispersions

are traded off against time. However, except for
emergency rendezvous, the longer homing time

is usually more acceptable than the weight penalty
which otherwise occurs.

A method for selecting the nominal closing

rate profile which utilizes the minimum number

of reductions is now described. To simplify the

presentation, impulsive corrections are assumed.

This is not a restriction, however, since, for

nonimpulsive thrust, it is only necessary to start

each correction at a range which is greater by the

amount of distance traveled during each thrust

period. Thus, if it is required that the closing

rate be reduced from (-R 0) to (-RI) at some

range, the difference between the braking dis-

tances b 0 and b I yields the amount of lead dis-

tance. The corresponding difference between

the stretch-out times yields the amount by which

the total homing time is increased over the im-

pulsive case.

Suppose the final braking correction is

scheduled at a range R B which provides a suit-

able bias such that errors in range measurement

do not cause an overshoot in position and, pos-

sibly, premature impact. In addition, suppose

the nominal closing rate at this point is made

sufficiently high to ensure against negative clos-

ing rates in the presence of system dispersions.

The following sketch shows this in the (-_t) versus

R phase plane. The 3_ contour of dispersions is

shown, assuming a bivariate gaussian distribu-

tion in closing rate and range.

It is implicitly assumed that the range dis-
persion is acceptable with regard to specifica-
tions or that use of small bilateral verniers for

clocking maneuvers can comfortably accommo-

date the range errors. The primary concern

then is to ensure that the closing rate dispersion
is also within allowable limits. From this sketch

it is apparent that the closing rate bias (-RB)

must be at least equal to the expected 3or closing

(-_)

(_RN_ 1'' - _ _

Nominal nth (final)

correction

Nominal closing
rate prior to nth

correction

oi R B
I

contour of dispersions
R

rate error if range is to decrease monotonically.

Hence, for large dispersions in the final closing

(-RN) the bias becomes large and may berate

unacceptable in terms of vernier fuel and tank

weight requirements. To avoid this the following

process may be used to obtain the desired closing

rate profile. Let

N = total number of required correc-

tions (to be determined)

V. = closing rate following ith correc-
t tion

AV. = velocity increment of ith correc-
t tion

AV.* = commanded velocity increment of

I ith correction

ki' _i = proportional (percent-type) and
additive errors in execution of

AV.*
1

D. = desired or nominal closing rate

1 following ith correction

= error in measurement of V i.E i

The proportional error k. is the per-unit error
, 1

in execution of AV i and may result from either

aecelerometer bias, scale factor errors, or

from thrust and I variations if eorrections are
sp

metered on atime basis. The additive error _i

is the effect of residual impulse uncertainties.

Since

V i = Vi_ 1 - _V i (230)

_V: = (Vi_ I + ci_ I) - D i (231)

and

AV i = (1 + ki) Z_V_ _ + /_i (232)
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It is possible to write for the general correction

Vi = Di - ki (Di_ 1 - Di) - (ci_ 1 + Hi) (233)

if all cross-products of errors are assumed to be

negligible. In particular for the Nth (final) cor-
rection,

D N = (-I_B)

yielding

(234)

where

[ VN (-RB)] correction
- = closing rate error after Nth

a N -- total additive error of Nth
correction

= cN + ;3N (235)

Hence, if the 3a dispersion in the final closing

rate is allowed to be no greater than C [and by
"!

the preceding sketch (-R B)- C J, then it is re-

quired that

IC NIl/2

2 _ 9 2c_

DN_ 1 < C + (236)

-- 9a2 N

Thus, if a single step correction (N = i) is to be

used, the following relation must hold.

c2_9 21 112
D O = (-R 0) < C + (237)- \o<1

If this is not the case, then a single step correc-
tion cannot be used and hence N must be greater

than 1. This implies a prior correction at a

range

R = RN_ 1 > R N = R B.

For this prior correction, the unilateral thrust

constraint is invoked, requiring that VN_ 1 > 0.

UsingEq (233) with i = N - 1, this is established

with 3¢x probability if

2 > 9Cr2N_lli - DN 1 )2 + 9a2DN_ I (DN- 2 - aTq_I

(238)

If DN_ 1 is assumed to be at the maximum value

allowed by Eq (236) (to minimize the nominal closing

time),

(239)

where the notation implies the maximum value

with respect to DN_ 1. Thus, in order for a

two step reduction to be possible,

Max + 2

DO = (-i_0) < D 1 1 9Okl

40)

where (D1)ma x is given by Eq (236) for N = 2.

Usually, it is not necessary to proceed beyond
the case of N = 2 since the presence of a small

number akl in the denominator of the square root

expression in Eq (240) yields a very large number.
In addition, the fact that the maximum value of

D 1 is involved in Eq (240) further enhances the

situation. However, should the initial closing

rate be extremely high, so that Eq (240) does

not hold, N must be made greater than 2. This

implies a prior correction at

R = RN_ 2 > RN_ 1 > R N = R B

Again for this prior correction the unilateral
thrust constraint is invoked, and an expression

similar to Eq (238) results. If the maximum

value of DN_ 2 is used, a constraint on DN_ 3,

similar to that of Eq (239), results.

 t1,1N-2 - 9aOtN_Max

o _2
(241)

where (DN_ 2) is given by Eq(239). If three
max

reductions are to suffice, then Eq (241) requires

that

Max + 2

D0 = (-I_0)< DI i t 9Ok I -)
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whichis identicalto Eq(240),exceptthattheunity
subscriptsapplytothefirst of threescheduled
reductions,and,if writtenoutcumulativelyin-
steadof recursively,implies

) < r)2Max

where (D 1) and (D 2)
I'FI ax max

(236) and (239) for N = 3.

1/21t (242)

are giver_ by Eqs

What has taken place so far is an exercise

in dynamic programming (Ref. 12) to determine

the minimum number of reductions N necessary

to satisfy the criterion C under the constraint of

unilateral thrust. By inference, the general allo-
cation policy for N reductions may be written as

fl / 2 2 \lt 
Max I /D=i+19%i&/

DN, i < -) t
L \ kN-i+l 1 J

(243)

for

i:2, 3 ..... N

where

DO : (-P,o) (244)

MaXDN-I -- C /C2- 9_IN_ 112

+\ ,. ) <""9ak N

The process is continued until it is found that

D O = (-t_ 0) < Max DN_ i (246)

whereupon N is determined. The process also

yields the desired closing rates at each step.

Hence, upon satisfaction of Eq (246) all Di's

are determined.

There now remains the problem of allocating

the desired set of closing rates at appropriate

times or ranges. Generally, the choice should
be made so that a sufficient amount of tracking

and smoothing time exists between consecutive

step reductions. Also, the reductions should

be spaced so that the transverse channels have
sufficient time to steer out errors. The non-

impulsive nature of each thrust application must

also be taken into account. Thus, generally, the
time between reductions is

At i = Atsi + Ate. + AtB. (247)
1 1

where

At. = time between ith and i - first
1 reduction

At
s.

1

Ate.
1

= ith smoothing time

= ith lag time (computing time, valve

lag, etc. )

AtB. = burning time of ith correction
1

The range difference between the ith and (i - 1)st
correction is thus

ARt= (Atsi + At_i ) Di_ 1 + Ab i (248)

where

Ab. _- distance traveled in braking from
1

Di_ 1 to D i.
(249)

Equations (248) and (249) then allow for the com-

putation of the spacing of step reductions and,

hence, the generation of the nominal closing rate

profile. For any given set of spacings between

corrections, the closing rate profile is the
minimum time profile under unilateral constraints.

This follows, since at each step the closing rate

is assigned the highest possible value under uni-
lateral thrust constraints.

g. Other rendezvous schemes

So far the work presented in this section has

been based on the differential equations of rela-

tive motion. This approach is, however, not

necessary as will be illustrated in the two re-

maining schemes to be discussed.

Combined injection and terminal guidance.
By timing the initiation of thrust and providing

thrust of a variable magnitude and direction, it

is possible to perform the injection and any

maneuvers necessary for closure simultaneously.
The most notable studies conducted for this
scheme have been conducted at the MIT Instru-

mentation Laboratory (see Refs. 13, 14, 15 and

16). These studies are concerned with a guidance

equation of the form

where

f- = commanded acceleration vector
C

S 1, $2= sensitivity coefficients
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I_ = range rate

R = range

_LS = angular velocity of the line of sight

f(R) = desired range rate as a function of

range

2R = unit vector along the line of sight

For the studies conducted to this date, the

f(R) utilized has been K_/R. This selection was

made based on trials of several functions satis-

fying the boundary conditions for f(R) (namely
that f(R) be defined for all R and go to zero at

R = 0). A variety of values have been investi-

gated for Si and for K. With regard to K, the

implications are that some linear function of
the required velocity increment (i.e., a + bay)

may be advantageous from the standpoint of pro-

pulsion system performance.

Because of the extreme initial closure veloc-

ities (as great as 4500 raps) and the limited

range of the radar unit, it is, in general, nec-
essary to begin the injection maneuver with a

programmed thrust. Then at some time during
the maneuver after the target is acquired, the

guidance equation must be utilized. This
sequencing is desirable in other respects as
well, since it allows the planar change to be

made while the velocity is near minimum, thus

conserving the energy available.

A single variable thrust gimbaled motor (along

with an adequate control system) comprises the

propulsion system. The utilization of a single
motor is made possible by restricting the initial
conditions for closure to lie within a region ahead

of and slightly below the target. Under these
conditions the target overtakes the shuttle during

the injection maneuver. The energy require-
ments for these maneuvers closely approximate

the minimum (for small changes in the plane of

motion).

The purpose of the variable thrust motor is to

provide additional tolerance in the relative posi-
tion of the two vehicles at the time the injection

maneuver is initiated. In this manner it is possi-

ble to simultaneously compensate for errors in

the ascent trajectory and launch timing.

The data obtained for the necessary compu-

tations are taken from a single radar unit mount-

ed to the vehicle on a set of gimbals. The range

and range rate are measured directly, whereas

the angular velocity of the line of sight is com-

puted from signals taken from the dish gimbals
and the inertial platform.

An elementary functional block diagram of this

system is shown in the following sketch.

Positive closure. Utilizing the analytic solu-

tions for positive and velocity presented in the

discussion of relative motion for nearly circular

orbits, a purely numerical study of rendezvous

has been conducted. The guidance scheme for

this technique requires that the vehicle be acceler-

ated toward the target with some given velocity.

Then at a specified distance and range rate, thrust

is again initiated to drive both the range and range

rate to zero. This scheme has been investigated

in studies conducted within the Martin Company.

In order to maintain the vehicle antennas in

known orientations with respect to the earth, and

to simplify the attitude control function to one of
stabilization, the vehicle considered is assumed

to be aligned with its fore and aft axis parallel to
the orbital plane of the target satellite. Further-
more it is assumed that the fore-aft axis and the

lateral axis lie in the plane normal to radius
vector to the satellite. Thrust units are located

so as to provide fore-aft, left-right and up-down
accelerations. The attitude reference for this

orientation is provided by an inertial platform.

Analog studies have been conducted to investi-

gate vehicle to target closure employing on-off
thrusts applied through the cg of the shuttle ve-
hicle. The basic scheme utilized in these runs

I
Radar

Acquired

Guidance Iequation

H H IIsearch pattern Timer

Not

acquired Programmed t
thrust profile

magnitude and direction

Motor

gimbal

Variable

thrust motor
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is illustratedin thefollowingsketch. Thissketch
showstherelativerangeandrange-ratephase
plane(wherePointsA andB are tworepresenta-
tiveconditionsexistingatthetimeof radarlock-
On).

SWitehingline

(}{ : +b:{O

e rate

[,_ _Re_ativ'e range _", B

Thrust is applied in all cases to produce a given

specified closure rate, r d. The vehicle is then

allowed to coast Until the switching line conditions

are reached. At this point thrust is again initiated
and the range and range rates are nulled to zero.

The choice of K in the switching line equation is
determined by knowledge of the acceleration avail-
able from the motors. Thrust must be initiated

sufficiently early to avoid overrunning the target.

Because of the on-off nature of the propulsion

system, a dead spot must be provided to prevent

chattering. In addition, it is necessary to bias the

preselected closure velocity since the relative
velocity components will change even in the ab-

sence of thrust due to slight differences in the
orbits of the two vehicles and the differences in

the perturbations effecting them.

The guidance law for each thrust component
(neglecting the velocity bias previously discussed)
is of the form

T=+T0/[(R .

R

T-- T0/[IR ,

T=0

+KI%] < - D ; /_>t_ d

_Kh]>D;h<-*d]

+ KIll< - D ;ft <rid

-D< <.
where

251)

E = stand off distance

D = dead spot (+) about e

t{ d = preselected closure rate.

It can be shown that closure from any point in

a region about the target vehicle is possible.
However, the most economic utilization of the

propellant occurs when the shuttle is [nitiaily

ahead of the target with a slightly lower velocity.

If the vehicle is initially behind the target, two

possibilities exist. First, thrust can be applied

to produce closure without regard to propellant

consumption. Or secondly, the orbital period of

the shuttle vehicle can be adjusted so as to pro-

duce a gradual closure with respect to the target,

and then at such time as the vehicles are appro-
priately located, the previous routine can be em-

ployed.

Studies conducted with initial separations of

approximately 32 km and velocities of approxi-

mately 90 raps indicate that thrust-to-weight ratios

of 0. 1 to 0.2 g are quite adequate for control.

Closure times for these runs were generally in the
order of 400 to 800 see with a fuel requirement

W 0

of approximately T which cheeks very closely

to the estimate obtained from

1

AV = go Ispl n 1----:'_-"

The motion of the shuttle vehicle under the in-
fluence of this set of control laws is illustrated in

the following sketch which shows the projected
motion in the vertical-longitudinal plane and the

lateral longitudinal plane.

Longitudinal(-y)

Q)

Longitudinal (-y)

Signals for implementing this guidance law are

derived from the radar data. Range (r) and range
rate (_') along the line of sight are measured by the

tracking radar; the Euler angles defining relative
position are provided by pickoffs on the radar dish

gimbals, and the angular rate of the line of sight

as computed from the signals from the rate gyros

on the radar dish gimbals and the angular rate of
the vehicle which is slaved to some reference (for

example,local vertical).

h. Use of explicit control

The preselection of a nominal closing rate pro-
file implies a fixed number of corrections at fixed

ranges. In the early stages of mission planning,

this is perhaps necessary for determination of sen-

sor, propulsion, and time requirements in relation
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to finalaccuraciesanddesiredpayload.However,
wheneverthequestionof optimizationarises, the
selectionof anominalprofilecanbecomeanin-
volvedprocess,particularly when many correc-

tions are necessary. Moreover, when the statis-
tical interactions are considered, there may be

some disadvantages in the idea of a fixed profile.
Under such involved circumstances, it may be

desirable to allow the vehicle to adjust the closing
rate as a function of the conditions which exist at

the time, rather than purely on the basis of range

or time. Such a scheme would involve estimating

the final range and closing rate dispersions which

would result upon application of the final braking

thrust, and an eventual adjustment of the closing

rate if the estimated dispersions were unsatisfac-

tory. Thus, the times and number of thrust appli-

cations would depend upon the particular circum-

stances encountered during homing, with due

regard for system constraints.

3. Closure Times and Energ_r Requirements

The requirements for time and mass fraction

to produce terminal closure under any one of the

guidance laws discussed in the previous section

can be obtained by programming the equations of

motion for numerical solution and by substitution

of given sets of initial conditions into the program.

Although this technique has been employed fre-

quently in the literature, it has the disadvantage

that the solution is accurate only in the neighbor-

hood of the initial set of conditions. Thus, for the

present purposes a better approach is to present

an analytic approximation which is reasonably

valid than to discuss numerical solutions. This
technique should have the advantage of pointing up

the significant parameters.

Consider the two space curves representing the

motion of the two vehicles in the following sketch.

or in terms of the various components of position

=I:nxC = [m - " +_nz)t ] x(t)Fx 0 (mx + ,:ny

= (m 0 - r:nt)'x

(where _:n represents the total mass flow rate
assumed constant)

and the boundary conditions are R -- R 0 and

= V 0 at t = 0 and R = V = 0 at t =t b. The ground

rule is that thrust be maintained constant• This,

in turn, means that the induced velocity will be
canceled at some point in the maneuver by revers-

ing the thrust for the remaining burning time. It

is noted that this is the general requirement. If

the initial conditions are proper for a given thrust

level and burning time, it will be posstbte to

eliminate the necessity for thrust reversal• This
will be seen in the discussions which foliow.

Each of the components of position can be ob-

tained as a function of burning time (prior to thrust

reversal} by integrating

X

m 0
_(t) =

1 _ t-m 0 )

• = - £n 1 - m
x(t) _-0 -_- _0 +el"

Now evaluating x at t = 0, yields C 1 = x0' thus

Z Y

7///_Z i AXi

i
/

Given the position and velocity errors at a time

corresponding to injection it is possible to com-

pute the required change in position and velocity
at a time in the future at which rendezvous is

desired. This information is sufficient for a first

order estimate of energy requirement if guidance

schemes are not considered. (The energy require-
ment will be no more valid than this due to the

fact that coupling of the differential equations will

be neglected. )

The differential equations governing this ma-
neuver are

•.

F = rnC = (m 0 - r_t) R (252)

• Fx fn (1 - m t) +x 0x (t) -- - _ _-o

Fx mo _ rh {!
x(t) = - --r--(--v--) 1 - t) n(l -

m m _00

1}] + x0t -_ C 2.

Again evaluating at t = 0 yields

x(t) =- .-.'7"2-- 1 - {_n(1 - - 1
m mo

(continued)

t)
m 0

VII - 40



Fx m0
+ _0 t ÷ x 0 +

m

(253)

Fxmo I(l- rnt_n( 1 mt_+rnt]
m r mo] \-_%-0/ m--o-oJ

+ _0 t + x 0

and similarly for y and z. But this solution is

valid only for t < t 1 where t 1 is the time at which

this component of thrust is reversed. At times

greater than t 1 the same procedure must be uti _

lized but T must be of the opposite sense.
X

x(t) = x--r- n l - +C 3
m

where

M 0 = m 0 -mt 1

But x must be x I at t =t I . Thus

F x [_ r:n tl.'l

and

x(t) = x n (1 - - gn -
M o

mtl.'l-'o(,-

I_ n(l go _ I(1 t_tl_
_
n%o/

At this point the relationship between t 1 for this

coordinate and t b can be determined by requiring

that x = 0 at t =t b. Thus

m

1--%-o --%-0) °

M 0 mtl_

_t12
2t I-2 m----_f°r_o-'O

or

_o _- g.__
X

e

(254)

Now continuing to the definition of x (t) yields

Fx - ! n - -
x (t) = -q-- --m rh

(continued)

mtl_ mtl_l

-tin _-q_O/ (1- mo_J

where

x(t) = x 1

+ x0t + C 4

att =t 1 .

Thus

Fx n_tll {'n (1 _0 ]
= ÷-- i- - -

Xl rn M 0 /

• ,htl._l
+tl_n _-_ (' ---_O_J - _0 t,

Fx [m (l _ mtl_,n (i mtl_ rnt,=_--_ 0 mo/ mo] 4"m 0

&tl' _
(l_ -%--0]rntl_ I_n+ M 0 (1- M0 /

C 4

+tl'n 1(1--_0] (_ - ttntl_lm0 /lJ

Now at t =tb, x = 0, therefore

't
+ x 0.

-Xo =_--_ MO ---_0) n (1 - -_01

+ - In - +rnt 1

rhtl_ lln (1-rhtl_ -

(255)

This expression can be simplified by eliminating

tb from the equation using

M0 _ n_tl__, (-))]
A = e 0 Fx (256)

or

Now letting _ -

M "

tb = 0. (i _A)+A2tI(I _ m tl )
m 0FIT

_ M0 M 0

---_(1 - A) +2At 1 m---0-

r_t 1

m 0 - _1"

(257)
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Thus

tb

I - --

m 0

=_ (1 - _i ) (2 - A) + 2A (2 - _l)tl
th

mtb [, ]M0 = 1 - 1 -A) + 2A_l

=A - 2A_ 1 =A(I - 2_i).

Fx [- x 0 = .--:--2- -Am 0 (1 - ¢1 ) (1
m

- _,_i ) {'n _* ( I -2_i)-
I}

m0(1 - (I - At +gl) m 0

• (2A(2 -gl )- I)} _n(1- 2g 1)

+m 0 (2 -_i ) In (2 - gl ) +m01 l

+too(1- _1) (1 - _1)

{,n(, '}
FxVn0 [ _I 2)- x0 = .----:_ -A (1 - 3_1 +2 _n(l-2_l)

m

+ (i - 3_ I + 2_}) (I - tnA)

- {(1 - _i ) (1 - A) + gl [2A(1 - _I )

- I]} in (2-291)

+ (2 - gl ) in (I - _1 ) + _I + (2 - 2g 1)

{in (1 - 2_1) - In (1 -_I) - 1}] •

Now adding and subtracting (1 - 3_ 1 + 2_12) in

(1 - 2 _1 ) within the bracket yields

:?-Xo =too _'r _11n(1-_1)+2_

+ (1 - 3g 1 + 2g}) [(1 - A) in(1 - 2g 1)

-ln } (2587

This equation is solved for tl; then the equation for

t b completes the solution. However, if _ ts of the

order of 0.1 or less as it is for most maneuvers a

further simplification can be achieved by expansion

of _ n (2 - {)

2
in (2-_) =-_-_2 "

Thus

-x :mo7 }- g (l- +12 }7

[,1- A)(-2_ 1 - 2{}7 inql

.2

m x 0 }
m0-------Fx--InA +2gl(1-A) +_ (- i +8(I -A))

+ _3 (_ } _ 2(I - A)) + .... (2597

This is a cubic equation which can be solved by

successive approximations. Since there exist three

such equations (one for each of the coordinates)

parametric data seems extremely impractical.

However, the form of the solution is sufficiently

simple to facilitate hand computions for any

given set of initial conditions.

Once t 1 and t b are known, the total mass frac-

tion is simply

rn t b T t b

= m0 - _0 (260)

and the corresponding impulsive velocity is

1

&V = go Isp In

l:n t b

= go Isp _ -- go Isp m 0

T tb

= go Isp -C- -_0
(261)

Thus, in this fashion it is possible to evaluate the

energy requirements for a rendezvous maneuver

which approximates the guided maneuver.

Example. Consider a maneuver in the x-direc-

tion for which the initial conditions are x -- R 0 --
F F =

x0, k = 0, t = tb, and _0 = B or mo Bg0,

where B is an unspecified constant. Since k = 0,

A=I.
Thus

-2
m

m 0

but

F
X

Xo - 2
F- ~ - _ 1 + O(_3)

X

F x 0

Thus

m x 0

m o "7 = \ mo /

2 m0 Xo x0

tI =
_- Bg 0
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and

or

t b = 2t 1 (1 - mm_)

__ _-- =

m 0 W 0 W 0 Isp

I (_-_0) 1/2
x 0

t b = 2

B W 0 B

1 (x)]
Isp

B =

x0/g 0

x 0 2 "

Also

_b - m tb
0

_ 1 Xo

Isp - Is--p- -_0

(262)

This expression shows the importance of several

parameters. First, Sb will be larger for the higher

acceleration levels (large B). This behavior re-
sults from the excessive propellant burned to can-

cel the velocity induced from t = 0 to t = t 1. The

higher consumption, however, resulted in a lower

value of closure time (tb). The second parameter

is the specific impulse (Isp). This parameter en-

ters into two stages: first, higher values of specif-

ic impulse reduce t b, and second, the higher

values of I reduce m. The contribution of both
sp

efforts is observed in the functional form of _b'
Eq (262).

To provide an idea of the magnitude of the re-

quired propellant fraction, consider

= 105 ft = 0.3048 x 105 m
x 0

B

go

I
sp

_b

t b

= 0.1

= 32.2 ft/sec 2 = 980 cm/sec 2

= 300 sec

= g_N)- " _-g

-- 0.000[0.1 6-0.01q :0.108

mo= _b fn - _b

(300)
= O. 108 "D'7-T = 322 sec

t 1 = 170 sec

AV = go Isp _b = 32.2 (300) (0. 108)

= 1030 fps or 315 raps

Now consider the some problem but with accelera-

tion levels of 0.075, 0.05, 0.03 and 0.01.

t b (see)

t 1 (sec)

[ fps

AV

l fl_ps

0,108 0.0955 I 0.0763 I _.0616
/

322 382 469 616

170 203 244 318

1030 922 756 594

315 281 231 181

L

B = 0.01

0.0364

1103

562

352

107

The first observation is that the energy require-

ments are large. This fact is due to the assump-

tion that the closure velocity was zero initially

(as may be seen in Eq (259), and the fact that the

assumed range at t =0 was large. To provide an

appreciation of the validity of the solution, how-

ever, a numerical check was made of this set of

initial conditions utilizing a line of sight guidance

law. The results of this investigation proved the

validity of this approximation since the agreement
of the results for the same closure times was

essentially the same as those predicted.

A more realistic approach utilizing the fact
that the vehicle should be placed ahead of the tar-

get at a slightly lower velocity in order to produce

an inverse tail chase would of necessity reduce

these energy requirements to the numbers more

conventionally quoted. In fact by selecting the

proper value of F and t b for a given x0Y0 z0 it

would be possible to eliminate the first type of

thrust (i.e., toward the target) and accelerate

continuously to the desired rendezvous. To pro-

vide more specific information for a particular
guidance system, it is necessary to produce a
numerical simulation of the maneuver. This has

been accomplished for two of the rendezvous

schemes, the first being a constant line of sight

in inertial space and the second being a combina-

tion of a differential correction procedure and

Method I. Table 2 presents typical numerical

results for these techniques for a circular target

orbit of approximately 180 kin. Burnout occurs

at 37 km for all runs, and two ascent range angles

(cut off to apocynthian 180 ° and 90 ° ) are presented.
The differences in the numerical results are due

to the fact that more energy is required for injec-
tion for the 90 ° ascents and the fact that the rela-

tive velocities near apocynthian for the 180 ° as-

cents are sufficiently lower to require longer clo-
sure times. /ks may be seen from Eq {259), the

maneuver requirements for a lunar rendezvous
and for an earth rendezvous would be the same.

The same cannot, however, be said for that por-

tion of the velocity required to inject into the or-
bit. Thus, the total maneuver requirements should

be increased by the amount of the difference in the

injection velocities to provide a better estimate of

the total requirements for earth rendezvous

 Vo rec  on=,V " Vc-Va 
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TABLE 2

Numerical Rendezvous Results

Position

Ascent

90 0 -33,109 -16,620
90 0 -35,693 -9,897
90 3,426 -35,528 -9,897
90 3,426 -28,554 -23,343
90 0 -28,760 -23,343

90 37,040 0 0
90 33,617 0 6,723
90 33,617 0 -6,723
90 40,466 0 -6,723
90 40,466 0 6,723

180 0 -19,886 -31,299
180 0 -27,729 -24,256
180 23,706 -14,388 -24,256
180 23,706 -5,667 -27,891
180 0 5,667 -36,604

180 37,040 0 0
180 37,040 0 6,743
180 45,003 0 6,743
180 60,747 0 6,743

Velocity

Method 1

Method 2

Uncorrected
Miss

Distance

x0(m) Y0(m) z0(m) k0(mps) _0(mps) i0(mps) (kin)

0 43,6 61,0
0 43.6 61.0
0 43.6 61.0
0 43.6 61.0
0 43.6 61.0

-64.6 0 0
-64.6 0 0
-64.6 0 0
-64.6 0 0
-64.6 0 0

0 -15. 1 56. 1
0 -15. I 56. i
0 -15, i 56. 1
0 -15,1 56,1
0 -15. I 56. I

-26. 1 0 0
-26, 1 0 0
-26. 1 0 0
-26. 1 0 0

0
8.83

9.06

0

8.98

o
14.48

o

15.41

Method I

t AV (mps)

560 81,1
608 84.4
609 89.9
540 100.3
538 93.0

557 71.9
538 91.4
535 91.7
622 92.7
616 92.7

1081 66.1
1261 69.8
1162 101.5

968 112,2
843 66.8

1061 40.8
1102 59.1
1207 64.6
1366 91.4

Method II

t _V (mpsl

587 71.6
627 78.9
628 79.2
563 88.7
561 87.4

580 71.9
559 82.6
556 82.6
644 83.8
644 83.8

1093 36.9
1269 45.1
470 57.0
977 72,5
853 64.6

1071 40.5
1112 51,8
1220 59.1
1383 68.3

The inertial line of sight is maintained fixed,

A computation is made using the equations of
relative motion to yield a correction of position.
Then as a final phase, the inertial line of sight
is held constant as thrust nulls velocity and
position errors.

NOTES:

x normal to track

y along track (i.e., _iong V)

z along radius

'4. Terminal Guidance Smoothing Techniques

Tracking noise, in particular that which arises

in radar skin tracking, has a Drofound effect on the

probability of success in the rendezvous mission.

Frequently, the basic accuracy of a homing tracker

is not sufficient to allow guidance command com-

putations without some smoothing. In this section

two techniques for the smoothing of transverse

angular rates of the line of sight are discussed.

Emphasis is placed on the angular rates inasmuch
as the effects of noise in these measurements are

more severe than those in range. The two tech-
niques are:

(I) Angular momentum smoothing.

(2) Sample data (digital) filtering.

The first technique takes advantage of the fact

that the product of the square of range and the

inertial angular rate of the line of sight is very

nearly preserved during thrust-free flight. Thus,

the average of this product over many points in

time yields a near-optimal estimate of the "angu-

lar momentum" of the target-homing vehicle sys-

tem. Division of this estimate by the square of

the most recent value of range (suitably smoothed

and updated) yields a near-optimal, updated esti-

mate of the line-of-sight rate. Alternatively,

division of the estimate of angular momentum by

the most recent value of range yields a near-

optimal, updated estimate of the transverse velocity.

The second technique is that of digital filtering

of the line-of-sight rate, assumed to be of the form

of a signal polynomial plus uncorrelated noise.

This technique is the conventional sample data

minimum mean square error scheme discussed

by Blum (Ref. 17). While the angular momentum

smoothing scheme is simple and effective, range

measurements must be available. Sample data

filtering on the angular rates does not depend on

range information and is, hence, applicable to

both collision and proportional navigation.

A third technique not discussed here is that

of analog filtering of continuous data outputs from

the tracker. The smoothing may involve either

a straightforward low-pass filtering of the track-

ing outputs or the use of Wiener filters. The

interested reader is directed to Refs. 18 through

26 on the topic of optimum mean square error

filters for continuous processes.

The forms of the true rates _ and ¢o are
Y P

suggested in the discussion of homing techniques

formulated with respect to the line of sight. For
thrust-free motion

t

h op =R02¢0 +_ RAgp dt
P0 0 } (263)
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where

hwP = R2_p 1 (264)
h y = R2_Oy

Thus, for angular momentum smoothing, the yaw

signal, h , is a constant, while that of pitch is

very nearly so if the gravity torque is small. For

sample data filtering of the rates, _Op and _y, sub-

stitution of Eq (264) into Eq (263) shows that

2
w t

R0 P0 1

Up = R2 + _-_ _ RAgp dt
0

(265)

R02_°p0

OJy = R2

J

Over smoothing times much less than the total

homing time, _Op and O_y, may be closely approxi-

mated by general polynomials in time. For ex-

ample, if the closing rate is reasonably constant

over the smoothing time,

a _ Ro - (- RO) t

,,0,,
w he re

-i_0

tG0 = initial time-to-go = _0 (267)

Thus,

_Y0

Y __It) 21 tG °

( t2 t= 1 + 2 t _ 5----_- +.. (268)

_Y0 tG 0 tG0

and similarly for _p except that an additional ex-

pansion is required due to the presence of the

gravity torque.

Thus, in both schemes it can be said that the

true signal is a polynomial in time. In the case

of angular momentum smoothing the behavior is

nearly a constant in pitch and truly a constant in

yaw. The angular rates are polynomials of higher

order depending on the smoothing time. For very

short smoothing times a linear variation is valid.

For moderate to reasonably long smoothing times

a second or third order polynomial is valid.

a. Angular momentum smoothing

Let

h = estimate of h , h

P, Y _p Wy

then assuming a large number of samples, N,

over the smoothing interval,

N

hp, Y = _ (269)
i= 1 i

may be used to smooth the angular momentum

over thrust-free periods. In the following, the

range measurements are considered to be noise-

less since current trackers have range accuracies

giving rise to negligible transverse guidance

errors. The input to the smoothing process may

be written as

h ) = R02_p0 + R.26__P i 1 Pi

t0+t I
f

+
RAgp dt

to

(h y) = R02_y + R.25_i 0 i Yi

where

(270)

6co

P

Y

Thus,

= pitch rate noise of line of sight

= yaw rate noise of line of sight.

N

hp = R02_Op0+_ ! Ri25Wpi
i=1

N t0+t i

i--I tO

(271)

N

R02y 0 + N1 !
= R.25w

hy . 1 Yi
i=l

At the end of the smoothing- interval at which

the estimates are to appIy, the true values of the

angular momenta are
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-n

t o + t N

= R02_p0 + _,_\ RA gp dthp

t o

hy = R02¢jy 0

Hence, the errors in the estimates are

(272)

N

1Z5hp = _ R.26_
1 Pi

i=l

NS! _ 0+ tNN

i=l t0+t i

RA gp
dt (273)

N

= R.25¢o
6hy 1 Yi

i=l

Utilizing the apparent gravity effects (discussed

earlier) and the fact that range decreases mono-

tonically, Eq (273) are seen to be bounded by

N

R0 _, 3 GM R02t[= + -- __

(Shp)max _- i=l 6Vp i 4 rt3

N

(5hy)ma x = 6V
Yi

i=l

where

5V = R. 6_
Pi i Pi

5V = R. 6_
Yi t Yi

Hence,

( 5Vp)ma x

}
N

= R = _ 5Vp

R02

+ 3 9-_- --H- t N4
r t

N

 °hy'maxZ
(6Vy)max = r - N 6Vy i

i=l

Using Eq (266) with t = t N< < tG0

I(274)

(275)

276)

N

"_1 _ +3GM
(SVp)ma x = _ 6Vpi _ RtN

i-"=l 4 r t

N (277)

(6Vy)max _ 1__ _1 6VN :._ Yi
1

Thus, since the samples are uncorrelated, the
maximum values for the standard deviations are

1
max o V - GVI 4 ax

1

max¢Yv- IrV i)Y _-N Y max

and the maximum

(278)

mean pitch velocity error is

_ 3 GM
max UV 4 5r- Rt N (279)

P r t

The fact that the velocity error due to the

gravity torque is negligible is apparent upon sub-

stitution of some numbers. For a target in a
circular orbit of 500 naut mi or 926 km altitude

and a relative range of 25 naut mi or 46. 3 km, a

smoothing time of 10 sec yields

maxu V = 1 fps or 0.3 raps
P

At a relative range of 5 mi or 8.7 km this maxi-

mum error becomes 0. 2 fps or 0. 036 raps; at
1 mior 1.73 km; 0.04 fps or 0.012 raps. Thus,

while the bias error is initially large, it quickly

drops to a negligible level at small ranges where

fine accuracy is required. This is to be expected
since the differential gravity acceleration dimin-

ishes as range goes to zero. Thus, Eqs (278) and
(279) remain as the principal errors, showing that

the angular momentum smoothing scheme yields
residual transverse velocity errors which decrease

with the square root of the number of samples

used in the process.

b. Sample data filtering

Blum (Ref. 17) presents an exact formula for

the output noise power of an optimum digital filter

designed to make a zero-lag estimate of the input

or its derivatives. The input model consists of a

polynomial signal plus stationary uncorrelated

noise. Graphs and tables of the rms error for the

zero-lag estimation of the 0th, ist and 2nd deriva-

tives are given as a function of the input polynomial

up to degree 5 and memory spans up to 10 sample

points.

The work of Blum in sampled data filters is
discussed in this section, to the extent of intro-

ducing the variables and notation used in his graphs

and tables, and the results that he derives.
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Considera setof equallyspaceddatapoints
(u, yu)u =i, 2..... M. Theproblemis tofit
a leastsquarespolynomialof degreento these
pointsandto estimatetheKthderivativeofthe
observeddatafromthecurvefit atanypointon
theuscale.

For the purpose of the analysis it is convenient

to utilize orthogonal polynomials in the curve fitting

procedure. Thus let the true polynomial be given

by

n

P(u) =

L=0

aLOE(u), u = 1, 2 ..... M

(280)

where the polynomials E L (u) are orthogonal,

(Ref. 28) e. g. , satisfy the following relationships

IVl

u=l

{h(U){L(U) = 0, h # L, (281)

M

)_ _eL2 (u)

u=l

= S(L, M). (282)

It is assumed that the observations Yu are given by

Yu = P(u) + N(u).

The N(u) are assumed to be random, stationary,
and uncorrelated errors.

Then the least squares estimates _L of the co-

efficients c_L are obtained by minimizing

lY ^I = C'L {'L (u) - y (283)

u=l 0

^
with respect to each of the parameters _L"

Thus one obtains

ML ,,u]aI = _ 2 (u) - y E L(u) = 0,

a_L u = 1 0

L : 0, 1, ..., n.

(284)

Solving Eq (284) for G L one obtains

YugL(U)AaL L O, 1, n.

u=l

(285)

By substituting Eq (285) one obtains the curve fit

relationship

n

Y(u) = _ _L _L(U) . (286)

L=0

To evaluate the estimate of the Kth derivative

at u = M + a one need only take the Kth derivative

of both sides of Eq (286) (considering u as a con-
tinuous variable), and obtain

dKy(u) • (K)

u=M+_ _- _(M+a)

n

d K

_L _ EL (u)

L--K

(287)

u=M+a

Let

dK EL(U ) EL (K) (M + or)

u=M+c_

(288)

Now, substituting Eqs (285) and (287) yields

y(K) (M + a) =

\_n TM Yu_L(U)_L (K) (M +_)
/_ __ S (L, M)
L:K u = i

(289)

Let

then

n {L(U)_L(K), X-" (M + _)

WM-u = /)__., S (L, M)
L=K

u = 1, 2 ..... M

(290)

M

_(K) (M + a + j) _ *M+j = WM-uYu+j'
u=l

j : 0+1±2 ....

(291)

Equation (291) is directly interpreted as the

input-output relationship of a digital filter with

# i g"weighting sequence W 0, W ..... WM_ 1. The

input is the sequence Yu+j and the output is

YM+j (M + j + a). The output is available in real

time after the last data point is sampled and esti-

mates the Kth derivative of the input at u = M+_+j.

The filter has a finite memory over the interval
(M- I)T.
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Since the estimators _L are unbiased, the error

in estimate is given by (j = 0),

[YM (K) _" _L_L(K)(M )1
A = (M+cr) - +a,

L=K

M (292)

A = y * N(u).WM- u

u=l

The mean square error of estimate is given by

M
2 , 2

(yA =_N2 _ [WM_u] (293}

u=l

(aN 2 = noise mean square error}.

Substituting Eqs (281) and (282) into Eq (293) yields,

2

aA 2 - 52 (M,a, K, n)

a N

n

:_ S(L, M)
L=K

(294)

which is the main result of this section.

Equation (294) has been derived for unit time

between samples. If the interval between samples

is given by T, then Eq (290) is modified as follows:

* = 1 (295)
WM-u, T _-_ WM-u'

and Eq (294) becomes

2
_A (T)2K

2
- 6 2 (M, a, K, n). (296)

Note that

52(M, _, K, n) = 52(M, a, K, n- 1)

(297)

+ [_n(K) (M + a)] 2

S(n, -M)

so that increasing the degree of curve fit is never
2

associated with a decrease in a A since the second

term of Eq (297) is positive definite for fixed M,
a, and K.

Special case. Special formulas for 62 are as

follo-_'_._= 0, a = 0, -1, -2 ..... (M-1)then

52 (M, c_, 0, n) = W*

As an example, when a = 0, K = 0, one obtains

a zero-lag estimate of the input. The mean square

error output is then proportional to W 0, the co-

efficient which multiplies the latest data point,

e.g.,

2 2 *
= a N • W 0 •O A

Other relationships on the 6 which may be
useful are as follows. Let the order of the deriva-

tive equal the order of degree of curve fit, e. g.,
K = n, then

(n:)2
(298)62 (M, ¢_, n, n) =

and is independent of a.

Let the order of the derivative equal one less

than the degree of the curve fitting polynomial,

e.g., K = n- 1, then

62(M,a, n - 1, n) = 52(M,a, n - 1, n - 1)

+ [M +2a - 1] 22 52(M, a, n, n)

(299)

= s_In - 1)!'] 2
n 1,M)

[ ] 2M + 2a - 1 2 [n']

2

(300)

Whenc_ = - (M - 1)/2; e.g. , the midpoint of the

curve fitting interval,

= 62(M,a, n- I, n - I). (301)

This represents the minimum 52 obtainable with

respect to _.

Tables 3, 4 and 5 present the exact values of

5 using Eq (296). Figures 11, 12 and 13 present

a plot of 5 using Eq (294) for M = 10 to 100 for

purposes of interpolation.

Equation (296) is identical with the results one

would obtain from Blum (Ref. 30) as are the values

of the weighting sequence.

The interpretation of the parametera is as

follows: when a = 0, one obtains a zero-lag

estimate with respect to the latest data point,
when - (M - u -_ 1) < a > 0, one obtains an extra-

polation, and when (M - 1) < a < 0, one obtains

interpolation of the input polynomial. A more
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2
detaileddiscussionof aA
available(Ref.28).

as a function of a is

Table 6 contains a summary of a few useful

properties of the orthogonal polynomials. A list-

ing of the orthogonal polynomials in consistent

notation is shown in Table 5 of Ref. 29.

The functions satisfy the following recursion

relationship

_v+l(U) -= _l(U) _v(U)

V 2 (M 2 - v 2)

4 (4v 2 - 1)
_v- 1 (u) (302)

As indicated, the recursion is an identity so that

by repeated differentiation one obtains

(L) (u) -= _l(u) _(L)(u) + L_ (L- l)(u )
v+l v

v 2(M 2 - v 2) _ (L) (u)

4(4v 2 - 1) _v- 1 '

(303)

where

_:L)(u) = 0, L< 0, x< 0,

_vhere _L (L) = L:

L > x, and

so that

_(L) (M+c_) - [28v+l +Me - I] %(L)(M+. )

+ L_v(L-I) (M +a)

v 2 [M - v 2] _(L) (M +_).

4(4v 2- 1) _v-1

(304)

Finally, the sum of squares S(L, M) is given by
Ref. 30.

+L

(L:)4 _ (M - j)

L=-L
S(L, M) = -(2L): (2L + 1):

(305)

Higher order polynomials to degree 10 are listed

by Allen (Ref. 31). A very complete table of the

values of _v(U) for v = 0, to 5, u from v+ 2 to

104 is made available by Anderson and Houseman

(Ref. 30).

c. Conclus ion

An exact equation for the mean square error

of the output of an optimum digital filter has been

presented. The formula was derived using curve

fitting concepts to demonstrate the relationship

between the concepts of parameter estimation in

curve fitting and weighting function optimization

in linear filtering.

Equation (290) represents a convenient formula

for computing the weighting sequence of the digital
filter.

From Tables 3, 4 and 5, one may determine
the exact value of 6 for small M.

In Figures 16, 17 and 18, the values of 5 can
be determined for those values of M not tabulated.

For M > 100, one can extrapolate linearly on log-

log paper.

TABLE 3

Table of 5(M0 a, K, n), a = 0, K = 0 for Evaluating

the RMS Error for Zero-Lag (_ = 0) Estimation of

the Input (K = 0) as a Function of the Degree of the

Curve Fitting Polynomial (n) and the Number of Data

Points (M)

Mln _ O I

2 5 O. 70711

3 6 0. 57735 0. 91287

4 6 0. 50000 0. 83666

5 6 0. 44721 O. 77460

6 5 0. 40825 0. 72375

7 6 O. 37796 O. 68139

8 6 O. 35355 O. 64550

9 6 O. 33333 O. 61464

I0 6 O. 31623 O. 58775

29 6 0. 22361 O, 43095

50 6 O, 14142 O, 27805

85 6 O, 10260 O, 20359

iO01 6 O. 031607 O. 063167

2 3 4 5

0.97468

0,94112 0.99283

0. 90633 0.97996 0, 99801

0.87287 O. 96362 O. 99346 0. 99946

0.84162 0.94548 0.98665 0.99796

0.81278 0.92660 9, 97800 0,99533

0.78625 0.90762 O. 96802 0,99157

0.80892 0.74985 0.85231 0.92022

0.40784 0,52578 0, 63011 0,71946

0,30142 0.39471 0,48223 0,56299

0. 094632 O, 12596 O. 15709 O. 18800

TABLE 4

Table of 6 (M, a, K, n), _ = 0, K = 1 for Evaluating

the RMS Error for Zero-Lag (_ = 0) Estimation of

the First Derivative of the Input (K = 1) as a Func-

tion of the Degree of the Curve Fitting Polynomial
(n) and the Number of Data Points (M)

M/n_ 1 2 3 4 5

2 5 1. 414

3 5 0,707ll 2,5495

4 5 0,44721 1,5652 3.83695

5 6 0.31623 1. 1148 2. 52566 5. 5839

6 6 0.23905 0,85252 1.90348 3,6802 8.2418

7 6 0. 18898 O. 68138 1.52189 2. 8228 5,2190

8 6 0.15430 O. 56167 I. 26041 2. 3028 3. 9614

9 6 0. 12910 O, 47377 1, 06943 1, 9445 3, 2351

10 5 O, llOlO 0.40685 0.92389 1.6794 2,7476

20 6 O. 038778 O, 14855 O. 35079 O. 65608 1. 0684

50 5 O. 0997999 O. 038494 O. 093871 O. 18201 0. 30714

98 6 0.0037414 0, 014821 0,036558 0.071888 0,12326

100l 6 0.000109380 0,00043711 0,0010918 0.0021790 0.0088054
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TABLE 5

Table of 6(M, a, K, n), a = 0, K = 2 for evaluating

the RMS error for zero-lag (a = 0) estimation of

the second derivative of the input (K = 2) as a func-

tion of the degree of the curve fitting polynomial
(n) and the number of data points (M)

M/n----_ 2 3 4 5

3 6 2,4495

4 5 1,0 6.7823

5 6 0.53452 3.2071 14, 017

6 6 0.32733 1.8919 7,0312 26.312

7 6 0.21822 1.2440 4.3582 13,334

8 _ 0. 15430 0.87535 2. 9852 8.4113

9 6 0, i1396 0.64578 2.172!) 5.8714

i0 6 0.087039 0_4_355 i. G4_4 4.3527

20 6 0.015094 0.087123 0.29179 0.7.1414

50 6 0.0015194 0. 0089549 0. 030657 0,0_9865

95 6 0.0003(1512 0. 0018129 O. 0062872 0,916466

1001 6 0.}_4841 x l0 -6 0. 50735 x i0 "5 0,17741 x 10 -4 0.47264 x 18 -4

TABLE 6

OrthogonalPolynomials

_0(u) = 1

_l(U) = (u -u), u - M +2 1

M 2- 1

_2(u) = (u-u)2 - ----T-2

;,u ,u[3<0]

+ 3(M 2 - I)(M 2 - 9)

560

_5(u) = (u _u)5. (u __)3 15(M21_ 7)]

+(u -u) [ 15M4 - 230M2+40711008

5. Long Time Closure

If relatively long times are acceptable for

closure, several computational schemes may be

employed. One such method has been developed

by D. F. Lawden and is reported in Ref. 31. The

solution outlined is directed primarily toward the

correction of interplanetary orbits but is sufficient-

ly general that it may be utilized for this problem

as well. The major disadvantage of this solution

for manual computation is the iteration procedure

required to define the modified or closure orbit.

A general solution may be obtained by con-

sidering the requirements for closure (i. e., the

radius identity at the point of rendezvous and

specified time of closures). This analysis yields

two equations with 3 flnknowns (Aa, Ae and A_);
however, these new variables are in turn functions

of Ar which is a known error and AV 1 and z_'/1

which are the differences in velocity and flight

path angle immediately after the corrective pulse

relative to those of the target vehicle at the same

time. This analysis yields the following equations
when second order terms in Z_a, Z_e and z_¢0 are

neglected.

1 - ef 2

1 + (ef + Ae) cos (Of2 + A_o)

1 +ef cos Of 2

At 2_
= Et2 - Etl -(ef + Ae)(sinEt2 - sin Etl)

Etl =

_ i_-(ef +Ae)

2 tan L¥1+(ef +Ae)

(_f2 -A 0 -A(h+A _) ]

tan 2 J

Et2 =

- 1_/1-(el +Ae)

2 tan k_l÷(ef+Ae ) tan (0f2 +2 A_) ]

where

Aa, Ae and Aw are the required changes in

the orbital parameters as defined in the following

discussion of the variation of parameters tech-

nique.

Of 2 is the angle from perigee to the point of

rendezvous in the target orbit.

A0 is the angle subtended by the target vehicle

in moving from t 1 to t 2.

A¢ is the central angle between the two ve-

hicles at t 1

The resultant equations for this solution are so

complex in nature that the solution appears un-
attractive.

A third method may be obtained by adapting
the "Variational Method for General Orbital

Errors Analysis" reported in Chapter 12. The

equations for this solution are summarized be-

low.

_f2 = 0f2 (0fl' tclosure' ef)

(l+ecosOf2)2 F._f_"'At + 3MAal
A¢2 =A_- 3/2 '

(l-e 2) L_V P

sin Of 2 (2 + e cos Of 2) Ae (306)
+ 2

1-e

F1 _ e 2 3eM sin 0f2 ]

£Xr2 = Ll+e cos of 2 2(1_e2)1/2 j Aa

Aa -

_a e sin bf2 At- a cos 0f2 Ae - _2 (307)
(I- e 2) 1

2(I + e COSSfl)2Ar I
+

(I - e2) 2 (continued)
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(1 +20 cos Of 1 +e2)Z_V1+2 2
1 -e

(308)

A e =

/N,_ =

(e + cos @fl)(1 + e cos 6fl)Zkr 1

a (1 - e2) 2

+ 2 (e +cos 6fl) (1 - e 2) AV 1

(1+ 2e cos efl+e 2)

(1 - e 2) sin 6fl

+ i + e cos £fl A_{I

sin Ofl (i+ ecos 0fl)Ar I

ae (I - e 2)

(309)

._(I - e 2)
+ 2 sin 0fl (1 + 2ecos ell + e 2)

[2 (l-e2) c°s 6fl IA,1- + e(l+e cos 6fl)

( 1-e2)3 z_ -zx ,1 )
Atp; (l+e cos efl)2

AV 1

(310)

sin 6fi(2+e c°sefl)] 3MAa t+

I - e 2 Ae 2a _ (311)

This analysis assumes that the orbits of the

target and shuttle vehicle during closure are very
similar and treats the displacement at the initially

selected point of rendezvous, or any other point

where the vehicles are sufficiently close, as an

error in the position at that time of the target ve-
hicle. The solution is made in the following se-

quence:

(i) The required changes in a, e, o_and tp are

computed in terms of known errors AF 1

and A¢I, and the desired parameters AV 1

and A_f I .

(2) These equations in terms of two unknowns

are then substituted into the equations for

Ar 2 and A¢2.

(3) The equations for errors in position at

point 2 are equated to 0 and the resultant

equations solved simultaneously for AV I

and A_f ! .

(4) With knowledge of the velocity and flight

path angle both before and after the appli-

cation of the corrective pulse, the magni-

tude and direction of the pulse required

may be computed from the law of cosines.

This analysis is general and could be employed

for the ease of short time closure as well (this

implies large changes in a, e, _o, tp) were it not

for the fact that second order terms in AV 1, A71

and Ar 1 have been neglected in the derivation.

This does not preclude the possibility of including
these terms in the definition of Aa, Ae, _ and

Alp: however, this incorporation is felt to be ex-

cessively laborious.

Sample problem. The utilization of this clo-

sure analysis is illustrated in the following sam-

ple problem.

a24 = 1. 38337 x 108 ft Ar 1 = 16. 6426 star mi

= 42165. 1 km = 26. 7837 km

e24 = O. 61832 A_ 1 = 0. 019222 tad

0fl = 107. 90 ° _tl = 8776 fps

t = 8339.5 sec = 2675 m/sec
fl

Vfl = 12840 fps tclosure = 20,000 sec

= 3913. 63 m/see

rfl = 20,000 star mi

= 32186. 9 km

7't, = 36. 008 °

Note:

X'tl

Xil

parameter in transfer orbit before initi-

ating closure

parameter in closure orbit at time of

pulse

Xfl parameter in target orbit at time of pulse

Xf2 parameter in target orbit at rendezvous

X24 target 24-hr orbit

tf2 = 28340 sec

2_f2
- = 2. 066592

Mf2

From Fig. i

E K _ 2.46 tad

e (sin E K - E K cos E K) + M

EK+I = 1 - e cos E K

= 2. 457386 tad = 140. 7984 °

Of2 - 2 tan -I LV l-e tan _= 160. 3768 °

2 (I + e cos 0fl)Ar I
A a -

(i - e2) 2

I/a 3 (1 + 2e cos 6fl + e 2)
+ 2

(i - e 2) AVI

= (30. 1577 + 3. 49074 ZkV1) x 104 (ft)
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where AV 1 is expressed in feet per second.

A e ==
(e + cos 8fl ) (1 + e cos 8fl) Ar 1

a (1 - e2) 2

A_) --

+ 2 (e +cos eft)I/ (1 - e 2)

v. (I + 2e cos G + e 2)

(1 - e 2) sin efl A>
+

1 + e cos 6fl

= [2. 08560 + 0. 482328 AV 1

+ 7261. 03 A¥] x 10 -4

sin 0fl (1 + e cos eft) Ar 1

ae (1 - e 2)

2 sin6 4/a (1 - e 2)
+

AV 1
e _( _ (1 +2e cos efl +e 2)

AV 1

(1 - e 2)cos efl
- 2 + e (1 +e cos flfl )

= (12.80025 + 2.396265 AV 1

- 16 188. 96 A-Y1) x 10 -4

(l-e 2)

Atp (l+e cos efl)2 ¢_ - A¢I

sin efl (2+e_ e2C°S efl) Ae 1

3MAa
2a

At
P

F 7

:/1. 016824(A=_A¢1)+2.832749Ae/
- 0.452128x 10 -8 Aa x 104

=-190.165412 + 2. 224632 AV 1 + 4107.37A¥1

Now since it is desired to rendezvous at ef2 , it is

known that A¢2 = Ar 2 = 0. Re-evaluating the

equations for A_ and Ar at ef2 and equating them

to zero yields (l+e cos flf2)2 F,,f-_-

A¢2 = A _ L_-_a At
(1 -e2) 312 P

_aAa ] sin 0f2 (2 + e cos 6f2) Ae+ + 2
1 -e

0 = A_ - 0.262335 x 10 -4 At
P

- 0. 806135 x 10 -8 Aa + 0. 770742 Ae

[_ 2 3Me sin 0f2 ]

- e

Ar2 = + e cos 0f2 2 (1-e 2) 1/2 Aa

e sin At- a cos 8f2 Ae ;u Of 2 p
1/2

(1 -e 2 )

0 = 0.660121 Aa + 1. 303016 x 108 Ae

- 0. 266530 x 104 At
P

Substituting for Aa, Ae, A_ and At their equtva-
P

lents in terms of AV 1 and A_( 1 yields

0. 629591 AV + 11670.08 AT = 39. 983576

2. 33986 AV + 8366.51A_( = -73. 310088

Solving these equations simultaneously produces

AV 1 =-53.998 fps = -16. 459 m/sec

A_( 1 = 0.00634 rad = 0.3632 °

These values of AV 1 and A'Y 1 are relative to those

of the target vehicle at point one. The solution

for the required maneuver follows:

Vtl = Vfl + AV = 12786 fps = 3897. 2 m/sec

V'tl =8775.5 fps = 2674.8 m/sec

A_( = (_fl + A_I) - Y'tl

e,sin 8fl
I = 36. 012 °

Yfl = tan-i L I + ef cos ellJ

A_ = 0. 3712 °

The law of cosines yields the required pulse

AV12 = (V'tl)2 + (_1)2 - 2V'tl Vtl cos A

= 4011 fps = 1223 m/sec

This pulse represents half of the total maneu-

ver. A second pulse is required at the point at

which the two vehicles f£nally close. This second
pulse must be sufficient to turn the shuttle vehicle

and supplement its velocity vector. The laws of

sines and cosines and the energy equation must

be employed to define this second pulse. 2

p = (rfl Vfl cos ,_fl )

rf2 = l+e cos 0f2 /z (l+ef cos efl_-

= 2. 046322 x 108 ft = 62371.9 km

Vf2 = 2 af

= 1824.3 m/see
u

Vt2 = af

= 1794.1 m/see
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ef sin 0f2

"If2 _ l+efcos 0f2 =26"4495°

(ef+Ae) sin (0f2 + Am)

_t2 _ I + (ef + _e) cos (0f2 + A_)

A¥2_ 1. 3076 °

AV2 2

AV T

= 27. 7571 °

= (Vf2)2 + (Vt2)2 - 2 Vf2 Vt2 cos A,12

= 168 fps = 51.2 m/sec

= 4011 +'168 = 4279 fps. = 1304 m/sec

This value of AV T represents the total impulse

required for injection and correction of the orbits.

It must not be compared to the impulse require-

ments for closure alone.

As was noted earlier in the discussion of this

approach, the accuracy deteriorates as the devi-

ation from the reference trajectory (in this case

the target orbit from 0fl to 0f2) increases. The

accuracy afforded by this technique as a function

of the distances involved has not been determined.

In an analogous manner the differential cor-

rections formulation presented in Chapter VI

(Maneuvers) may be adapted for producing closure.

The restrictions for usage are, however, roughly

the same. Because this approach is discussed in
detail in Chapter VI, no further discussion will

be presented at this point.

6. Homing Phase Errors

Due to several error sources, errors will re-

sult in an inability to control both the transverse

and the longitudinal motion of the shuttle vehicle.

These sources and their effects are the subject
of the following paragraphs. Particular sensors

will not be discussed because of the rapid changes

being made in the design and utilization of such
equipment s.

a. Transverse errors

Due to the effect of radar tracking noise, ac-

eelerometer error and engine shutoff uncertainty,
a transverse velocity error remains at the end

of the transverse correction pulses, including
the final one.

Radar tracking noise arises from:

(I) Receiver thermal noise.

(2) Amplitude scintillation of the target.

(3) Angular scintillation of the target.

(4) Radar antenna servo jitter.

(5) Radar range measurement noise.

The first four sources result in a random er-

ror in the measured line-of-sight angle. Thi_er-

ror has a nearly flat spectrum at frequencies

below about 1 cps and is heavily attenuated at

higher frequencies by action of the radar angle
tracking loop. The standard deviations of the

angular noise due to these sources are related

to range as follows:

(I) Receiver noise varies with the square

of range.

(2)

(3)

Amplitude scintillation is invariant with

range.

Angular scintillation varies inversely
with range.

(4) Servo jitter is invariant with range.

Since the computer accepts angular rate data,

the angular noise is effectively differentiated be-

fore use. The computer then performs an arith-

metic averaging of the angle rate noise over a

smoothing period T. (Actually, the computer

operates on H rather than ¢_ but this is unimpor-

tant in the present discussion.) Since T is large
compared to the reciprocal of angle noise band-

width, the resulting angle rate noise after smooth-

ing is given by

_RMS

°_RMS = --T--

where _RMS is the standard deviation of the total

angle noise at the radar output due to all four

noise sources. The error in measured trans-

verse velocity due to radar tracking noise varies

as the product of range and angle rate noise.

Thus the velocity error due to radar tracking noise

has the following relationship to range:

(1) Receiver noise varies with the cube

of range.

(2} Amplitude scintillation varies directly

with range.

(3) Angular scintillation is invariant with

range.

(4) Servo jitter varies directly with range.

Figure 19 shows the transverse velocity error

resulting from typical radar errors, plotted

against range, with T = I0 sec.

The transverse velocity error due to radar

range noise is a second order effect since the

error is a product of range error and the small

angular rate of the line of sight. The acceler-

ometer error in terminating thrust has a negli-

gible effect for a similar reason. The error

due to transverse engine shutoff uncertainty is

small and constant for any correction period,

and is only important at the end of the last cor-

rection. Its value may be held less than 0.6 fps

or 0.2 mps (3 cr) for a reasonable choice of en-

gine thrust level.

Figure 19 shows a worst possible profile of

transverse velocity during the homing phase.
The correction threshold function shown has

been chosen empirically and is not necessarily

optimum. The 3o noise envelope shown is just

three times the value of the curve of Fig. 19.
The pessimistic assumption has been made in

Fig. 20 that the magnitude of the residual error

at the end of each correction period is 3(r. This

has been done for the purpose of sizing the pro-
pellant tanks of the homing vehicle for the worst

case. The initial transverse error of 250 fps

or 76 raps corresponds to a worst case for the

launch guidance system.
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In determining an acceptable correction

threshold function it must be remembered that

too high a threshold will generally result in a

propellant penalty since corrections are unnec-

essarily delayed. Too low a threshold will re-

sult in frequent small corrections which are un-

desirable for several reasons, among them the

fact that insufficient smoothing tiroe is available

between corrections.

The total terminal velocity, including trans-

verse velocity, is therefore no more than 2.7 fps

or 0.82 mps (3_). This velocity defines the quality
of rendezvous obtainable with the vehicle described.

If desired, a vernier system could be incorporated
on the vehicle to effect either a soft contact with

the target, or else a standoff position with respect

to the target (Ref, 32),

Using typical numbers for a final transverse

correction occurring at a range of 200 ft or 61 m

a 3_ value of transverse velocity of less than

1. 5 fps or 0.46 mps may be achieved, consider-

ing all sources of error.

b. Longitudinal errors

The longitudinal error analysis is quite

straightforward for the system proposed. The

errors in R and R = (-V c) at the termination of

any but the final longitudinal thrust period are

quite unimportant, provided that the nominal

closing profile (Fig. i0) has been chosen intel-

ligently. Intelligent choice of this profile, that

is, proper choice of the parameters of Eq (263)
permits sufficiently long coast times, so that R

and R may be adequately smoothed before the

next correction begins. If this is done, errors

in the radar measurement of r and _ occurring
at the beginning of a prior correction pulse, as

well as accelerometer error, thrust acceleration

uncertainty and thrust shutoff uncertainty occur-

ring during the prior correction pulse, only serve
to alter the range at which the subsequent correc-

tion begins (that is, lengthen or shorten the coast

period before the next correction). No accumu-

lation of error results.

The profile is also chosen so that the final

correction in close velocity is small and begins

at very close range. The terminal error in r and
results from the following sources:

(I) Radar measurement error of r at ini-

tiation of final longitudinal correction.

(2) Radar measurement error of r at ini-

tiation of final longitudinal correction.

(3) Accelerometer error.

(4) Thrust acceleration uncertainty (un-

certainty in predicted at).

(5) Thrust shutoff uncertainty.

Items (i) and (4) produce only a terminal

range error. Items (2), (3) and (5) are primarily

responsible for a terminal closing velocity error.

For a small final correction, the terminal range

error is primarily due to item (i), and for a good

radar is surely less than 50 ft or 15 m (3(_). The

3(_ terminal closing velocity error due to item (2)

is about 1 to 2 fps or 0.3 to 0.6 raps for a good

radar. The 3a error due to item (3) may be held

to less than 0.4 fps or 0.12 raps with almost any
decent accelerometer. The 3_ error due to item

(5} may be held to less than I fps or 0.3 naps by

proper choice of longitudinal engine size. Thus,

the total 3_ error in terminal closing velocity is

no more than 2.25 fps or 0. 686 mps.
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A. INTHODUCTION

Mostsatellitemissionseventuallyrequirethat
thesatelliteor aportionthereofberecoveredfrom
orbit. Thisrecoveryprocesshasbeenbrokenin-
to twophasesfor presentationin themanual:de-

parture and re-entry. The latter is discussed in

Chapter IX and the former is presented here. The

purpose of the departure discussions is to provide
insight into: the timing limitations for return to

a point on earth, the energy requirements, the

error sensitivities for that portion of the tra-

jectory occurring above the re-entry altitude
(-_400,000 ft or 122 km).

In the analysis of the departure of a satellite

from orbit, two general approaches present them-
selves for consideration:

(i) Departure at those times necessary to
arrive at a position in the plane of

motion at the same time that the impact
site lies in the plane.

(2) Departure any time that the fuel re-

quired to maneuver onto a collision

trajectory is equal to or less than some

prescribed limit.

However, there are orbits which do not meet the

requirements imposed by either of these approaches

(e. g. some of the 24-hr orbits). Thus, it is

necessary before investigating these approaches

to first analyze the general problem of return

from orbit utilizing an intermediate orbit (i. e.

the reverse rendezvous technique of Chapter

VII). Once this is done departure from the parking

orbit (assumed to be nearly circular) can be dis-
cussed.

It should be noted at this point that the parking

orbit approach is not a firm requirement since

by properly restricting the times of departure

and the descent trajectories, the position of the

re-entry point can be matched to almost any

specified point (L< i) without the use of the park-
ing orbit. However, the only means for pro-

ducing re-entry from an arbitrary orbit at a
prescribed position and at a preseleeted time

(assuming very limited or no maneuvering during
descent) is the parking orbit. Other significant

advantages will be discussed in turn during the
presentation of the material.

B. THE GENERALIZED RETURN

PROBLEM

1. Return Trajectories

Transfer from the elliptical orbit into a low

altitude circular orbit is now considered. The

time limitations (i.e., arrival at a given time

over a fixed point) are not considered initially

because time-imposed conditions can be obtained

later by variations of the general return ira-

jectory.

The transfer orbit is assumed to be an ellipse

whose major axis is inclined at some unknown

angle (4) to the major axis of the original orbit.

Injection into the transfer orbit is accomplished

tangentially at a departure point r*, 0* as shown

in Fig. i. A nonzero flight path angle at de-
parture is specified because:

(1) Limitations may exist on the velocity

pulses given by the rocket booster.

(2) Arrival time and location of the Inter-

section with the low altitude orbit can

be adjusted by changes in the departure

angle.

(3) This approach results tn a more gener-

alized solution, where perigee departure

is included as a particular case.

In order to ensure the certainty of intersection

with the final low altitude circular orbit, a re-

quirement exists that the perigee radius of the

transfer orbit must be equal to or less than the

radius of the final orbit. This can be given

mathematically as

< red or red = rpt + Ar (1)rpt --

where Ar is determined by the probable errors

caused by the guidance limitations at the de-

parture point. In order to avoid the atmospheric

effects distorting the transfer trajectory, the tow

altitude orbit should be at least 200 slat mi 322

km above sea level. In any case, the perigee
radius of the transfer orbit has to be fixed before

the maneuver. This considerably simplifies the

solution for the remaining properties of the
transfer orbit.

Knowing the parameters of the original orbit

and having specified the departure time or the

departure angle (0*), the departure radius is
determined as

* Pf
r = (2)

i + ef cos 0

For greater generality, this can also be given

in a nondimensional parameter form, using the

perigee distance of the original orbit as a refer-

ence distance as

r* 1 + ef
-- : (2b)

rpf 1 + ef cos 8

At the departure point, the two ellipses are

further assumed to be tangent, as shown in Fig. i

for efficiency of propellant consumption. This
means that the flight path angles are identical,

i.e.,

_t = _f - "l •

where: flight path angle is defined from the

conservation of angular momentum by

V r cos _ :¢_

Thus

2 1

COS "_ : r

r (l+_p_ _ rr ra a

(3)
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where thesignoftheflightangleis deter-
minedbythequadrantof theoriginal
ellipse.

UsingYt=Y andwritingEq(3)for theradii
of thetransferellipseandtheinitial orbit, it
followsthattheapogeeradiusofthetransfer
orbit is givenby

rat _ r i4)
* r

r 2 * pt
cos y .

r

From Eq (4), the semimajor axis of the trans-

fer ellipse is obtained as

cos y \-'-_-Ir./
at 1 __ i5)

= 2 2 * rpt
r 1 cos _ -

k r

Next, in order to determine the properties of the

transfer orbit completely, the central angle from

perigee (0 t) is obtained. At the departure point,

the following expression holds:

* Pf Pt

1 + ef cos 0 1 + e t cos @t

Solving this for 9 t ,

r

pt

, rpf 1 + rp___f 1 - os
COS 0 t = r

1- p_t_t raf raf/

rat

rpt rat ]

Using Eq (2b),

form as

this can be rewritten in a shorter

* r " rat ]

cos 0 t = r (6b)

I --2- t-
rat

Assuming that transfer will be initiated near

apogee of the transfer orbit, the quadrant of the
initial central angle in the transfer orbit is

determined by the rule:

if 0 < 0 < 180 ° then 90 ° < 0 < 180 °
-- -- t --

tf 180 ° <_0 <_360 ° then 180 ° <_0 t < 270 °

Now from the geometry of the problem, the

angle between the major axes of the transfer and

target orbits is

# #

q_= 18o"+0 -o (7)
t

Next, the magnitude of the velocity impulse

applied at 0 is determined idirection A V is

opposite to the direction of motion for the as-

sumed tangential transfer). Since the departure

radius and semimajor axes for both ellipses are

already computed, this velocity impulse is found

by the numerical difference of the velocity re-

quired in the original orbit and the velocity

corresponding to the transfer orbit at this

particular point.

AV = vf - v t (8)

These velocities may be found from the energy

equation.

Equations (8) and (9) determine the required

velocity impulse as

-r-L - 2 r
AV* = _ 2 (10)

Injection into the low altitude circular orbit
is now accomplished at either the intersection

point rlt or point r2t, as shown in Fig. 2.

In a manner similar to that of Eq (6b), the

. intersection central angle is given by
O

2 rP----_t - 1 + ---

tit rat /

cos Ott= r " ill)

1 pt

rat

where

i = 1, 2

tit = rcl

Oft is in the fourth quadrant and 0 2 t

is in the first quadrant for all reason-

able return trajectories.

Now the mancu_r angle at the circular orbit

is defined by:

2 1
-- (12)

cos n_i re---_/ ( l+rp--j't -rc--_-I )
rpt rat rat

VIII-4



where the following rules apply:

Ay1 <_ 0 (negative)

&_2 >-- 0 (positive)

and the pulse required is

2 V 2 - 2Vlt cos + 2 (13)AV1 = it VII A'_I Vii

or

(Vl_ / =

whore

Vlt

2

Vii Vl_ A'_I

(14)

= 2- c--!-_
a t

VI_ --
rcl

Thus, the following equation results:

Ve / = 3-E-

Now the angle at which the thrust must be applied

with respect to the velocity vector (6) is found by

the law of sines. T

sin 61 = _-_i ]sinA_l V(16)

To avoid the ambiguities in the sign of Eq (16),

the law of cosines can also be applied to the angle

6, resulting in

+@2 rc2 cos
a t AT1

COS 6.1 = (17)

Vei

At r2t, a similar analysis can be applied

since the drag loss is negligible for half a

revolution and a symmetry about the major axis
exists.

This analysis determines the trajectories and

velocity pulses for a return into a circular orbit.

The flight times and the positioning probiems are

considered in Subsection 3.

2. Departure Error Analysis

The p,'oblem arises concerning the effect of
small et'cors of altitude, velocity oc flight path

angle on the perigee conditions. Partial deriva-

tives of the perigee radius and velocity, with

,'espeet to initial conditions, are obtained in

terms of eccentricity and central angle. In the

conversion from the usual r, V and _ relation-

ships, the following equations are found to be
most usefu[:

r l+e

1 + e cos 0 (18)
P

V) 1 + 2 e cos 0 + e 2; 1 + e cos O (19)
e

[)/Vc \2 _ i +e cosÙ (20)
\Yea ] 1 - e

e cos 0)2" (21)2 (I+

cos y = 2
I + 2 e cos @ + e

The partials of r
P

as follows:

can be nondimensionalized

_r

V p _ 2 (1 + e cos 0) (1 - cos 8) (22)

F W_7 (1 + e) 2

0rp (1 - e) (1 + cos 8) 2

-_ - (1 - e2) 2 (2 - e - e

- cos e + e cos o) (23)

_r

1 P = - sin O. (24)
r

The partials of V ar_ dcriv,,d from til,:
P

conservation of angular momentum

Vp rp = Vr cos _.

Differentiating,

8 (V ar 8V

,, P rp) = V "_ + rp
P

OV p

= r cos _. (25)

Using Eqs (18) to (22), the final form of the partial
is obtained.

8Vp = e - 1 + 2 cos0 (26)

e2) 1/2(1 + 2 e cos 8 +
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Using the method of Eq (25), the following equations
are obtained:

aV

r __ cos e - i
"_ = I//2 (27)

(i + 2 e cos + e 2)

8V
i p (I + e) sin 0

V _ = 1/2

(1 + e cos 8) (1 + 2 e cos 8 + e 2)

(28)

As seen in Fig. 1, the departure usually occurs

close to the apogee of the transfer ellipse, i.e.,

0t _ 180 °. For this case

cos e_ _- 1

* 0.
cos 8 t _

Therefore, the partial derivatives for the case of

departure point being near to the apogee of the

transfer ellipse reduce to the following:

(i) Errors in perigee radius.

Va 'r- 4 (i- e)( _PaP/ ( _)_ (1+ e)2 = 2 1+

(29)

arp (1 _e) (3+e) rp _ ___)
= = -- + (30)

r_d_a (I + e) 2 ra

Or

1 P=0.
r a

(31)

(2) Errors in perigee velocity.

OVp e - 3 _ 2 +

F_a = r-e
(32)

_a _ y-:-_ = - I+
a

(33)

1 0Vp _ 0. (34)
v-

a

In Eqs (22) to (34), it is Implied that all the

quanlittes pertain to the transfer ellipse.

The important point to notice is the insensi-

tivity of the perigee radius and velocity to er-

rors in flight path angle for near-apogee de-

partures, as shown by Eqs (31) and (34).

For small deviations from the required de-

parture conditions, the perigee errors can be
approximated from the given partials by

Or Or 8r

+_ A/yArp r_aPAra+_aAVa
(35)

and

8V OV OV

&Vp_ r_Ara+a _PAVa+ _-_ZX'/ (36)

By substituting Eqs (29) to (31) into (35), the

radial errors for a near-apogee departure are

obtained:

AVa]
Arp _ 1 - e Ara +4

ra (l;Wz w2.]

or in terms of apogee and perigee radii:

(37)

...[(".)"a----P- _ --P-P 2+

ra ra _a -_a

+2 1+ (36)

SImilarly, the velocity error is found by sub-

stituting Eqs (32) to (34) into (36).

or

(&Vp _ - _ 2

AVa ]+ (3 - e) -_a

AVp= _ 1 +

r a A V a

(39)

(40)

3. Timing Considerations

Assume that the trajectory problem of the re-
turn vehicle is defined as follows :

(I) The vehicle must arrive in a low altitude

orbit over a specified Impact area at some

predetermined tIme.

(2) There are possible limitations on the

velocity pulses to be employed during the

maneuver.

Immediately, It becomes clear that unless the

orbital plane for the return phase is different

from that of the original orbit, only two times of
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arrival in the low altitude orbit are acceptable

during each day. These times correspond to the

times at which the impact point crosses the or-

bital plane.

The following analysis of the return problem

is quite general. However, because the number .

of variables involved is large, only those cases
for which the orbital plane is unaltered are treated.

The initial location (at time t O) of the final inter-

section point is determined by using spherical

trigonometry and the symbols defined in Fig. 3a.

sin L 0 = sin i sin _0" (41)

Equation (41) applies only if L 0 _ i. In case the

inclination angle is less than the latitude of the

impact area (note that L 0 -= Lx), a change in

orbital inclination must be accomplished before

or during the departure maneuver. The equations
for such a maneuver are presented in Chapter VI,

From spherical trigonometry, the first inter-

section of the two planes is

cos _0

cos (A 0 - _0 ) __ .
(42)

The second intersection is

-1 [ cos *0 )%. cos . (42a)

Next, the initial angular distance from the inter-

section point (Pt) to the impact point (Px) is

AA 0 - A 0 - A x

cos e0h

:(%-A x)+cos -i (43)

During each revolution of the earth there

are two intersection points, P. and P_
l I

Time to intersection for the first day is

AA0 _0 - Ax 1 -1( c°s $0

tjl " _e " _e + _e cos \ cos L0/"

(44)

Time to intersection for n days is

n_d
t_ : t_l +(n - 1)d +_-7-_ (J.- , : n = 1,2,3 ...)

J J
e

(45)

where d = sidereal day (86, 164 sec)

Or u_ing Eq (44),

_20 + nhd/T - A x
t. =

J _

+ (n - 1) d

.cos _0

(46)

where j i n = t, 2, 3 ....

Equation (46) gives the only possible flight times

for target interception.

By changing the inclination at the original

orbit in inertial space (i. e., changing i and/or

_20), a small range of possible intersection times

can be achieved. Large changes in inclination

become prohibitive due to exceedingly high mass
ratios and should not be considered for most

vehicles.

From the geometry of Fig. 3b,

¢ ,, 180" - (e__ - e*)

and

(47)

0_ = 360 °- _+ ¢0 + 0_: - e*. (48)

Now, after the equation for the necessary

intercept flight time has been derived and the

angles for the transfer trajectory have been de-

fined, a solution of the departure angle is re-

quired in mathematical form.

O*- f (00, 120, t, _, pf, ef, r l, Ax,

Lx, it). (49)

To get the exact relationship indicated by Eq

(49), an expression for the total flight time must

be derived in terms of all other pertinent vari-

ables. In such an equation there is only one un-
known (i. e., e _) and the proper value of the total

flight time, corresponding to some fixed value

determined by Eq (46), can be obtained by varia-
tions of O*.

In general, the total flight time is the sum of

three separate components.

(1) Time in original orbit before departure (ilk

(2) Time in transfer orbit (t2).

(3) Time in the final low altitude orbit until

the impact area is reached (t3).

Consider the case where the departure angle from
*

perigee (0) is less than the initial central angle

(@0), or 0 _' < e 0. Then, the components of flight

time will be as follows.

(1) Original orbit

_f [2v + (E* E 0) + e (sin E 0 - sin E*)]tl "_2_
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where

E = 2 tan-1 [__1 - e tan _-1j_-[

_i- e 2 sin e
sine = 1 + e co_ (50)

(2) Transfer orbit

t 2 = 2_- E t + e t sinE (51)

(3) Low altitude circular orbit

7 L r_ * - e*)t 3 =-2_--v eL _, (2_ - _+_0 + et

(52)

The total flight time is given as

t t •t 1 (e*) +t 2 (e*) +t 3 (e*) (53)

where it is desired that t t be one of the character-

istic time values given by Eq (46).

If the departure angle from perigee is greater

than the initial central angle (e* > e0), then the

transfe.r orbit is initiated before the next perigee

passage and Eq (50) becomes

t t = _ (E*- E 0) + e (sin E 0 - sin E*)

(54)

Equations (51), (52) and (53) remain identical

even for the case of e _' > e O.

The transformation of Eq (53) into (49) is obvi-

ously extremely complicated, if not impossible.

Thus, it is necessary to revert to a t_:ial-and-
error method. One such method is described

below.

4. Iteration Procedure for the Departure Angle

The approach presupposes that either the com-

puter possesses plotting and curve-reading
abilities, or that the first approximation of the

departure angle is known.

Solution -__

_ t ,
J=O

For a particular return mission, the most
obvious method of solution is as follows.

(1) Determine the target point intercept

times with the orbit plane (tj).

(2) Establish the total flight time solution

curve for a whole revolution in origi-

nal orbit by the procedure shown in

Table 1. Relatively large increments

of central angle (e. g., Ae* -- 30 °) can

be used.

(3) Find the first intersection point (e 1) of the

solution curve and target intercept
times.

(4) Determine the accurate departure angle

by a linear iteration process.

(a) Use Eq (53) to compute ttl for the

first approximation of e I .

tj > ttl , assume e 2 = e I + i}
If ,_ _,_ •

tj <ttl, assume 02 = O1 - 1

(b) Compute tt2 for 02.

NOTE: ttl and it2 should be on

the opposite sides of tj. If both

are on the same side, i.e.,

tt2>tj or itt2 <tj "

(c)

use 0 2 as O 1 and repeat step (4a).

From e 1 and e 2 , compute the

second appzuxfmation by the linear

relationship

e 3

t, - B

= J (55)
--R---

where

ttl - tt2
A-

s

01 - O 2

(56a)

B =

(d)

It2 e I - ttl e 2
(56b)

01 - 02

Compute it3 for e 3. As for each

linear approximation, the two points used

must be on opposite sides of t. llne,
J

the following rules apply.
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5
F-

 ,t3 u e ,n0: 10k
it3 <t; use max

(e) Compute the third approximation

by using 03 in connection with the

correct Ok .

ttl ,

t_" 04 =
tj A w =

I I
!f i

i " -Jl I I B' -
82 84 :t 01"

Departure Angle (8")

Thus,

t.-B'
3

(57)

ttk - tt3 (58a)

tt3 0 k - ttke 3

Ok - 03 (58b)

The iteration usually converges very rapidly

because 0_ _ and 05 are already within + i ° of the

exact answer desired. The geometrical inter-

pretation of the convergence is shown in the

preceding sketch. The reason for taking 0_ as

* 0*) -, 0one of the initial points is to avoid (O k -

as the exact answer is aoproached. With this

method, the values of (0_ - 03) remain finite for

all approximations.

Table i presents the necessary variables

arranged in the order of computation, and the
equations used to aid in the visualization of the
solution procedure.

TABLE 1

Return Shuttle Computations

Variable How Determined I_emarks

+J

v _ _ ¢o Eq(41b)_C9 _

_N_*_ t.3 Eq(46)

Eq(2a) ,
First assume 0

.H

k,

S
b-,

0

0

0

r*

2
cos ¥ *

rat/r*

cos 0
t

a t

et

_t/2 _

t!

t 2

t 3

t t

M,

1

0
i

L

A

Eq(3)

Eq(4)

Eq(6b)

a t = 1/2 (rat + rpt)

rat

e t = at 1

3
T

t at

2-_ u

3

T t r_

_=_--

Eq(50) or (54)

Eq(51)

Eq(52)

tt= t 1 +t 2 +t 3

2_

M i = .y__ t i

by iteration

Eq(59)

Eq(60)

Plot t t vs 0* (Fig. 4a}

For simplicity
assume t. in full hours

1
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It should be noted that for a first approximation

tl, t2, t3 and 0 i can be found from Keplerian flight

time curves (Chapter ill). These curves are ac-

curate to tour significant figures and satisfactory

for slide rule computations. After the flight time

curve is plotted and the first estimate of departure

angle is obtained, the exact equations should be used.

The desired intercept times and the ground

track are computed only once (intercept times

are independent of departure angle, and ground

track is determined for only one final value of

0 ;"9 •

For the total flight time curve, values of @* are

assumed at sufficient intervals (e. g., A 8" = 30 °)

and t t is found for each 0*. From a plot oft t

versus 8", the intersections with the desired

intercept times are determined.

5. Sample Problem

Assume that the following orbital and target

parameters are specified (target refers to the

specified low altitude orbit).

= 270 °

n 0 = 135 ° E = + 135 a

A = 80 ° W = - 80 °
X

L = 28" N = + 28 °
X

_'f = 86,164.09 sec (24-hour orbit)

pf = 1. 037528 x 108 ft = 31623._) kn.

ef = 0.500000

raf = 2. 075055 x 108 ft = 63247.7 km

r _ 0.691685 x 108 ft = 21082.6 km
pf

r_ = rpt = 0.224869 x 108 ft = 6854.0 km

The angle (¢ 0 ) from the ascending node of the

orbital plane to the intercept point of the target

path and orbital plane is from Eq (41).

/sin 28°_ -1

¢0 " sln-I k_] = sin (0.500)

_ 0 _ 30°
¢0 150°

From Eq (43),

AA 0= 135 ° -(-80 °) + cos

A A 0 _ 226.5 °t 5o
AA n _ 383.

There is also the possibility of considering the

' _ 383.5 ° - 360 °= 23.5", becauseangle ixA 0

' is actually ahead at the target point. TimeAA 0

to reach the first intersection points is as follows.

226.5
t.

1 4.18 x 10 -3J
= 54,200 sec = 15.06 hr

' 383. 5

tj = 1 ~ 4. 18 x 10:3
= 91,800 sec = 25.5 hr

23.5
t'? -

4.18 x 10 -3

= 5620 sec = 1.56 hr

The second set of possible flight times is derived

from Eq (45).

t.

j=2

!
t.

j=2

= 54,200 + (2 - 1) 86,200 = 140,400 sec =

39.0 hr

= 91,800 + (2 - 1) 86,200 = 178,000 see =

49.5 hr

This means that during each day there are two

possible arrival times over the target area.

Next, the total flight time is computed for
0* = 0 ° , 30 ° , 60 ° ... 360 ° , using Table 1 in con-

nection with Chapter III. The sample calculations

are given later for 0 '_ = 137%

The results for the departure angle within the
first revolution of the 24-hr orbit are shown in

Fig. 4a. The solid llne gives the total flight times

for the ascent crossing at the target latitude during
the first revolution in the low altitude orbit. For

the descent crossing during the first revolution,
and for all crossings during succeeding revolutions

in the low altitude orbit, the solid line retains its

shape but will be displaced along the time axis by

some constant flight time.

The first time the target crosses the orbital

plane (1.56 hr) it falls short of the necessary trans-

fer time. Therefore, this solution is imaginary.

For the given sample problem, the first pos-

sible departure angle is approximately 8"_ 137 °,

corresponding to a flight time of 15 hr.

The important feature of Fig. 4a is the discon-

tinuity in the total flight time solution. This irreg-

ularity is caused by the fact that overshooting the

target interception by even a small angle results
in the requirement for another revolution in the

24-hr orbit. For the given case, the third theo-

retically possible target intercept time is seen to

fall into the region of discontinuity, indicating that
this arrival time also represents an imaginary

solution.

Of course, a possibility exists that the target

intercept could be made during a succeeding rev-
olution in the low altitude orbit. The optimum

number of such revolutions will depend primarily

upon the purpose of the return shuttle.
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For example,thetargetinterceptcouldbe
madeat 25.5hr by leavingat 0*= 236° andstaying
for morethanonefull revolutionin thelowaltitude
orbit.

Toexplainthediscontinuityat 8" flightcritical'
timesin the24-hrorbit, thetransferorbit and
thelowaltitud_orbit aregivenseparatelyin
Fig. 4b. At Ocritical = 312°' the overshooting

of the target will require another revolution in
the low orbit.

The determination of the critical departure

angle is best accomplished by plotting 01 versus

0", as shown in Fig. 5. The flight time discon-

tinuity exists at 0_ = 0 °.

Figure 4a indicates that t 1 = 15 hr is the most

promising total maneuver time. Therefore, this

solution is recomputed with more accuracy than

that afforded by the preliminary slide rule results.

From Eq (41),

¢0 = 29. 9736 ° .

Time to reach the first intercept point is

% %Ax + I__% -1 (°°s*0_
tj = 1 = _ cos - cOS_x]

= 54, 129. 917 sec = 15. 036088 hr.

The departure angle (0 $ - 137 °) ts used to find

ttl by the procedure given in Table 1. All the

steps are indicated for the sample problem in the

following paragraphs.

(1) Departure radius

r
P24

i + 024 cos 6"

= 1. 635645 x 108 ft

= 49,854.4 km

(2) Cosine flight path angle

cos 2 -_* = 1

r* ( rp24 r* )
1 + ....

rp24 ra24 ra24

= 0.775799

(3) Apogee radius

(1 cos2 *
ra__A, r* /

r

r * * _ ptcos2y __

r _

= 1.048287

(4) Central angle

2r_ - i +

eos0 - r e:
_ rpt1

rat

= 170. 2047 °

(5) Semimajor axis

1

a t =-_ (rat + rpt) = 0.969747 x 108 ft
= 29557.8 km

(6} Eccentricity

rat

e t _ at - 1 " 0.768115

(7) Period of transfer orbit

r t a_= = 8048.71 sec

(8) Period of low altitude orbit

= = 898.74 see

As 0 > @0, from Eq (54),

t I = 20, 276.50 see = 5. 632361 hr.

From Eq (51), the following is obtained.

t 2 = 31,796.37 sec * 8. 832325 hr

(9) Angle in low orbit

0L = 360° - _ + _0 + e: - {3_ = 153. 1783 °

= 2. 673465 tad

"rl

t 3 =_r_ 0 i = 2402.75 see = 0.667430 hr

(i0) Total flight time

ttl= t I +t 2 +t 3 = 15. 132112 hr

(Ii) Error in flight time

At 1 =t t - tj = 345.7 sec = 5.76 rain

* *

As ttl >tj, @2 _' el - 1 ,, 136 ° and, 0ythe

previous

Using
(56a) and

tained.

method, tt2 = 14.960314 hr.

the iteration process given in Eqs (55),

(56b), the next approximation is ob-

ttl - it2

@1 - 02

• O. 171802 hr/deg

tt2 @i - ttl @2
B=

{31 - 82

= - 8.404758 hr
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Finally,

. t.-B

03 =-LA--- = 136.4411 ° .

Using 03 = 136.44% tt3 = 15.036515 hr is

obtained for the second approximation.

Since, it3 > tj, by the rules given in subsection 5

rain Ok (l.e., 02 ) has to be used. Thus, Eqs (57),

(58a) and (58b) become

tt2 - tt3
A T =_ = 0.173187 hr/deg

02 - 03

tt3 02 - tt2 03
B' = = - 8. 592722 hr

0 2 - 0 3

giving the third approximation as

, t.-B

O4 = J_L..____ = 136.4376%
2&

Thus, for the present example, the second and

third approximations are almost identical and,

for practical purposes, the convergence to the
exact value is obtained. The following table pre-

sents the convergence of the solutions.

Error in

Total Flight

0 Time *

Approximation (dog) (see)

First 137 345.7

Second 136.44 1.535

#it= 54, 129. 917 sec 136.4376 0.050

Since the shape and inclination of the trans-

fer ellipse (O: , at, et, etc.,) were determined

during the last iteration, it is relatively simple
to obtain the location of the return shuttle In the

orbit plane, The locations of the return shuttle"

treated here are given in Fig. 6a.

Altitude from sea level is given in Fig. 6b, as

computed from the basic relationships.

r =- P and r _ R + h
1 + e cos 0

where R is the radius of earth at the given

latitude. By neglecting the oblateness pertur-

bation effects of the earth the ground track can

be computed h'om the following equations.

(1) Latitude

L = sln -I [sin i sin (_+ 0)] (59)

(2) Longitude

A =tan -1 [cos ttan (_ + O_] + _0 - _et

where (60)

• 0.004178074 deg/sec.
e

The computed ground track for the sample

problem Is given in Fig. 7. Assuming the initial

time to be zero hour, it gives the successive po-

sltions and a service time scale up to the desired

landing point (Florida in the present case).

It should be noted that up to 12 hr, the trans-

fer ground track deviates only slightly from the

basic 24-hr ground track (given in dotted lines).

The reason for this can be seen by comparing

Figs. 6a and 7.

6. Flight Time Error Analysis

The total flight time error per unit departure

angle can be appr_aximated by taking the slopes

of the total flight time curve (Fig. 4b). The solid

line of Fig. 8 presents the slopes of the return

flight time curve. Another approach utilizes

the total flight time equation

t t (0") = t 1 (O*) + t 2 (O*) + t 3 (O*), (61)

Thus
o

dt t dt 1 dt 2 dt 3

dO  +d-V (62)

Since the period and eccentricity of the 24-hr

orbit are dependent of 0,, the first derivative in

Eq 62 is found by using Keplerls equation

M " E - e sin E (63)

where

2_rt
M =nt =_.

T

D_ferentiating with respect to central angle

dM dE(i - e cos E)_,_, (64)

but

E = sin -1 + e cos 0/ "

therefore

dE _1- e 2
}t_ = i'+ d cos o "

(65)

(66)

From Eqs (64) and (66),

dM (1 - e2) 3/2

(1 + e cos 0) 2 "

(67)
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Using the definition of M, the error due to time

spent in the 24-hr section of the return path is

found from Eq (67).

dtl _f (1 - e 2) 3/2

--'-'$ = '/'_ 2

de (1 + e cos S*)

(68)

Equation (68) is presented as the dotted line

on Fig. 8. It is obviously symmetrical about 180 ° ,
as expected.

a. Approximate analysis

The low altitude orbit contribution to Eq (61)

Is approximately constant for the whole revolution

of @ (Fig. 4b). Thus,

r (3oo o - 0")
t3_

and

dt 3 _

_ -_-_
dO

= - 898.74 see/rad =

- 15. 686 sec/deg. (69)

To obtain the contribution of the transfer orbit,

the following approximation may be used first.

Assuming that the transfer orbit is always entered
#

at apogee (i. e., r _ rat), the time spent in trans-

fer orbit is one-half of a period.

t2 _-'2- = _r (70)

Due to the previous assumptions,

1 (r* + (71)
at _ 1_ rpt)

and

)at 8 1 + ef cos 0* + rpt

(72)

Substituting Eq (72) into Eq (70) and differentiating
*

with respect to 0 ,

2

dt 2 3_ ef /r*2_(r*+ rpt_ sin @*

dO 4

The slope of the total flight time curve is the
sum of these three components (i.e., the sum of

Eqs (68), (69) and (73)).

b. Exact analysis

Actually, the transfer ormr ts not usually en-

tered at apogee, but rather at some small dis-

placement from apogee. Since the vehicle moves

very slowly in this region, the flight times may

change considerably.

Thus, Eq (73) can be justified only for a pre-

liminary estimate, and an exact analysis is need-

ed. The exact derivative is obtained by differ-

entiating the expression for t 2 assuming that

5/-"is negative

Tt

t2 =_y _- {2_r Mr} . (74)

Differentiating Eq (74) with respect to 0 ,

dt2 1 d_t { } _'t dMt----*de=_ _ 2_-M t _ a--_"

(75)

To evaluate these derivatives it is now necessary
to define

2

A -= rpt (76a)

raf rpf

B -= rP----J-t+ rPt ,

raf rpf
(76b)

Thus

#

rpt
B+2 - r---- (I +A) - 2-----_

rpt r

r-----(i - A)+B- 2
r

pt (77.)

r---- (I - A)+B- 2
r

pt (78)
e t = .

L--(1 + A)-B

rpt

i -rp-_t B+A

1 * r (79)
at=l[ r .

_ B + r___

rpt

Also, from Eqs (77) and (78), it follows that

1 + e t cos O t = Z¢

r-----(1 +A) - B

rpt

(80)

Using the relationship

r t a t

Irg =
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thefirst derivativeis

dvt 3_ 1/2/ dat

3Tr a 1/2 ( dat _ dr'*t dT]
From Eq (79) and also from

.2

dr* r ef ,

7 Pf sin 0

(81)

(82)

tt follows that

dat 1 1 - B + A

=_r r _ 2

d0 (1 - B+-- A)rpt

From Eqs (79), (81) and (83),

.2
r

Pf

ef ,
sin 0 .

(83)

dT t = V_r r ef r

7 v_- Pf r*
B+_

rpt

"'e '" 2 (84)

1 - B+_---T. A
pt ]

To obtain the second term in Eq (75), it should

be noted that in this case 7 t = constant is implied,

and

rt dMt 1 dnt dt dt dot
=

-= d-7= (85)

The first quantity in Eq (85) follows from Kepler' s
Law

.2

dt = r__ (86)

Substituting Eq (80) into Eq (86), (since

p = r (1 + e cos 0).

2It*dt r*31 rp--T (1 +A)--B

To obtain the second quantity in Eq (85), the

following shorthand notation of Eq (77) is used.

#

cos 0 t =f(r*) (88)

Differentiating Eq (88) with respect to 0

dot df dr*
* =

-sln0, dTd0

From Eq (77), it follows that

df

dr

(89)

2

+ B - 2A _ (1 - A) + B - 2

rpt

From Eqs (89), (90) and (82),

.2

dO rpt Pf L\ r /

+B -2A

rpt

sin 0* }
sin 0 t

(90)

2

(2 - B) - 2_(1 - A)

r

(1 - A)+B - _-2

(91)

Substituting Eqs (87) and (91) into (85),

_t dMt r .3/2 (1 +A)- B dO:

2% d0--_= . (.2a_ dO*1 r*]
(92)

It should be noted that Eqs (91) and (92) are zero

at the points where

rpt B 2____A
* 2-B

r

(93)

The third error in time, i.e., the total flight time

error contributed by the low altitude orbit is

s irn ply.

dt3 _ dog

dO* - 2n dO* (94)

since the period vf is a constant.

As shown puoviously

Ol = 360 ° - _o + _0 + 0* -0"t

therefore, Eq (94) becomes

, =_- , I
dO dO

(95)
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Finally, theequationsfor theflight timeerror
aregivenasfollows.

(I) Approximate equation

3/2

dt t T f (1.-e 2 )

dO 1 + ef cos e

4v_ Pf / \

-899

(2) Exact equation 3/2

dt t Tf (1-e 2)

d8

r)'+ .

pt sin @

2
(96)

Since

cos 0 _,(., )ef 7 1 ,

vhere

{99)

ef

Next, defining two new constants

r1 + ef cos 0 u =- "pt (101a)
raf

1 dmt

+ _2__ d____ {2rr_Mt} - "t dMtd%7-

+ _ de*

d'r t

is given by Eq (84)

(97)

T t dMt

_ is given by Eq (92b)

d_

d0
is given by Eq (91).

In Fig. 8, the results of Eqs (96) and (97) are

compared to the solid curve obtained from meas-

uring the slopes of curves in Fig. 4b. It is seen

that the approximate equation givea only the gener-
al trends and should not be used where exact

numerical values are needed.

c. Limiting cases for the exact flight-time

error analysis

In the previous material, the error analysis
for the return shuttle flight times was derived.

Due to the geometry of the problem, Eqs (91) and

(92) become indeterminate for 6* = 0 ° and 180 ° .

This is caused by the fact that for the apogee and

perigee departures from orbit, the corresponding

transfer orbits are entered at apojgee. Mathe-
matically, as 0* _. 0 ° and 180 °, @_t -_ 180 ° and

sin 6" ) 0
sin Ot

Equation (98) calls for a limiting procedure,

since it is intuitively clear that the ratios must
be finite.

(98)

v _ rpt

rpf
(lOlh)

which correspond to the previous constants
as follows.

A : u v (102a)

B = u +v (102b)

From the definition of eccentricity, it follows that

V -U

ef " (103)V+U

and

2 v rpf (104)
pf = rpf (1 + ef) = u + v

Therefore, Eq (100) is shown to become, after sub-

stituting Eqs (101), (103) and (104),

s,.,o..,,.+v,[,._._
u.]I• u + v ' (105)

From Eqs (77) and (102), it follows that

sin 2 6: [ [ rpt_2 ___.4 -\r-W + r <u+.+21

(rr__* / 2 r*- uv + _ (u + v + 2uv)
\ pt / pt

-1

2(u+v) -(l +uv) I
J

• (1 -uvl+u+v -

(1o6)
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Now, defining

r

(107)

the following relationships exist.

0 -. 0 ° means x -. v

O*-_ 180" means x _ u •

(lOS)

(1o9)

The problem of deriving the actual limits is

somewhat simplified by the theorem that the square

of the limit is equal to the limit of the square.

From Eqs (105), (106) and (i07),

sin2 , (u+ v) (1 -uv)+u +v - 1

_ (v - U) 2 I x

(11o)

where

I
X

2 iUV (u + v + 2 uv)-x +x(u+v+2)--g +-_-
X

2
X UV

X
U+V U+V

- 2 (u + v) - (1 + uv)
+ ' 2 (111)

X UV
X

U+V U+V

Since the cases of interest in this investigation

1

are elliptic orbits, u _v, the behavior of]---
X

alone must be investigated.

Because Eq (111) still gives an indeterminate
0

formu, L,Hospital,s rule has to be used and

X--_ U or V X--, 1.1, V

7

+ 2 uv 1 (u + v + 2 uv)[---Y- - --2-
AX X

• - (Ii2)

Finally, from Eqs (109), (110) and (I12),

lira / sin O*h 1 - v
,:= l_l = (113)

_ 0° \sin Gt / v -u

Similarly,

lim sin _ _ 1 - u (114)

_+ 180 ° sin 8 t

or simply

lim (si_ lim (st__ +* • 0 _
0 __ 180 ° \ sin O t ] 0 __ sin O t /

(115)

For the sample problem (24-hour orbit)

I.

rpt := 0.6854.2248690kmX 108 ft_ u = ra24rP---_t= 0. 108368

ra24 2. 075055 x 108 ft

= 63,247.7 km i

rp24 = 0.691685 x 108 ft / v " rP-----_-t = 0.325103= 21,082.6 km rP 24

and from Eqs (113) and (114),

lira ( sin 0*0*_+ 0" sin-_t) "3"113927

O* __, 180" \ sin et/ =4.113927.

d. Error analysis by numerical differentiation

Since the total flight time curve (Fig. 4b) was
computed in the sample problem, a numerical
differentiation method can also be used.

First, assemble a central difference table in

the following form.

0_ 2 (t t)
-2 A1

0_ 1 (tt) -2

-I A1
-I

00 (tt)o 1

A o

01 (tt)1 I

A 1

02 ......
(tt) 2

. .0...

, o ,.°.

3
A

-2
A 2

-I

A 3
2 -1

A 0 ......

.°°°°.

°,,°..

°, ....

where An is the n th difference of the value of tt,

when 0 is increased to 0 + A0.

It can be shown that for this central difference

table, Stirling' s interpolation formula is

tt = (tt)0+g A A1 1 +

3! A0 3 " " "

(116)
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where
C. PLANAR ANALYSIS OF DEPA RTURG

FROM LOW A LTITUDIg ORBITS
50 is a small variation between e 0 and 01

A0 is the equal Increment 01 - 00, 00 - 0_1 .....

The slope of the total flight time curve is ob-

tained by differentiating Eq (116) and setting 60 = 0

in the result. Thus,

_ 2S'ff- 2 12
d8

6o ... (117)

(Fig. 4b), the rough values for t t were obtained

from which the following table is constructed.

0 I(deg)

0

3O

(60) 0

9O

120

t t
i 2 3

(sec) A A A

12,910

3020

15,930 2490

5510 +1470

(21,440) 0 3960

(9470) 0 -330

30,910 (3630)
0

13,1 00

44,010

From Eq (117),

d_ 8" * 60 °

\

+ 5510 -330 + 1470_

/2 12

- 246.5 sec/deg.

The results of numerical differentiation are

also given in Fig. 8, and they fit rather closely
the slopes measured from Vig. 4b. Since

numerical differentiation is extremely simple,

as compared to the exact analysis, it should be

used for all preliminary calculations.

NOTE: In the numerical differentiation method

presented here, the difference columns should
not be carried further than is consistent with the

accuracy of the data. Otherwise, the higher order
approximations could be less accurate than the

lower ones. Thus, the differences should be

carried only to the point where marked irregu-

larities start to appear.

For high altitude orbits, where all estimates

of atmospheric drag are negligible, orbital life-

time may be measured in terms of years. Thus,

should impact with the earth be desired at a

specific time and location, some device must be

employed to alter the vehicle's velocity and/or
flight path angle an amount sufficient to cause

the vehicle to re-enter. Re-entry as used here

is actually a misnomer due to the fact that there

are finite values of atmospheric pressure for the

entire range of altitudes to be investigated. The

term, however, will be used throughout this
section to refer to an altitude below which atmo-

spheric drag is of such magnitude as to cause the

vehicle's trajectory to degenerate and impact with
the earth in one half ef one revolution or less.

Previous machine runs and calculations have re-

vealed that for vehicles of ballistic or low lift

design this re-entry altitude may be considered

to be 300,000 ft (91.5 km). Therefore, for the

purposes of this analysis, since drag is of
negligible magnitude above the re-entry altitude,

the atmosphere will be assumed to terminate at

an altitude of 300,000 ft (91.5 kin). The earth

will be assumed to be both spherical and non-

rotating. Thus the vehicle trajectories involved

will be portions of Keplerian ellipses. Special

note should be made at this point that even though

the approaches made here are valid for vehicles

of high lift design, the altitude at which drag must

be considered may increase to 400,000 ft (122 km)

or more. Motion within the earth's atmosphere

will not be treated here; it is reported in Chapter

IX. Since Section B resulted in a plane which

continues the impact point at a given time the

analysis of departure can be treated as 2 dimen-

sional. The following paragraphs present this
information both for the impulse and finite burning

cases.

1. Analytic Approach to Orbital Departure

A method of analysis which neglects the effects

of finite burning times will now be developed to
provide a means of obtaining relatively accurate

approximations of the re-entry parameters and
retrorocket s ize requirements.

The velocity increment obtainable from a given
rocket is:

AV =g0 Isptn(]--__-)- gtB sin Y. (118)

Isp

If the assumption is made that the burning time

is extremely short or that the flight patil angle
remains very close to 0 ° during burning, I2q (118)
reduces to

AV = g0Isp _n(T@)' (119)
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This equation is plotted in Chapter VI.

For most cases in which departure is desired

from low altitude orbits, the mass ratio required

is quite small and one further simplification in

this expression may be made by noting that:

--_ ...

=_ for small values of _ .

Therefore:

AV = go Isp _" (120)

This equation may be rewritten to include pro-

pellant characteristics by substituting for _ its

equivalent

" % go Vv/W0

Thus :

AV=g02 Isp p 0 Vp/W 0.

Where

Vp = total propellant volume

00 = bulk density of propellant combination

r +1
m

r
m 1

+ --

Poxidizer Pfuel

weight of oxidizer
r m = mixture ratio _ we _-u*_gLl_of fuel

unit force thrust
I
sp = weight of propellant flow/sec

Since the assumption has been made that the

burning time is infinitesimal, the velocity inere -

ment obtained from a given retrorocket may be

treated as a pulse and the laws of sines and cosines

can be used to relate the velocity and the direction

before and after the pulse. For the purposes of

this analysis, the thrust vector will be in the plane

of the orbit; therefore, both the change in flight

path angle and the required thrust attitude angle

may be computed.

V 1

NOTE:

If the thrust vector lies in the orbital plane, _ =

A Y and _t = 5. (6 = the thrust attitude angle

discussed in Section B.)

/',V 2 = V12 + V22 - 2V1V 2 cos Ay (121)

- "2vTe°s  +l

sin 6 sin A ¥

v72 =-=v--

V'21V I (122)

sin 5 = _ sin Ay.

Equation (121) is also presented in Chapter VI.

Now since the equation of any conic may be
written as

V 2 = 2 + constant (123)

r
2 2

VI . P = V2 p

_ _----- _22 (124)

a means of determining the vehicle velocity at

any radius, if velocity and radius are known at

some other point in the conic, is available.

Point 2 is assumed to be that of re-entry at a

radius of 2.12029 x 107 ft (6462.64 km). Thus,

the velocity at re-entry may be determined once

the velocity at burnout has been obtained. The

energy equation is plotted in Chapter Ill.

The re-entry flight path angle can be obtained
from the conservation of angular momentum and

the radius, velocity and flight path angle at burn-

out of the retrorocket.

r I V 1

cos Y2 = cos Y1 _ "
(125)

Equation (125) can be used in conjunction with the

energy equation to yield the relationship between

the flight path angle at burnout of the retroroeket

and that at re-entry.

If a tolerance is placed on the entry angle

(e.g. 0 - 2°), the retropulse cannot be selected
independently of other considerations. This fact

may appear obvious, but is rigorously shown by

combining the equations for the conservation of

energy and angular momentum.

r I v I cos ¥i = r 2 v 2 cos Y2

rl i V 0 + _VI cos(_o- _ _)

- 2.= rentry ]V 0 -
+

2_

rentry
cos _entry

In order to determine the values of range and

time of flight required for descent to re-entry,

it is necessary to first consider the ellipse in

question.
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r

The range attained may be seen to be

X = R _ (126)

R = The radius of the earth

The problem then is to define the angle $ In terms

of the known quantities of the ellipse. This problem

may be simplified by observing that

_ v - ¢. (127)

Where

¢1 is negative and do2 is positive and where

the central angle from a given radius to apogee
is

_) = cos-1 I___]r - p . (128)

Therefore:

Lree J

where:
(129)

r e = rentry

To define the time of flight a procedure similar to

that employed to define the angle fl is used. That

is, the time of flight from one point to another is

equal to the difference between the times from

these points to apogee. The time of flight from a

given point to apogee is defined by Eq (130)

- r [5' '] (130)t a g-ff - esin 6 •

Where

5' is measured in radians

8' =cos-l[c°s_ -e ]I - e cos do "
(131)

The time of flight is thus

tf = tentry- t a

where

' is evaluated at qD =
de ntry doe nt ry

' is evaluated at do = d01 or do2da

t' is negative if vehicle passes througha
apogee before re-entry

Thus the complete maneuver- can be described

analytically under the assumption of impulsive
burning.

This section has shown the results of flight

path corrections and departures for the case in

which instantaneous pulses were considered.

Figure 9 shows the percentage deviation in the

re-entry parameters obtained using this method

as compared to that which includes the effects of
finite burning time. The horizontal lines drawn

at e 4% error were arbitrarily selected to show
the minimum mass ratios which could be con-

sidered as pulses in order to maintain thin desired

accuracy in at1 re-entry parameters as a function

of initial altitude. A continuation of this analysis
would be necessary to limit the maximum mass

ratios which could be considered as pulses for

the same accuracy limitation.

Figure 10 presents the error in the ideal ve-

locity pulse due to finite burning times.

2. Orbital Departure from 100-star mi(161-km)

Orbits with Finite Burning Time

Finite burning time will now be included in the

analysis as an additiorml variable: however, since

no closed sohltion exists for this problem, the

digital computer and a stepwise trajectory pro-
gram were employed. This program considers

the vehicle to be a point mass and the earth to be

spherical. The trajectory during burning of a

rocket or during travel within the sensible atmo-

sphere is obtained by stepwise integration. The

time interval for each integration is determined

by the accuracy limitation placed on the extrap-

olated values of certain critical quantities. The

equations for this program are presented in the
simplified form required for this effort.

Lift T

Drag _ /

Weigh,----7/
/ Velocity

_ Local Horizontal

_Radius --

/
/ a = Angle between the missile axis

and the velocity vector = 0 °

x $ = Angle between the missile axis

and the thrust vector

'F = thrust forc_

v T D=- cos (c_ * _) -
m nl

T

m
sin Y = A

r

sin "_

r

(132)
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-_V = T---sin(_ ÷6)+-_m -_ eos'l
r

(133)

= #
- --2 cos ¥ = B

r

"-" (134)y = A sin_" + B cos

_°

X =

sln¥ ",

cos ¥ z

where

x
COS "f =

_r

X

sin, _-
1"

COS _ " --y
r

A cos _ - B sin V (135)

sin_cos @ + cos _sin0 (136)

cos _cos @ - sin_sin _ (137)

T " TSL + A e (PsL - Pa )

TS L z TVac _ Ae PSL

m " g--0- 1 - P

_V _ constant.
P

(138)

(139)

Once the retrorocket burns out, the trajectory is
assumed to be unperturbed down to the altitude at

which drag becomes appreciable. The equations

for this portion of the trajectory are those of

motion in a Keplerian ellipse.

For the purposes of this analysis two rocket

W
T

parameters W_ and-w70 (mass ratio and initial

thrust-to-weight ratio) are investigated. In

addition the thrust attitude angle (6) was varied
to show the effects of these quantities on the

conditions at re-entry.

!
!

/ Retrothrust

i _ Velocity
1

/

NOTE:

8 is measured in the plane of the trajectory.

The magnitude of the radial component of

velocity is small, thus work done by the radial

component of thrust will be small. It may,
therefore, appear that a value of 6of 180 ° is

optimum for all cases in which departure is

desired; such is not the case. In the case of low

altitude orbits small changes in the burnout
altitude and flight path angle can affect the mass

ratio required for orbital departure and on the

re-entry parameters. This analysis, therefore,

treats departure from a 100-stat mi (161 km)

orbit separately from similar' analysis for orbits
of increased altitude.

There are many possible criteria which might
be considered in the determination of an optimum

retrorocket configuration. The selected con-

figuration might be one for which the re-entry
velocity is minimum, the re-entry flight path

angle is minimum, the mass ratio required for
departure is minimum or one which ensures a

given value of range from the time of initiation

to impact with the earth. The vehicle itself must

also be considered in this process due to the

sensitivity of some vehicles to small changes in
the re-entry parameters.

Minimization of the re-entry flight path angle
is not a realistic constraint for the vehicle con-

figurations discussed due to the fact that the

maximum values of both deceleration and aero-

dynamic heating can be held with allowable

tolerances for' manned re-entry for angles up to
approximately -2 °. Thus, this constraint need
not be considered.

Since maneuver, either before initiating re-

entry or sometime thereafter, is anticipated to
assure impact in a given area, the criteria selected

for the evaluation of retroroeket configurations

should provide the maximum degree of flexibility

in this respect. The analysis of maneuvering
showed that the maximum displacement of the

impact point in a plane normal to that of the un-

altered trajectory, for a given amount of pro-

pellant, is obtained if the central angle measured
from the radius at which the correction is made

to that at which the trajectory impacts with the

earth is 90°(10,000-km range). Thus, the selection

of the retrorocket configuration which is near

optimum for an orbit of this altitude is, determined

by this value of total range and the minimum

amount of propellant required for successful

departure. This criteria must be modified, how-

ever, if the re-entry angle exceeds the allowable
tolerances placed upon it.

Specific impulse will not be included in this

analysis as a variable; however, because the

mass ratios are small, the data presented here

can be converted to obtain approximate answers
corresponding to values of I other than the

sp

assumed 300 sec. This can be accomplished by
employing Eq (120).

± V = go Isp _ = C

_1 IsPl = _2 IsP2

l.'igure, 11 shows the variations in range, re-

entry velocity and re-entry flight path angle as
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T
functionsof 6and_-_nfor onevalueof massratio
(0.1). Thisfigureclearlyshowsthattherange
obtainedindescentto 300,000ft (91.5kin)canbe
minimizedfor avalueof 6lessthan180°. Also
shownis theconvergenceofthecurvesof the

T
highervalues of _-_n implying that little is to be

U

gained by increasing its magnitude above some
value as yet undetermined (0.5, see Section 3.

It is interesting to note that re-entry velocity

which is a function of initial velocity, altitude,
and velocity increment of the retrorocket is least

sensitive to changes in thrust-to-weight ratio.
This fact substantiates the assumption made in

the impulse analyses that the velocity increment

loss (a function of_@ n ) due to gravity is negligible

for small values of mass ratio.

Figures 12a, b and c present time of flight

required for descent from 100 star mi (161 km)

to 300,000 ft (91.5 km) and the re-entry param-
eters at 300,000 ft (91.5 kin) as functions of

thrust-to-weight ratio, mass ratio, and values

of _ of 180, -135, and -90 °, respectively. It is
interesting to note that the hand computed in-

stantaneous pulse points fared into the digital

results for the 6 = 180°case. The sensitivity

of both range and time of flight to small changes
in mass ratio may be observed to decrease as

mass ratio increases; this portion of the analysis,
however, will be discussed later.

If now a curve such as the one shown in Fig.

13 is employed to determine values of total range
attained in descending to sea level Figs. 14a, b,

and c may be obtained. These curves point up

most effectively the proper combination of 5,
T

\V---0- and mass ratio required to aceomplish a

minimum energy orbital departure for a given

range. Examination of these figures reveals
that the minimum propellant requirement for a

given value of total range is obtained for this

special case for a value of 6 of approximately
-135 °. Further examination indicates that both

re-entry flight path angle and the required mass

ratio are minimum for the higher thrust-to-weight

ratio (0.5), again for a given value of total range.

Since the results obtained thus far pertain to
only one set of initial conditions and since it is
desired to show the effects of small variations

in the conditions prior to initiation of the retro-

rocket on the re-entry parameters, another series

of runs has been made. ttowever, due to the scope
of the program involved only one retrorocket con-

figuration has been investigated. This particular

configuration was selected to provide a minimum

energy orbital departure for a total range of 5000

naut mi or 9270 km (6 = -135°, T/W = 0.5, _ =
0.042, L/D = 0.5). The results of this series

of runs are presented in Fig. 15.

3. Orbital Departure from Nearly Circular
Orbits (100< h < 500 star m i i.e. 161 to 805

km) with Finite Burning Times

This section treats departure from orbits

whose altitudes vary from 100 to 500 stat mi
(161 to 805 kin), whose velocities at the firing

of the retrorocket vary between 100 ft/sec

more than and 100 ft/sec less than the velocity

of circularity (v c ± 30. 5 m/see) at the orbital

altitude, and whose flight path angles will be
between ±4 °

As was discussed in the previous paragraphs,
the work done by the radial component of thrust

is small; therefore, as the orbital altitude in-

creases, the value of 6 which provides for a

minimum energy orbital departure rapidly changes
from -90 to 180 °. The value of 6 to be used for

the remainder of this study dealing with orbits of
100-star mi (161-kin) altitude and more will be

180 °. The initial thrust-to-weight ratio will also

be assigned a value to restrict the scope of the

program which must be undertaken to provide the

data for this report. Figure 16, a plot of the re-

entry parameters as functions of orbital altitude

and thrust-to-weight ratio, shows the reduced

sensitivity of all of the re-entry quantities to
T

thrust-to-weight ratio as _-W-_nincreases. This

figure indicates that no improvement in the re-

entry parameters or reductions in the required

mass ratio are to be realized by increasing
T

to more than 1.5 and little above 0.5; there-
rr_

fore, a value of_ of 0.5 is used for the re-

mainder of this analysis.

Figure 17 presents re-entry velocity, flight

path angle, time of flight required for descent
and the range attained in descent to 300,000 ft

(91.5 km) as functions of the initial altitude and

retroroeket mass ratio for several initially

circular orbits. This figure clearly defines the
minimum mass ratio required for departure from

several initially circular orbits. Any mass ratio

less than that which produces 0 ° as a re-entry angle
would produce an elliptical orbit, the initial

perigee of which would be above the nominally

selected re-entry altitude, and the initial apogee
of which would be approximately the altitude at

burnout. This orbit would decay, possibly quite
rapidly due to the existence of an atmosphere

above the re-entry altitude, and the vehicle would

eventually re-enter; these figures, however, are
for those applications in which the vehicle would

re-enter the sensible atmosphere, as defined, in
one-half of one revolution or less. The time of

flight for a vehicle traveling in a trajectory which

did not initially pass within the atmosphere would

be determined approximately by its closest ap-

CDA
proach to the earth and the quantity _ .

Figures 18a, b, c, d, and e present the re-

entry parameters as functions of orbital altitude,

orbital velocity and retrorocket mass ratio (_'1 =

0°). Conclusions pertaining to the minimum mass

ratios acceptable for orbital departure for veloci-

ties other than that of circularity can be obtained
from these figures in the manner discussed for

Fig. 17.

Figures 19a, b, c, d, and e present the re-

entry parameters as functions of retrorocket mass

ratio, orbital altitude and flight path angle prior

to firing the retrorocket. Several of these fig-

ures show discontinuities and bulges which at

first glance may appear to be in error; however,
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it mustbenotedthattheseirregularitiesoccur
for massratioswhicharemarginalfromthe
standpointof energyrequiredfor successful
orbitalexitandonlyin therangeofflight path
anglesfromapproximately-2°to+2°. Thissit-
uationcanbestbeexplainedbystatingthata var-
iationin thevalueof "_1(eitherpositiveor negative)
producesanellipticalorbit oneportionof which
lies belowthealtitudeat whichtheretrorocketis
fired. Thenetresult ofthis displacementof the
perigeeis to reducetheamountof propellantre-
quiredfor a successfuldeparturefromorbit or
to makeexit lessmarginalfor a givenamountof
propellant.

Smallthrust-to-initial-weightratios(_ =

0.01)for orbitaldeparturehavealsobeencon-
sidered. This device burned for the major portion

of the time required for descent, thus, providing

a force which could also be employed for minor

maneuver or flight path corrections during descent.

It was thought that significant reduction in the re-

entry flight path angle could be realized with this

approach, however, the results indicated little

margin of superiority in this respect and showed

an increase in the amount of propellant required.

4. Error Sensitivities for Departure from Nearly

Circular Orbits Assumin G Finite Burnin_
Times

Generally, since the orbital velocity, altitude

and flight path angle at any given time are not

known exactly, it is desired to show the effects
of errors in each of these orbital parameters

prior to initiation of a retrorocket and in the
retrorocket burning time on the re-entry param-

eters being evaluated. Due to the fact that no

purely analytical expressions can be obtained

which include the effects of retrorocket burning

time on these errors, each error was evaluated

manually by determining the slopes of the curves

presented in the previous sections. An extension

of this analysis to include such things as variations

in the peak values of deceleration and vehicle skin

temperatures due to the atmosphere, in the im-

pact angle and velocity, and in impact dispersion,
will not be made here due to the fact that each of

these quantities is a complex function of the con-

figuration of the re-entry vehicle.

The error in a given re-entry parameter re-

sulting from any of the errors being investigated
can be evaluated from the data presented here in

the following manner.

AX 1 = Z_t B ( Z-_B) (14o)
AX

AX2 = AVI (5_i) (141)

AX 3 = Ah I ( AX (.2)

AX 4 = zx Y1 ( _-_-Y1)/xX (143)

where

X can be any of the four re-entry quantities

considered (range, flight time, velocity,

and flight path angle).

The resultant error in any of the re-entry param-

eters due to an error in more than one of the

quantities tB, V l, h I and ¥i can now be evaluated

through the utilization of the chain rule, i.e.,

AXtotal = AX 1 + z_X 2 + Z_X 3 + AX 4. (144)

This assumption is permissible only because the

independent error terms are small for most cases;

if a higher degree of accuracy is desired or if

these independent errors are large, the method

of successive approximations must be employed

to improve the accuracy of the estimate. Once

the resultant error has been determined, the

actual value of the re-entry parameter may be

obtained by adding the resultant error to the

nominal value of quantity as defined in previous

sections.

It is noted at this point that this procedure

will not yield the most probable value of the error
if the maximum errors in each parameter are

substituted into the chain. To obtain this prob-

able error, it is necessary to refer to statistical

discussions similar to that presented in Chapter

VI.

Due to the fact that it is at present impossible

to place a vehicle in an exact predetermined

orbit, it is necessary to provide the vehicle with

a retrorocket large enough to remove the vehicle

from the major portion of orbits into which in-

jection is likely. This fact makes it necessary

to physically control the burning time (and con-

sequently the mass ratio) of the retrorocket in

order to prevent the vehicle from assuming a

trajectory which would produce maximum values
of skin temperature and/or deceleration which

exceed the limits placed on the trajectory by

structural and personnel considerations.

Figures 20a, b, c, d and e present the errors

in the re-entry parameters due to an error in t B

(assumed to be 1 sec) as functions of the orbital

conditions prior to firing the retro-rocket and of
the retrorocket mass ratio. The selection of this

value of At B is not intended to reflect the accuracy

anticipated in controlling this quantity but rather

is intended to make the data more readily applicable

for all values of Z_t B. Actually, this error can be

limited to approximately 0.05 see barring malfunc-
tion for most motors of the size necessary for this

maneuver.

Figure 21 presents the changes in the re-entry

quantities due to an error of 1 ft/sec (0.3 mps)

in V 1 as a function of the retroroeket mass ratio

and the orbital conditions prior to firing the retro-

rocket. Very little data is available pertaining to
the accuracies obtainable from the various velocity

sensing schemes and mechanisms, but it is felt

that vehicle velocity should be known within a
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range of i to i0 parts in i00,000. These inaccu-

racies correspond to errors in V 1 from approxi-

mately 0.2 to 1.0 fps (±0.06 to + 0 3 raps).

Figures 22a, b and c present the variations in

the re-entry parameters due to a l-stat mi (I.61

kin) error in hl. The accuracies obtainable even

with present radar indicate that it would be un-

reasonable to assume an error in h I greater than

approximately 300 ft (T_ star mi or 91.5 m)

will exist. Since all of the errors being evaluated

are small even for an error in h 1 of 1 6 km, the

effects of an error in h 1 of only 91 m are neg-

ligible. As may be observed from the energy

equation, variations in altitude hi will have a
definite effect on the re-entry verocity, an el-

feet which is not reflected here. This apparent

discrepancy is due to the fact that the assumed

error in h 1 is so small that actual variations in

the value of the re-entry velocity could not be
obtained in this manner from the data.

Figures 23a, b, e, d and e present the errors

in the re-entry parameters due to a 1 ° error in

the flight path angle. This error can be the result

of the fact that the flight path angle prior to the
maneuver was not known correctly or to the fact

that the impulse from the retrorocket was not ap-

plied in the proper direction. In either case very

little data is available pertaining to the accuracy

to which this quantity can be obtained; however, it

is felt that if sufficiently accurate data is avail-
able this angle should be known to the order of

0.01 to 0.1 degree.

The data presented in this section indicates

that the resultant errors in all of the re-entry

parameters with the exception of range attained
in descent will be quite small for the estimated

errors intB, V1, h I and _1" Range, however,

is quite sensitive to errors in each of these quanti-

ties thus pointing up the probability of a marked

impact dispersion pattern. The determination of
this pattern, however, will not be attempted due

to the necessity of including the vehicle ballistic

coefficient and aerodynamic lift in such analysis.

In any event, the presence of an atmosphere

below the re-entry altitude will magnify the dis-

persion pattern existing at re-entry due to the

aerodynamic uncertainties and the fact that y

and V were also affeeted by the previous errors.

D. THREE-DIMENSIONAL IMPULSE

ANALYSIS FOR TIlE CASE OF

CIRCULAR ORBITS

The approach in the previous sections has been

to reduce the recovery problem to one of two

dimensions by utilizing an intermediate orbit. The

philosophy for this approach is governed by the

consideration of the energy required for maneuver-

ing. Itowever, because timing errors can result,

and because under some circumstances it may be

desirable to recover promptly, it is also necessary
to consider the three-dimensional nature of the

problem (see following sketches).

Y

X

V
4/

V

This particular problem has been analyzed by
Fosdick and Anthony (Ref. 1). For this reason

the complete solution will not be repeated here.

However, it is noted that the problem is not un-

like those discussed in Chapter VI (Maneuvers).

The referenced paper gives the following:

(1) The direction cosines of the impulse
in vehicle centered coordinates

=

AV
- ( v cos _ cos 5 -1)/D*

m = W = (aeos 5sin o,)/D*

n - (_, sin v)/D*
AV

where
D * :(i - 2vcos c_ cos _,+ v2)1,2/

o = The angle in the horizontal plane at

the initial radius through which the

velocity vector is rotated

y = The flight path angle of the velocity

vector following the impulse

V

C
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v t0 cos0T3[cos2o
- cos 0 T

+
R

+tan _ sin0Tl-l}i/2

(2) Turn angle and impulse magnitude

sin d
sin _ = -_--

sln 0 T

(1

_-_cv = v2 + 1 - 2 v cos _ cos

(3) Flight path angle.

To this point only the initial and final

radii and the angle between have been
fixed. Thus, the transfer ellipse is

not unique and y cannot be fixed. This

condition is altered if the time of flight

(or flight path angle or velocity at a
point in the ellipse) is specified since

then the ellipse is unique. The reason
that this was not done was to leave an

area for possible optimization of the

impulsive correction.

Ref. 1 also reports some results obtained for

the analytic optimization of the position of deorbit.

The solution is, however, fairly lengthy. Gedeon

(Ref. 2) took this work and developed some inter-

esting results by numerical optimization of the

following equation obtainable from Ref. 1.

I I _ sin 2 d K 2AK = 1 - 2 Kcos _ in2 0 T -_ +

!

_in %/2 ,I 2

where: K- cos _- :V r0 cos _ eT -_},

r i cos y

r 0 = initial radius

r I = radius at which the displacement
OCCURS

/x K = The change in the quantity -

rp
= a measure of /x V since a =

2u-rl + l 2

r V.AV 2
: 2 _: _ iv[ 2

<<I

The results of these procedures are presented in

Figures 24 through 27. One important factor
should be noted. These figures have the param-

eter r0/rl; thus, they can be utilized for gen-

erating data down the re-entry altitude (or to
impact if the effects of the atmosphere on the

trajectory can be assumed negligible in the case
of interest).

This being the case, the angle y, takes on

special value since it is the re-entry angle dis-

cussed previously and in Chapter IX.

This material completes this portion of the

3-D recovery discussion. As was noted pre-

viously, however, additional material on this
problem and on maneuvers can be found in

Chapter VI.

E. ANALYSIS OF ORBITAL

DEPARTURE FREQUENCY

i. Definin_ Equations

For the purpose of defining the acceptable

times of orbital departure from the low altitude

orbit, a model of the earth and of the satellite
orbit have been selected. The earth is assumed

to be spherical and rotating at a uniform rate

(see the following sketch). In order to partially

compensate for errors involved in assuming a

spherical earth, the orbital plane is assumed to

be regressing about the equator at a uniform
rate. The orbit of the satellite will be considered

to be affected by drag forces; however, all other
accelerations (such as second order oblateness

effects, sun, moon, etc.)are neglected.

Fixed ref

direction

Rotating reference

direction

X arc

= R s radius

Utilizing this sketch and the assumptions listed

above, it is now possible to solve for the sidereal

time at which the impact point lies in a prescribed

plane.

texit =

+

_20 +n{2- (A + ZXA maneuver}

e

fimpact (L" i) + 2 m w

e

where: /x A maneuver = angular displacement

corresponding to thrust

or aerodynamic maneuver-
ability.
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2

 --3 J2 cosi 0 ° < i < 180 °

m = positive integer for number of days; selected

sufficiently large that t > 0

-i tan L L
f (L, i) = sin

tan i

northerly launches or

southerly approach

-i tan L L northerly approach

= Tr - sin tan i southerly launches
0°< i < 90 °

-i tan L L northerly approach

= _ + sin tan i southerly launch
90°< i < 180 °

= number of revolutions in orbit (non-

integer)

Similarly there is an expression for the time

at which the launch point crosses the plane

tlaunch = ( g_0 - Alaunch - ± Alaunch

maneuver

+ flaunch (L, i)) _2e-1

Thus, the time duration for the satellite in orbit

is texit - tlaunch or

tinorbi t = [(A + ±A)impact - (A + /'A)launcb

+ n _2 + 2mTr + fimpact (L, i)

- flaunch (L, i)] f2e-I

It is noted at this point that though f.
impact

flaunch have the same functional form, the

and

numerical values of LL, Li, i and i i need not be

the same. Thus, this equation can reflect the

effects of maneuvering in orbit in the interim

between launch and recovery.

A second equation for the time in orbit may
be written as

tin orbit = n T O +

n

_ 7 i + tAD

i=l

where

n = the number of revolutions in the orbit

(noninteger)

7 0 = the period of the initial orbit over an
oblate earth

zS_ i = change in the i th period due to drag
shown in the next sketch

tAD = the time required for ascent and descent.

Now, the two equations for tin orbit can be equated

and solved for the unknown "n" which will be re-

quired to place the satellite and the impact point

in the desired positions for recovery.

n =[(A + ±A)impact - (A + ± A)launeh

+ 2m= +fimpact (L, i) - flaunch (L, i)

n

i=l

+ T--±T q_ )]-i

S e

where

/XT
- oblateness correction for orbital

7s period, see Chapter IV

r = the orbital period over a spherical
s earth.

2. Drag Correction

Since the corrective term (i.e., the series) is

a function of n (shown in the following sketch), the

solution requires iteration.

t = nT

n

i:l

This process, however, is greatly simplified due
to the fact that the size of the correction is small.

Thus n can be estimated neglecting the correction
and then refined. This refinement can be obtained

in the following fashion.

r + r

a p
a - _-

(ha + hp)

asecular 2 T

= 3 T (_aD +/' 7secular g K a0)
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3 2
4 a [ G1 (z)+G2 (z)][ 1

1/2

- e] 2BOp _r_p

where

Aa D

Aa 0 =

G 1 (z), G 2(z) =

the drag correction for

secular changes in the semi-

major axis

the oblateness correction

for secular changes in the

semimajor axis = 0

drag parameters for elliptic
orbits, discussed in Chapter
V

pp = atmosphere density at perigee

CDA

B = "2m

Thus, as the elements are defined as a function

of the revolution number, the correction cor-

responding to that revolution can be computed.

The approach above is vigorous but is some-
what more involved than desirable because it is

necessary to compute a correction on each revolu-
tion. In view of the fact that the corrections are

in general small and that the atmospheric uncer-

tainties preclude high accuracies, an alternative
solution is available for the case of circular and

near circular orbits. This approach makes use

of the fact that in a restricted range of altitudes

the following approximations are valid.

Av = (4wpB _--_p)(_) z_t = -6wBa_t

But

t _n_ 0

At _ 7 0 Z_n

Now replacing a by (a 0 4 wPa0 2 Bn) yields:

AT _ - 6wB70 (a 0 - 4vPa02 Bn) p An

and for nearly circular orbits

P _ P0exp K (a0 - a)_P0exp K(41rP0a02Bn)

_r ={-6wBr0_a0- 4_P0 a02

exp K (4wP0a02 Bn)]

Bn

• P0 exp K (4rrP0a0 2 Bn) An}

Now adopting a shorthand notation to prevent book-

keeping problems with the constants, the equation
for A -r becomes

A 3 n) eA3 n
A-r = (A 1 + A 2 ne _n

A 1 = -6rrBroaoP 0

A 2 + 24 w2 t32 70 a02= P0

A 3 = 4TrP0a02 BK

If, at this point it is further assumed that the series

n

± i can be approximated by the integral, a

i=l

simple expression can be obtained.

n n

A3n eA3 n
l /_ri = _(A1 +A2 ne )

i=l 0

dn

A I A3n A 2 (2A 3n - i) 2A3n

A3 e + )2 e
(2 A 3

This expression should be utilized for the
evaluation of the series for most of the eases of

interest. However, for special cases where

12A3nl< i, it is of interest to look at the series

expansion of the right-hand side of the previous
equation.

n A 1 ( (A3 n)2 (A3 n)2±7i = _3 1 +A3n +_.-2---- +-----_--_ +
i=l

...)

A 2 (2A3n - 1) (+ (2A3i2--- 1 + 2A3n

(2A3n) 2 (2Ann)3 )+--_2_ +-_-- +""

n2 (A_ A2 AIA3 2
+ +_2-) +n3 (_

2A 2 A 3 )+ _ + other terms.

This form of the series is preferable for the

previously noted special cases because of the

simple form.
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It is noted at this point that either form for

the correction will be more accurate if the al-

titude range is small. Thus, a logical extension

could be obtained by breaking the decay range

into regions which the assumptions were valid.

This approach would entail the computation of

several sets of constants A i (i = 1, 2, 3).

3. Launch Maneuver Correction

To this point each factor in the definition of

the quantity n has been discussed except the

quantities _Alaunch and _ Aimpaet. The first

maneuver (±AL) is the direct result of launching

into a plane other than the orbital plane and

utilizing a portion of the propellant for the pur-

pose of turning the vehicle into the desired

plane. The magnitude of this maneuver thus

depends on the amount of surplus propulsion

available, the type of trajectory to be flown and

the type of guidance law which is utilized. Al-

though no detailed discussions of powered flight
are presented in this volume, the related dis-

cussions for the case where the plane is altered

impulsively can be presented. Consider the

following sketch and the spherical relationships

derivable therefrom:

Launch

parallel

Equato,

L L

Desired

trajectory

sin ¢ = sin. L

sln i

'11 = _)inj - qbL

sin L..
inj

= sin-i (sln _ )

ascent range
_12 - Earth' s radius

n 3 = /3L

sin L L.

(i. e., the plane

change is assumed

to occur at point of

injection into orbit

but prior to injection

for fuel economy)

-1 / cos i

.sin j

Now the determination of _ A can proceed based

on Eqs (65) and (68) of Chapter XIII.

sin cr sin /3
sin (A - AO ) = _

sin L = sin L 0 cos _ + cos L 0 sin _ cos

or

COS _ =

sin L - sin L 0 cos

cos L o sin

These equations are the parametric equations for

a polar cap with center at L0, A 0 and of radius of

_. The azimuth angle fl is then the independent

variable for generating the locus of points L, A.

These two equations can be utilized as follows:

Let

o = D1

13' = ,13

A0=0

then

sin A

Now let

sin _11 sin _13

1 cos Lin j

: N2

and

L 0 = Lin j and L = L L

sin L L- sin Lin j cos _32

cos _ = cos Lin j sm _2

sin (A 2 - A 1 ) -
sin _2 sin fi

cos L L

At this point it is noted that the quantity of interest

A g may be obtained to be:

±A L = A 2 -A 0 = A 2

This derivation tacitly assumed that the launch

site would cross the orbital plane, thus as a

consequence this value of AA L is vaiid only for

the cases for which

i > [LL[

By varying the formulation above other cases

can, however, be included.

4. Landing Maneuver Correction

The second maneuver to be discussed

(±Aimpact) is, as was noted, the result of either
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aerodynamic maneuverability or thrust. In either

case, however, _Aimpaet is highly dependent

on the guidance philosophy. This being the ease,

only the simplest of the possible maneuvers can

be considered. The following sketch illustrates

this problem for a lateral maneuver distance i)
m

and a descent range R.

k-

Lexit

_3

" i 't_iA " _act

impact

COS

_1 = C°s-I
D

COS

%2 = _i - *2 + 'I

where

sin Lexit

¢i = sin-1 ( sln-i )

#2 = sin-1 ( SmsinLimpacti_ /

_3 = sin-i ( co_si )
cos Limpact

L* = sin -I ( sin i sin (_2 + ¢2 ))

_4 = sin-i [ cos ic,,/

Now, as before, the spherical segment equations

can be utilized to yield A A.
in_pact"

let

o =gl

L 0 = Limpaet

sin A
sin g l sin _3

1 cos L:: v

Now let

D
1YI

c_ =

A0: A 1

L 0 = L*

sin (A 2 - A i) :

Dm ) sin _4sin( _---

cos L.
impact

and finally

AAimpact = A2 - A0 : A2

No stipulation has been made as to the restric-

tion on the validity of this value of A2; however,

in the derivation an assumption has been made

nonetheless. This assumption is that

i _ }Limpact

D
171

+--
1%

While this assumption is somewhat restrictive,

it provides information for most of the orbits of

practical value. Those orbits which are ex-

cluded will be discussed later.

Attention may now be turned to the descrip-

tion of the parameters assumed in this final

discussion, R and Dm. The first quantity must

be estimated from the combination of the free

flight trajectory down to a re-entry altitude, the

aerodynamic characteristics of the body and the
re-entry conditions. This material is found in

Chapters III and IX. The second quantity (Din),

however, must be handled in a slightly different
fashion. If the maneuver is the result of a small

impulsive correction, the taters1 maneuverability

is approximately

AV

D m = r 0 %
sin (0 - 00) (see Chapter VI)

where

r 0 = initial radius

V 0 = initial velocity

0 - O 0 = central angle from point of
maneuver" to impact

Whereas, if the maneuver results from aero-

dynamic forces
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D
in

1. g7,5

nautmi )
I) "4." L

- _,. -; 1. 0

1155( L )1.875 D--- km

D
n]

0. 75 <

_-1688( L ) kin D
D,'._

2.0

where

D
in

= maxinmm distance normal to the

orbital plane that is obtainable in

descent from 300, 000'it (91.4km).

L/f)* : component of the L/D ratio normal

to tile plane of motion.

These latter relations were suggested by numeri-

cal integration of actual motions, although it is

noted that the former relation _ : 1 has

D""

some theoretical basis. (The theoretical con-

stants are different. )

5. The Form of n

Now since each term in the definition of n

is a known quantity, the number of revolutions

having occurred at any time that the impact point
is in or near the plane of motion can be evaluated.

The attention must, therefore, be turned to those

values of n which are acceptable for a particular

problem. Consider the following sketch:

f

J

From this sketch, it is apparent that the num-
ber of revolutions must be of this form:

' [ sin LL )n = P + 2_ w+ sin-1 ( sl_h---{ --

sin L i ) ] southerly launches+ sin-1 ( _-ri [ approach from the
south

: P +sin-l( sinLL'_Tn-i }-sin-l( s-gYff-f-sinLi )

southerly launches
approach from north

I

n
sinL L ( sinLi ): P- sin-l( _-r_-f )+ sin-I _l-r{[

northerly launch

approach from
north

where

'sin L L sin L i 1
: P + sin-l(_) -sin-1 / s-sl-n-7-,

northerly launch
approach from
south

p is a positive integer
r

n is related to n in following paragraph

But portions of these distances will be required
for ascent and descent. Since those distances are

not explicitly in the equations for time in orbit

(the times required are included), a correction
to the value of n' must he made and the resultant

form for n must be

, Raseent Rdescent

n = n R(_ R(_

The procedure is now to generate values of n

for the various passes of the impact point through

the plane of motion and compare these numbers

to those required for successful return. In this
comparison if ± D allows the computation of the

In

required n, then a suitable maneuver can result

in sucessful return. This process is sufficiently

simple in that it can be performed manually if
necessary; however, digital computers prove to
be a definite asset. Once n is known, it can be

determined whether the approach was from the

north or south, what n_aneuverability is required,
and even the time at which deorbit should occur.

6. Alternative Methods

As was noted in previous paragraphs, there

have been assumptions made which restrict the

applicability of the approach to orbits for which
D

n]

i > ILimpact I + g,_ " Though this assumption

may not be too restrictive for some orbits, it

proves troublesome for others. One approach

around this impasse is to compute the ground

swath defined by the maneuverability of the ve-

hicle. (Ground swaths are discussed in Chapter

XIII. ) When the ground swath contains the impact

site then recovery is possible. If several of these

ground swaths are then computed in the vicinity of

the positions which yielded satisfactory call-downs,

the amount of maneuverability and the direction

and the time for deorbit can be found. The ap-

proach is very simple and is not restricted as to

applicability; however, the number of computations
required even for relatively short durations in

orbit is large and automatic computation is almost
essential.
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A thirdpurelygraphicalapproachinvolves
theplottingofthegroundtrack (seeChapterXVIII)
for theorbit onvellumfor a suitablemap. (This
trackwill beapproximatelyconstantfor theentire
durationin orbit undertheassumptionthatlarge
maneuversor large changes resulting from drag

do not occur. ) Then the positions of the ascending

nodes can be plotted on the map including the ef-

fects of drag, oblateness, etc. After this step, the

maneuver envelope is superimposed on the Kround

track as the track is laid alternately on each of

the ascending nodes and the possible call-downs

are recorded. This final approach thus combines

the advantages of both of the previous approaehs
in that it is not restricted to latitudes, can be

performed manually and readily exhibits the in-

formation desired. Much work is still required,

however, in order to develop the data.

Each of these three methods has its merits,

and each has been utilized for analyses of this

type. The selection of a method should be based

on the method of computation, the information

required in the analysis, and the availability of
data in various forms.

F. CONCLUSIONS

In this chapter the geometry and the landing

site intercept timing considerations for a

generalized return trajectory from an elliptical

orbit into a low altitude circular orbit are pre-

sented mathematically. An error analysis of
the final low altitude orbit characteristics is

derived for small errors in the departure veloci-

ty, altitude and flight path angle. The followlng

conclusions are reached.

(i) The return trajectory is extremely

sensitive to errors in departure ve-

locity. A vernier correction of the

velocity vector seems mandatory

immediately after the initial departure

injection for certain classes of or-
bits.

(2) Errors in departure radius cause an

error of roughly the same order of

magnitude at the perigee arrival.

(a) In case of departure close to the apogee

of the transfer ellipse, the errors

caused by deviations in flight path

angle are extremely small and can be
neglected for engineering purposes.

In the timing analysis of the return shuttle,

it is shown that two possible target arrival times

exist for each day. The solution for the exact

departure angle required for a target intercept

is best accomplished by an iterattve method.

For the sample problem the convergence of the

iteration method is very rapid. The second

approximation gives an answer within two
decimal places and within i. 5 sec of total

flight time (t t = 54, 129.92 sec).

Three flight time error analyses are investi-

gated. First, the approximate analytical method

is seen to give only an order of magnitude result.

Second, the exact analytical method is seen to be

somewhat cumbersome algebraically, so far as
manual computations are concerned (on the other

hand, a digital computer can handle the exact

equations easily). Third, the numerical differ-

entiation method is found to be simple, fast and

sufficiently accurate.

Call-down from an intermediate altitude circu-

lar orbit or from low altitude circular orbits in

general is shown to be extremely sensitive to all

error sources. Indeed, If a given landing point

is selected with a very small allowable error,

the only means of achieving a satisfactory landing

at a prescribed time Is with a maneuverable re-

entry vehicle. Lateral maneuverability seems to

afford the most rewarding avenue of Investigation

from this point of view.

The anlaysts of orbital departure with finite

burning times shows the effect of thrust attitude

and magnitude on the re-entry parameters. The

analysis also shows that the optimum thrust vector
is not always opposite in direction from that of

the velocity vector and that thrust levels above

approximately 1/2 mg alter the descent trajectory

very little.
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IX. SATELLITE RE-ENTRY

SYMBOLS

aecele ration

reference area

CDA
ballistic coefficient,

drag coefficient

lift coefficient

1 2
drag force = 2- p v C D A

gravitational acceleration

resultant acceleration magnitude experienced

in addition to that due to gravity

altitude; also, enthalpy

conductivity

degrees Kelvin

1 2
lift force=_ O v C LA

Lewis number

characteristic length

vehicle mass

G
load factor, --

g

ht
Nusselt number = _-

Prandtl number

Heating rate at the stagnation region

geocentric radius vector

earth radius

degrees Rankine

Reynolds number = O v
ft

body radius of curvature at the stagnation

point

time

temperature at the vehicle wall

component of velocity normal to the radius

vector in the trajectory plane

v

v
c

w

W

x

Y

Y

z

f3

,y

E

8

k

v

P

P0

u

normalized velocity component, F--
c

velocity magnitude

circular orbit velocity magnitude

v
normalized velocity, F--

e

radial component of velocity

vehicle weight

longitudinal range

altitude

side force

drag parameter = PO B_]_ u e -_3y

logarithmic slope of the exponential
atmospheric density function

flight path angle with respect to the local

horizontal

emissivity

flow inclination angle with respect to the

free stream

lateral range

viscosity

kinematic viscosity

density of the atmosphere

sea-level or reference density of the

atmosphere

P_,
normalized density =

O0

radiation constant

# bank angle

Subscripts

e entry condition

s value at the stagnation point

0 initial value

ambient vaiue
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A. INTRODUCTION

For missionsinvolvingmannedsatellitesand
recoveryof scientificinstrumentpayloads,re-
entryof thevehicleinto theatmosphereis an
importantproblemarea. Theprincipalconsidera-
tionsinvolvedare (1)protectionof thevehicle
structureandpayloadagainstthedeceleration
andloadingencounteredinentry, (2)protection
of thevehiclestructureandpayloadagainstthe
thermalenvironment, (3) assurance of dynamic

stability of the entering vehicle, and (4) achieving

sufficiently accurate trajectory control and land-

ing point prediction. An investigation of any of

these factors must rely on an analysis of the

vehicle trajectory. This chapter, therefore,

presents an entry trajectory analysis and sub-

sequently considers the four previously noted

mission considerations. Design information

given is in the form of both analytic solutions

and data generated by numerical methods.

B. RE-ENTRY TRAJECTORIES

During the re-entry phase of the satellite

mission0 aerodynamic forces become necessarily
more important, and the relatively simple per-

turbed Keplerian orbit relationships can no longer

be used. The equations of motion involve non-

linear drag terms, since air drag is a function

of V 2 and atmospheric density, O, and p is a

complicated function of altitude.

These nonlinear differential equations cannot
be reduced to an exact closed form solution with

present mathematical methods. Thus, two pos-

sible solution procedures must be investigated.

(1) Closed form solutions of approximate

differential equations.

(2) Numerical parametric solutions of the

exact differential equations using a high

speed digital computer.

1. Approximate Analytic Solutions

A multitude of approximate analytic solutions

to the equations of motion has appeared in the

literature during the past few years. Many of

these solutions differ somewhat in their simplify-

ing assumptions as well as in naathematieal ap-

proach. Therefore, in an attempt to consider

the problem with both depth and scope, two some-

what different approximate analyses are presented

in detail in Subsections a and b, following; and a

rather comprehensive itemization of other solu-

tions existing in the literature, together with

pertinent assumptions and linaitations, is given
in Subsection c.

a. First approximate method (]Ref. 1)

Chapman (Ref. 1) presents an interesting ap-

proximate solution as well as a convenient approach
to numerical solution of the equations of motion.

Assumptions include (1) spherically symmetric

planet and atmosphere, (2) exponentially varying

atmospheric density, (3) negligible peripheral

velocity of the planet compared to the velocity of

the entering vehicle, (4) small fractional change

in radial distance compared to the fractional

change in velocity in a given increment of time

dr du
(i.e., [_-[ ,*< [-'u I), (5) small component of

lift in the horizontal direction compared to the

drag (i.e., IDLtan 5' I "_" 1) and (6) a point mass

vehicle. The derivation proceeds as follows: in

the absence of forces normal to the trajectory

plane, the motion may be described in two dimen-

sions by the vector acceleration.

a = gg -_ er " _-_+-r-- e; (l)

- :0where e r and are unit vectors in the r and

directions, r is the radius vector from the planet

center" to the entering body, and w and u are

velocity components along and normal to the

instantaneous radius vector, respectively. The

I)
L

_Flight

\ path

fiight path angle with respect to local horizontal,

,¢ (negative for descent) is

-,¢ = tan-1 w-_ (2)

The vector force is

f = (-nag + L cos ,,, - D sin y) e
r

- (D cos "_ + L sin Y) ecb, (3)

so that two component equations of motion may
be written from Eqs (1), (2) and (3):

2 2

_ d y = dw u L cos "_ + D sin "_'
- d_- =g - _--_q _n

(4)

du _ uw D (cos "t +_3 sin Y) (5)ay = _ -_

Ref. (1) neglects the term u w in Eq (5), which is
r

equivalent to assumption (4),

dr dr
u !m-! ITI

.... ugW-= '_ff-I <<l.
Iml r
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Thissituationis realisticonlywhendragis large,
sotha[lhesolutionswill nolappiyto orbitmotion
abovethesensibleatmosphere.Then,usingthe
exponentialapproximationtoatmosphericdensity,

P = P0 e-i_y' (6)

and assumption (5),

Eq (5) yields

du P0 e - i3y u2

8{ =- m cos 5 (7)

since

1 V 2 A
D =2p C D (8)

whe re

V

C})

velocity magnitude = _u _ +

= drag coefficient

A = reference CFOSS-Sectioll area of entry
vehtcle

The variable u may be normalized by setting

= u = u
-- __ °

V
(9)

Then

du _d (_gr u) = _ du (10}
dt -- _dT- Ig' d_

since, from approximation (4) and the differential

of Newton's law of gravitation, g =-g ,
r

dg = -2 dr ,
g r

derivatives of g and r may be neglected relative
to derivatives of u or u. From Eq (10), Eq (7)
for the normalized variable becomes

-2

d_ -t_y u f-_ (II)tit- = -B PO e cos T

C D A

where B is the ballistic coefficient, B = -'2m

Similarly, rewriting I<q (4) using F',qs (8) and (9)

gives

1 dw 1 d2y = 1 _2 ru2 e-i]Y(sin 5

- g d_ : - g at_ - + % B --cos-_--_

[J

- -- cos '_) (12)
D

Reference (i) reduces the transformed pair of motion
equations, Fqs (11)and (12), to a single equation

by tral]sforn_ing 1o a di_]]ellsion]ess {JcpcndeHt
variable z defined by

F e -i_Yz _ POB r u

Then, with assumption (4),

(13)

l dz z _ e-t?v dv- L_ : - P 0 B _ :
u du u du

z dy dt.

= -i_E _i- du
(14)

But, from Eq (11),

dr7 =_ _g;_ gz
cK c6-s_

and

(15)

dy
w = u _gr tan "_'

so that Eq (14) becomes

du u u dt " sin h.
(}6)

Then

and

1 dw __-_ d (Esin _'g dt _- cos "_

_2 sin 2

2
cos ?,

7 !_ (17)
d_

dJ E dE

9

d-z dz+z
Udu_ du u

(18)

d 2-- Z

: u --- - _ Silk Y.
d E2

From the first form of Eq (18), t':q (15) and t,:q
(17),

1 dw 1 d2 y : u_._iz d_z

- g d-T = g dt T cos_2 -- d -7O), {lu-

and from Eqs (12), (13) and (16),

ldw = ld 2
_ Y =

{iz ( dzu-2 4 -- y- tit1

COS - '

(1_)

u 15-cos ",
(2{})
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A comparison of Eqs (19) and (20) gives the final

equation to be solved.

-2

U - -- -

dE u uz

_eos ,_, = 0

where

d z z
dE E

4
---- cos "/

(21)

Consequently, the pair of component motion equa-

tions, Eqs (4) and (5), has been reduced to a single

second order differential equation by transform-

ing to the dependent variable z and the independent

variable g, subject to the assumptions noted.

The nonlinear differential Eq (21) may be solved

by numerical integration; since Eq (21) depends

only on the ratio of lift and drag coefficients,

numerical solution of this equation has certain

advantages over straightforward integration of the

two component equations of motion, which depend
on both coefficients. Alternatively, Eq (21) may

be used to generate various approximate solutions.

(1) Approximation for straight line trajectories
and ballistic vehicles

For the case of entry of a ballistic vehicle along

a spiral path characterized by a constant flight path

angle with respect to local horizontal T, Eq (18)

gives

d--_- (sin y) =0 =Ez 1 ' sin_ (22)
dE

where z 1 is the z function defined by Eq (13) for

this special case. Successive integration of Eq

(22) yields, for initial conditions il =g0, z = 0

(entry from high altitudes),

ZI! = _¢3rsin _-lnK + costant

and

z 1 O0 e -_y
= in _E = B -- (23)

u _' _3r sin '_ K 0 _stnV

This solution is applicable in either of two circum-

stances: (1) the rather impractical case in which

lift is programmed to maintain a constant flight

path angle, or (2) the case of ballistic vehicles

entering at such steep flight path angles that the

difference of gravitational and centrifugal forces

is small compared to the vertical component of

drag force, so that the trajectory is essentially

a straight line. This latter situation is that con-

sidered in Ref. 2, and Eq (23) is the solution
obtained in that reference.

(2) Approximation for gliding vehicles

For the case of small entry angles ( {stnS'l _:
L L

1"_'1 -_ < _ and cos "_ -_ 1) with large _ and gliding

hypersonic flight (K-_ 1), the basic differential

equation, Iqq (21), gives the approximate solution

--2
1 - u

z2 f-'5-- [7 (24)

which is the same as the gliding flight solution

given by Nef. 3 and considered in Ref. 4.

(3) Approximation for a skipping vehicle

For the case in which the difference in gravi-

tational and centrifugal forces, i.e., the term

-2
1 -u 4
-- cos '_

UZ

of the basic equation, Eq (21), is relatively small,

as for a skipping vehicle, Ref. 1 provides an ap-
proximate solution.

z3 =__+Zo [
L

-- _ sin _0 In

u u 0 u 0

e°S3Yav L u ]
_---- _ ln2 __ J

fi-o

with

:sin y = sin 5' 0 - os _a _ln--
_0

L
For _ -- 0 these equations reduce to Eq (23).

b. Second approximate method (Ref. 5)

(25)

(26)

Wang and Ting (Ref. 5) derive approximate

solutions from the equations of motion expressed

in the form of tangential and horn:a1 components.

dv D
d_- = - _ - g sin "_ (27)

vd_ L 2

St =_-(g -_r--_) cos '_
(28)

• r D

L
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wh(_ r'e

v

l) =

=

g =

r --

h =

vchicle velocity magnitude

1 2
p v CI)A2

drag force

1 2
0 v CIA (29)

lift force

acceleration due to gravity

radial distance of vehicle fromthe center

of the earth

mass of vehicle

local flight path angle, positive for ascent

Since this formulation differs from that of Ref. 1

and provides somewhat more accurate approximate

solulions, the derivation will be presented in some

detail for t't_'cr_ncc. Assumptions, although noted

in the (h'rivation, are collected for convenience in

the following list..

(l) The (.arth and its atmosphere are spheri-

cally symmetric.

(2) The atmospheric density varies exponen-
tially.

(3) The atmosphere does not rotate.

(4) cos _, _ _ • For grazing entry, the local
e

flight path angle is ahvays small so that

cos ',' -_ 1 and can be approximated by

cos 5' e. For steep entry, the flight path

angle does not change greatly from the

entry value, and the approximation is
again valid.

(5) The aerodynamic coefficients C L and CI)

are assumed constant in the given solu-

lions. (An extension does not require this

assumption. )

(6) Although h' is not assumed to he very small,

accuracy deteriorates because of series

truncation _lNsl.ili[lJll_ 1 - - "_"{o For rea-

sonahh, accurach's, _ 60 °.

(7) The vehicle is considered as a point mass.

With the assumplion of exponential atmospheric
density, I':q (6) takes the for'm

p = p 9 e -i_h

dp = _ _?p dh = __pvsin,,
d_ 7t

and from I:qs (8) and (2!)), I':qs (27) and (28) be-

COI_] (!

(1 A
dv 1) g
-,, .... 2m ,_-sJn-- _7- d p 4 _ do (:;_})

C[ A 1 cos '*e

sin,d,.... 4)W--
V

,where the approximation cos "¥ = cos x{e has been

made in Eq (31). The limitations imposed by this

approximation are noted in the previous list of
assumptions, Assumption (4). The quantities in

parenthesis in l<q (31) represent the centrifugal

and gravitational forces and are sometimes neg-

lected in approximate solutions if entry velocities
may be assumed close to circular orbit velocity.

tle'.c_'cnce 5 obtains a higher order solutio_ by

appr.,ximating the vel¢)clty in the centrifugal force

term by the velocity-d(msity relation given in
Ref, 6,

v t
in _ = . . , (p - pe ) (32)

e e

where

CDA

Then, expanding the centrifugal force term in

Series,

g=g [l+Cln v v ]--2- ---2- 1 _- + C2 1n2 _-- + " " "
v v - e e

e

v - _(0 - Pe)
e

2] (33)

where C 1 and C 2 are constant coefficients which

can be determined by collocation. Substitution of

Eq (33) in Eq (31) and integration gives, for con-

stant C L,

cos h' : cos 5' e + B 1 (p - Oe) + B 2 In --_P
Pe

+ B3 fl (p) (34)

where

CIA cos 5'e gcos '_e

B1 = 2]n;_T, ' I39 = _-717--' t33 - 2-
;3v e

(_)= •L|(I-'B4C I -_B2C2)_ In--Pfl

') P - Pc

- (B4C I + 2B_C 2) pe

P - Pe

+ 2t34 C2 Pe

For constant CI) integration of Eq (30) proceeds as
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v /P fe B f do g do
in _- : - _ , sin'Y _ . --2-

pv
Pe Pe

(35)

Evaluation of the integrals is facilitated by the fol-

lowing expansions,

1 1 1 Y 4

N' - _'Y

or

1 1 1

Stl] _' = sin lye-(}e-}_}] _ sin h"e - _-(_:e --_' c-Y-d_K_'e

1 cos "¢'e _ ,),
= si-TKT- + _ {_e

e sm _'e (37)
lr

'_> 7' l >> i_- ,%)

2

Also, cos Y = 1 - _' in Eq '34. Then integration
T

of Fq (35) gives the following solutions:

Case I. K 2 positive, h'e _ 45°

F, B 5
Ve _ 3 flip ) +__f2(p) + f3iP )

in v cos _e _--K2

where

4K2T2 _ K 2 ]B 5 = _ 1 +-- 48K2

f2(p) =p_n[K I+ 2 (l - {_) K 2 + 2 [K2 T2

+(K I +K 2 - _K2)11- _}K2 ] I/B_

+K 1

('38)

(1 o) +K2( 1 o)2] 1/2_ _ + K1 z,_,

-2 2 r 2C1B3B4

"Y = Ye - [2B1-
L P e

+C2 B3B4 2 (P-'3_](p-pe)

Pe

-2[B3+B2+C1B3B4+C2B3 B'211n-_Q,ij 0 e

K I = 2 IBI p + B 3 + B 2

(p - pe ) 2(P-Pe )2 ]+C2B3B 4 _Y-
- C1B3B4 Pe p "

e

Pe
o = --

P

K 2

(p2pe2)

= B3+ B2+CjB3B4-C2B3B42 -2--

Pe

Case II. K 2 negative, _'e _ 45°

in

B 3 B5
Ve _ fliP)+ -- f4(p}+ f3 ip)

v cos '_e i _'_'__2

i'39)

where

f4iP) = P sin- 1 K1f< 2 _4K2 Y

_ sin- 1 K 1 + 2(1 -cr) K 2 ]

_K 12 -4 K 2 _£ I

Case III. K 2 positive, "Ye >45°

v [ Ye cos Ye
ln e = -1 + 2

v sm Ye sin Ye

B 6

-- f2(n) - 6 faint (407

where

B 6

B cos "Ye (4K2 _2 _ K12)

• 2
8 _ sm Ye K2

Case IV. K 2 negative, Ye ">45°

Ye cos Ye ) B

Ve = -1 ÷

In _-- sin Ye sin 2 _ (p-pe)
Ye

B 6

f4(p) - 6 f3(p) (41)

_/-K 2

These solulions can be used to determine the

velocity at any point between entry and minimum

-y.

c. Other approximate analytic solutions

The following list of approximate analytic

solutions has been collected, along with perti-

nent assumptions and limitations for reference
convenience.

il) Heference (7)

Assumptions. (1) spherically symmetric

earth and atmosphere, (2) exponential atmo-

spheric density, (3) nonrotating atmosphere, (4)

constant gravitational attraction, (5) ballistic entry
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,6,thequant ty c°s 0  co   dered
constant in integration over p or "_, and (7) point

mass

Solution.

cos "f

cos _ = e (42)

/?e

2

e

I{ 4 _/gR+ 1 - _-a-/L--_jF(_e)--v,exp
e

(43)

where

F( 9 ln(_) C,,+-_4 (C1 ¥)2

h (C1¥)3] eCI'Y +[ (C1"_)3

+ 217 + + I v

240 C 1

• • 12 Cl_2 -- (for

5' small)

or

F(_) =- -C 2 [C 1 sin "¢+cos

- C3[ _ CI sin 2 Y + c°s 2 q

+C 4 sin 2 v (C 1sin y+ 3 cos _)

C 1

(for _ large)

= [cos "_m m

[ _m _ C--_D (: G - 1)]
m

-1

where m designates a reference point

1 + 1 (C 1 + 9)
C2 = cos _e cos e

- 6 _ (C1 1 + 9)
e

-1

C3 =1[ c°s2 _/e (C12 +4)] -1

C4 =lEc°s3 "re (C12 +9)] -1

Special Cases.

(i) For _R _200 and "f <45 ° (/3 R _ 900 for earth)

" =exp R _ -
(44)

(ii) For constant "¢ (from Eq (42), this

occurs for p small or close to Oe or

for v large or close to gR). Then,

cOs Y =cos Y (45)
e

V 2 =exp[ CDA (P - Pe) 1 (46)

(Compare with Eq (23).)

(2) Reference (8)

Assumptions. (1) spherically symmetric earth

and-a_p_ (2) exponential atmospheric den-

sity, (3) nonrotating atmosphere, (4) small "_'

(sin _ _ _ and cos "¢ = 1) and the component of g

along the flight path angle is small, (5) constant

C L and C D, (6) constant gravity and constant

lover range of re-entry, (7) point mass.
r

Solution.

2 _2v = v - 2 (h - h e ) (47)

where

= -- -- V

V e

71 e

vl (Y-Ye)-- = exp -
Ve , D ,

V

V 1

_ _-4g edae /iv: -CPe

expt_e2 {_LD)2_ \fi r e

- .1 +_- _- k+q_---_

• [ J
_ g l-ff °e 2 _ 2)
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k2 = 8KDI -flhe /3r _/e 2 ]
_r_ e +-- 2-_5K 0

2"/
_, =--I7

C D A P0 r

KD= 2m

(3) Reference (9)

Assumptions. (1) spherically symmetric earth

and atmosphmr-e7, (2) exponential atmospheric den-

sity, (3) nonrotating atmosphere, (4) ,/ is small,

(5) constant aerodynamic coefficients C L and C D

(6) v_v in the gravitation term of the force
e 2

equation v_ cos "Y, (7) constant r over the range
r

of integration, (8) constant g, (9) point mass.

Solution.

CLA i2 __]{n p_Ve-. j- _(P - pe ) - _ p-e

(48)

_n_m= 2m/3_ _-t {_ _/a+bPe+CP:+ _C0e + 2-_C ]

where

2
a = - -

e _r-'_ fiVe

A
b =-Lm---_,- + p--_-

Pm e

and the subscripts e and m signify values at

entry and at peak acceleration or minimum flight

path angle, respectively.

(4) Reference (2)

See Eq (23).

 n'm- 3j +

(5) Reference (10)

(49)

CLA

m---/T- Pe

See Eq (46) or (23).

(6) Reference (11)

Assumptions. (1) spherically symmetric
eart_n--d-gt-_B-g-phere, (2) exponential atmospheric

2

density, (3) point mass, (4) 1 - v__ _. 0 in the
gr

2
pv CDA

equations of motion, (5) sin _ < < -72--m- _ (i. e.,

the component of gravity along the flight path is

negligible compared to the aerodynamic drag

C L

load, (6) constant CD

or

Solution.

[% ]v exp - (-_- ,¢e) (50)
ve CTL

m CD

(P - Pe ) = 2 /3CD_ _L (cos y - cos -ge)

_or constant CLA_-_--/ (5 i)

C
m D 2 3

O:Oe+_ _ _ (Ye _ 2) i>>_

2. Numerical Solutions and Graphical Presenta-
Y[ons

Since the equations of motion for entry

(Eqs (4) and (5), or Eq (21), or Eqs (27) and

(28)) cannot be solved analytically without use

of simplifying assumptions, numerical integra-

tion offers the only means of highly accurate

computation of general trajectories. Many

techniques are possible in numerical solution,

depending on the chosen formulation of the

equations of motion and on the method of numeri-

cal integration used. Three formulations of the

equations of motion are given in Eqs (4) and (5),

Eq (21), and Eqs (27) and (28), and various

numerical integration techniques are discussed

tnChapter IV. In general, selection of a

formulation and integration technique must be

based upon the nature of the particular entry
mission. Howe,,er, it should be noted that

Eq (21), although not completely exact, has an

advantage in that only ratios of lift and drag
coefficients are involved.

Consideration of numerical entry analyses
will be limited to presentation of the solutions
and willnot consider the methods. The solutions

are of interest for two reasons:

(1) Comparison of the numerical solutions

with the results of approximate analytic

analyses provides a check on the validity

of these analytic solutions.

(2) The numerical solutions, presented in

the form of parametric graphs, are

useful in making preliminary design
estimates.
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Reference I provides various solutions deter-

mined numerically from the entry problem form-

ulation of Section B.l.a. For entry of ballistic

vehicle from a decaying orbit (Ye = 0°' J0 = I),

Eq (2) reduces to

du d-_ uz
= 0 (52)

' =0z 0 = 0, z 0

The solution of this equation, which has to be

L

evaluated only once for each value of V_'r

is plotted in Fig. la for nonlifting vehicles and in

Fig. Ib for lifting vehicles. It should be noted

that in the case of circular deca_ the lifting ve-

hicle does not "skip," but follows a smooth equi-

librium glide trajectory. For nonlifting vehicles

entering from circular velocities and nonzero

entry angles (u0 = l, v0 < 0), Eq (21) reduces to

...... cos y = 0 (53)
du d_ uz

The z functions for this case are plotted in Fig. 2a.

With lift and fi-0= l, ?0 < 0, Eq (52) applies with

' = _'_V 0. Solutions for this casez 0 = 0 and Z 0

are plotted in Figs. 2b through 2e. All exhibit

severe skips except when ?0 = 0.

In Fig. 3 the theoretical solutions for the

atmospheric braking of ballistic vehicles entering

at escape speeds are shown for different values

of maximum deceleration during the first pass.

The parameters used are (30uz)first max. which

correspond to the altitudes of deepest penetration

during the first pass. Figure 3 shows, for exam-

ple, that if (30u_)first max. = 0.46, then entry is

completed on the seventh pass.

Figure 4 represents a numerical integration

run on the IBM 704 digital computer, considering

natural decay from a near-circular orbit. Veloc-

ity and flight path angle variations are given as

functions of geometrical altitude above the sea

level. Superimposed are the results obtained

from the analytical solution given in Fig. la and

the corresponding flight path angles given in

Table I. Correlation is seen to be good, justi-

fying the approximations made in Ref. I. [Table

l also gives the ranges in terms of earth radii

and the flight times from the initial re-entry

altitude .]

Figures 5a to 5e show the velocity-altitude

profiles for ballistic re-entry, as obtained by

numerical integrations of the exact equations of

motion. Using the ballistic coefficient (B) as a

constant parameter, parametric trajectory curves

are given for initial flight path angles of -I °, -2 °,

-3 °, -5 ° and -10 ° for an initial velocity of

25,000 fps (7620 mps) and an initial altitude of
300,000 ft (91.4 kin). It should be noted that these

results also apply to any altitudes higher than

300,000 ft (91.4 km), since the drag effects above

this altitude are extremely small for conventional

ballistic coefficients. Interpolations between the
curves can be accomplished.

In Fig. 5a the comparison with the analytical

methods of Ref. 3 is presented, showing that for

B = 0.5 to 5.0 ft2/slug (0.00318 to 0.0318 m2/kg)

relatively good agreement exists.

The corresponding local flight path angle

versus altitude histories is shown in Figs. 6a

to 6e. In Fig. 6a the comparison of analytical

and numerical results is seen once more to be

satisfactory for a first approximation.

Characteristic re-entry altitude-velocity pro-
files for lifting vehicles with L/D = 1 and L/D =

3 are indicated in Fig. 7 for an initial re-entry
flight path angle of -10 °.

Figures 8a, 8b and 8c present the peak alti-

tudes of first skip for lifting re-entry vehicles
in parametric form for L/D = 0.5 to 3.0.

Figure 9a compares the velocity-altitude pro-

files for various re-entry vehicles, both ballistic

and lifting type. The severity of skips increases

with increasing lift-to-drag ratios and atmo-

spheric effects become significant at much higher

altitudes in the case of lifting bodies, as compared

to simple ballistic vehicles.

Figure 9b investigates the effects of variable

entry velocities on the velocity-altitude profiles

of a lifting body with L/D = 0.5. It should be

noticed that a definite "skip envelope" exists for

all entries regardless of the initial velocity and

basically the same trajectories are reached at

i00,000 ft (30.48 km) altitude.

The initial flight path angle produces some-

what larger deviations between the members of

the same trajectory family as indicated in Fig.
9c.

The effects of programmed C L on velocity-

altitude profile are shown in Fig. 9d. The corre-

sponding programs of C L as functions of Mach

number are given in Fig. 9e.

It should be noted that considerable variations

in the lift coefficient are required for a relatively
smooth trajectory and even small deviations from

the desired lift coefficent program result in a
pronounced phugoid motion of the vehicle.

Figure lOa presents the terminal velocities

as a function of L/D for various parametric

values W , While Fig. 10b gives terminal

flight path angles for lifting vehicles.

A comparison between the trajectories of

ballistic, lifting and winged bodies is given in

Fig. lla. Further comparisons of velocities,

flight path angles, dynamic pre._sures, accelera-

tions and nose temperatures for the above three
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,999 ,0000_

,995 ,00058

,990 ,00163

,985 ,00299

,980 ,00461

=970 ,0084_

,960 ,01301

.9SO o01817

,900 ,051J6
.8flO ,09348
,800 ,14306

.750 ,19860

,700 *25915
,650 ,32387

e600 o39203

,5S0 .46790

,500 ,53570

o450 ,60958
,400 *68355

,350 ,75637
,300 ,8264_

,250 *89161

,200 ,94852

,150 ,99158

,100 1,00892

,050 .957?5

U Z

*999 ,0005_

,995 ,00264

.990 ,00536
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,980 ,01105
o970 ,0]704
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,850 o11045
.800 ,1594_

,750 ,21336
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,250 .88491

,200 ,94177

.150 .98559

,100 1.00458

.050 ,9553h

Vl = 1.0 (B_/_O--@L/D - 0

• 00 DEG.

G DEG* 0 S T

,00 -o15 .000 ,000 ,0

• 02 -,33 ,275 ,716 581,4
tO3 -,47 ,431 ,886 720,1
• 09 -.58 ,535 ,961 781,7

,14 -o67 ,614 1.006 818,6
.25 -.82 ,736 1-059 8h2,7

• 37 -*96 ,828 1,091 889,3

• 52 -I,07 *903 1.112 907,6

1,38 -I,56 1.154 1.166 954,5
2,39 -i,98 1,309 1,190 976,6

3_44 -2.36 1_419 1,205 900,7

4,48 -2.73 1,503 I,214 1001,0

5.46 -3,11 1.568 1.222 1009,2
6.34 -3,50 1.619 1.228 1016,1

7.09 -3*91 1.661 I*232 1022,1

7*68 -4*36 _.694 I*736 1027,6

8*09 -4186 _,722 1.239 I032,7

8,30 -5,43 1.7_3 1,242 I037,7

8*30 -6.09 1.761 1.245 1042,6

8006 -6,89 1,775 1.247 1047.5

7,58 -7.89 1.785 1.249 1052,8

6*86 -9,21 1,793 1.251 1058.4

5.91 -11,08 1,799 1.253 1064.9

4,74 -14.03 I_803 1,255 1072e6

3,41 -19,50 1.805 1.256 1083,1
2.05 -33_16 ]^806 ]_258 1100,0

'-1800 DEG*
Y

G OEG* 0 S T

,02 -9,00 ,000 ,000 ,0

,08 -1,03 ,107 ,102 83,1
,16 -1,07 ,187 ,146 118,5

.24 -I,I0 .247 ,171 139.1

*32 "1.14 ,297 .188 153.5

,50 -I.21 ,379 .2)2 173,5

,67 -i.28 ,446 ,229 187,5

,85 "1*35 ,503 ,242 198,2

1.81 -1.69 ,711 ,278 230,2
2.82 "2.02 .850 ,298 248,0

3,83 -2,35 ,953 ,310 260,2

4.81 -2,69 1.033 .319 269,6

5*72 -3.05 1.096 ,326 277,4

6.53 --3.42 1.146 ,332 284,0

7,22 -3.83 I*]88 ,336 289,9

7,75 -4.27 1.221 ,340 295,3

8.12 -4,77 1,248 ,343 300,4
8.29 -5,33 1.270 ,346 305,3

8*26 -6.00 1.287 ,349 310,3
8.01 -6.80 1,301 .351 315,3

7.52 -7.81 _,312 ,353 320,5

6.81 -9.14 1,320 .355 326,2

5.87 -11,03 1,325 ,357 332,7

4071 -14,00 1,329 .359 340,_
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-.50 OEG*

Z G DEG* 0 5 T

_999 ,00_26 .01 -*50 ,000 ,000 *0
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,600 *38905 7.04 -3.88 1.412 *560 475.0
,550 *4%951 7.63 "_*_4 1,4_& *564 480*5

,500 .53205 8*04 -4*84 1,473 .567 485*7
,450 ,60583 8,25 -5*41 1,495 ,570 490,7

,400 ,67984 8*25 -6,07 1.513 *573 495*6

*350 .7_286 8.02 -6.88 1.926 .575 500.6
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-1450 OEC_

Z G DEG, 0 S T

*999 t00078 ,0_ -?,_0 ,000 ,000 00

.995 ,00394 .12 -1.92 ,088 ,068 59*_
0990 ,00792 *24 -1*54 ,153 ,098 79.4
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,150 ,98432 4.70 -13,89 1.174 *262 258*6
,100 1,00164 3,38 -19.41 1,177 e264 269,1
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TABLE 1 (continued)
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0850 *29733
,800 ,39125
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,600 *72634

0550 ,79810
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,400 ,97594
e350 2002004

*300 1005466

*250 le07811

,200 1008804
,150 1008071
,100 1,04853

,050 *95978

G

,06

,19 -4,Ol

*50 -4002

081 -4*03

1*11 -4,04
1.70 -4006

2.28 -4*08

2.85 -4.10

5.43 -4,21
7.63 -4*33

9*45 -4*46

10,90 -4.60

12,0<) -4*76

12076 -4,95

13,28 -5o16

13,29 -5o41

13*09 -5.71

12*61 -6,07

11086 -6,52
10,88 -7,I0

9.67 -7*86

8.29 -8,93

6*75 -10*53
5,13 -13,19
3,50 -18.43

2,01 -32e24

*960 o16_ 164.4

.966 ,169 170.6

.969 ,271 178_2

o972 ,173 188.7

*973 ,174 205*8

-4*00 D£C_
Y

DEG* Q S T

-4,00 ,000 ,000 .0

,032 ,017 14,2

.080 *033 27.0

,113 0041 33.3

*141 *046 37*6

.185 ,053 43.4

.221 ,058 47*5

.253 e062 50.7

,370 *073 60.8
,453 e080 67.0

.518 ,085 71._

,570 ,089 75.8

*613 ,092 79.3

.649 ,095 _2,6

*679 *097 85e7

,704 .099 88.a

.725 *101 91,9

,743 elO_ 95.0

,7"37 ,105 98.&

,769 1106 101,9

,778 ,108 105,9

,785 e110 110,5

.7"90 *111 116,0
,794 ,113 123,0
,796 ,114 132,8

.7_8 0116 149.7
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types of re-entry bodies are given in Fig. llb as

functions of time. Finally, Fig.llc represents

the effects of the rotating atmosphere on the entry

of a lifting body with L/D = 0.5 and _-_-_ = 155 Ib/ft 2

(7420new_rg_n_). it canalsobe seen fromtheL'_
m

note that for entry from 300,000 ft (91.4 kin) the

range for a rotating air mass is 72.5 naut mi

(135 kin) longer than the value for a stationary air
mass.

C. DECELERATION

Deceleration magnitude is one of the several

factors to be considered in safeguarding the pay-

load of an entering vehicle. External loading on

the vehicle, due to air pressure created by motion

of the vehicle through the atmosphere, varies di-

rectly with deceleration and ballistic coefficient.

Another consideration involving deceleration is
that of human tolerance to stress, which is a

function not only of peak deceleration and rate of

onset of deceleration, but of orientation of tbe body

and duration of the stress.

I. Analytic Solutions

From the force equation for an entering body

(for example Eq (3)) the total acceleration magni-

tude is

I(a = -g +_L cos "___D sin "/
m m

_ sin y (54)
,

and the resultant acceleration magnitude experi-

enced in addition to that due to gravity can be wr/t-
ten as

G -- E(Lm D )2-- cos Y - -- sin
m

''2
+ m cos "t + D " (55)

or

CDA E(L )2G =_ pV 2cos Y _ +tan "_

1/2

+ 1 +_tan Y (56)

This acceleration G is that actually experienced by

a pilot or instrument package, i.e., the accelera-

tion due to external forces (lift and drag) alone.

Expressed in units of g, this quantity is sometimes

referred to as the load factor, N = G_ Two simple
g

cases are of interest.

(1) Ballistic entry

For L = 0, Eq (55) reduces to

(57)

L=0

(2) lifting entry at small entry angles

From Eq (56)

G _ 0V2cos ¥ 1 + tan

1 >> _ tan ,_

For small entry angles

CDA V2 [ /CL'2j 1/2

cos, Itan,

2 I[2

(58)

(59)

The maximum deceIeration experienced can be

determined from the previous equations by setting

dG - 0
dt

For the case of Eq (59), small entry angles, or

Eq (57), ballistic entry, this condition gives

2 do dv
v _-+2pv_}- =0

From Eqs (29) and (27),

I1 + 2g t CDA Pmsin v = -m m
_v m

(60)

or

CDA m
sin "Ym _ - m 7-- > >

In the notation of Ref. 1, or Section B. 1.a.,

(61)

I__.

Yl << _, cos 1 (62)

2. Numerical Solutions and Graphical Presentations

Fig. 12a from (Ref. 1) gives horizontaldecel-
du

eration, _}-, for entry into the earth's atmosphere

from decaying orbits. From Eqs (10) and (i5),

du _ u'zd_ _ - g co-s Y (63)

",, 30 Ez , (g), 1>_'_/

Consequently, Fig. 2 is useful in generating Fig.
12a.
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In Fig. 12b are shown the results of numer-

ical integrations of the exact equations of motion

by an IBM 704 digital computer for a zero lift decay

trajectory from a near-circular orbit. From

Fig. 12b it can be seen that below approximately

50,000 it, the deceleration approaches zero be-

cause in this range terminal velocity is reached

(drag = weight). On the same figure, the re-

entry load factors

G
N =--

g

are also indicated. At least for small re-entry

angles, both curves coincide (for practical pur-

poses) in the region where really significant g

loads are encountered. It should also be noted that

the analytical values are considerably higher than

the actual decelerations (theoretical max = 8.35 g

and actual max = 6.9 g).

Furthermore, maximum deceleration is also

a function of the ballistic coefficient, as indicated

by Fig. 12c. For different entry angles the shapes

of the curves presented in Fig. 12c are essentially

maintained; only the region of maximum decelera-

tion shifts out with decreasing "_0"

The variations in maximum decelerations are

given in Fig. 13a, which also gives the corre-

sponding altitudes where they occur. Given a

certain re-entry angle (e.g., _'0 = 0 deg) and the

ballistic coefficient of the satellite (e. g. , B =

2 ft2/slug), 0.0127 m2/kg), the magnitude of the

maximum acceleration and its point of occurrence

(for the given example; (V/gma x) = 6.65 and hma x acc

= IB5, 000 it) (56.4 km) can be determined. From

Fig. 13a it can also be seen that for a fixed ballistic

coefficient, optimum re-entry dec elerations are

always connected with a zero initial angle. How-

ever, for a fixed re-entry angle, there exists a

variable optimum ballistic coefficient which

minimizes the decelerations. These optimum

ballistic coefficients are given as functions of

_/0 in Fig. 13b. The corresponding values of

maximum deceleration are also given. It can

be seen that the design values for ballistic co-

efficients in the range 1.0 < B < 1.5 ft2/slug

(0.00637 to 0.00056 m2/k_) are desirable.

Drag decelerations may be controlled by vary-

ing the configuration parameters. Figure 14a

shows the effects of variations in the configura-

tion parameters for normalized altitude variations

(Hcf. 12). The normalized altitude represents

distances on either side of the original altitude

for maximum deceleration. Figure 14b indicates

the acceleration profiles for these programmed

configuration changes. Taking the most drastic

deceleration reduction (namely 60% of the max-

imum uncontrolled deceleration) only 4 g's are

encountered if the configuration parameter is

changed roughly by a factor of 8.

For manned satellite re-entry, the critical

parameter is not the magnitude of maximum ac-

celeration, but time spent at a given accelera-

tion. Figure 15a compares the effects of re-entry

angles on cumulative deceleration times (for B

= i. 0 ft2/slug" 0. 00637 m2/kg) with human tolerance

as given in Ref. 13. It should be noted that tile

tolerance curves seem to be the maximum per-

miss[ble values and blackouts can possibly occur,

even if the dotted lines are not reached. Although

the interpretation of the curves for human tolerance

is not clear, it appears that for a pilot in a sitting

position (with a g suit), the re-entry angles must

be less than 2°, preferably less than I°. For a

pilot in a prone position, re-entry must be less
than 4 ° .

Figure 15b compares the effects of ballistic

coefficients on deceleration times for 70 = -1°"

It indicates that, for small re-entry angles, a
relatively large range of ballistic coefficients

permissible for manned re-entry exists. With

the given data, the permissible range would be

0.5 < B < 5.0 ft2/slug (0.00318 to 0.0318 m2/i<g)

for a pilot with a g suit in a sitting position. For a

pilot in the prone position, 0. 1 < B < 25.0 ft2/slug

(0.000637 to 0.16 m2/kg) seems to be safe.

The material presented for the ballistic entry

was extended to show the effects of aerodynamic

lift during re-entry. The data presented were

obtained from an iterative solution by the 704
digital computer of a point mass moving in an

inverse-square force field. Because the aero-

dynamic forces at 300,000 ft (91.4 km) are suffi-

ciently high to cause an immediate skipping of the

vehicle at the higher lift-to-drag ratio, the re-entry

altitude was increased to 400,000 ft (122 km).

Figure 16 presents the effects of re-entry
conditions on the maximum total deceleration for

a lifting body. This is a specific example for a

vehicle with W/CLA = 146.9 psi (7040 newton/m 2

and L/D = 0.5. It also indicates a trend that for

small re-entry angles decelerations decrease as

orbital velocity is approached.

Figure 17a shows the effects of increasing
L/D ratios on the decrease of total deceleration

for a fixed re-entry angle and velocity. For

example, in case of _0 _ "1°' maximum decelera-

tion is decreased roughly by a factor of 1/5 as L/D
increases from 0 to 0.5. Similar curves are

presented in Figs. 17b and c.

Maximum load factors for a variation of bal-

listic coefficients with lift-to-drag ratios from
zero to three are shown in Figs. 18a, b and c for

initial re-entry flight path angles of -1 °, -5 ° and
-10 o .

For the initial flight path angles considered,

a re-entry vehicle with an L/D - 1 reduces in-

tolerable or excessive accelerations experienced

in a ballistic re-entry to within comfortable limits.

It should be pointed out that the modest reductions

achieved by increasing ltft-to-dra E ratios greater
than 1 can lead to an excessive increase in the

amplitude and number of cycles of a moderate

skipping trajectory.
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To facilitate interpolations between the curves,

load factors are given as functions of the initial

flight path angle _0' in Figs. 19a, b and c. Fig-

ures 20a, b and e show that for a ballistic re-

entry the magnitude of the acceleration peaks

between initial velocities of I0,000 and 25,000

fps (3048 and 7620 raps), but decreases throughout

the complete velocity range for a lifting re-entry.

Figure 21 gives the maximum entry load

factors as a function of L/D ratio for "_0 " "l°

and W/CDA = 5 psi' considering initial velocities

between 10,000 and 25,000 fps (3048 and 76 20 raps).

FiKure 22 indicates the peak decelerations for

the constant altitude--equilibrium glide entry

program (Ref. 14) as a function of initial entry

flight path angle. For a suggested operational

limit it is seen that ¥0 >- 7° is advisable for
LID = 2.

A parametric set of curves, similar to the

deceleration presentation, is given for maximum

re-entry dynamic pressures (dynamic pressure =

1 pV 2) in Figs. 23a to 27c. A comprehensive

curve, expressing the effects of lift, drag and

wing loading on the maximum re-entry dynamic

pressure is presented in Fig. 28 for W0 =- 1°'

v 0 = 25,000 fps and h 0 = 300,000 ft (7620 mps :and

91.4 kin).

Figures 23a to c show that maximum entry

dynamic pressures are essentially linear functions

of ballistic coefficients throughout the initial flight

path angles investigated.

In Figs. 25a to c the decrease of dynamic pres-
sure with increase of initial entry velocity is an

effect of the centrifugal force acting on the vehicle

in earth's gravitational field during the hypersonic

portion of the trajectory where the maximum values

of the dynamic pressure are occurring.

D. RE-ENTRY HEATING

Two modes of heat transfer to an entry vehicle

exist during the entry phase of flight. These are

the laminar and turbulent aerodynamic boundary

layer heat transfer and the radiant transfer of en-

ergy to the vehicle surface from the hot gas be-
tween the shock wave and the vehicle. The relative

magnitude of these two modes of heat transfer are
functions of vehicle shape and entry velocity. In

general, the blunter the vehicle and the higher the

entry velocity, the greater the radiation heat trans-
fer rate relative to the aerodynamic rate. The
radiation heat transfer rate is the earliest to reach

its rnaximum during the entry trajectory; next is
the laminar rate and finally the turbulent rate. As

the entry angle is decreased, both the rate and
total radiant heat transfer decrease; whereas, for

aerodynamic heat transfer, only the rate decreases
while the total increases.

Protection against this thermal environment may
be accomplished ins number of ways, and the

methods chosen are dependent primarily upon the

magnitudes of both the total and the rate of heat

transfer. If both rate and total are sufficiently low,

a simple heat sink made of copper or beryllium

may be adequate. The simple heat sink is heat rate

limited only to prevent the outer surface from melt-

ing. If the total heat that must be absorbed is large,

the weight of the heat sink becomes excessive. For

rates that are relatively low, it is possible to ab-
sorb the heat in a thin skin and reradiate it to the

external environment. For example, if a thin skin

can withstand a temperature of 5000 ° R it can re-

radiate up to 300 Btu/ft2-sec so that the heat pro-

tection system now becomes a matter of insulating
the remainder of the vehicle from this high temper-

ature skin. On the other hand, at low heat rates it

is also possible to use low temperature ablating ma-

terials for heat absorption. This alleviates the in-

sulation problem, but weight is now required as

ablating material rather than insulation. At high

heat transfer rates and for high total heating, the

use of high surface temperature ablating materials

is required.

Analysis of aerodynamic heating of re-entry

vehicles becomes much more complicated than the

trajectory analysis since heat transfer terms intro-

duce new nonlinearities into the differential equa-

irons. The main difficulty with an exact skin tem-

perature history calculation is the necessity of

knowing all the characteristics of a particular re-

entry body shape, its heat shield thickness, heat
conductivities and related heat transfer parameters,

surface interactions with the air-flow (ionization,

melting, ablation, etc.) and certain further import-
ant heat transfer characteristics. The number of

variables involved makes a parametric represen-

tation necessarily rather involved.

i. Analytic Solutions

During entry, intense heating occurs at the stag-

nation region of the entering body. It is customary

to relate the heating rate at any point on the body,

q, to the heating rate at the stagnation point, qs"

In hypersonic flow the heating rate at a stagnation

point can be written (Ref. 1) as

n m

(641

where the constants C, nand m depend on the type
of boundary layer flow, and

F{ = body radius of curvature at the stagna-
s

tion point

p = density of the ambient atmosphere

P0 = sea-level atmospheric density

v = vehicle velocity

v = %g_ = circular orbit velocity at altitude.
C

For laminar flow n =0.5 and m _ 3.1. As in the

case of analytic trajectory solutions (Section B. 1.c),

more than a few methods have been developed for

computing the laminar heating rates at a stagna-
tion region. A collection of these methods appears
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in Ref. ]5 and is presented in the following list.

Laminar Heating Hate at Stagnation Region

(i) Hef. 16

,,u kr F <1
qs D [_ w

w he r e

(65)

NU = Nusselt i]un]ber

0.5

for a sphere (k 1 : 1.696 x i0 -3 in

English umts, ft-

ib-see;

= 5. 169 x l0 -4 in inks)

(2)

1) drag

k = conductivity

T = temperature at the wall

T = temperature of the free stream
oo

v = free stream velocity

Pr = Prandtl number = 0.71

Ref. 17

kw (Ts - Tw) Nu i dv_0"5
qs- _-_w _R-_w x-_-X--JS

(66)
where

dv 6

W

Nu

He
W

= ratio of Nusselt number to

the square root of the Reynolds
nurnber (= 0.62 for Pr = 0.71,

T
W

small T- and axially sym-
s

metric heating)

= stagnation point, velocity

gradient

= flow inclination angle with
respect to the free stream

= subscript denoting value at

stagnation point

= subscript denoting value at
the wall

(3)

v = kinematic viscosity, _--
P

Ref. 18

_i"
_V

(extreme cooling, small T--- )
S

{ 0 5n
I(o.5)2 " - 1/2

qs=! pr2/3 IPs_sV_J

(continued)
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(4)

(5)

(6)

_- d v -1 O. 5

s VHs "
when

n = 0 for a planar body (two-dimen-
sional flow)

n = 1 for a body of revolution (axially
symmetric flow)

= " +0.1R
Rsh shock radius H s s

h = emhalpy

/a = viscosity

dv 6

v _ = dimensionless stagnation point
_, velocity gradiant (= 0.408 for

spherical body, Newtonian flow

and a 1.2 ratio of specific
heats)

Hef. 19

126,300 [-O_ 10"5 v ] 3'15

- 3.2 x 100 m 2
h s , - see

(68)

Ilef. 20

I0.54 x 2 n/2 P,vPw]

• )o. 5
(0s_sV. (h s - hw)

• + (Lem - {
where

0. I

0.5

" dv6 ]

S

(69)

Le = Lewis number@= 1 (Le _ 1.4)

m = 0.52 for equilibrium boundary

layer flow

= 0.63 for frozen boundary layer
flow

n = 0 or 1 as in case (3)

Hcf. 2 1

qs
= K'

h
W

I- 5--

s 20 .5n (p )0.5 (u)3

(7o)

where u is the component of ambient

flow velocity parallel to the surface



andKI = 15.5x 10-9Btu/sec-(slug)1/2
-(ft)3 = 36. 1 x 10 -9 kcal/sec-(kg) I/2-

(m) 3 .

The previous solutions apply for the case of

laminar stagnation point heating, which generally

applies for the nose and leading edge of gliding
vehicles. However, Ref. 15 provides the following

solution for turbulent flow.

l f0q = . 5 cos 0

0.542 (i _f12

where

FO. 408] -6 - o.8P

!TI i7
L j s

2
kcal/m -sec (71)

dv6]
=EvTd J

S

P

p = altitude density ratio,
P0

During entry the gas behind the shock wave

in the stagnation region becomes very hot, and

radiation from this hot gas is a source of heat
transmission in addition to the convective heat

input. Reference 21 provides the following

empirical equation for the radiative heating rate:

q = 11.2 R s _ kcal/m 2-See

(72)

2. Numerical Solutions and Graphical Presen-

tations

The equations for heat transfer rates pre-

sented in the previous section obviously vary
somewhat in complexity and in degree of approx-

imation. For generation of graphical data to be

used in preliminary design work, a very simple

solution has the advantages of involving fewer

parameters to be varied and necessitating fewer
calculations. For this reason, the solution

chosen for generation of graphical data is that

of Eq (64)

[ 7" Evi3

= 17,000 O _ ft2-seeBtu/
qs _ Ps J

S

-25'4°°r<J'i:R 3
S

kcal/m2-sec

(hypersonic

flight)

Furthermore, maximum stagnation point wall

temperatures are presented in the parametric

form

1/8 1/4
T • R "_

WS S

to make tile results independent of the nose

radius at the stagnation point, R s, and skin

emissivity, c. Tile values of the "radius-emis-

sivity parameter" Rs 1/8 " e 1/4 are piotted in

Fig. 2!). The radiation heat loss is given by

qrad = e o Tws 4 (73)

-12
where er = radiation constant = 0.482 x 10

Btu/ft2-sec-(°R) 4 = 1.372 x 10 -11 kcal/m2-sec -

(°K) 4. At equilibrium, all of the heat flow from

the boundary layer is radiated back into the

atmosphere (i.e., the heat flux to the interior of

the structure is negligible), and the maximum

temperature attained by the stagnation region of

the body is determined by equating the two heat

flows :

1/8 e 1/4 =I17'000gl/4[ P<_]l/8[__oj3/4__v"Tws Rs P0_l

(°R-fl 1/8 or 2.092 ° K-km 1/8)

(74)

The maximum aerodynamic heating at the stag-

nation region of the nose can then be computed

as:

ITws 1/8 1/414
= E

qs Rs _/-Rs

(75)

The graphical information on re-entry heating
presented in Figs. 30 through 47 is based pri-

marily on Eqs (74) and (75), together with the

related trajectory equations (Section B).

Figure 30a (Ref. 22) presents the approximate

heat transfer rates for a blunt body of 1-ft (0.3 m)

nose radius traw_ling at satellite velocities both for
free molecule and for continuous flow. The defini-

tions and ranges of flow regimes are given in

Chapter 5. Figure 30b shows the ratios of heat
input rates with respect to rate of energy dissipa-

tion by drag (1/2 0v3).

The effects of entry angles on maximum heat

flux are given in Fig. 31a (gel. 14). For example,

as the re-entry angle is increased from -1 ° to -4 °,
the maximum heat flux is increased roughly by a

factor of 4. Assuming radiation equilibrium tem-

peratures of the satellite skin, Fig. 31b gives skin
temperatures as a function of heat transfer rates
for different values of the constant of emissivity, c.

The assumption of radiation equilibrium becomes

inadequate for steep ballistic entries or large heat
shields. Figure 32 (Ref. 23) shows a sample his-

tory of aerodynamic heating, comparing the radia-

tion equilibrium method with an exact skin temper-
ature computation for a vertical entry. Temper-
ature histories of the outer and inner surface of a

0.25-1n. pyrex skin are shown for free fall from

1,000,000 ft (304. 8 km).

V _ Tout _in
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The estiqlatcd maximum temperatu:'c,_, a i'e
see_}, to be ;_ !'()]lows:

Tra d = 2480 ° R = 1380 ° K

Tou t = 1660 ° t{ = 920 ° K

T. = 1080 ° 1% = 600 ° K
in

Thus, for tile case considered, radiation

equilibrium gives unrealistically high estimates,
as the most important parameter for recovery

programs is usually the temperature at the inner

surface of the heat shield. In connection with Fig.
32, it should be further noted that below 100,00I)

ft (30. 5 kin) it would be advantaReous to jettison

the hot heat shi(,ld for the case investigated.

Figure 33a shows the trajectories for a family

of re-entry vehicles, indicating the stagnation
point radiation temperatures ill dotted lines.

Following a solid line of velocity-altitude vari-

ation, the corresponding skin temperature param-
eters can be read from the intersections with

the dotted lines. Figure 33b presents the corre-

spending temperature profiles as a function of al-
titude. From theoreticalconsiderations it can be

shown that the maximum temperature occurs at
V

= 0.81, which agrees with the numerical re-
c

suits of the maci_ine computations.

A family of c.urvcs similar to Fig. 33a is
plotted for the initial altitude at 4(10,000 ft (122

kin) in Fig. 33c.

Fig. 34a shows the maximum equilibrium
nose temperatures as a function of the lift char-

acteristics for equilibrium glides, it can be seen
that the maximum equilibrium temperatures can

be reduced by increasing the L/D ratios. The

corresponding altitudes for maximum tempera-

tures are expressed in Fig. "_4b. The effects

of the initial flight path angle on the altitude for

maximum stagnation nose temperature are given

in Fig. 34c.

In Kigs. 35 through 41 the results of all the

important Martin Company numerical integration

results are collected. Maximum re-entry stag-

nation point nose temperatures are presented

successively versus the ballistic cocffici('nt,

B, the initial entr 5 angle, *f0' the initial velocity

v0, and lift to drag ratios, L/D.

Figures 35a through 36c show the maximum
radiation-equilibrium temperature al the laminar

stagnation point as a function of ballistic coef-
Iicient, lift-to-drag ratio and initiai re-entry

angles.

It can be seen that though aerodynamic lift re-

duces the higher temperatures experienced during

a ballistic re-entry, the magnitude of the re-

duction is reduced as the initial fliKht path angle

decreases. The effects of iniliul re t'tltr.v ve-

Ioeit 5 arc shown in b'i_. 37 for 1,/I) = 0.5 and in

Figs. 38a throLigh 40d for thrue ballistic cool'-

fic'ic_lts and _arious values of I,/I)and entry

angle.

The effect of considering a rotating air mass

is presented in [rig. 42 for the equilibrium tem-

perature history.
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A comparison of the maximum temperature

parameters for ballistic entry is shown in Fig.

43a for various initial flight path angles. Also

shown is a comparison between the stagnation

point and spherical nose solutions.

Figure 43b presents the maximum tempera-

ture parameters for various IJD ratios (12ef. 1).

It can be used for various planetary atmosphere,

if the proper logarithmic atmospheric den.,ilys

slope, b, is inserted in connection with the radial
distance, r.

Obviously the pr_,timinary design es!imales

based on lhe stagnation poinl solution ma_ be

eonsideral)ly altered, if' the particular shape of
the xchicle nose is known. An indication of the

dependency on hod.v shape is given by Fig. 44
from l/el. 1.

Parametric temperature histories versus

density ratios are given in Fig. 45a (l{ef. 22) for

simple drag bodies. Figures 45b and c present

lift parameter requirements for constant heat

transfer trajectories (Flef. 22).

The slopes of the stagnation point temperature

parameter are given in Figs. 4t;a _hrough 46e for
three ballistic coefficients.

Finally the effects of lift-drag ratios on the

maximum surface temperature parameter for entry
into various planetary atmospheres is given in

Fig. 47 (Net'. l). It should be noted that optimum

conditions are encountered at L/I) from roughly
0.8 to 1.0 for most planets.

I<. RANGE AND TIME TO IMPACT

Hange to impact for hallistic vehicles is given

as a function of the initial flight path angle in Fig.

48 for h 0 = 300,000 ft (91.4 kin) and _0 = 25,0(10

fps (7620 mps).

Figures 4aa through e present the data obtained

from a series of computer runs, giving the values

of range attained in descent from 300,000 ft to
sea level. Data are plotted as functions of re-

entry velocity, re-entry flight path angle and
ballistic coefficient for a zero-lift re-entry.

Figures 50a through c show range from

400,000 ft (122 kin) for different ballistic coef-
ficients, lift-to-drag ratios and re-entry angles.

It is interesting to note that for a constant re-entry

angle, range fs rather insensitive to ballistic

coefficient for the higher lift-to-drag ratios.

Figures 51a through 52_ show the range to
impact ver,_;us initial velocity for various para-

metric values of lift-drag ratios, L/I), and initial

flight path angles, Y0"

Further parametric studies of impact range._

are compiled in Figs. 53 through 54c, as fune-

lions of initial flight path angles and lift-drag
ratios.

Equilibrium glide range variations as a func-
tion of initial velocities are indicated in Fig. 55.

The range characteristics of a high-drag, low

variable lift vehicle (flat plate at almost 90 ° angles

of attack) are treated in Figs. 56a to 3_c (t{c[. 25).

Figure 5(;a expresses the variation in range as a



function of angle of attack and entry f_ight path

angles. Figure 56b analyzes the range variations

for ballistic vehicles as functions of initial veloc-

ities and entry angles, while Fig. 56c gives the

range as a function of angle of attack and initial

entry velocity.

Figure 57 shows times to impact for various

ballistic coefficients, lift-drag ratios and re-entry

angles. It should be observed that for high lift-

drag ratios the flight time is rather sensitive to

entry angles and ballistic coefficients.

Parametric curves of range versus flight

time fop lifting bodies are shown for three values

of B in Figs. 58a to 58c, using '¢0 = -i, -5 ° and

-10 °. The effects of initial entry velocity are

expressed for L/D = 0.5, 1.25 and 2.0 in Figs.

59a to 59c. In Fig. 60 time to impact is ex-

pressed as a function of L/D, using as param-

eters the initial flight path angles and initial
velocities.

Range is shown as a function of velocity at

apogee for lifting vehicles traveling at sub-satel-

lite speeds in Fig. 61, cross-plotting flight times

as additional parameters.

For fast estimates of ballistic vehicle range

and time to impact, a comprehensive parametric

family of curves is presented in Fig. 62 for a

large number of ballistic coefficients and initial

flight path angles.

F. MANEUVERABILITY

Even if deceleration and heating are adequately

controlled during entry, recovery of the vehicle

is not assured unless it is capable of landing in

a predesignated area. The size of the landing

area could range from a very large region for

parachute recovery by a large search group to an

area comparable to that of an ah'port for glide-

landing vehicies. It is apparent, in the latter

case, that the vehicle must be capable of fairly
extensive maneuvers during the entry phase if

recovery is to be possible without long periods

of waiting in orbit for a favorable landing site

approach. Consequently, vehicle maneuverability

is another problem in the area of entry requiring

investigation.

As a first consideration in the problem of

maneuvering a vehicle from certain initial con-

ditions to a successful landing, the possibility

that a landing, or even an impact, on the earth

might not be possible for the given initial con-

ditions, should be noted. Trajectories which are

too high overshoot because they encounter too

little atmospheric drag to slow the vehicle for

entry; on the other hand, trajectories which are

too low result in the vehicle experiencing _oo

much deceleration for' safe recovery.

Figurc,_: (13a and 63b show the range of vaitu.s

for b_th re-entry velocity a_d flight path angle
necessary to ensure baltistic vehicle and lifting

b(,dy impact with tbc earth J_) o))e rex(_luti())) _u"

less. Ih.su[ts apply for two initial altitude,s,

3(/0,001/ and 400,000 ft (91.4 and 122 kin). 5('_-
oral values of the ballistic coefficient fr(>rn () t¢,

1.07 are included.

I
J

Overshoot ._ /-

(too little /

drag) _ coE;t_ ri'dYor

//S/,_ U nderM_ o o t
/ _//1 .*'(toomucb

7//J / _o_ration)/ I .-

\

\

Figure 63c (Ref. 14) indicates the limitations

on the minimum entry angles for capture of vehicles

traveling at escape v(,hmities.

Example :

W/CLA = 50 lb/ft 2 (2390 newtons/m2),

v 0 = ve = _ v c

For positive lifto vehicle is captured, if

¥0 < -5.05 °

For negative lift, vehicle is captured, if

¥0 < -4.50 °

l'ntry corridor conditions are considered in
greater detail in Hcf. 26.

Within certain bounds, the longitudinal and

lateral range to the landing site may be varied

by modifying the vehicle area or orientation

(i.e., modifying the effective drag or lift).

Figure 64 illustrates the correction of longitudinal

range by varying the ballistic coefficient. This

figure presents two graphs showing the ballistic

coefficient increments needed to compensate for'

errors in entry angle if a fixed longitudinal range
is to be attained.

Example:

B 0 = 1.0 ft2/slug (0. 00637 m2/kg)!
/

Programmed re-entry angle 5' 0 = -2 dog)

!

Actual re-entry angle ¥0 = -3 dog

Thus, error = -1 dog (new range = 416 star mi

(670 kin), Fig. 62).

/_B
1

From Fig. 64 BO -0.8

Therefore, approximately 80% of B (_,drag
area) should be discarded in order to reach the

predetermined range of 530 stat mi (853 kin).

Range =

5 30 s/at

mi (Fig.

62) (853 kin)

IX-18



Forthehigh-drag,low-lift vehiclealready
treatedin Figs. 56ato 56c(a_90°, seeHcf. 25).
thevariationof rangeasa functionof angleof
attackandinitial flightpathangleis shownfor
twoazimuthanglesin Fig. 65a. Thesechanges
in designrange,createdbytherotationof the
earth,mustbecounteractedfor aparticular
headingbyproperchangesin theangleof attack
(i.e., changingtheL/D ratio).

Figure65bgivesfor thesametypeof entry
vehiclesthewholespectrumofvariationof range
asafunctionof headingfor initial latitudesof 0°
and45°. Maneuvercapabilitiescompensating
theseeffectsmaybemandatorywhereexact
impactat thepointof destinationis desired.

Reference 27 provides approximate analytic

solutions for the lateral maneuverability avail-

able from banking the vehicle. These solutions,

together with pertinent assumptions, are pre-

sented here for convenience in reference. They

are based on equations of motion expressed in
the following form (see Eqs (27) and (28)

dv

m v_-_ = - D -mg sin _, (76)

2

_v)my = L - m cos ], (g- r (77)

2 d_
mv _ = Y (78)

where

Y = side force normal to L and D.

If the side force Y is produced by banking the
vehicle, and if the vehicle exhibits a constant

aerodynamic lift-drag ratio of(L/ , thena bank
/u! 0

angle ¢ results in

L = (__) cos ¢ (79)
D 0

Y - sin ¢ (80)

1. Equilibrium-Glide Solution

Assumptions: vehicle weight is balanced by
lift plus centrifugal force in the vertical direc-
tion (small 5').

sin <b cos o

H 2g . 0 (81)

i ]I qJ << 1 v 0 = v vf = 0
[_ ' C'

or, more generally

_) - I) 0 3!- - Z! _0

[1 3 5 _ 4 / "
\

x L
g=I5

where

2

+(3 i0

(, lO ) 3

I(-I +_y-, - 4-7- _0 + - _'.'

3) (, 9)(y2+4_'.' _0 _5_1 + _- 'TY.'_'0" D) _2

4 :3 i y 4 ]

J
-2

1L 1-v y
"_ 2- _ £n ___ for T) : _0 = 0 (84)

1 - v 0

h : lateral range

x = longitudinal range

R : radius of earth

v

]_(_n v)n
q_n : _9 VO1 -v-2 dr

in the difference be-
tween initial and final

values tabulated as

function of V in Table 2.

v [,]7 : _ : v 0 exp -
C

7 0 : normalized velocity at initiation of
maneuver

= £n V

2. Orbit Decay at Large Bank Angles (c} = 90 ° )

Assuntptions: zero lift it] vertical plane
Y

/ D) 0 , entry in decay from a
]_ : satellite

orbit.

K _w,, Z _ (85)

Figure 66a expresses the effects of roll angles

on the lateral range for the study conducted in

llef. 27. It is seen roll angles equal to approxi-

mately 45 ° result in a maximum lateral range.

Figure 66b represents the lateral range capabili-

ties for increasing I_/1) ratios. The following
empirical approximate equations can be fitted to

these curves as follows, assuming the initial al-
titudes of 300, 000 it: (9t.4 kin)
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TABLIC2
Vah,es of the Function Cn

_o ¢i _2 Ca @4 ¢_ V ¢o Cz ¢_ _3 _4 ¢5

0 0 0 0 0 0.49 0.1373 0.2492 -0.0773 0.0341 -0.0175 0.0097

.9989 .0090 .0000 .0000 .0000 .0000 .48 .1309 .2538 -.0806 .0366 -.0192 .0109

_61k5 .010O -.00OI .000O .0000 .0O00 .47 .12_3 .2584 -.0840 .0391 -.0211 .0123

.4143 .01501-.0002 .0000 .0000 .0o00 .46 .1189 .2629 -.0@75 .0417 -.0231 .0139

2730 .0200 -.0004 .00o0 .0000 .0000 .45 .1131 .2674 -.0910 .0445 -.0253 .0156

1640 .0250 -.0006 .0000 .0000 .0000 .I_ .1076 .2719 -.O947 .0475 -.0277 .0176

0754 .030OI -.00O9 .0000 .0O00 .OO00 .43 .1022 .276_ -.O984 .0906 -.0303 .0197

0009 .0350 -.0012 .0001 .0000 .0000 .42 .097O .2808 -.1022 .0938 -.0331 .0221

9367 .OkOO -.0016 .0O01 .0000 .O(X_ .41 .o920 .2852 -.1061 .0572 -.0361 .0247

8804 .0450 -.0o21 .00OI .0o00 .0000 .hO .0@72 .2896 -.iio0 .o608 -.0393 .o276

8304 .090o -.0o26 .0o02 .oo00 .000o .39 .0@29 .2940 -.llhO .0646 -.0428 .0309

7853 .0950 -.0031 .00O2 .000O .00O0 .38 .O780 .2983 -.1182 .0685 -.01u56 .O345

7445 .o600 -.0038 .00o 3 .0oo0 .ooo0 .37 .o736 .3026 -.1224 .0726 -.09o6 .0384

7071 .0649 -.0o_ .0oo4 .O00O .00OO .36 .O694 .3068 -.1266 .0769 -.0549 .0428

6728 .0699 -.0O91 .0OO5 -.o001 .o000 .35 .O653 .3].10 -.1310 .0814 -.0596 .O477

641o .0749 -.0099 .O006 -.0001 .0O00 .34 .0614 .3192 -.1354 .0862 -.O646 .O530

6114 .0799 -.o068 .00o8 -.oooi .o000 .33 .0576 .3193 -.i$o0 .o911 -.0700 .0989

58381 .o848 -.0o76 .0009 -.0O01 .000o .32 .0540 .3234 -.1445 .0963 -.0758 .0694

958o .0898 -.o086 .0Oli -.0002 .00oo .31 .09o5 .3274 -.1492 .i016 -.08211 .o726

9337 .0948 -.0096 .0o13 -.0o02 .o0oo .30 .0472 .3314 -.1540 .1073 -.o888 .0806

5108 .0997 .01o7 .0o16 -.0003 .0000 .29 .0439 .3394 -.1988 .1132 -°09591- .0@93

_92 .1047 -.Oll8 .0018 -.OOO3 i0001 .28 .O4O8 .3393 -.1636 .]-193 -.1036 .O99O

4688 .1096 -.0130 .0021 -.OO04 .0001 .27 .0378 .3431 -.1686 .1257 -.1119 .lo97

4493 .i146 --,Ol_ 3 #_$ "'_ "_i "261 003_0 .3469 -.1736 .1324 -.12o7 .1214

4309 .1195 -.0196 .0028 -.0oo6 .00oi .25 .0323 .3506 -.1787 .1393 -.1303 .131_

4133 .1249 -.017o .0O32 -.0007 .0002 .24 I .0297 .3543 -.1839 .1466 -.1405 .I488

3966 .1294 -.0185 .0036 -.OOO8 .0002 .23 .0272 .3579 -.1891 .1941 -.1514 .1647

3806 .1343 -.0200 .0041 -.0009 .0002 .22 .o248 .3614 -.1944 .1620 -.1632 .1822

3653 .1392 -.0216 .0o46 -.OOli .OOO3 .21 .0226 .3649 -.1997 .1702 -.1757 .2015

3907 .1441 -.O232 .0o51 -.oo13 .OOO4 .2O ,O204 .3683 -.2051 .1787 -.1892 .2229

3367 .149o -.0249 .0097 -.0015 .0004 .19 .o184 .3716 -.21o5 .1876 -.2037 .2466

3232 .1539 -.0267 .0064 -.0017 .00o5 .18 .o165 .3748 -.216o .1968 -.2192 .2728

3103 .1588 -.0285 .0o71 -.oo20 .0006 .17 .o147 .3780 -.2214 .2063 -.2359 .3019

2979 .16371 -.0304 .0078 -.0023 .o007 .16 .01301 .5810 -.2269 .2162 -.2538 .3341

2860 .1686 -.0324 .0086 -.o026 .0009 .15 .0114 .384o -.2325 .2265 -.2730 .3699

2745 .1734! -.0345 .0095 -.0030 .o010 .14 .0099 .3868 -.2380 .2372 -.2936 .4o97

2635 .1782 -.0366 .0104 -.0034 .0012 .13 .0085 .3896 -.2435 .2432 -.3157 .454o

2528 .1831 -.0388 .oi14 -.0039 .o014 .12 .0073 .3922 -.2490 .2597 -.3394 .5034

2426 .1879 -.0411 .0125 -.0044 .o016 .ll .0o61 .39_ -.25_ .2715 -.3650 .5585

2327 .1927 -.o434 .0136! -.oo49 .o019 .io .0050 .3972 -.2598 .2836 -.3924 .6023

2231 .1975 -.0458 .o148 -.0055 .0022 .09 .o041 ._994 -.2651 .2961 -.4218 .6896

2139 .2023 -.0_33 .o161 -.0062 .0026 .08 .0032 .4o15 -.2703 .3089 -.4534 .7676

2050 .2o71 -.0509 .o175 -.0o69 .0030 .07 .0o25 .4035 -.2754 .3220 -.4374 .8596

1964! .2118 -.0535 .o19o -.0077 .0034 .o6 .oo18 .ho53 -.28o3 .3354 -.5238 .9553

1881i .2166 -.0562 .0209 -.0086 .oo39 .o5 .o013 .4069 -.2849 .3438 -._628 1.o686

18o1' .2213 -.0990 .0222 -.0o96 .0045 .o_ .0008 .4083 -.2892 .3623 -.6o46 1.1981

1724 .2260 -.o618 .0239 -.OLO6 .oo51 .o3 .0005 .4q94 -.2932 .3754 -.6438 1.3466

1649 .2307 -.0643 .0257 -.o118 .o098 .02 .ooo2 .41o4 -.2966 .3880 -.6950 1.5176

1576 .2353 -.0678 .0276 -.o13o .oo66 .oi .00Ol .411o -.2992 .3990 -.7415 1.7134

15o6 .240o -.0709 .o297 -.o144 .0075 .oo .O0O0 .41/2 -.3005 ._059 -.7777 1.9075
1438 .2446 -.0740 .o319 -.o159 .0085

IX -20



I. 875

for L/D_ 1.0 (due east): _ _ 623 (L)

L) I. 875(naut mi) = 1155 (km)

for 0. 75 <_ < 2.0 (due east): k = 910 ]_

- 300 (naut mi) = 1688 (L} - 556 (kin)

The effects of the entry angle on the maximum

lateral range are shown in Fig. 66c for roll angle
of 45 ° and (L/D) = 1.0, while the effects of initial

velocity are indicated in Fig. 66d.

In Ref. 14, the maneuvering performance of

a re-entry vehicle is considered for a trajectory
consisting of three parts:

_ /---Range to maximum

iO13

L
(i) Initialpull-out at (_))max'

(2) Constant altitude glide at _< (_) ,
- max

(3) Equilibrium glide at (_) •
max

Range to maximum deflection point and the cor-

responding azimuth angle. 0", are defined as
shown in the above sketch.

Tile effects of re-entry angle on 0* and range

W = 20 psf
are presented in Fig. 67a for

(958 newtons/m 2 and _grati°s of 0.5, 1 and 2. It

can be seen that the range capabilities are greatly

reduced by large re-entry angtes, the resulting

ranges for -1{I 2 -q) being almost independent of
L

. The reverse is true for azimuth angles.

Figures 67b and c give the effects of wing load-

ing on the range to maximum deflection point and
L

the maximum azimuth angle for _/0 = -2° and

ratios 0.5, 1 and 2.

Figure 68a shows a typical maneuverability en-
W

velope for _ = 20 t_f (958 newtons/m2}-" and

v 0 = v c (entry at circular orbit speeds). North pole

is considered as the initial point of the trajectory

calculations. For an initial flight path angle of -2 ° ,

the maneuver envelopes for the lift-drag ratios of

0.5, 1 and 2 are plotted. A comparison for "_0 =
L

-4 ° and _ = 2 is shown in dotted lines.

Similar' maneuver envelopes are also shown
W

in Fig. 6gb for _ = 100 psi' (4787 newtons-/m 2)

and _/0 = -6° for an entry at escape speeds.

Finally, Fig. 69 shows the maneuverability
(that is the locus of impact points) of a lifting

body as computed on the Martin Marietta powered

trajectory program, using a maximum L/D - 0. 5;
the minimum which could be trimmed is 0. 3.

Bank angles varied from 0 ° for the fore and aft
case to 60 ° for the maximum lateral deviation.

Initial conditions were }10 = 300,000 ft (91.4 kin)

v 0 = 25,500 fps (7770 raps) and "_0 = - 1° An ad-

ditional variable on the plot is the altitude at which
initial deviation from the basic approach is ef-

fected (300,000, < 250,000, 225,000, 200,000 or

150,000 ft;(91.4 < 76.2, 68.6, 61.0, 45.7 km).

Essentially, no maneuverability is afforded for
initial altitude below 150,000 ft (45. 7 kin).
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(b) v 0

/ ]

= _Vc, 70 = -6 ° ' W/CIA = 100 psf = 4787 newtons/m2(Ref.
14)

Fig. 68. (continued)

0 1000 2000

(km)
3000 4000 5000

5OO

20(

10{

oo

10

20( 500 1000 1500 2000 2500

Range (naut mi)

3000
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