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FOREWORD 

This handbook has been produced by the Space Systems Division of 
the Ma.rtin Company under Contract NAS8-S03l with the George C. Marshall 
Spac~ Flight Center of the National Aeronautics and Space Administration. 
The handbook expands and updates work previously done by the Martin 
Company and also incorporates, as indicated in the text, some of the 
work done by Space Technology Laboratories, Inc. and Norair Division of 
Northrop Corporation under previous contracts with the George C. Marshall 
Space Flight Center. The Orbital Flight Handbook is considered the 
first in a series of volumes by various contractors, sponsored by MSFC, 
treating the dynamics of space flight in a variety of aspects of 
interest to the mission designer and evaluator. The primary purpose 
of these books is to serve as a basic tool in preliminary mission plan­
ning. In condensed form, they provide background data and material 
collected through several years of intensive studies in each space 
mission area, such as earth orbital flight, lunar flight, and interplan­
etary flight. 

Volume I, the present volume, is concerned with earth orbital 
missions. The volume consists of three parts presented in three separate 
books. The parts are: 

Part 1 - Basic Techniques and Data 
Part 2 - Mission Sequencing Problems 
Part 3 - Requirements 

The Ma.rtin Company Program Manager for this project has been 
Jorgen Jensen; George Townsend has been Technical Director. George 
Townsend has also had the direct responsibility for the coordination 
and preparation of this volume. Donald Kraft is one of the principal 
contributors to this volume; information has also been supplied by 
Jyri Kork and Sidney Russak . Barclay E. Tucker and John Ma.gnus have 
assisted in preparing the handbook for publication. 

The assistance given by the Future Projects Office at MSFC and by 
the MSFC Contract Management Panel, directed by Conrad D. Swanson, is 
gratefully acknowledged. 
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A. INTRODUCTION 

In the previous chapters of this manual, the 
concept of waiting orbits or parking orbits was 
introduced. In some of these discussions the 
parking orbit was defined complete ly (i. e . , a ll 
six e lements were obta ined ) by the mission to be 
accomplished. The rendezvou s d iscussion utilizing 
the intermediate orbit is an exampl e of such cases . 
In other d isc ussions, however, one or more of the 
orbital elements could b e selected based on con­
siderations other than those of the mechanics of 
the mission . When these degrees of freedom 
exist, t h e followin g factors are among those 
which become of interest: 

(1) 
(2 ) 
(3) 
(4 ) 
( 5) 
(6) 
( 7) 
(8) 
(9) 

(1 0) 
( 11) 

( 12) 

(1 3 ) 
(14 ) 

(1 5 ) 

the radiation environment 
the meteoroid e nvironment 
atmospheric factors , heating, etc . 
orbital perturbations 
satellite lifetimes 
maneuver requirements 
recovery considerations 
trajectory error sen sitiv ities 
guidance a nd navigation 
philosophies 
solar e l evation a nd eclipses 
trac king station, area, a nd point 
coverage optimization 
ground tracks and or synchronous 
b e hav ior 
optical resolution, e tc. 
staging considerations, reignition 
and economics 
radiation heat loads and cryoge nic 
storage 

Chapter 

II 
II 
II, V 
IV , V 
V 
VI 
V III 
X II 

X II 
XIII 

XIII 

XIII 
X III 

Because of the number of constraints which 
can be imposed, no s ing l e set of rules can be 
constructed whic h will yie ld the b est orbit in 
the sense that each constraint is satisfied . 
Indeed, it is necessary to assign weights to each 
factor and to select the e leme nts o.f the inter­
mediate trajectory for each particular mission 
by a study of the tradeoffs involved. This phase 
of study will not be attempted here b ecaus e of 
the scope of the task and the fact that the 15 

. . t b t t d . t 15! prevlOus constram scan e permu a e 111 0 n !{l5 -n)! 

diffe rent combinations (taken n at a time) and 

(1l~ !n ) ! diffe r e nt permutations. 

All of these factors except the last two are 
discussed within the manual. The next to last 
item is a practical limitation imposed by the 
nature of the vehicle used to boost the satellite 
to orbit and as such was not covered w ithin the 
present scope of study. Later paragraphs will, 
however, provide a short qualitative treatment. 
The final item on the list, though far from com ­
pleting the possible list of constraints (e. g. , 
human tolerances to radiation ), fall s into the 
same general classification of material. However, 
because of the fact that propellant is required fo r 
maneuvers and because radiation heat loads cause 
probl ems of storability and boiloff , some of the 
problems are presented. The level of these 
discussions, however, will be superficial since 
the theory of heat transfer i s a study in itself 
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and s ince in a ny case the specific ve hic l e must 
be considered to obta in des ign data . The presen­
tation of this material, though brief, will begin 
to tie the purely mechanical analyses of t he re ­
mainder of the manual to system or operational 
requirements. 

B. PAYLOAD AND GEOMETRICAL 
RESTRICTIONS 

The parking orbit concept was introduced in 
several chapters (e. g., VII and IX ) to assure that 
some given parameter (usua lly time) coul d be 
factored into the 3-dimensional a na lys is without 
requ i ring drastic maneuvers at l aunch. Thus , 
the primary advantage was in the area of timing 
the mission. However, there are three other 
distinct advantages: 

( 1) Flexibility 

(2) Energy reductions 

(3 ) Error correction. 

F l exibility in planning and executing the mis ­
sion is afforded because the intermediate orbit , 
if selected properly, increases the number of times 
at whic h transfer to a given position or orbit is 
possible. Also , since t h e orbit is to be utilized in 
any event , the launch can occur at any of the 
crossings of the orbital plane by the launch site . 
Thus, t h e effects of countdown hol ds can be re ­
duced . 

The energy requirement utilizing t his tech ­
nique is generally redu ced because of two factors. 
First, the out- of-pla ne maneuver can be e liminated 
(or nearly so if there are small launch time er­
rors ) a n d secondly, the type of transfer trajecto­
ries can be energy optimized since the timing 
problem is handled separat ely. It is noted, how­
ever , that there may be times in which parking 
orbits will requ ire an increase in energy. These 
cases are those for whic h the problem timing was 
correct for direct launch and ascent via a near 
optimum trajectory since under such conditions 
the work expended in transporting propellant to 
a n intermediate orbit for future burning is not 
recoverable . (If this situation is in fact true, it 
can , however, be assessed so that in no case 
should an unnecessarily high energy requirement 
exist. ) This e nergy loss points up the case for a 
low altitude parking orbit . The practical limit 
for this orbit w ill b e me ntioned later . 

The third advantage i s that of affording a c on ­
venient inte rval for e ither correcting for l aunc h 
errors or computing c hanges in t h e transfer 
trajectory to c ompe nsate for them . Because of 
this feature, the intermediate orbit approac h will 
result in smaller errors in the position and 
velocity in space at the time of arrival at the 
designated transfer point. 

The discussions which follow combine the 
flexibility and energy considerations in a brief 
summary of some of the material presented else­
where in the manual (the emphasis here b e ing in 
the selection of the intermediate orbit ). Consider 
the following sketch a nd angular definitions: 
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perigee-outward radial angle 

launch -outward radial angle 

total burning arc (launch - to-injection) 

unit vector directed toward perigee 

S unit vector in outward radial direction 
(specified by launch date and flight time). 

Since 8s and cJ>I are relatively invariant (with zero 

coast capability), it is necessary to vary cJ> by launch 
azimuth or outward radial declination. (Launch 
azimuth is restricted by range safety; to change 
the outward radial declination the mission must 
be altered). By employing a variable coasting. 
arc cJ>I may be replaced by cJ>1 + cJ>c + cJ>2 where cJ>1 

is the burning arc necessary to get into the parking 
orbit and cJ>2 is the burning arc from parking orbit 

to final injection. Given a launch azimuth (or time) 
and mission (outward radial declination), the 
powered flight is matched to the post - injection tra­
je ctory by varying launch time (or azimuth ) and 
parking orbit coast time. This is illustrated in the 
following sketch. 

Initial 

/" 
Launch 

Final burning 

Injection 
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The lowest possible altitude should be selected 
for the parking orbit from energy considerations. 
Since the energy requirement is lower, this 
selection also provides the greatest pay load capa­
bility. The minimum altitude which can be utilized, 
however, depends on vehicle engineering con­
straints such as aerodynamic heating and struc ­
tural loading, on guidanc e constraints, such as 
minimum elevation angle, and on mission con­
straints requiring specified orbital characteristics 
(a ll enumerated in the introduction) . However, if 
the payload capability o utw e igh s th e o th e r factors, 
a parking orbit altitude in the vicinity of 100 to 110 
naut mi (i. e., 185 to 204 km) appears to be the 
best choice. 

Thus everything is def ined in terms of the 
parameters of the problem save .the vector R. 
This unit vectur is obtained utilizing the spherical 
trigonometric relationships in Chapter III for right 
ascension a.nd declination or latitude and the identity 

'" /\ A. /\ 
R = cos A cos L x + sin A cos L y + sin L z 

wh e r e 

R 

AI 

LI 

'" " X , y , 
/\ 
Z 

uni t vector directed from earth I S 

cenie r to injection 

right ascension of injection 

injection latitude 

unit vectors, earth c entered 
inertial cartesian syst e m 
(aligned as x, y, z ) with x 
toward vernal equinox 

This location will of course vary considerably 
with launch time delays since the interval in the 
intermediate orbit must be adjusted accordingly. 

Corresponding to this value of A a nd L , there 
is a unique value of longitude for injection. This 
value may be obtained from the following equation. 

where 

AL launcher right ascension 

11. L launcher longitude 

cJ>c = constant parking orbital rate, 

_ 2TT = _~ 
--:;:- "7 

This brief review points up some of the factors 
affecting the selection of a parking orbit and in­
dicates the desirability of restricting the altitude 
of such an orbit . The discussion has, however, 
been purely qualitative since more complete 
discussions are available in Chapters VI and VIII 
as well as in the literature. 

1 
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C. VEHICLE TEMPERATURE 
CONTROL (REF. 1) 

The general temperature control problem can 
be conveniently subdivided into two requirements. 

( l ) Maintaining the mean temperature of 
the spacecraft components within limits 
dictated by tolerances of the components. 

(2) Preventing fluctuations about the mean 
temperature which might impair the 
general reliability . 

Depending on the mission requirements, there are 
several possible solutions for these problems: 

(1 ) Independent local control of sensitive 
components. 

(2 ) General control of the mean temperature 
of the total spacecraft . 

(3 ) General control of the mean temperature 
of the total spacecraft plus control of 
the fluctuations about the mean tem­
perature. 

(4 ) Various combinations of the above . 

The major factors involved in the temperature 
control problem will be examined leading to a 
discussion of various control methods. 

1. Heat Balance 

The mean temperature of an object in space is 
determined by the energy balance on that object. 
Except for the dwell time in a planetary atmosphere , 
a spacecraft is generally in a vacuum far below 
that which will support conductive or convective 
transfer, and since mass transfer is generally 
negligible, the only significant exchange is by radi ­
ation . Consider for simplicity a satellite made of 
a material of infinite thermal conductivity so that 
it is at a uniform temperature throughout. If it is 
not in the vicinity of a planet and has no internal 
power its energy balance, at equilibrium, is found 
by equating the absorbed solar energy with the 
infrared energy emitted from the spacecraft: 

aGA. = eaT4 A 
1 e 

T4 = g: G Ai 
e a A 

e 
(1 ) 

where T is the absolute temperatu re, a is the 
absorptance of the surface coating for the zero 
air mass solar spectrum, e is the emittance of 
the surface for the black body infrared spectrum 
corresponding to the temperature of the spacecraft, 
G i s the solar flux at the l ocal radial distance of 
the spacecraft from the sun, a is the Stefan-Boltz­
mann constant, Ai is the cross-sectional area 

intercepting solar energy, and Ae is the emitting 

surface area. Kirchhoff'S law for opaque mate­
rials states that absorptance equals emittance (for 
bodies at the same temperature ) at a given wave 
length or integrated over the same spectral curve . 
But since the two bodies of this problem are not 
at the same temperature and since a is here re ­
served for the solar wavelengths and G for the 
infrared wavelengths, a in general does not equal 
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e. The fourth power of the temperature is seen 
in Eq ( 1) to be proportional to the ratio of a to E 
so that the ratio its elf becomes a convenient mate­
rial property of interest (see Fig . 1). 

If internal power w is uniformly di.ssi.pated 
throughout lhe imaginary spacecraft , the energy 
balance then becomes 

aGA . + W = EaT 4 
A 

1 e 

T.f = !:!. 
E 

G 
A. 

1 + -y;:-
e 

(2) 
w 

E(i7:\ 
e 

-a 

The effect of the internal power on the mean tem­
perature depends on the ease with which that 
energy can reach the surface and be radiated away, 
which in the case of our infinite conductivity space­
craft is a function of the emittance E only. Thus, 
the emittance must be considered separately as 
well as in the ratio of a IE. It has often been the 
case that the second term on the right of Eq (2) , 
the internal power term, is small relative to the 
first term, so that the internal power produces 
a minor effect on the spacecraft mean temperature. 

It has been assumed that the spacecraft ex ­
terior is a continuous surface of a single mate­
rial. This is generally not the case. However, 
under the assumption of infinite conductivity the 
case of multiple surface materials with no internal 
power, is expressed by 

T4 = -..9: [al Ail +a2 Ai2 + ... J- (3) 
a A 1 +e 2 A 2 + .. 

e 1 e e 

where the numerical subscripts represent the n 
surface materials. If the idealized isothermal 
spacecraft has moved to the vicinity of a planet, 
the energy balance including the transient effect 
becomes: 

[the absorbed solar energy + the absorbed 
solar energy reflected from the planet + the 
absorbed planet emitted energy + the inter ­
nally dissipated power + the stored energy] 
equated to the infrared energy emitted by 
the spacecraft. 

Symbolically, 

dT _ 1: ....IT' 4A 
+w+WCpcrr-~EjU"j ej (4) 

where G is the solar flux at local distances of 
spacecraft from sun, ER is the flux of solar 

energy reflected from the planet, EE is the flux 

of planet emitted energy at the altitude of the 
spacecraft, AiS is the area absorbing direct solar 

energy, AiR is the area absorbing reflected solar 

energy, AiE is the area absorbing the planet 's 

emitted energy, a' is the absorptance of the solar 
reflected energy, E' is the absorptance for the 
planet's emitted energy, w represents the inter­
nally dissipated power, Wc the thermal capacity 

p 
of the shell, t is time, and the summation signs 
indicate that the appropriate terms are summed 
over the j isothermal surface areas. 



Depending on the spacecraft thermal design, 
and its particular orbit and altitude, the magnitude 
of the energy exchanges shown in Eq (4) varies, 
in turn causing changes in the mean temperature of 
the spacecraft. These factors are discussed quali­
tatively in the following sections. More detailed 
analytic discussions are to be found in the bibli­
ography. 

a. Solar flux input 

The mean value and variations about the mean 
are most strongly affected by direct solar radiation. 
Solar flux input is dependent on orientation of the 
surface, time of exposure, look angles with re­
spect to sun, wavelength of received and emitted 
radiation. In addition there is the roblem of 
solar eclipses due to the planets (see Chapter XIII) . 

One effect of the eclipse of an earth satellite is 
the transient cooling during the eclipse. The extent 
of this, in a simplified model, depends on the ther­
mal capacity of the satellite and the external radi­
ation resistance as determined by the surface in­
frared emittance. In an actual satellite the various 
components each have different thermal capacities 
and different thermal couplings to the exterior, 
and will therefore experience different transient 
thermal behavior during the eclipse. The other 
important thermal effect is due to the reduction in 
the total solar radiation input integrated around 
the orbit. For example, a satellite in a polar orbit 
will at one time during the year experience full sun, 
and at another time of the year, if in a low altitude 
orbit, the total solar flux averaged around the 
orbit will be only slightly greater than one-half of 
the nominal value. The present best estimate of 
the nominal value of the solar flux at the earth I s 
mean orbital distance from the sun is 442 Btu / 

hr-ft
2 

(1199 kcal/hr-m
2

) with an uncertainty of 
±20/0. The ellipticity of the earth I s orbit results 
in a ±3. 7"/0 fluctuation in the solar input through -
out the year, so that other factors remaining con­
stant, a satellite will be about 9 0 R (50 K) hotter 
in December than in June. The limit cases for 
the effect of earth orbits in solar radiation input 
may be divided as: 

Ecliptic. A satellite whose orbit lies in the 
echptlc plane at same time will be eclipsed by 
the planet once each orbit throughout the time re ­
quired for the planet to rotate the orbital plane out 
of the ecliptic by an amount dependent on the 
orbital elements. 

Equatorial. If the orbit lies in the equatorial 
plane, and is at a relatively low altitude, the 
satellite will be eclipsed each orbit. At a suffi­
ciently great altitude, because of the 23-degree 
tilt of the earth I s equatorial plane, the satellite 
will experience an eclipse once each orbit during 
two periods of the year and will experience no 
eclipses for the other two periods . This is the 
case for a satellite in a circular, equatorial 24-hour 
orbit about the earth. 

Polar. The polar orbit is similar to the high 
altitude equatorial case in that the satellite is 
eclipsed once each revolution for two periods 
during the year and is in full sunlight for the other 
two periods. Each of the two eclipsing intervals 
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start out with an eclipse of momentary duration, 
gradually increasing to an eclipse of maximum 
duration (the time depending on the satellite 
velOcity) and gradually decreasing the shorter 
eclipse durations. 

Special. One special class of orbits [approxi­
mately 81 0 retrograde, depending on the semilatus 
reatum] has the property that the nodes regress 
such that the 10 per day shift in the direction to the 
sun is canceled. In this orbit the satellite will be 
in full sun continuously throughout the year or, 
depending on the launch time during the day, 
eclipsed once each orbit throughout the year. The 
duration of the eclipse depends on the altitude of 
the satellite and the ellipticity of the orbit. For 
example, in a highly elliptical orbit it is possible 
to have very long eclipses, if they occur at the 
apogee of the orbit; however, it is possible to 
delay the occurrence of such an apogee eclipse 
(resulting from orbital precession) for several 
years, depending upon the orbit characteristics, 
by suitable choice of launch time. 

b. Planetary emitted flux 

For the earth and presumably for any planet 
with an appreciable atmosphere the infrared 
energy emitted by the planet is relatively inde­
pendent of latitude and longitude and varies in a 
predictable manner with altitude. In the case of 
the earth at low altitudes the flux is about 68 

2 2 Btu/hr-ft (184 kcal/hr-m ). In cases where 
there is no atmosphere, as for the moon, the 
emitted flux must be considered to vary with 
angular position measured from the subsolar 
point because of the large temperature variations 
on the surface. 

The earth-emitted flux injects two sources of 
error which must be accounted for in the thermal 
design of the spacecraft. One is the magnitude 
of the flux, which is known with much less pre­
cision than that of the solar flux. (This lack of 
knowledge is even more applicable of the moon, 
and for the other planets there is relatively poor 
knowledge of the planetary thermal balance condi­
tions and the emitted flux). The second is the lack 
of adequate knowledge of the emission spectral 
characteristics. In the case of the earth, for 
example, it is known that the emitted flux comes 
primarily from the surrounding gaseous atmos­
phere which has spectral characteristics differing 
significantly from the black body spectrum corres­
ponding to the earth I s equilibrium temperature. 
Lack of knowledge of this spectral characteristic 
results in an uncertainty in the effective absorp­
tance of the spacecraft surface material for the 
earth emitted energy. 

c. Planetary reflected solar energy 

The same altitude dependence applies for the 
solar energy reflected from the earth or nearby 
planet as for the inf rared energy emitted by the 
planet. In addition the reflected solar energy 
varies with the orbit plane attitude with respect 
to the sun and the instantaneous position in the 
orbit. For example, in a twilight polar orbit 
the reflected solar flux is approximately con­
stant, whereas in a noon orbit in which the sun 



lies in the orbit plane the reflected flux varies 
from zero to a maximum of about 160 Btu/hr-ft2 

(434 kcal/hr-m 2) at the sub-polar point. 

The ?1agnitude of this flux is approximately as 
uncertam as that of the earth emitted flux and is 
known to vary with such factors as cloud coverage. 
The absorptance of the surface materials for the 
planetary reflected solar energy is not precisely 
the same as for the direct solar flux because of 
changes in the spectral characteristics after re­
flection from the planet and its atmosphere. The 
magnitude of these changes and the corresponding 
change in the effective absorptance for this flux is 
not well known. 

d. Spacecraft characteristics affecting heat 
balance 

The internal and surface characteristics of the 
vehicle itself are important in temperature control 
since they define the radiation losses to space and 
to internal heat boundaries (equipment heat dis­
sipation and thermal inertias). A thorough review 
of thermal balance and uncertainties is given by 
Comack and Edwards (Ref. 2) and a qualitative 
discussion is presented below. 

Thermal radiation properties. Knowledge of 
the thermal rad1atlOn propertles of the spacecraft 
surfaces can be deficient in two respects. The 
first has to do with uncertainties in measurement 
of the properties in the laboratory, and the second 
is concerned with the changes in those properties 
due to handling and exposure to the air before 
launch, to heating during ascent to orbit, and to 
exposure to the space environment. 

Shape and attitude considerations. A spin 
s~abl17ze.d sp~cecraft has the spm ax1S nominally 
flXed m mert:-al space, though various disturbing 
torques and hp - off errors can decrease the spin 
rate and gradually shift the spin axis attitude in 
space. An attitude controlled spacecraft is not 
affected as much by these uncertainties. Cornog 
(Ref. 3) shows that if the attitude of the vehicle 
can be controlled, the same aspect of the vehicle 
can be presented to the sun at a ll times. If low 
vehicl e temperatures are desired, the portions of 
the sur.face exposed to the sun can be made highly 
reflectlve, the unexposed portions can be covered 
with some m~terial having good radiative properties, 
and by changmg the shape or treating each vehicle 
quadrant with the desired cd E materials the ef ­
fective absorptive area exposed to sunli~t can be 
made quite small. 

Internal temperature gradients. The preceding 
factors all result in either variations or uncertain­
ties in the spacecraft mean temperature. (Mean 
temperature can be defined as that temperature 
which the spacecraft would attain assuming zero 
thermal resistances.) In an actual vehicle, tem­
perature variation can be quite large . For example, 
temperature differences exceeding 1000 F (3 8 0 C) 
were encountered in Explorer VI. Thus a given 
component in this spacecraft located near one end 
of the thermal gradient would experience large 
changes in temperature as the sun orientation 
changes and during the spacecraft lifetime. 
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Internal power fluctuations. As various com­
ponents are turned on and off, or changed in 
power level, the locally dissipated energy causes 
local temperature changes, the amount depending 
on the power dissipated and the particular thermal 
circuitry of the spacecraft interior. This internal 
P?wer dissipation may range from a few watts to 
k1lowatts depending on the equipments required 
for the mission. 

2. The Effects of Thermal and Optical Properties 
on Temperature Control 

a. Thermal radiation properties and materials 

Coating the surface of the spacecrafts external 
s~ructure with thin lightweight material may pro­
v1de the needed thermal radiation properties. 
These coatings may in some instances be more 
effective if applied in patterns of several mate­
rials (for example the combination of vacuum 
deposited aluminum and anodized aluminum in 
adjacent areas) . Values of solar absorptance 
a and infrared emittance E covering the entire 
range from 0 to 1 are useful for these coatings . 
In particular, both high and low value s of the 
ratio of a / E are especially useful for certain forms 
of acti.v-e temperature control systems. A good 
matenal should absorb over the entire thermal 
spectrum, that is, have high a and high E. (Mate­
rials. which reflect well over the entire spectrum, 
that 1S, have low values of a and E , are also useful , 
although this combination can sometimes be 
achieved by insulation. ) 

A great body of thermal radiation data exists 
in the literature. While these data are useful as 
a guide to the kinds of properties obtainable with 
various types of materials, most of it is useless 
for space applications . There are a variety of 
reasons for this fact : 

(1) The data is not applicable because of the 
following reasons: much of it is reported for 
radiation properties not directly applicable to 
the spacecraft thermal control problem; in 
ge neral, the diffuse properties are required, but 
most data reported is for specular properties; 
for e.mittance, hemispherical values are generally 
requ1red, but most data reported is for normal 
or near-normal angles; absorptance data is not 
available as a function of incident angle but most 
data repo.rted is for a single near-normal angle; 
much em1ttance data reported is for a total 
measurement, which is often made at a rel a ­
tively high temperature (such data is applicable 
to a somewhat incorrect spectral curve and to 
the wrong material temperature ); finally the 
total solar absorptances are often measured 
directly with the solar energy as it exists at the 
l~boratory (this spectrum is generally markedly 
different from the solar spectrum in space ) . 

(2) Measurement errors . Only in the past 
few years have the subtleties of the various types 
of radiation measurements and techniques been 
fully appreciated (Refs. 4 and 5). Equipment 
and techniques to measure directly the appropriate 
properties are in many cases still lacking. From 
the standpoint of the designer using the data, such 
errors represent serious shortcomings and must 



be fully recognized. A few of the common sources 
of errors are: lenses and mirrors which do not 
have spectrally flat optical characteristics are often 
present in the instrument optical path; water vapor 
may be present in detrimental amounts; the reflect­
ing surface in integrating spheres, often MgO, is 
sensitive to water vapor and may have to be re­
newed frequently; MgO is partially transparent in 
the wavelengths for which it is used and must be 
applied in a relatively heavy coat to avoid erroneous 
data, a fact not always appreciated by the experi­
menter; nonuniform wall temperatures with vari­
ances in the infrared reflectance yield erroneous 
data; spectral measurements are difficult to obtain 
at wavelengths longer than about 50/.1, and much 
of the available equipment is limited to about 25/.1. 
This last point is significant in its effect on the 
property obtained for a low temperature spectrum 
(for example, 18% of the energy of a 50 0 F (10 0 C) 
black-body spectrum and 36% of a - 100 0 F -73 0 C 
s pectrum are both beyond 25 /.I). 

(3) Materials not well defined. Much of the 
reported data represents material s which are 
poorly defined. For example, the surface optical 
properties are usually sensitive to the details of 
a materials processing technique . Because of 
incomplete or inadequate description of the mate ­
rial , the materials cannot generally be duplicated, 
rendering useless a large part of the reported 
data. In most cases the only solution to this 
situation is to measure the required properties 
for each material. 

Once the spacecraft has been prepared with 
materials of the desired properties, there remains 
a practical problem of making certain that the 
properties remain unchanged before the space­
craft reaches altitudes above the atmosphere. A 
certain amount of handling of the exterior surfaces 
may be unavoidable . Some of the more delicate 
coatings can be protected by plastic peel-coats 
until a few days before the scheduled launch, but if 
any last minute cleaning is necessary to remove 
fingerprints, grease , dirt , etc. , there is always 
a danger that the cleaning process itself may affect 
delicate surface properties. During t he launch 
interval the satellite and its material s are pre ­
sumably protected from aerodynamic heating by a 
protective fairing, which is jettisoned after leaving 
the sensible atmosphere. Because of the weight 
penalty in carrying the fairing a l ong l onger than 
nece ssary, there is often a tendency to jettison it 
too soon, thereby heating the satellite surfaces to 
a level which may affect the optical properties of 
the surfaces. 

b . Optical properties in the space environment 

Most of the factors of the space environment 
represent new and untried conditions for space ­
craft materials. Whether these materials and in 
particular their sensitive surface optical properties 
remain stable in this environment is a question of 
importance for a ll spacecraft with l ong intended 
lifetimes. Among the factors of importance are : 

(1 ) The vacuum of space, in which the 
pressure is such that sublimation and 
decomposition occur virtually unimpeded. 
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(2 ) Ultraviolet radiation, X-rays, and the 
harder radiation of the radiation belts. 

(3) Single particle radiation. 

(4) Micrometeorites . 

Certain of these factors may present no prob­
lems. For example, micrometeorites are gener­
ally believed to be of sufficiently low flux that 
they will have no significant effect in spacecraft 
thermal control (Ref. 6 ). Many of the other 
factors of the space environment are difficult 
or impos sible to reproduce in the laboratory, 
even singly, let alone in combination. In addition, 
the designer does not always have the freedom to 
choose materials which are rugged since certain 
optical properties are available only in delicate, 
vacuum deposited forms. Since these surfaces 
can be delicate , sufficient flexibility must be I 

allowed to provide for some change in materials 
optical properties due to exposure in the space 
environment . (Some of the important optical 
properties of various material s are summarized 
in Table 1.) 

3 . Vehicle Temperature Control Systems 

a. Passive 

A passive thermal control system is defined 
here to be one employing fixed external coatings 
in which there is no active element either mechan­
ical or electrical. Since the mission requirements 
in orbit, the lifetime, the internal component 
complexity, etc., have generally been sufficiently 
simple from the thermal environment standpoint 
to allow a passive system to be used success­
fully, the great majority of spacecraft flown to 
date have had passive thermal control systems. 
Experience demonstrates that a passive design can 
achieve a spacecraft mean temperature in orbit 
with in about 5 to 10 0 F (2. 8 to 5.6 0 C) of the de­
signed mean temperature (for example, in the case 
of Explorer VI). 

An interesting application of a passive design 
was that of Pioneer V, a spacecraft designed to 
reach the vicinity of the Venus orbit. In the 
course of its journey, it would experience approxi­
mately a doubling of the solar flux from that 
occurring at the earth I s distance from the sun. 
This spacecraft was spin stabilized, that is, with 
its spin axis fixed in inertial space . In an approxi­
mate manner, the trajectory flown may be con­
sidered to be such that the sun moved half-way 
around the spin axis during the half orbit to Venus. 
That is, the sun look- angle would increase from 
zero, looking straight down the spin axis at one 
end of the spacecraft, to 1800

, looking at the 
opposite end of the spin axis and spacecraft. If 
the external coating was chosen to be appropriate 
for the solar flux at the earth I s distance from 
the sun at the start of the flight (sun look-angle 
equal to zero) and also chosen appropriately on 
the other half of the spacecraft for the Venus 
distance from the sun, then in a rough sense the 
coating would be appropriate at both the earth 
and at Venus. In actual fact, partly because of 
three-dimensional effects and partly because of 
other considerations, the orbit that was flown 
resulted in a sun look-angle of '350 at the start , 



TABLE 1 

Optical Propertie s of Various Material s (Ref. 3 ) 

De gre es 
Material Fahrenheit 

Silver 100 

Aluminum, polished 100 
1000 

Aluminum, 2024, buffed and 
polished 100 

Stainl ess steel, black 100 
1000 

Stainless steel, pol ished 100 

Fused quartz, bricks, hard 100 
rubber, asbestos 1000 

Lamp black 100 
1000 

SiO on polished metal 100 

MgO 100 

Titanium, 6Al-4V 100 

decreasing to about 15° at 20 days , back to 35° in 
about 40 day s , and increasing to 135° upon reach­
ing the Venus orbit at approximately 105 days after 
launch. A pattern was chosen USing two materials, 
one with an a of 0.92 and E of 0.87 and the other 
with an a of 0 . 25 and an E of 0.85 . A pattern was 
achieved which maintained a mean temperature 
within the de sired range over the entire trajectory, 
as well as at the end points of Earth and Venus. 
During the 3 -1/2 months of transmitted data, the 
measured t e mperatures followed the predicted 
curve within about 5° to 10° F. The flight path that 
was finally selected was not the optimum one from 
trajectory considerations but rather was chosen 
to satisfy a thermal control requirement that the 
sun look - angle increase from approximately 0 to 
approximately 180° . It would be entirely possible, 
from trajectory considerations alone , for the sun 
look-angle t o start at 90° at the earth, decrease 
to zero and increase back to 90° at the Venus 
orbit. Clearly the coating pattern and therefore 
the effective alE of the spinning spacecraft at both 
the earth and Venus would be the same and would 
therefore not compensate for the increase in solar 
flux . The actual sun look - angle history noted above 
was about the limit of allowable deviation from the 
ideal 0 to 180° change . 

b. Active 

A varie ty of mechanizations of active control 
may be envisioned: 

(1) The spacecraft can be kept relatively cool 
by means of passive coatings , but still 
warm enough to satisfy the majority of the 
components. (Local thermostatically con­
trolled electrical d issipation can be pro­
vided to warm those few components 

De grees Absorption Ratio 
Centigrade Number a Emissivity E a/ E 

37 . 7 

37.7 
538 

37 .7 

37.7 
538 

37.7 

37.7 
538 

37.7 
538 

37.7 

37. 7 

37.7 
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O. 04 O. 02 2.0 

O. 10 0.05 2.0 
- 0.06 

0 . 34toO . 37 0.03 12. 0 

- 0.90 -
- 0.90 -

0.40 0.05 8. 0 

0 . 1 to 0 . 4 0 . 90 0.2 
- 0.90 -

0.95 0.95 l.0 
- 0.95 -

O. 1 0.90 O. 1 

O. 15 0.97 O. 15 

0 . 8 0.18 4 . 4 

requiring a higher t empe r a ture .) While 
this scheme is quite feasible , the type s of 
components which r equire th e heating , 
(such as liquid fuel tanks and seconda r y 
storage batteries ) m ay be so la r ge t hat 
the "local" hea ting m ay involve a la r ge frac­
tion of the space cra ft powe r . Unle s s ex­
cess power is a vailable s uch a des ign may 
not be practi cal fr om the point of vi ew of 
the o vera ll syste m. 

(2) With a nonspherical shape, such as a 
relatively flat disc, the mean tempera­
ture can be increased or decreased by 
orienting the spacecraft so as to increase 
or decrease the surface area intercepting 
solar energy (see Figs. 2, 3 and 4). 
However, normally , this design would 
not be practical in view of other conflict ­
ing requirements for the spacecraft atti­
tude control system . 

(3) A number of materials c hange optical 
properties as a function of temperature . 
For example , silicon monoxide and othe r 
materials like it have the self -controlling 
tendency to increase in emittance as tem ­
perature increases, thus tending to limit 
the temperature rise , and vice versa. 
Various experimenters are currently 
examining such materials , but the ma ­
terials unfortunately have a general 
characteristic that their emissivity is 
too weak a function of temperature to be 
advantageously employed . 

(4) Some number of materials undergo re­
versible optical property changes as a 
result of phase changes, Curie point 
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transitions, etc . For example, the so­
called thermochromic materials reversibly 
change color, and therefore solar absorp­
tance, as a sharp function of temperature. 
Unfortunately these materials may be in the 
form of gels, liquids, etc., generally with 
low vapor pressures and therefore unsuit­
able for the exterior surface . They could 
be encapsulated in materials transparent 
in solar wave lengths but at the present at 
least they would not seem to offer enough 
advantages to overcome their obvious short­
comings for use in a temperature control 
system. 

(5) Mechanical changes of radiation properties 
and areas are the systems presently given 
most consideration. 

These mechanizations are embodied in two 
general types of active vehicle temperature con­
trol designs, the radiation balance design and the 
insulated deSign . Any thermal design is at least 
partially a combination of the two and there are 
many designs in which both the external radiation 
balance and the insulated features are combined 
in a single application . 

Radiation balance type. In a radiation balance 
deSign the internally dissipated power is generally 
a small factor in the overall heat balance and 
therefore contributes only in a minor way to the 
mean temperature level , although the dissipated 
power may have important local effects. The 
energy relationship is then a balance , in the 
equilibrium state , between the absorbed incident 
radiant energy and the emitted radiant energy. 
Active control of the temperature may be effected 
by varying the exposed areas of two materials, 
one with a relatively high ale ratio and one with 
a relatively low al e ratio. This can be accom­
plished by a venetian blind arrangement, moving 
vanes , or in a variety of other ways . 

The first spacecrafts with such a temperature 
control system were the Atlas/ Able 4 and Able 5 
satellites . These were intended to be orbiting 
satellites of the moon, to be put into lunar orbit 
by means of monopropellant hydrazine engine 
aboard the spacecraft to reduce the approach 
velocity sufficiently to allow lunar capture . Partly 
because of the hydrazine fuel and fairly severe 
environmental conditions , such as lunar eclipse 
durations exceeding two hours, it was necessary 
to employ an active thermal control system. The 
spacecraft was spin stabilized, thus an arbItrary 
sun orientation with respect to the spin axis was 
possible during the spacecraft lifetime . 

Briefly , the thermal design was as follows . 
Thermal energy exchange took place primarily at 
50 circular areas well distributed over the external 
skin . Each circle consisted of an alternating ar­
rangement of two materials in the eight 45° sectors 
of the circle, one material with a high ale ratio 
and the other a low al e ratio . The circular areas 
were covered by a four bladed mask which could 
completely cover one or the other of the two 
materials , or some fraction of each at any inter­
mediate position . The mask was driven by a bi­
metallic spring device at the inner end of the body , 
arranged so that the bimetallic device sensed a 
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portion of the spacecraft interior. The plastic 
body of the unit was made of a poor thermal con­
ductor so that the bimetallic spring was better 
coupled thermally to the spacecraft interior than 
it was to the skin of the spacecraft. The mask 
was rotated the 45° of its travel by a 25° F change 
in temperature of the spring. With the spring at 
50° F the mask fully exposed the high al e material , 
and at 75° F the low ale material was fully ex­
posed . The activation thus provided self-powered, 
closed-loop control of the interior temperature. 
The remainder of the spacecraft's skin, outside 
the control circles , was covered with a material 
of Iowa and lowe so that the contribution to the 
overall energy balance from the uncontrolled area 
would be as small as possible. That area was 
vacuum-deposited aluminum, over a smooth 
plastic substrate , with an absorptance of O. 10 
and an emittance of 0 . 05. The high ale material 
in the control areas was a form of titanium dioxide 
with an a of 0 . 65 and an e of O. 13, and the low 
ale material was a particular form of anodized 
aluminum with an a of 0.20 and an e of 0.80. A 
more complete description of this system is given 
in Ref. 7. 

The system has the capability of compensating 
for fairly large changes in the external environ­
ment, such as an interplanetary mission to Venus, 
and furthermore it minimizes the decrease in 
temperature during long eclipses because the 
masks automatically decrease the effective 
emittance of the spacecraft during this time . 

Insulated type. It a spacecraft is always 
oriented so that the sun irradiates only certain 
of its sides but not others , as may be the case 
in a fully attitude controlled or a spin stabilized 
spacecraft, it is possible to insulate the solar 
irradiated sides so that the solar input plays little 
or no part in the spacecraft energy balance. (A 
very high order of insulation may be achieved 
for the spacecraft sides with multiple layer re­
flective insulation.) If for simplicity the space­
craft is considered to be far removed from a 
planet", then the energy balance is achieved be­
tween the internally dissipated power, the trans­
mitted solar heat load and the spacecraft emitted 
energy. The unirradiated, uninsulated faces are 
covered with a surface of high emittance, and the 
emitted radiation is controlled by a set of louvers 
(external coverings to the radiation plate) . The 
emitting area is then a function of the louver posi ­
tion , which may be controlled by sensors measuring 
the radiation plate temperature to which the space ­
craft components are mounted. If the louver is 
irradiated, the system may still be employed if 
the radiation plate is covered with a material of 
sufficiently Iowa and high e , to minimize the 
solar input. It is required that the internally 
dissipated power be at least as great as the heat 
losses from the entire spacecraft when the louvers 
are fully closed. 

The advantages of this design are that the 
spacecraft is insensitive to eclipses and other 
changes in the solar flux , such as would occur 
on an interplanetary journey. The temperatures 
within the spacecraft are much more uniform than 
in the radiation balance design since there is no 
large external input over any part of the surface, 
and the problem of sensitivity of optical properties 
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of the space environment is greatly diminished. 
The primary property of interest is the high emit­
tance on the radiating plate , but this is a property 
which tends to be stable in space environment 
(Ref. 8). 

D . CRYOGENIC PROPELLANT STORAGE 
(Ref. 9) 

Cryogenics is concerned with the phenomena of 
low temperatures , norma lly those be low T"" - 2500 F 
(- 1570 C) . To be more specific, cryogenic stor ­
ability involves the prevention of excessive boUoff of 
cryogenic fluids (e . g ., liqu id oxygen , liquid fluorine , 
liquid nitrogen , liquid hydrogen, and liquid helium) 
over varying periods of time. These stored fluids 
can be used for any of the following purposes : 

( 1) Supplying other vehicles or stations 
(logistic use ). 

(2) Maintaining state - of - readiness in ballistic 
missiles or for satellite propulsion (opera ­
tional use ). 

(3) Thermal shielding during times of in­
creased flux. 

1. Properties of Cryogenic Fluids 

Insofar as space vehicles are concerned , there 
are six important cryogenic fluids : liquid hydrogen, 
liquid helium, liquid nitrogen, liquid fluorine , 
liquid oxygen , and liquid ozone . Table 2 gives the 
basic properties , except vapor pressu re , of these 
fluids and of liquid neon and liquid argon. Figure 
5 presents the vapor pressu re of these fluids as a 
function of temperature and pressure . Definition 
of properties is as follows: 

(1 ) Heat of vaporization (v ). The number of 
heat units requi red to vaporize one unit 
weight of liquid at its normal boiling 
point . 

(2) Boiling point. Absolute temperatu re , at 
which liquid boils under one atmosphere 
of pressure . 

(3) Freezing point . Absolute temperature , 
at which the liquid freezes , under one 
atmosphere of pressure (except liquid 
helium). 

(4) Critical point . The combination of pres ­
sure and temperature of a liqu id and its 
vapor under equilibrium conditions that 
causes t he two phases to be indistinguish ­
able . 

(5) Density (p) . Density of the gas phase in 
units of force per unit vol ume. 

(6) Specific heat ratio (y ) . Ratio of specific 
heat at constant pressure (cp ) to specific 

heat at constant volume (c v). 

(7 ) Vapor pressure (p ). The vapor pressure 
of a liquid is defined as the pressure of 
saturated vapor ove r the liquid. It va r ies 
with temperature. In the design of cryo -
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genic tankage, the relationship of vapor 
pressure to other pressures (see below) 
is of importance in calculating boil-off 
and "no -loss" times . Figure 5 gives the 
variation of vapor pressure with tem­
peratures for liquid nitrogen , liquid 
oxygen , liqUid hydrogen , and liquid 
helium . 

2. Properties of Insulations 

In the past few years a number of new insula ­
tions of extreme value in cryogenic service have 
been developed. With these much more efficient 
insulations , the mission analyst is able to plan 
space flights involving much greater weight of 
payload and vehicle . 

There are six types of insulation now in use 
for various types of cryogenic service . Some are 
useless with regard to space vehicles, because of 
too high a conductivity or density. Others (Fiber ­
glas, SI - 4 , NRC-2 ) have great potential in space 
applications , since the environmental vacuum 
(either moderate or high) prevents heat leaks into 
the fluids due to gas conduction and convection. 
The substance added, whether powder , Fiberglas, 
aluminum foil, etc., is intended to reduce the 
radiation heat leak across the vacuum into the fluid . 

a . Types of insulation 

(1 ) Cellular. Actually consists of a silica 
gel with very high absorbing or absolv­
ing surface. 

(2) Powder . An organiC powder, usually 
perlite , is introduced into a space held 
at a moderate vacuum « 100J,l Hg). 

( 3) Opacified powder. Aluminum or bright 
copper flakes are added to the powder to 
increase the radiation shielding. The 
vacuum must be high « 10/.L Hg). 

( 4) F iberglas . A very l ow density inorganic 
substance placed in a high vacuum « 1/.L 
Hg) . 

(5) OrganiC foams. Usually polystyrene , 
foamed either with air or freon . These 
foams have a cell structure which isolates 
one cell from another. When placed next 
to a fluid at cryogenic temperatures, the 
gas condenses within each cell , creating a 
partial vacuum, which is the insulating 
agent. Use of such foams with liquid 
oxygen or liquid fluorine is highly dan ­
gerous, due to their organic nature . 

(6 ) Multiple radiation shield . This type has 
the highest insulating qualities (but also 
requires high order vacuum for most 
effi cient usage « 1/.L Hg). One type (Linde 
SI series) consits of alternate layers of 
aluminum foil and glass fiber paper. 
Usually 50 to 80 layers are used . NRC - 2 
uses approximately 100 layers of crinkled 
mylar which has been aluminized on both 
s ides . 



b. Table of properties 

Table 3 lists all types of insulations, with 
some of them reported under different conditions . 
The properties of Santogel A, given for an am­
bient operating pressure and under moderate 
vacuum, show the effect of vacuum on these in­
sulations. The thermal conductivity (k) of Linde 
SI-4 and the Fiberglas insulations, is measured 
both in the compressed and uncompressed states. 
Theincrease in k value under compression in­
dicates that such insulations must be maintained in 
an uncompressed state for greatest efficiency, but 
will also have a reasonable insulating effect when 
compressed. This fact may be of considerable 
importance for the insulation of space vehicle 
stages during flight through the atmosphere. 
Outer insulation blankets must be compressed to 
prevent their being lost due to air friction . Once 
in orbit, or in space flight, the compressing de­
vice may be removed, and the high vacuum of 
space will raise the insulation to its full efficiency. 

c. Relationship of thermal conductivity to 
operating pressure 

To obtain the very low thermal conductivity 
values shown in Table 3, the insulations must be 
in vacuum. Hence, a double wall is required for 
most tankage applications - -except in space, 
where the environment is already a vacuum . The 
thermal conductivity is a function of the degree 
of vacuum in the interspace. Figure 6 indicates 
that, in general, the powder and cellular types of 
insulation are less affected by vacuum changes 
than the radiation shield and fiber glass types. 
With the latter, there is a sharp lowering in ef­
ficiency when the operating pressure rises above 
about 10j.( of mercury; while with the former, the 
change .in k is more gradual, and pressures of. 
100 to 1000j.( Hg can be tolerated with not too great 
a degradation of insulating qualities. It may also be 
seen from Fig. 6 that the multiple radiation 
shield insulations (at high vacuum) are more ef­
ficient than other types by an order of magnitude. 

One other criterion for efficient insulation is 
given in the last colqmn of Table 3 where the ther­
mal conductivity (k) is multiplied by the density 
of the insulation (p). It may be seen that the prod­
uct kp for the multiple radiation shields is one to 

three orders of magnitude lower than other types. 
Hence, for orbital operations, it is concluded that 
the multiple radiation shield insulations must be 
used. In the remainder of this section, the insu­
lation used in all calculations will be the Linde 
SI-4. 

d. Relationship of thermal conductivity to wall 
temperatures 

The temperatures of the inner (cold) wall and 
the outer (warm) wall of the insulation have de­
cided effect on the value of the thermal conductivity 
factor (Fig. 7). The thermal conductivity varies 
by about a factor of 30 as the outer wall tempera­
ture (T 1) varies by a factor of 10 [100 0 to 1000 0 R 

(56 to 560 0 K)] for any constant inner wall tempera­
ture (T 2). The value of k varies much less with in-

ner wall temperature for constant T l' and is es­

sentially independent of the value of T 1. 

3. Design of Cryogenic Tanks 

In order to design cryogenic tankage for space 
applications, one must determine the heat input 
into the cryogenic fluid. In order to do this, the 
temperature of the outer wall must be determined. 
If the insulation has been selected and the cryo­
genic fluid specified, all else is known. The ulti­
mate factor to be calculated is the evaporation, or 
boil-off rate, of the cryogenic fluid. 

Space vehicles, or orbiting tankage, receive 
heat from the sun according to the distance from 
the sun. Figure 8 shows the relationship of heat 
flux from the sun (Gs ) and the distance from the 

sun. If the surface of the tankage were either a 
perfect .absorber or a perfect reflector, the prob­
lem would be simple. However, since this is not 
the case, the absorptivity (a) and the emissivity 
(E ) of the surface must be taken into account. Nor­
mally, the parameter used is the ratio of these 
terms, alE. The higher this ratio, the more heat 
absorbed, and the highe r the temperature T 1. 

Figure 9 shows the variation of T 1 with a- As IE Aw 

(where A = surface area exposed to the sun and 
s 

Aw = area of the total outer surface of the tank). 

The greater the proportion of the outer surface 
exposed to the sun, the greater the heat absorbed . 

It is possible to determine the outer wall tem­
perature (T 1) from Fig. 9, once the shape and 

size of the tankage are known. One first assumes 
a value of 0'1 E , the practical lower limit of which 
is approximately 0.25 . From the general shape 
and orientation of the space vehicle or tank, As I 
Aw may be estimated. After obtaining aAs/E Aw ' 

it is possible to interpolate in Fig . 9 at the ex­
pected distance from the sun, reading the tem­
perature. Note that orbits about the earth may 
be assumed at the same distance as the earth 
from the sun, with negligible error. Even on 
the moon at its nearest point to the sun, the 
temperature of the outer wall will maximize at 
essentially the same value as if the vehicle were 
on earth. 

Knowing the temperature of the outer wall, it 
is then possible to determine the heat flux (Ql) 

into the cryogenic fluid. 

k 
Q.e = T (T 1 - T 2) 

where kl.e is the ratio of the thermal conductivity 
to the thickness of the insulation, and Q.e is the 

heat flux to the exposed surface. Figure 10 shows 
the results of calculations for several values of 
T 1 (thus, for several values of alE ), and for var-

ious thicknesses and thermal conductivities. 

a . Total heat input 

The total heat input per hour into the cryo­
genic liquid will be Q1 T = Q1 Aw (As lAw) where 

As/Aw = estimated percentage of surface ex­

posed to the sun. From a knowledge of Q1 T' 

the weight of the cryogenic liquid at the start, 
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Element 

Hydrogen 

Helium 

Neon 

Nitrogen 

Oxygen 

F luorine 

Argon 

Ozone 

Boiling 
Mol 

Heat of Vapor ization Point 
Weight (Btu/l b) (k c a l/ newton) (0 R at 1 atm ) 

2.02 194. 2 11. 00 36 . 54 

4.00 10. 3 0.583 7 . 596 

20.20 37 . 5 2. 124 48 . 96 

28 . 02 85 . 7 4.855 139 . 32 

32 . 00 9 1. 7 5.20 162 . 36 

38. 00 74. I 4.20 153 . 00 

39 . 91 72 . 0 4.08 157 . 14 

48 . 00 136 . I 7. 710 290. 34 

I 
Insulation Tv,," 

Santocel A Cellular 

Santocel A Cellula r 

Polystyrene foam Freon filled cellular 

Polystyrene foam Air filled cellular 

Perlite Powder 

Linde C5-5 Powder w ICu flakes 

Linde 51- 12 Multiple radiation 
shields (AI loil + 
fiber glass ) 

Li nde 51-4 Multiple rad shield 

L inde 51-4 Compressed mult rad 
shield 

NRC-2 Multiple rad (alumina ted 
mylar) 

Fiber g lass Fiber 

Fiber glass Compressed fiber 

Freezing 
Point 

( It Rat 1 a t m ) 

25 

0 
(25 atm) 

43 . 0 

113.0 

99.0 

97 . 0 

151. 0 

144 . 0 

TABLE 2 

Properties of Cryo genic Fluids 

Critical Point 
Temperature Pressure Density 

(' R) ( lOG newtonsfm
2 ) (lb/ft3) (,newton/m l ) 

59. 87 1.297 O. 0052 0.817 

9 . 49 0 . 230 0 . 0 103 1. 62 

89 . 02 2 . 716 0. 0522 8 . 20 

227 . 91 3.395 0.0725 11. 39 

277 . 85 5 . 078 0.0828 13.01 

25 9. 50 557.4 0. 0983 15.44 

271. 40 4.86 5 0.1 034 16 . 24 

469. 91 5 ,5:'3 O. 1230 i9.32 

Gas Gas Volume of Liguid Constant 
(eu ft/gal) (m 3/ liter) (R) 

114.3 0. 735 772 

101. 0 0.640 386 . 3 

192.0 1. 234 

93. 0 0 . 598 55. I 

115 . 3 0.741 48.3 

128.5 0 . 826 

112.0 0. 720 38.7 

91. 6 0 . 589 

I Btu/lb 

I Ib/lt
2 

I Iblgal 

0 .5665 k cal/newton 

157. OB4 newtons/rn3 
1 ft3 1gal 

I Iblin. 2 

0.006428 m 3 /Uter 

144 Ib/ft2 = 6894.4 newtons 1m2 
:: 1.00976 newtons !liter 

Densitl (e) 

(lb/ft3) (newtons/m3 ) 

6. 0 940 

6 . 0 940 

3 . 0 47 0 

2 . 4 377 

8 . 0 1260 

II. 0 1730 

2.5 390 

4.0 6 30 

20 . 0 3140 

3.0 470 

2 . 5 390 

10 . 0 1570 

TABLE 3 

Properties of Insulations 

Vacuum 
Thermal Conductivit;l (k ) 

A* Space Pressure 

( se::!I_. R~ (t'R ic r ons 
Hg , ~) (Btu/hr-ft- ' R) 

Ambient 1400 x 10- 5 1780x 10 - 9 

< 1 00~ 120 x 10- 5 153x l 0- 9 

< 1 00~ 900 x 10- 5 1150 x 10 - 9 

Ambient -- --

< 100", 90 x 10-5 115 x 10 - 9 

< l OlJ 22 x 10-5 2B x 10- 9 

< I~ 17 x 10-5 22 x 10- 9 

<!~ 2 . 5 x 10-5 3. 2 x 10- 9 

< I~ 80 . 0 x 10 - 5 102 x 10-9 

< I~ 3 x 10- 5 3. B x 10-9 

< I~ 40 . 0 x 10- 5 51. 0 x 10- 9 

< I~ BOx 10-5 102 x 10- 9 

Thermal Conductivity (k) 

B * ( 
kcal \ 

(Btu/hr-ft-' R) sec-m- II R 

1400 x 10-5 1780x10-9 

96 x 10- 5 123 x 10- 9 

700 x 10- 5 890 x 10- 9 

1900 x 10 - 5 2400 x 10- 9 

72 x 10 - 5 92 x 10-9 

17.6 x 10 - 5 22.5 x 10 - 9 

10 x 10- 5 13 x 10-9 

2 x 10-5 2 . 6 x 10- 9 

64.0 x 10- 5 B1. 6 x 10- 9 

2.6 x 10-5 3.3 x 10 - 9 

32.0 x 10- 5 40 . 8 x 10 - 9 

64 x 10- 5 82 x 10- 9 

*A--between 560' R - 162' R (LN2BP) 

* B--between 560' R - 36' R (L H 2BP) 

I Btu-lb hr_ft 4 _
o 

R = 2 . 0042 x 10- 2 keal-newton 
sec - m 4_0 K 

1 Btu 
~ 

- 4 kea l 
I. 275BB x 10 see-m-' K 

---- --- - -- - --- --- ---

Speciric 
H eat Weight of Liquid 

'V = cp/cv (ib/gaJ) (newton/liter) 

1.4 0. 54 0. 55 

1. 66 I. 043 1. 053 

1. 64 10.0 10. 10 

1. 4 6.73 6. 80 

1. 4 9.53 9.62 

1.4 12.6 12. 7 

I 

I. 67 11. 56 II. 67 

1. 4 II. 28 11. 39 

I 
kp 

(Btu-lb/hr-It 4_, R) 
A* I'!* 

8400 x 10- 5 8400 x 10-5 

720 x 10-5 576 x 10- 5 

2700 x 10- 5 2100 x 10-5 

-- 4500 x 10 - 5 

720 x 10- 5 576 x 10 - 5 

242 x 10- 5 194 x 10 - 5 

42.5 x 10-5 25 x 10- 5 

12.0 x 10-5 9.4x l 0- 5 

1600 x 10- 5 1280 x 10-5 

9 x 10- 5 7.B x 10- 5 

100 x 10- 5 BO x 10- 5 

BOO x 10 - 5 640 x 10- 5 



and the heat of vaporization of the cryogenic liquid, 
some knowledge of the evaporation rate can be 
gained. 

b . Relationship of tank pressure, vapor pres­
sure and designed vent pressure 

The phenomena occurring in a tank of cryo­
genic liquid are complex. If the vapor pressure 
tank pressure = vent pressure , then the evapora ­
tion rate is easily determined. There appear, 
however, to be three thermodynamic phenomena 
that occur in distinct phases. When the heat in­
flow begins, normally the vapor pressure will be 
below the tank pressure. As heat continues to 
flow in, the temperature of the liquid increases 
according to 

t:.T 

where 

t 

W 

= time in hours 

= weight of cryogenic fluid, and 

= specific heat of liquid at constant 
pressure. 

Thus, the pressure is rai sed , as shown in Fig. 
5. During Phase 1, no evaporation can occur be ­
cause all of the heat used in raising the tempera ­
ture of the liquid, merely increases its vapor 
pressure. 

Phase 1 ends when the vapor pressure equals 
the tank pressure. In Phase 2, these two pres­
sures will always be equal, since , if the vapor 
pressure were greater, evaporation from the 
liquid into the ullage space would increase the 
tank pressure. Thus, in Phase 2, the liquid 
temperature, the vapor pressure and tank pres­
sure all increase, until finally the vent pressure 
is reached. Although the liquid has evaporated, 
it has not yet been lost from the tank. It is, how­
ever, unusable as a propellant, although it could 
be used to aid in a pressure transfer of the fluid, 
if required. 

Based on perfect gas laws, the total heat input 
during Phase 2 can be conveniently divided in the 
following way 

where 

MI = mass of gas initially in ullage space 

PI' P2 = initial and final Phase 2 tank pr essures 

v = heat of vaporization of cryogenic 
liquid, and 

t:.T = total temperature change of liquid. 

The first term in this equation is the heat input 
which raises the temperature of the liquid , and 
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the second term is the heat input which vaporizes 
the liquid. The duration of Phase 2 is given by 

if aerodynamiC heating is neglected. A term 
Q /QnT must be subtracted from the time to aero -" 
account for this phenomenon. 

If the ullage space is small, t can be consid­
ered the preboil - off time, because in this case 
the boil -off time is much less than the liquid heat­
ing time. If the ullage is less than 10 to 150/0 of 
the total volume , 

t:.TWc 

t '" --,...------"'p- ho ur s, 
Q.p.T 

this is the time during which no boil-off occurs. 

Phase 3 is that period during which tank pres­
sure is equivalent to vent pressure. It is during 
this time that the liquid actually boils off . 

tQ.P.T 
W

BO 
= v 

This equation shows that the boil- off for reasonably 
well designed systems is moderate even for long 
times fo r good quality insulation in moderate thick­
nesses. 

If the tank is filled at the vent pressure then 
the process will be in Phase 1 until the vapor pres­
sure reaches the vent pressure, at which time the 
process becomes Phase 3. Thus, preboil-off time 
and the actual boil-off can be regulated by varying 
the design vent pressure. Phase 2 is completely 
eliminated from consideration. Such a system will 
have the disadvantages of requiring external pres­
sure sources (helium bottles) and a pressure re­
lief system. Thus, by setting a high vent pressure 
and maintaining a small ullage space, the pre­
boil - off (no loss) time can be extended considerably 
(s ee Fig. 11). 

c. Insulation performance factor 

The weight of the insulation, Iw ' represents 

a performance penalty and since insulation is not 
perfect, a certain amount of boil-off will be as ­
sociated with the weight of insulation determined 
by the t Q.P.T/v. The penalty exists when 

Let 

Iw + tQ.p.T/v > (uninsulated tank boil - off ). 

tQ.P.T 
S=I + --w v 

be called the insulation performance factor. Thus, 
i.t is desired to minimize S. Since 

I 
.p. w 

pA 

and 2 

Q./1T 
k pA (T 1 - T 2) 

I 
w 



then 

and S is a minimum when 

I 2 
w 

Thus, the total weight is minimized when the in­
sulation weight is just equal to the weight of the 
boiled -off liquid . Finally, 

S = 2 Kp (T 1 - T 2) tA J 2 ' 
m v 

Figure 12 is a plot of the insulation performance 
factor versus time - in-storage for a 6000-lb 
(26 , 700 newton) liquid hydrogen tank under a speci­
fic set of conditions and with a surface area of 

10 3 ft2 (93 m 2) . 

If it is assumed that it is required to have a 
given amount of LH2 left (from a 6000 - lb [26 , 700 

newton] initial capacity) after a given time and the 
amount.of insulation is to be found, enter Fig. 12 
at the time and read S . Subtract the permissible 
weight of the boiled - off liquid hydrogen , the re ­
mainder is left for the weight of the insulation. 
From Table 3 , the density of SI - 4 is reud. Thus , 
the volume of SI-4 required to meet the prescribed 
boil-off can be computed. 

Now, since the area of the outer surface of such 
a tank is known , the thickness of 81- 4 wrapped 
about the tank necessary to provide the prop-
er insulation can be estimated . Before pro­
ceeding, it is noted that the insulation for such 
a tank may actually weigh slightly more than the 
uninsulated tank. 

Once the thickness of insulation is determined, 
all that remains is to determine the no-loss time 
(Fig. ll), the boil-off during Phase 3, and the 
weight of tankage required . 

d . Application to other cryogenic fluids 

In order to apply the previous discussions to 
the design of tankage for cryogenic fluids other 
than liquid hydrogen, the following factors must 
be taken into account . 

(1) The ratio of the weight of the new cryo­
genic fluid to liquid hydrogen. 

(2) Boiling point of the new cryogenic fluid 
related to LH 2. 

(3) The volume occupied by one pound of the 
new liquid . 

It is then possible by means of ratios to use the 
figures given here to obtain tank designs for all 
other cryogenic fluids . What must be kept in 
mind is the high weight of propellants other than 
hydrogen and helium. 
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4. Example 

The problem is to find the optimum insulation 
thickness for insulating spherical tanks placed on 
the illuminated lunar surface (Refs. 10 and 11), 
that is, to find the minimum combined weight of 
vaporized propellant and insulation for tanks con­
taining liquid hydro gen, oxygen or fluorine. 

For tanks on the lunar surface, an external in­
sulation surface temperature of 6070 R (3370 K) was 
assumed (based on an average of the lunar surface 
temperature and the radiation equilibrium tem­
perature of a surface e xposed at normal incidence 
to solar radiation). 

The only need for insulation during the lunar 
night would be to prevent freezing of the fluorine 
or oxygen (at 970 to 990 R [540 and 550 K) , respec­
tively) and to limit the hydrogen boil- off. However, 
the average external insulation temperature is 
estimated to be about 1080 R (600 K), so that freez ­
ing of fluorine and oxygen will not occur, and the 
hydrogen vaporization rate will be only about 15% 
of the day condition . Therefore, the day condition 
is controlling for insulation thickness if the con­
servative approach of designing is chosen for 
propellant tanks to be exposed on either the il­
luminated or shadowed surface of the moon. 

Propellant losses on the lunar surface. The 
weight shown in Fig. 13 is the sum of insulation 
weight and boil-off, the two being equal at the 
optimum. The results are based on conduction 
through the insulation only. In actual practice 
the heat leaks through tank support structure 
are about equal to the heat flow through the in­
sulation. An approximation to the real case 
would be to increase the value read from the 
curve by about 70 %. The propellant weight 
105s would then be the total value of the ordinate 
and the insulation weight would be 70% of that 
value. 

Propellant losses during transfer . To deter­
mine losses from the tanks during the earth­
moon transfer phase: 

(1) Determine optimum insulation thick­
ness based on the lunar day condition 
and increase by 40"/0 

l. = (1.40) ~ k~Tt' 
1 Pi v 

(2) Calculate ~T/v from Table 4. 

(3) Enter Fig. 14 to find "(3." Vaporized 
propellant then equals 

tD2 
W = --r.- f3 

1 

(4) Double the weight found in step (3) to 
account for heat leaks, and add the in­
sulation weight 

J 



Propellant losses in lunar orbit . Propellant 
loss from tanks that do not land on the moon but 
which are a part of the boost, transfer and de ­
boost system are more difficult to define due to 
their inherently integral fabrication with the flight 
structure. However, for hydrogen the loss will 
probably lie between 0.01 to O. 10% per hour of the 
initial hydrogen weight. The lower value would 
be a design goal for a thermally well designed 
flight vehicle with separate tankage. The oxidizer 
boil-off can be assumed zero for the "well de­
signed" case since the major heat exchange, even 
with separate tanks, is from the oxidizer to the 
hydrogen with other modes relatively small so 
that the oxidizer may actually experience some 
cooling. 

Propellant 

H2 

O 2 

F2 

TABLE 4 

Propellant Parameters 

6. Ta (OR) 

Lunar 
Day Transfer Btu/lb 

567 460 190 

445 338 92 

454 347 72 

1 Btu/ lb = O. 05667 kcal / newton 
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XI. ORBIT COMPUTATION 

a 

A 

c 

D 

SYMBOLS 

Orbit semimajor axis 

Right ascension 

Speed of light; also, variance -covariance 
matrix 

Declination 

e Orbit eccentricity 

E 

f 

f 
non 

h 

H 

£ 

L 

L· 

m 

M 

N 

p 

r 

R 

R c 

t 
P 

t 
S 

T 

v 

Eccentric anomaly 

Flattening; also, two -way phase coherent 
Doppler frequency sh ift 

Noncoherent Doppler frequency 

Altitude above the surface of the earth 

Hour angle 

Inclination of the orbit to the equatorial 
plane 

Celestial latitude 

Geocentric latitude 

Geodetic latitude 

Mass 

Mean anomaly 

Electron density 

Semilatus rectum (semiparameter) 

Radius vector 

Radius of the earth 

Radius of the earth at the observation 
site 

Time 

Time when the vehicle encounters 
perigee 

Local sidereal time 

Transformation matrix 

Velocity; also, diagonal matrix of the 
inverse variances 

XI - l 

e 

Cartesian coordinates. See section 
A.l for definitions of the various co­
ordinate systems 

Azimuth angle 

Residual 

Elevation angle 

Angle of the velocity vector with north 
on the local horizontal plane; also, sector­
triangle ratio 

True anomaly 

Obliquity of the ecliptic 

Celestial longitude 

Geocentric longitude 

Jl. Gravitational constant; also, mean value 

v 

p 

p 

T 

Maximum likelihood estimator for the 
mean 

Angle of the velocity vector to the local 
geocentric vertical; also, refractive 
index 

Range, the distance from the observer to 
a body 

Range rate 

Standard deviation 

Maximum likelihood estimate of the 
variance 

Orbit period 

w Argument of perigee 

rl e 

Right ascension or longitude of the 
ascending node 

Rotation rate of the earth, 0.7292115 x 

10-4 rad/sec 

Vernal equinox (Aries) 

Autumnal equinox (Libra) 



A. INTRODUCTION 

The basic problem of orbit computation is the 
determination, from a set of observations, of 
six parameters which define an orbit. These 
parameters may be the Cartesian position and 
velocity components at some epoch, the classical 
orbit elements (semimajor axis, eccentricity, 
inclination, argument of perigee, longitude of 
ascending node, and mean anomaly at epoch), 
or any other set of independent quantities which 
uniquely determine the orbit . The orbit compu­
tation problem may involve determination of 
quantities other than the six orbit parameters, 
however. For example, improved values of 
physical constants, drag coefficients, tracking 
station locations or thrust corrections may also 
be determined in the orbit computation process. 

Whether the goal of a satellite vehicle mission 
is gathering of accurate geophysical data or safe 
recovery of a manned capsule, accurate orbit 
computation is a prime requirement since. gravity 
field or atmospheric density information is only 
as accurate as the satellite position time­
histories from which it is derived. In addition, 
there is a requirement for continual precise 
knowledge of the position of manned satellites 
for the safety of the pilot. The increasing require­
ment for fast, highly accurate determination of 
orbits has led to many new developments of 
theories, techniques and systems as well as 
modifications of existing astronomical methods. 
This chapter comprises a general exposition of 
some methods and system capabilities for locating 
an earth satellite and predicting its future 
positions and velocities. Specifically, the areas 
considered are tracking networks and their capa­
bilities, tracking techniques, data reduction, 
initial determination of the orbit elements and 
improvement of the computed orbit. 

B. COORDINA TE SYSTEMS AND 
TRANSFORMATIONS 

1. Coordinate System Definition 

In the determination of orbits a multitude of 
coordinate systems are frequently used . It is 
convenient to define these various systems before 
considering the principal problem of orbit deter­
mination' so that the definitions will be available 
for reference. 

Complete specification of a coordinate system 
involves three geometric quantities, an origin, 
a principal direction and a fundamental plane. 
For example, the origin might be an observer on 
the earth ' s surface (a topocentric system), the 
center of the earth (a geocentric system), the 
center of the moon (selenocentric), the center of 
the sun (heliocentric), or any other convenient 
point. The principal direction might be the 
south point on the horizon, vernal equinox , or 
any of a number of such directions; and the 
fundamental plane might be one of the customary 
planes of reference, i. e., the local horizontal, 
equatorial or ecliptic planes, or any other con­
venient plane. In addition, coordinate systems 
may be time dependent (rotating systems) or fixed 
in spatial orientation (inertial systems). Table 1 

l _ Xl-2 

defines the most frequently used systems of 
coordinates. A list of definitions of the various 
terms involved in this table and subsequent dis­
cussions is presented in Appendix B. 

2 . Transformation of Coordinates 

A rotation S about a certain axis is considered 
positive if counterclockwise as viewed from the 
positive end of that axis. The general forms for 
rotations of + S about the x, y, and z axes are as 
follows: 

l:} l: 
0 

:in~ tl cosS (1) 

- sins cos z 

- T 
S 

lx, y, z! x, 

z', z , ,y' , ~ , 
\ 

, , 
~ 

y 

Ll 
[:0" 

0 -:in '] 
[:J 1 (2) 

sins 0 CoSS 

- T y , s lx, y, z! 

Z'\ z 
, 

~ \ 
\ 

\ 

- - - - -- - y, y' 
I 

I , 
x S 

.x' 

(3) 

These general rules may be used to derive 
transformations between the various coordinate 
systems defined in the preceding subsection. 



TABLE 1 

Coordinate Systems 

S~condary Transformation 
Coordinate Principal Great Angular Cartesian References 

System Basis Origin Principal Direction Plane Poles Circles Parallels Coordinates Coordinates (sections) ----

Geocentric Rotation of Center of Intersection of Equatorial North and south Merid ians Parallels of Geocentric B. 2. a (geodetic) 
(geographic) earth earth greenwich meridian terrestrial latitude latitude L B. 2. d (topocentric) 
(rotating) with equatorial plane poles (or north Geocentric 

and south longitude A 
celestial poles) 

Geodeti c Reference Intersection of Intersection of Equatorial North and Meridians Parallels Geodetic B. 2 . a (geocentric) 
(rotating) spheroid, normal to geOid greenwich meridian south celestial of latitude latitude L' B. 2. f (general) 

rotation of with major axis with equatorial plane poles Geodetic 
earth of earth longitude A 

Topocentric Direction of Observer South point of True Zenith and Vertical Almucantars Azimuth Ct xoh B. 2.b 
(horizontal) gravity horizon horizon nadir circles Elevation E B. 2. c 
(rotating) Yoh 

zoh 

Equatorial Rotation of Observer or Intersection of Equator North and south Meridians Parallels Declination D x 
(rotating) earth center of earth observer 's meridian of date terrestrial of latitude or geocentric r 

:xl with equatorial plane poles latitude L Yr H Hour angle H 
I 

W 
or relative Z r longitude t>A 

Earth centered Diurnal motion Center of earth Vernal equi nox of Equator North and south Hour circles Parallels Declination 0 = x B . 2. e (general) 
inertial (ECl) of celestial date of date celestial poles of L 

e B. 2. h (orbit) 
sphere declination Right Ye ascension A 

ze 

Ge neral Diurnal Any convenient Intersection of any Equator North and south Meridians Parallels of Declination D x . B. 2. e (ECl) 
equatorial motion of point convenient secondary of date celestial poles declination Relative right 1 B . 2. f (geodetic) 
(inertial) celestial circle with the ascension 6. A Yi B. 2. g (ecliptic) 

sphere equatorial plane 
z . 

1 

Orbit (inertial) Orbital motion Focus Orbit major axis Orbit Normal to True anomaly 0 x B. 2. h (ECl) 
of satellite in directi.on of plane orbit plane '" 
vehicle perifoclls Y", 

z 
'" 

Ecliptic Orbital motion Any convenient Vernal Ecliptic Ecliptic Secondaries Parallels Celestial x B. 2. g. (general) 
(inertial) of earth point equinox of date poles to the of latitude latitude 1 

, 
ecliptic Celestial Y, 

longitude " 
z , 

Galactic Geometry of Any convenient Intersection of Galactic Galactic Secondaries Parallels of Galactic 
(inertial) visible universe point galactic circle circle poles to the latitude latitude 

with celestial galactic Galactic 
equator longitude 

L 



~ 
x 

: Z,ZI 

I 
I 

~---'--- y , , 
/ x' 

Transformation of geodetic latitude L' to 
geocentric latitude L 

, , , 
L=L -695'.'6635sin2L + 1!'1731sin4L 

_0'.'0026 sin 6L I 

or tan L = (1 - f )2 tan L I where 
I 

f = ~ = flattening 

(4) 

Transformation from topocentric hori­
zontal (xoh' y oh ' z oh) axes to topocentric 

equatorial (x , y , z ) rotating axes 
000 

North 
Pole 
zr 

Center 
of earth Equatorial 

plane 

Local 
vertical 

r 

1::1 r: in 

L' : :os L'l [:::l (5 ) 

l~J -cos L ' 0 sin L' zoJ 

sin D 

sin H 

sin L I sin E - cos L I cos E cos a 

_ sin a cos E 

cos D 
(7) 

Transformation from topocentric 
equatorial (x , y , z ) rotatmg axes to 

000 
topocentric equatorial inertial axes 
(x., y., z.) 

1 1 1 

lXil [C~S ts 
y. = sm t 

1 S 

Z. 0 
1 

- sin t s 

o 

where 

t s local sidereal time 

hour angle of vernal equinox 

right ascensio'l of local meridian. 

(8) 

polar coordinates: The polar coordinates are related as follows: 

xoh P cos E 
(9) 

Yoh P cos E (6 ) D is the same as in subsection b. 

zoh = P sin E 

\ 

where E = elevation, a = azimuth " Object 
\ 
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x 
e 

"'r 
x x. + X e 1 c 

Ye Yi + Yc (10) 

z z. + Z e 1 c 

where 

X (C+ ho> cos L' cos t 
c s 

Y (C+ h
o

) cos L' sin t c s 
(11) 

Zc (S + ho> sin L' 

are the coordinates of the observer in the equa ­
torial inertial system and 

local sidereal time 

L' geodetic latitude 

h 
o observer's height above sea level 

in units of the equatorial radius of the 
earth 

C 
1 

~1 - (2f - f2) sin2 L' 

S C (1 - f)2 

1 
f ~ = flattening of the earth 

R , 
(C and S, as defined by r- sin L = S sin Land 

e 

Rc ' 
cos L = C cos L, are tabulated in the 

Re 
American Ephemeris and Nautical Almanac) . 

~ J r, 4 2 ' 
" cos"" L + (1 -f) s in L (12) 

Re (1 - f) 
(1 3) 

~ 1 + f (f - 2) cos
2 

L 
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where 

Re = equatorial radius. 

Transformation from eneral equatorial 
inertia coordinates xi' Yi' zi to earth-

where 

centered inertial axes (xe ' Ye ' Z e ) 

- sin t 
Y 

cos t x 

o 

right ascension of the x.-axis 
meridian 1 

D is the same as in subsection b 

(14) 

(15) 

difference in geocentric longitude 
between the xi -axis and the object 

being located. 

detic coordinates 

Prime 
meridian 

z. 
1 

Geodetic or geocentric longitude: 

-1 Yi rle 
A A 0 + tan x. Et 

1 

(16) 



Geodetic latitude: 

L' = tan ----1 t 1 
(I - f)2 

(17) 

where 

1\ 0 

n e 

f 

geodetic longitude of the prime 
direction x. at the time of trans-

1 

formation 

rotation rate of the earth, 
-4 

0.7292115 x 10 rad/sec 

time elapsed since the time of 
transformation 

1 flattening = 298.24 

coordinates 

coordinates 

Z 
E 

x 
T 

E 

[J[ 
0 

:inj E1 
cos t (18) 

- sin t cost 

or, since 

x . r. cos D cos A 
1 1 

Yi r. cos D sin A (19) 
1 

z. r. sin D 
1 1 

and 

x r cos .£ cos A. 
E E 

YE 
r cos .£ sin A. (20) 

E 

Z r sin .£ 
E E 
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cos .£ cos A. c cos D cos A 

cos .£ sin A. = cos t cos D sin A + sin t sin D 

(21) 
sin.£ = -sint cos D sin A + cos t sin D 

where 

then 

obliquity of the ecliptic 

23° 27' 08"26 - 0~'4684 (t - 1900) . years 

r. 
1 

r = radius vector 
e 

A 

D 

right ascension 

declination 

celestial latitude 

celestial longitude · 

Transformation from orbit system coordi­
nates (x , Y , Z ) to earth-centered inertial w w w 
coordinates (xe ' Ye ' ze) 

x 

Rotation routine: 

(1) Rotation in the orbit plane about the 
Zw axis through - w' T_ w 

(2) Rotation about the line of nodes through 
-i T , -i 

(3) Rotation in the equatorial plane through 
-n, T_n 

jXe' Ye ' ze\ = T_n T_i T_ w lxw' Yw' zwi 

where 
(22) 

cos n cosw I -cos n sin w 

-=~nn co~i~in w:~~n~os ~os ~ sin~ ~~i 
sinncosw I-slnnslnw I .. 

-cos n SIn 
+cos n cos isin WI +cos n cosi cos wl ___ _ 

sinT sin-;:;---I sini ~;-w--I cosi 



L~_ 

The elements of this transformation matrix 
are frequently assigned the following symbols 
for convenience: 

(23) 

3. Data Correction 

Various data corrections are usually required 
to convert apparent coordinates to true coordi­
nates. Depending on the nature of the measure­
ment. corrections may be required to account 
for aberration, refraction. precession, proper 
motion, nutation and parallax. 

a. Aberration 

Since light travels at a finite velocity, the 
apparent coordinates of any body in space depend 
upon the motion of the body and the motion of the 
observer on earth during the time interval re­
quired for light from the body to arrive at the 
observer. This apparent displacement of a body 
from its actual position due to the finite speed of 
light and the motions of the observer and the body 
is called aberration. To elaborate, the observer 
perceives a ray of light which originated at the 
body sometime before the instant of observation 
and which traveled toward a position that the 
earth would occupy sometime after the ray origi­
nated. Therefore, at the time of observation, 
the moving body is no longer located in the 
direction from which the light ray is observed. 
Also, since the earth is moving. the apparent 
direction of the ray differs from the true direc­
tion. Thus the observed direction relative to 
the stars is neither the actual direction at the 
time of observation nor the direction to the posi­
tion of the body at the time the ray was emitted. 

Various types of aberration are distinguished. 
Planetary aberration is the displacement of the 
observed apparent position from the actual posi­
tion at the instant of observation. Stellar aber­
ration, a part of the planetary aberration. is the 
displacement of the observed position from the 
actual position of the body at the instant when the 
light ray was emitted. The stellar aberration 
consists of two parts, diurnal aberration and 
annual aberration. Diurnal aberration is that 
part due to the rotation of the earth on its axis. 
Annual aberration is due to the orbital motion of 
the earth about the sun. 

Obviously, most corrections for aberration are 
significant only for astronomical determinations 
on relatively remote bodies. Even for observa­
tions of the sun, only stellar aberration need be 
considered . In the case of a satellite, observed 
as to its distance and angular position relative to 
the earth, the stellar aberration may be neglected 
as being essentially the same for the satellite and 
the earth. Also, a satellite experiences very 
nearly the same heliocentric motion as the earth. 
Therefore, aberration corrections for satellites 
in practice need include only the effect of motion 
of the satellite relative to the earth during the 
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time required for light from the satellite to arrive 
at the observer. (For example, during the time for 
light to pass from the moon to the earth, the moon 
moves about 0."7 in geocentric longitude.) Planetary 
aberration is larger for artificial satellites. In a 
circular satellite orbit, central angle traversed is 
proportional to time, i. e. , 

(L:l. 9 in radians). 

Since the period is 

T = 2Trr~: . 
f:j) = !.. _fil 

r-'-r 
where r is the satellite orbit radius. The time 
required for light to travel from an overhead 
satellite to the earth is 

r-R 
t =-­c 

where R is the radius of the earth and c is the 
speed of light. Therefore, the planetary aber­
ration is 

r -R {% L:l.9=---. cr r 

.This quantity has a maximum for r = 3R, 

L:l.9 "" 2~'I max 

The following sections briefly consider 
methods used for computing the effect of aber­
ration. A more detailed description is con­
tained in Ref. 1. 

(1) Stellar aberration 

Planetary 
aberration 

Ba 

............. - - I ~-:::. --1-' ..... - .... - - B 
E ' , T 

t - -- - --' B 
Stellar t 
aberration 

In stellar aberration determinations the fol­
lowing notation is used: 

V earth's orbital velocity in inertial, 
fixed-origin coordinates (x, y, z) 

c! .. velocity vector of the actual light ray 

c' relative velocity vector of the light ray 



T 

t 

B a 

= instant when an observation is made 

= earlier time when the ray observed 
left the body 

= actual positions of the earth at the 
times T and t, respectively 

= actual positions of a body at the 
times T and t, respectively 

= apparent position of the body at time 
T 

7 = T - t = time for light to travel from the 
body to earth 

P = 7C = geometric distance ET Bt 

= longitudes of the apparent direction 
ET Ba and the true light path ET B

T
, 

respectively 

La' LT = latitudes corresponding to A a , AT' 

T'hen the direction cosines of ET Ba are 

v 
cos La cos A a = cos LT cos AT + C

x 

v 
cos La sin Aa = cos LT sin AT + c y 

sin L a 

v 
= sin L +~ T c 

where Vx ' Vy ' Vz are the components of v 

These direction cosines give 

(24) 

tan (Aa - Ar) (25) 

-sec LT (v x sin Ar - v y cos AT) 

c + sec LT (vx cos Ar + Vy slnAT) 

tan (La - L T ) 

v z cos LT - (v x cos AT + v y sinA T ) sin LT 

Vz sm LT + (vx cos AT + Vy smAT) cos LT +c 

where: 

( 2 Aa - AT) o ,sin 2 denotes terms 

order of the quantity in the brackets. 

In rectangular coordinates, 

Vx Pt 
Xa - X t - --c-- = v X 7 

= V 7 
Y 

of the 
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Z - Z 
a t 

where 

= V 7 
Z 

(26) 

(Xa , Y a , Za) are the apparent coordinates 

of the body at the instant of observation T 

()~t' Y t , Zt) are the true coordinates of 

the body at the time the light left the body. 

(2) Planetary aberration 

The planetary aberration is the stellar aber­
ration corrected for the motion of the body from 
B

t 
to BT during the time for light from the body 

to reach earth (see previous sketch). This cor ­
rection may be computed from a Taylor series, 
e.g. , 

Then the rectangular components of the 
planetary aberration are 

1 2 1 ". 3 
Za- Z T=(Vz -Zt )7-2" Z t 7 1lZt7-. 

(27) 
where (Xt , Y t , Zt) are given in the preceding 

subsection. The terms of order 7 2 and higher 
can usually be neglected. In terms of right as­
cension and declination the planetary aberration 
can then be expressed as 

(28) 

(3) Diurnal aberration 

Because of the earth's rotation, the observer 
moves toward the east at a rate 

Rc 
1;, = 464 ~ cos L meters !sec 

(29) 

where 

radius of the earth at the observer's 
location 

Re equatorial radius of the earth 

L = geocentric latitude of the observer. 

This motion causes a shift in apparent position 
of remote bodies toward the east given by 



S sin S 
C 

where s is the angular distance from the east 
point to the body. Then, in terms of right 
ascension and declination, the diurnal aberration 
is 

6A 
Rc 

0~'319 R cos 
e 

R 
6D = 0'.'319 R c 

e 

L cos H sec D} 

cos L sin H sin D 

(30) 

where H = hour angle of the body. 

The effect of diurnal aberration may be 
neglected except where relative positions of 
widely separated bodies are being measured. 

(4) Annual aberration 

The annual aberration, due to the earth I S 
orbital motion, in terms of right ascension and 
declination is 

(31 ) 

where 

c 1 = cos A sec D 

c 2 II sin A sec D 

c ~ , = tan t cos D - sin A sin DI [l- = obliquity J 
I 

C 2 ' = cos A sin D 

and 

C1 = -20~'47 cos >"0 cos t 

[>.. 0 = true longitude of sun] 

C
2 

= -20!'47 sin >"0 

are tabulated in the American Ephemeris. 

b. Precession 

Precession is the combination of the slow 
change of direction of the earth I s axis of rotation 
and the slower change of direction of the axis 
perpendicular to the ecliptic. The first effect is 
due to the action of the sun and the moon (luni-solar 
precession). the second is due to the action of the 
planets (planetary precession). 

As a result of precession the vernal equinox 
is slowly regressing at a rate of about 50 sec of 
arc per year; therefore.any coordinate system 
which has as the principal direction the vernal 
equinox must specify a date to which it is referred. 

To change from one equatorial system, say 

XI-9 

referred to the mean equinox of date, to another, 
say to the mean equinox of some other standard 
date (like 1950.0), the following operations 
should be performed: 

or 

Y1950 = -~ xd + Yy Yd + Zy zd 

z1950 = -Xz xd + Yz Yd + Zz zd 

where the subindex 

and 

d = mean equinox of date 

1950 = mean equinox of 1950.0 

x = 1. 000 000 00 - 0.000 296 97 T2 
x 

- 0.000 000 13 T3 

y = - X = - 0.022 349 88 T - O. 000 006 76 T2 
x y 3 

+0.00000221 T 

Z x 
= - X = -0.009 717 11 T + 0.000 002 07 T2 

z 
+ 0.000 000 96 T3 

'£ 
Y 

y 
z 

1. 000 000 00 - 0.000 249 76 T2 

- 0.000 000 15 T3 

- 0.000 108 59 T2 

- 0.000 000 03 T3 

Z = 1. 000 000 00 - 0.000 047 21 T2 
z 

+ 0.000 000 02 T3 

where T is measured in Julian centuries from 
1950.0. 

The Julian Calendar is discussed and a table 
presenting Julian Day Numbe rs presented in 
Chapter II. 

T = [Julian date number for epoch -

Julian date number for 1950.0] /36525 

c . Nutation 

Due to the solar and lunar attractions on the 
equatorial protuberance of the earth, the celestial 
pole travels in a small ellipse around its mean 
position on the circular precessional path. The 
correction for nutation is very small and may 
generally be neglected except in precise astronomical 
determinations. 



Tables for nutation in longitude and in obliquity 
are tabulated in the American Ephemeris and 
Nautical Almanac each year. An explanation of 
how those tables are obtained is given in Astronomical 
Papers of the American Ephemeris, vol. XV, 
Part 1, p. 153, 1953, and m the Jomt supplement 
to the American Ephemeris and Nautical Almanac 
entitled II Improved Lunar Ephemeris 1952 1959, " 
pp. ix-x, 1954. 

To obtain rectangular coordinates referred to 
the mean equinox of date when those referred to the 
true equinox are available, perform the following 
computations: 

(33) 

where 

and 

z = yy =x = 1 z x 

-Yx =x = 6.ljJ cos L sin 1" y 

-z =x x z = 6.4J sin t sin 1" 

Z - y = 6. ~ sin 1" - Y - Z 

~ = obliquity of ecliptic 

6.l. and 6.ljJ are, respectively, the rates of 
nutation in obliquity and in longitude (ob­
tained from the tables mentioned above) in 
units of seconds of arc. 

d. Refraction 

Refraction is another source of deviation be­
tween the apparent and true directions of optical 
or radio measurements. The curvature of 
electromagnetic rays due to refraction is greatest 
for measurements of small elevation above the 
horizontal plane. From Snell's law, the cor­
rection to be added to the observed elevation is 

o o 

-s 
b 

fi· \7"1-
V 

ds (34) 

where the integral along the ray path is taken 
from the body observed, b, to the observer, 0, 

and 

Pc = radius of curvature of the ray path 

v = refractive index 

= unit vector normal to the ray path 

s = arc length along the ray path 

Spec ification of the variation in v along the path 
may be very difficult. One approach is numerical 
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integration of the integral expressed as 

'\ t (2i + 1) 
/..; a i an za 

i 
where the ai's are empirical coefficients and 

L, a is the apparent .zenith distance. In several 

studies of radio wave refraction, two components 
of the refractive index are distinguished: 

tropospheric refraction: 

103.49 (p _ ) +[86.26 
K a pw L K 

(: 
5748) ] (35) 

• 1 +~ pw 

where 

or 

p a = air pressure, mm of mercury 

Pw = water pressure. mm of mercury 

K .. temperature in degrees Kelvin 

v - 1 = 105 x 10- 6 e- 0 . 142 (h - a) 

(± 15%, h ~ 9 km) 

ionospheric refraction: 

41T NE 2 
2 

e rnw 
o 

where 

N = electron density, electrons fcm 
3 

E = charge of the electron 

m = mass of an electron 

E 0 = dielectric constant 

w = frequency in raclians per second 

(36) 

Electron density is tabulated in Chapter II. Ref 
(2) enumerates the phase changes which occur 
in propagation for the various radio tracking 
techniques: 

Range measurement: 

~ t = ~ ( S vds + S VdS) 
up down 

Doppler measurement: 

w - -c 
d 
at 

(37) 

(assuming isotropic v) (38) 

J 



Interferometer measurement: 

c5 6 '1' = ~ 6 x sin E 6 E 
C 

(39 ) 

(40 ) 

where the integrals are taken over the ray path 
and 

p 

6 cj>t 

6 cj>s 

6~ 

w 

C 

v 

b 

A 

t 

6x 

and D-E 

= range 

= temporal phase difference 

= spatial phase difference 

= difference in rate of change of phase 

= frequency (rad!sec ) 

= speed of light 

= refractive index 

= subscript indicating a value o f the 
body 

= unit vector tangent to the ray 

= interferometer base l ine length 

= is defined in Eq (34) 

4. Data conversions 

Transformation between t op ocentric 
coordinates and direct ion cosine data 

xoh 
£ = cos E cos Q = -­

p 

m = cos e sin Q = y oh 
p 

n 
2 -m = sin e 

= zoh 
p 

~~---------- Yo 

(41 ) 

From the differentials of these re lations 

(continued) 
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+ zoh dzoh) 

dm = dYoh _ Yoh 
p -r (xoh dXoh + Y oh dy oh 

p 

dz h 
dn = _0_ 

p 

the correction relationship is 

[~l 
[ -,' -im 

-in J 
-1m 1 - m 2 -mn 

-in -mn I_n2 

- Tr e:Oh
} 

dX
oh 
p 

dYoh 
p 

dZoh 
p 

Transformation between topocentric 
coordinates and radar data 

xoh = P cos E cos Q 

Y oh = P cos e sin Q 

zoh = p sin E 

where 

¥ xoh 
South 

p = range 

Q = azimuth 

= elevation 

The inverse relationships are 

sin E = zoh 
p 

tan Q = Yoh 
xoh 

(42) 

(43) 

(44) 



The sensitivities of topocentric coordinates to 
radar data corrections are obtained from the 
differentials of the above expressions. 

l~;" d l (45) 

f
COS E cos Q ICOS E sin Q ISin E lfXOhl 
1. 11 I - P SlU Q IP" cos Q lady oh 

1 . 1 1. . II d - P SlUE cos 0'1- P SlU E SlUQiP COSE Zoh 

The transformations of the time rates o f these 
variables are as follows: 

. . 
xoh Yoh - Yoh xoh 

2 2 
xoh + Yoh 

(46 ) 

( . .) . 2 2 
Z h x h x h + Y h Y h - Z h (x h + Y h ) _000 00 00 0 

2 ~ 2 2 - P xoh + Yoh 

C. ACQUISITION OF DATA 

1. Tracking Techniques 

Orbit data are chiefly acquired by either 
optical or radio techniques . Optical trackers 
have the advantage of extremely accurate topo ­
centric angular measurements , and the dis­
advantage of not being able to measure range 
directly (range is found by triangulation) . Radar 
trackers , using m uch longer wave lengths (1 in. 
to 5 a ft), have the advantage of acc urate line -of ­
sight measurements but the disadvantage of 
relatively poor accuracy in angular measure ­
ments. The radar trackers are able to attain 
their high accuracy in line-of-sight measure­
ments because radio waves can be generated with 
very narrow bandwidths; hence, the measure­
ments of single frequencies are practical. Since 
the velocity of electromagnetic wave propagation 
is known rather accurately , the range (the 
velocity of light times the transit time) can be 
measured with good accuracy. The other line­
of-sight measurement based on the doppler effect 
involves a compa:l\'ison of the transmitter fre­
quency to the received frequency in order to de­
duce range rate. Since the frequencies of a light 
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transmitter spread out over a wide band and are 
uncorrelated, great difficulty is encountered in 
attempting to follow anyone frequency and meas­
ure its Doppler effect. Only recently has pure 
light, with a very narrow bandwidth, been gen­
erated with high intensity. 

Thus optical cameras such as the Baker - Nunn 
camera are used to measure the topocentric 
angles of satellites and radars are used for both 
line-of-sight measurements and angles (even 
though angles degrade the accuracy). 

a. Optical systems 

Optical systems which may be used are: 
Baker-Nunn camera, recording optical tracking 
instrument (ROTI). Cine theodolite, and ballistic 
cameras. A complete description of one, the 
Baker-Nunn camera, follows: 

Features : 

Description: 

Advantages : 

Disadvantages: 

field of view' = 5° x 30° 

focal length = 20 in . = 50 . 8 cm 

accuracies = 2" (claimed) 

limiting magnitude: 17 . 2 
(when tracking object on 
celestial equator). 

Modification basic Schmidt 
design which has wider field 
of view than most telescopes 
or cameras ; uses three-element 
correcting system for aber ­
rations . 

Wide field of view , without 
excessive aberration. 

Slow processing ; no direct 
range or range rate measure­
ments , sometimes takes a 
week to process a single 
photograph , sometimes the 
star background is too sparse . 

b . Radio trackers 

Various techniques have been developed to 
obtain the highest accuracy from radar measure­
ments. Three broad classes of techniques are 
discussed: 

(1) Radar measurements 

(2) Interferometer techniques 

(3) Special techniques to reduce measure­
ment errors . 

Radar measurements can be classified into 
line-of-sight measurements and angular measure ­
ments. Line-of-sight measurements are range 
and range rate; angular measurements are usually 
azimuth and elevation. Since the wave lengths 
of the radio waves used by radars are relatively 
large compared with the dimensions of the typ ­
ical radar antenna, the angular measurements 
are usually less accurate than the line-of-sight 
measurements. Many systems such as Minitrack 
and General Electric Mod II use triangulation 
schemes with only range measurements . By using 

I 
J 



at least three stations in a coherent manner, the 
topocentric angles of the satellite can be com­
puted. Generally, range measurements use 
monopulse systems. 

(1) Range measurements 

There are two types of range radars. 

Skin track radars depend on the reflection 
properties of the satellite's skin to reflect the 
transmitted pulse back to the receiver. Of 
course, the reflected pulse is greatly reduced in 
amplitude. Since the reflected pulse is weak, 
and since it is desirable to send out as many 
pulses as possible during a pass, complex gates 
must be built into the receiver and usually high 
redundancy must be in each pulse to help 
separate the signal from the noise. 

Beacon track radars can either be monopulse 
or continuous wave-single frequency carrier 
types. Beacon track radars depend on a trans­
mitter on board the satellite which can be in­
terrogated by a ground transmitter. Since the 
return pulse is much stronger than that of the 
skin track' radar, beacon track radars are more 
accurate in range measurements. However, the 
added weight of the c'lnboard transmitter some­
times precludes using beacon track radars. 

(2) Doppler systems 

Another radar technique is to measure the 
change in carrier frequency as the satellite either 
recedes or approaches the radar station . One of 
the differences between this technique and the 
above pulsed systems is that the transmitter and 
receiver of the tracking station must be phase 
locked onto the satellite in order to obtain ac­
curacy, which means that phase information of 
the carrier is retained. The frequency trans­
mitted can be measured by counting its energy 
maxima or minima; the received frequency is 
measured the same way. The result is a frequency 
difference which is proportional to the range rate 
of the sate llite. Range can sometimes be measured 
by integrating the range rate (provided the con­
stant of integration is known). 

(3) Angular measurements 

Direct angular measurements (that is , not 
using triangulation techniques with line-of-sight 
measurements) can be made as follows: Suppose 
a radar antenna is highly directional so that when 
it does not point directly at the satellite (as suming 
a satellite beacon and neglecting refraction effects), 
the signal strength falls off. The signal strength 
is at a maximum when the antenna points directly 
at the satellite. When the maximum signal strength 
is indicated the orientation of the antenna can be 
measured in azimuth and elevation. 

(4) Interferometer systems 

Interferometer systems measure the difference 
in times that a radio wave front from a satellite 
strikes differently located tracking stations (see 
Fig. 1). By the time that the wave front reaches 
the tracking stations it is almost planar; and the 
approximation that 

bCOSE = A =c (t
2 

-t
1

) 

is fairly accurate. The elevation E can be found 
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from the above formula. 

Minitrack is an example of a tracking system 
which uses the above interferometer technique 
in modified form. The tracking portion (dis­
tinguished from the acquisition portion) of each 
Minitrack "station" consists of five antennas. 
The central antenna transmits and receives; 
each of the others only receives. Two of the 
receivers form a north-south line with central 
included; the other two receivers form an east­
west line with central. The resulting beam 
width from the length of the baselines is 100 0 

(north-south) by 110 (east-west). See Fig. 2. 

Notice that, since the antennas are fixed in 
direction, the Minitrack station cannot track 
unless a satellite passes through its fan-shaped 
radio beam. 

(5) Special techniques 

Noise reduction techniques may be listed as 

(1) Low noise receivers 

(2) Choice of frequency 

(3) Modulation scheme and redundancy 
(coding, correlation) 

(4) Frequency diversity to avoid multipath 
errors 

(5) Time standards and synchronization 

(6) Search or acquisition techniques 

(7) Antenna design 

(8) Coherent and noncoherent systems 

Low noise receivers. These receivers are the 
masers and reactance amplifiers. Masers 
(microwave amplification by stimulated emission 
of radiation) utilize the high Q properties of the 
natural resonance frequencies of certain materials 
such as ammonia, cesium vapor and rubidium. 

A reactance amplifier increases the signal­
to-noise ratio of the receiver by pumping energy 
into the signal in a manner related to the phase 
of the incoming signal. In this manner the 
phase information redundancy of a carrier is 
not thrown away. 

Choice of frequency. The atmosphere is 
opaque to most radio frequencies; however, there 
is a "window" to radiation in the region from 
300 to 10,000 Mc. Water vapor absorption limits 
the upper frequencies and thermal excitation 
limits the lower end of the spectrum. 

Modulation schemes and redundancy. One 
scheme for usmg the redundancy of the signal 
has already been mentioned. The common 
modulation schemes are amplitude modulation, 
frequency modulation and pulse time. 

Frequency diversity. Frequency diversity 
systems use two or more carrier frequencies 
to minimize frequency effects in propagation. 
One of the major sources of error in propagation 



is the ionosphere , which acts as a time varying 
dielectric, thus changing the frequency of a 
carrier in an unpredictable manner . The 
ionosphere also refracts radio beams, thus 
changing the direction of the beam. The following 
formula shows how the index of refraction is a 
function of frequency and ion density: 

81N 

T 
where 

v = index of refraction 

N = ion density in particles!cm3 

f = carrier frequency in kc 

Using two frequencies allo ws the index o f re ­
fraction t o be estimated , thus minimizing the 
error due to bending of the radio wave. 

The change in frequency due to the variable 
index of re fraction has been calculated by 
Guier and Weiffenbach to be: 

where 

equivalent refractive index at earth I s 
surface 

r c = the geocentric distance of the station 

4J(t) = angle between the station vector and ' 
the geocentric distance vector of the 
satellite 

r geocentric distance 

h height 

c '" 10 / = velocity of light = 3.00 x 10 cm sec 

Time standards and synchronization. Some 
classes of orbits and some types of orbit com ­
putations (determinations) require very tight 
synchronization, whereas others need con­
siderably less. If three stations are to take 
simultaneous range measurements, then the 
simultaneity requirement will generally limit the 
three stations to smaller baselines, and com­
plicated synchronization techniques are needed. 
On the other hand, overdetermined orbits do not 
need such tight synchronization and baselines 
as wide as the earth are feasible (satellites could 
also be used for tracking stations resulting in 
very wide baselines). 

One technique for synchronization of preci­
sion radars is to use gas filled wave guides in 
which the temperature are pressure can be con­
trolled to the extent that the velocity of propaga­
tion is very precise . Generally, a central sta­
tion is connected via wave guides to outlying 
stations; the signals and time are sent to central 
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from the other stations via the wave guides . If 
line - of-sight radio beams were to be used instead 
of wave guides, then significant errors, such as 
multipath errors and variable time delays due to 
temperature sensitive dielectric constants of the 
propagation medium, would occur. 

Another technique used for synchronization 
when the time requirements are not quite so 
stringent, is to use WWV receivers. WWV trans­
mits very accurate radio pulses on frequencies of 
2 . 5, 5, 10, 15, 20, 25 Mc . Through the use of 
new techniques such as parametric amplifiers, 
the frequencies are accurate to several parts in 

1011. Received frequencies, if by line of sight, 
can be nearly as accurate as the frequency trans­
mitted by WWV; if the received frequency is re­
ceived via the ionsphere reflection, then the ac­
curacy varies , sometimes degrading to a few 

parts in 106 during solar storms. 

2. Station P r operties 

Table 2 lists some of the existing satellite 
trac king stations and their p roperties. Where the 
information is incomplete or c ha nges are antic i­
pated, bla nks are left so tha t insertions or m odifi­
c ations can be made. T h e infor mation presented 
should allow a good firs t estimate of whether or 
not a station might u s efully support a given mi s ­
sion . 

Additional information on these and other 
stations is available from Goddard Space Flight 
Center , Greenbelt, Maryland, attention Code 
531.3 . 

Explanation of Table 2 

Station number- -An arbitrarily assigned 
sertal number for cross referencing within 
this handbook. 

System--The net of tracking facilities , if 
any, to which the particular station is 
assigned. 

Cognizant a~ency- -This is the activity 
responsible or the scheduling and operation 
of the station; if should be contacted to ob­
tain support from this station. Abbrevia­
tions are: 

AMR 

APL 

BRL 

GE 

GSFC 

Atlantic Missile Range 
Cape Canav eral, Florida 

Applied Physics Laboratory 
Johns Hopkins University 
Silver Spring, Md. 

Ballistics Research Laboratory 
Aberdeen Proving Ground 
Aberdeen, Md. 

General Electric Corporation 
General Engineering Laboratory 
Schenectady, New York 

Goddard Space Flight Center 
Anacostia Naval Station 
Anacostia, Maryland 



JPL Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

MIT 

NAA 

Lincoln Laboratories 
Massachusetts Institute of 
Technology 
Boston, Mass. 

Space and Information Systems 
Division 
North American Aviation, Inc. 
Downey, California 

NERA Radio Receiving Station NERA 
Nederhorstdenberg, Netherlands 

NSSC 

PMR 

National Space Surveillance 
Center (Spacetrack) 
Code CRRKl, AFCRC 
L. G . Hanscom Field 
Bedford, Mass. 

Pacific Missile Range 
Pt. Mugu, California 

RADC Rome Air Development Command 
Griffiss AFB 

SRI 

Rome, New York 

Stanford Research Institute 
Menlo Park, California 

STL Space Technology Laboratories 
One Space Par k 

UILL 

USASRDL 

VAFB 

WRE 

WSMR 

Redondo Beach, California 

Electrical Engineering Re­
search Laboratory 
University of Illinois 
Champaign, Illinois 

US Army Astro Scientific 
Research and Development 
Laboratory 
Deal, New Jersey 

Vandenberg AFB 
Lompoc, California 

Weapons Research Establish ­
ment 
Woomer a, Australia 

White Stands Missile Range 
White Sands, New Mexico 

Station name --A designation descriptive of 
location and/or equipment. 

Installation type - - Equipment classification 
(e. g., FPS-16). Several widely distributed 
radio systems are described in Table 3. 
Where the installation type is unique or at 
least not widely used at present, the table 
gives the particular antenna configuration. 
In this case, generally only the primary 
antenna is described, and there may be 
others for different frequencies or purposes. 

Local designation --A code used by the 
cogn1zant agency to identify the station 
within the agency. 
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N Lat (deg) --The geodetic north latitude 
of the station, measured in degrees. 

E Long. (deg)--The geodetic east longitude 
of the station, measured in degrees. 

Altitude (meters)--The height of the antenna 
feed at zero degree elevation above mean 
sea level, measured in meters. 

Survey reference- -The basic survey to 
which the station I s location is referenced. 

Data reported--Advertised and/or known 
observations from a given station. More 
may be available. 

azimuth measurement 

elevation or astronomical altitude 
measurement 

H hour angle 

D 

p 

P 

f non 

f 

Tel 

declination 

range measurement 

range rate 

noncoherent Doppler frequency, the 
received frequency from the satellite 
being tracked, including Doppler 
frequency shifts 

two-way phase coherent Doppler 
frequency shift. Range rate can 
be accurately and directly extracted 
from f in most cases 

telemetry, analog or digital coded 
information communicated from the 
satellite 

Units--Basic measurement system in which 
tFiedata if reported. Data reported and 
units are on the same respective lines in 
Table 2. 

Coordinate system--Indicates how the 
station I s antenna 1S mounted and calibrated. 
Antenna steering data (ephemerides) should 
be supplied in the system and units specified. 
The asterisk means that the units desired 
differ from those reported and are artillery 
mils for angular measurements. 

Accuracy (3a)--This is statistical 3a to 
which a given measurement is accurate. 

Data formats--Indicates the data output 
eqUIpment available. Most manual outputs 
work into a teletype system. Almost all 
automatic outputs work into a teletype sys­
tem . Almost all automatic output systems 
may be read manually, so only the higher 
order available output is shown. 

Data delay- -The estimated nominal time 
for handling data at the station before it is 
transmitted to the user . Abbreviations are 
as follows: 



RT Real time, which signifies that the 
data is transmitted via an on-line 
process and will be received by 
the user essentially the same time 
that the station observes it. 

NRT Near real time--less than I-min 
delay- -essentially the same as 
real time except for slight delays 
such as those caused by data going 
through teletype tape loops, etc. 

Maximum range--The range limit on the 
particular installation when tracking a 

passive I_m2 target . 

Antenna gain/frequency--The advertised 
approx1mate antenna gain in a particular 
frequency band. 

Table 3 contains descriptions of some of the 
more widely used radio tracking systems. 

3 . Data Acquisition 

Mission constraints generally dictate the data 
sources and tracking time available to each source 
for a given pass. Low altitude earth satellites 
are usefully visible from a given station for about 
5 to 20 min, and, if the satellite I s period is on the 
order of 120 min, three to four stations more or 
less evenly spaced along the ground track of the 
satellite can track and produce data so that data 
processing facilities will not be overloaded. Pre­
launch planning must always include the possibility 
of a nonnommal orb1t, and data handling and orbit 
computation operations must be capable of pro­
ducing results under this "worst condition. " 
Orbit determination tasks seldom have the prob­
lem of an overload of data, and, when it arises, 
it is easily controlled. 

The threat of insufficient data is best met by 
considered over design of the tracking network. 
Some redundancy in the tracking systems is 
des1rable, so that failure of a single system will 
not require reliance on optical or skin track 
radar methods for further data. Optical methods 
are slow and dependent on such uncontrollable 
items as weather, and large skin track radars 
generally have other commitments. One tracking 
statIOn w1th hIgh acquisition reliability should be 
able to track immediately after injection of the 
satellite into its free flight orbit, since in many 
cases the data is better at shorter ranges and 
time-propagating position errors are reduced. 
Accurate determination of the time of injection 
(orbit epoch) is possible from telemetry or Doppler 
data. 

The problem of locating tracking stations to 
provide maximum certainty in orbit determina­
tion involves three considerations: 

(1) Maximizing basic orbital information. 

( 2) Maximizing the visibility period, con­
sistent with other requirements. 

(3) Measuring with maximum certainty. 
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Maximizing the basic orbital information de ­
pends strongly on what part of the orbit is being ob­
served. For any given coordinate system, there 
exist orb~ts and locations on the orbit path which 
!51ve amb~g~ous coordinates. For example: (1) it 
1S very difflcult to resolve the line of nodes (in­
tersection of orbit plane and equatorial plane) if 
the orbit is equatorial or near equatorial; (2) it 
IS also ex.tremely difficult to locate perigee when 
the orb1t 1S nearly circular; (3) if a station is 
located. such that it observes perigee passage, 
the orb1t determination might be very poor be­
cause so few observations would be obtained and 
the noise on the observations would obscure such 
vital information as time of perigee; (4) in the 
least-squares fitting of observations in orbit 
determination (described in Section E. 2) the 
partial derivatives (of the observation quantities 
w1th respect to the orbital elements) can be 
manipulated to indicate the information content 
of a pass, orbit, orbits, etc. 

Maximizing the visibility period means more 
observations for a given situation, but careful 
notice must be taken of the information gained 
from each observation. This requirement can 
be approached by attempting to either adjust the 
network to maximize visibility or to adjust orbits 
to eX1stIng networks. Most system designs are 
compromises of the above two approaches. 

Measuring with maximum certainty means 
measuring in such a manner that most errors 
are minimized. 

Data rate. To minimize random errors the 
highest data rate possible is desirable in or'der 
to obtain the maximum number of data per pass. 
However, the assumptions of independent data 
become poorer as the data rate is increased. 

If the correlation between measurements falls 
o~f exponentially with time, then there is a pre ­
d1ctable data rate above which greater errors 
are given in the orbit determination rather than 
less. 

Measurement ambiguities. A simple example 
of a measurement amb1gu1ty to be avoided follows . 

. Suppose the tracking station measures range p, 
aZ1muth a and elevation E , of the satellite with 
respect to the radar location. 

It can be seen that when E equals exactly 90° , 
the aZlmuth measurement is ambiguous; and when 
E only approaches 90° , the azimuth measurements 
become more uncertain. 

Tran~formation ambiguities. Transformation 
amb1gu1tIes may result in the trigonometric trans­
formations of the topocentric coordinates into 
orbital elements . An example of this is the trans­
formation of the inertial, geocentric spherical 
coordinates r, A and D, into the radar quantities 
p, a and E . 

One possible transformation equation is 

sin (D - D) = E. (cos E cos a) s r 
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No. 
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2 
3 
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5 
6 
7 
8 
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10 
11 
12 
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14 
15 

16 

17 
18 
19 

20 
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22 
23 
24 
25 
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30 
31 
32 
33 

34 
35 
36 

37 
38 
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Cognizant 
System Agency 

Minitrack GSFC 

Atlantic AMR 
Missile 
Range 

Station Name 

Coolidge Field, Antigua 
Island 
Antofagasta, Chile 
Blossom Point, Md . 
Cape Canaveral 

East Grand Forks, Minn 
Fairbanks. Alaska 
Fort Meyers. Fla. 
Fort Stewart, Ga. 
Grand Turk Is. 
Johannesburg, S . Africa 
Lima, Peru (An con) 
Mayaguana Is. 
Quito, Ecuador 
(Mt . Cotopaxi) 
St Johns, Newfoundland 
San Diego, Navy Elect . 
Lab 
Santiago, Chile 
(Peldehue) 
South Dakota 
Spain 
Woomera, Australia 

Cape Canaveral 

Cape Canaveral 

Cape Canaveral 
Bassett Cove, GBI 
West End, GBl 
Jupiter, Fla. 
Cape Canaveral 

Grand Bahama Is. 
Eleuthera Is 
San Salvador Is. 
Grand Turk Is . 
Antigua 
Ascension Is. 
Cape Canaveral 

Grand Bahama Is. 
Cape Canaveral 
Patrick AFB 

Grand Bahama Is. 
San Salvador 
Ascension Is. 

Antigua 

Installation Local 
Type Designation N Lat E Long. 

17.15 298. 217 

-23.6389 289.7278 
B point 38. 43045 282 . 9134 
{UHF 28 . 45866 279.43095 
VHF 28.41186 279.40935 

47 . 93 262.98 
64.73 212.35 
26.62 278 . 15 
31. 9806 278. 5083 

Radio 21. 52 288 . 90 
inter- -26 . 1825 28 . 7356 
ferometer -11. 7778 282 . 8444 

22.3750 286.9917 
-0 . 6278 281. 4389 

50.00 304. 50 
32 . 5806 243 . 0278 

-33.1528 289.3277 

- 31. 1026 136.7882 

Azusa 28.49137 279 . 44104 

Azusa 28.41295 279 . 40752 
MKll 

Extradop 28.45 279. 43 
receiver 26 . 60 280.68 

~ 26.65 281. 08 
26 . 95 279 . 93 

Mod 11 Radar 1. 3 28 . 49245 279 . 42419 

Radar 3.1 26.61645 281. 64006 
Radar 4. 1 25 . 26760 283.68677 
Radar 5.1 24 . 0666' 285.46366 
Radar 7.1 21. 4332! 288. 85452 
Radar 9 . 1 17.1754( 292.91181 
Radar 12. 1 -7 . 9314! 345. 59709 

FPS-8 28 . 4 279.4 

~ 26.61 281. 64 
FPS-16 116 28 . 48133 279.52327 

216 28 . 22647 279.40054 

316 26.61527 281. 65189 
516 24 . 11837 285.49560 
1216 -7 . 95175 345.58739 

916 17.14250 298.20667 

TABLE 2 

Tracking System s 

Altitude Survey Coord 
(m) Ref Data Units System 

fnon Cycles 

! l 4 . 9 

6.1 a, E Degrees 

f t t 
Cycles Azimuth non elevation 

160. 0 

p, a, E Azimuth 
elevation 

P, Adir 

~ JO& dir 
cos 
rates 

1'-

15 . 7 p ,a,E. Ft Azimuth 
deg elevation 

16.3 

I I 37.5 
14. 6 
25 . 3 

408 . 2 
275 . 2 

13.7 AMS p,a,E Ft Azimuth 
8.3 spheroid deg elevation 

j 
14 . 1 
13.1 
94.6 

45 . 7 

Accuracy 
30-

3 cps; 
[theoretical, 
20" of arc 
(0 . 006' ), 
1 millisec 
of time; 
experi-
mental 
200" of arc 
(0 . 06' )] 

Iptiange 3 it; 
6 pts/million 
nonambiguous 
dir cos; O. 75 
pts/million 
lambiguous 
cos rate 

12 m 
1.5 mils 

50 ft 
0.012 deg 

Max 
Range 

/:oper Data Data (passive l-sq Ant Freq 
Formats Delay m target) Gain Band Comments 

21 db/UHF 
1 min 30 db/L Minitrack R&D sta. 

1 2 db/UHF cape has vertical 10 min VHF baseline for UHF. 
provides greater 

500 n mi 
coverage than most 
Minitrack stations 

Manual 
(14 db~) variable 

• 

VHF 

33 db/C-
band 
35 db/C-
band 
36 . 864 me 

or 
73.728 me , 
33 db/2650 
to 33 db/ 
2950 me 

220 n mi 
I 

35 db/L-

iNRT 
i band i 

Auto- 500 stat mi 44.5 db/C-
matic band I 
variable 

I e 
( , 
I 

• 
I 



I 
L_ 

~ 
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I 
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co 

No. 

41 

42 

43 

44 
45 

46 
47 

48 
49 

50 

51 

52 
53 

54 
55 

56 

57 
58 
59 
60 
6 1 

62 

63 
64 

65 

66 

67 

68 

Cognizant 
System Agency 

Atlantic AMR 
Missile 
Range 

Pacific PMR 
Missile 
Range 

Transit APL 
Program 
Net 

Deep JPL 
Space 

I 
Space- MIT 
track 
Net 

BRL 

RADC 

NSSC 

Installation Local 
Station Name Type Designation 

Tele-2 60-ft para- BTM 
bolie dish 

Tele-3 
J 

AMR mobile 28-ft para-
bolie dish 

South Ar guello FPS-16 023001 
North Arguello 023002 

South Mugu 003001 
North MUgu 003002 

San Nicolas Island No. 15 
Kokee. Kauai, Hawaii No. 30 

Point MUgu SCR-584/ 
615 

San Nicolas 

Point Arguello Verlort 
Kauai, Hawaii I 
Point Mugu Microlock 
South Point, Hawaii t 
Howard County 20-ft dish 0.01 

Austin 0 . 02 
Las Cruces 0.03 
Seattle 0. 04 
Argentia 0 . 05 
Sao Paulo 0.08 

Goldstone. Calif. 85-ft para- GS 
bolie dish 

Woomera, Australia W 
Johannesburg, S . Africa J 

Millstone Hill 84-ft para-
bolie dish 

BRL Lab Unihelix 

Rome ADC 28-ft para-
bolic dish 

Sagamore Hill 84-ft para-
Telescope bolie dish 

TABLE 2 (continued) 

Altitude Survey Coord 
N Lat E Long. (m) Ref Data Units System 

28.51351 279.22347 20.9 Tel Deg

l 
Azimuth 

a. , elevation 
28.46289 279 . 41667 20.7 

~ 
Tel Cycles. Azimuth. 
l:l.f,a,E deg elevation 

34 . 58276 239.43944 661. 6 p.a,E Ft. Azimuth 
34 . 58305 239.43989 661. 6 deg elevation 

34.12144 240 . 84933 12.8 
34.12122 240. 84812 12.8 

34 . 121 240.848 12.8 Yd. 
mil 

34.58 239. 439 661. 6 

34.121 239.439 661. 6 f 
18.94 204.33 t 
39 . 1635 283.1010 145.0 No. Tel Cycles Azimuth 

Amer f non 
elevation 

30.28861 262.26861 179.8 Datum 

I I 32.28157 253.28222 1218. 4 

! 47.56107 237.64471 83.5 
47.31529 306.01029 13 . 8 

35.3895 243.1518 1054.6 H. D Deg. Hour 
fnon 

Cycles angle 

Tel deCTa-tion 
31. 382 136.886 H. f Deg 
25.891 27.675 t 
42 . 617 288 . 509 156.1 p,a, ( Km. Azimuth 

/> deg 

·'TOO 39. 4744 283.9278 18.3 Llf, a, ( Cycles. 
deg 

43.2234 284.5792 164.0 fnon Cycles 

a. , 
42.6311 289 . 1846 74.7 H. D Hr, min. Hour 

fnon sec, deg 
min, 

angle 
declina-

cycles tion 

Max 
Range Oper 

Accuracy Data Data (passive l-sq Ant . Freq 
3" Formats Delay m target) Gain Band Comments 

Manual 5 min 28 db/VHF Primary telemetry 
variable 

NRl 
station at Cape 

0.75 deg ~ 32 db/UHF Canaveral 
VHF 

3 cps Auto- UHF Has autotrack capa-
1. 5 deg matic VHF bility once signal is 

fixed acquired 

150 ft . Auta- RT 200 mi 44 . 5 db/C- Planned SODD-mi 
0.03 deg matic 500 mi band range part of Mer-

variable cury net 
200 mi Planned SOO-mi range 
200 mi Planned SOO-roi range 

(Mugu has a total of 
4 FPS-16's) 

200 mi SOO-mi and SOOO-mi 
500 mi range capability is 

planned for one of 
four FPS- 16's on 
San Nicolas 

100 yd. 440 km S-band Kokee has planned 
10 mil 

j 
SOaO-mi range 

1 
capability 
There are 6 SCR-
584/615'5 at Point 
Mugu and 4 at San 
Nicolas 

20 yd. 1800 km Two verlorts being 
1 mil at 

t 
acquired 

3° Isec 
108 me 
70 me 

0.75 cps Automat NRT VHF Recei ver has para-
ic fixed 23db/UHF metric amplifier uses 

1. 5 cps 

1 
60 min VHF atomichron time 

I i 
VHF standard 
VHF 
VHF 

Manual VHF 
vo . 

O. IS deg Auto- NRT UHF 200- to 250-ft dia - _ 
39 cps malic 

j 
parabolic antennas 

fixed are planned for each 

~ 
DSN site, the first 

0.15 deg ~f~~I~dstone in 1965 t o~d. O~.it:A~~shas 
18.3 km Auto- NRT 36 db/UHF High power skin 
1. 2 deg malic tracking 

variable 
9 cps Manual 1 min 1. 4 db/UHF 
12 deg variable 
60 cps 

I 
10 min 28 db/UHF 

15 deg 

3 deg 15 min 37 db/UHF 
9 cps 
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No. 

69 

70 
71 
72 
73 
74 

·'0 

76 
77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 
89 

90 

91 

92 

93 

34 

95 
96 

97 

96 

System 

Space-
track 
Net 

While 
Sands 
Missile 
Range 

Courier 
Program 

Ois-
coverer 
Net 
SPAN DAR 

Relay 

Cognizant 
Agency 

SRI 

WSMR 

I 
;~"c 

WRE 
STL 

USASRDL 

GE 

GSFC 

U. Ill. 

NERA 

RADC 

NAA 

RCA 

GSFC 

NASA 

NASA 

VAFS 

NASA 

NASA 

Installation Local 
Station Name Type Designation N Lat 

Stanford Research 61-ft para- 37.4031 
bolie dish 

White Sands. N. Mex . FPS-16 R-1l3 32.35795 
Holloman AFB R-123 32 . 91589 
Mid White Sands R-112 32.35795 
East White Sands R-1l4 32.35795 
South Holloman R-122 32.90222 

Red Lake -30.81931 

Mirikata -29.87147 
GGS Quad 28 . 44853 

helix 

Fort Monmouth 50-ft para- Decour 40. 1833 
bolic dish 

GE 28-ft para- 42.84806 
bolic dish 

Huntsville 15-ft para- 34 . 6670 
bolic dish 

University of Illinois 40.1050 

NERA Tracking 10-m para- 52.233 
bolie dish 

GE-Trinidad 84-ft para- 10 . 73923 
bolic dish 

NAA Tracking Quad helix 33.92472 

Moorestown FPS-49 

Cape Canaveral 6-ft para- Hangar S 28.48794 
bolic dish 

Cape Canaveral Microlock 28.41483 

! ! 28.41436 
28.41405 

Cape Canaveral Microlock 28 . 41464 

Cook Track ing GO-it par~- 34.82565 
bolic dlsh 

Wallops Island 60-ft para- 37.8546 
bolic dish 

Andover . Maine Cassegrain 44.6319 
.... ntenna 

Goonhilly, England 50.0494 

Nutley . N. J . 40 . 616 
Plemeur -Bodou . 48.7669 
France 
Rio de Janeiro , 22.9525 
Brazil 
Fucino, Italy 41. 9781 

TABL E 2 (continued) 

Max 
Range ;oper Altitude Survey Coord Accuracy Data Data (passive 1 sq Ant. Freq 

E Long. (m) Ref Data Units System 3a Formats Delay m target) Gain Band Comments 

237.8247 150.0 f non Cycles, Azimuth 3000 cps Manual 33 db / UHF 

a.' deg elevation 5.25 deg variable 

253 . 60737 1234 . 2 p , a,f. Yd Azimuth 15 yd Auto- 30 min 44.5 db/ Part of Mercury 
253.90139 1264.8 

dei 
elevation 0.015(eg matie 

! 
C-band program net 

253 . 62977 1234.0 variable 
253.63171 1233.6 

~ 253 . 90139 1264.5 

136 . 85847 128. I Yd 150 ft Auto- 60 min 500 mi Part of Mercury 
art mils 0.015 deg maUe 

l. 
Program net . 

~ ~ 
fixed Data in octal 

~ artillery mils 
135 . 241 219 . I 
279.41929 3 . 5 AMS ~f Cycles 0.16 cps Manual 15 mm 15 db/UHF 

spher- auto-
oid matic 

fixed 
2H5 . 9431 31. 7 f non Cycles. Azimuth 2 cps Manual NRT 33 db/UHF Receiver has 

a.' deg Elevation 0.5 deg variable parametric 
285 . 92917 403.9 f Cycles 15 cps 5 min 26 db/UHF amplifier 

non 12 deg a.' 
273.3564 18 1. 4 fnon Cycles , 30 cps 60 min 19.5 db/ 

a.' deg 6 deg UHF 
271. 7731 240 . 2 I ! 300 cps 2 min 28 db/UHF 

6 deg 

~ 5.063 0 . 0 Tel Cycles 0. 3 pts/ 8hr 
f million cps 

298.3910 273.3 Clarke p , a , t Km. 16 km 5 min 36 db/UHF Hi.gh power skin 
spher- deg 1. 2 deg VHF tracking 
oid 

241. 87268 39.6 fnon Cycles . 7 . 5 cps 15 min 22 db/UHF 

a.' deg 15 deg 

P.P. 39 db/UHF Data smoothing 
a.' interval is 10 sec 

High power skin 

279.41378 7.6 f 
non Cycles 30 cps 15 min 15 db/UHF 

tracking 

279.40583 6. I a Deg 1. 5 deg VHF Uses atom-

j I ! I 
ichron time 
standard 

279.40584 6. I 
279.40625 6 . I 

279.405 16 10 . 4 .... Deg Azimuth 15 deg Manual 13 db/VHF 
Tel I Elevrion 3 deg variable 33 d~/L-

I band 
.239.49507 306.3 

~ 
a 5 min 28 db/ VHF 
0.06 deg UHF 

264.4866 29.0 "' .' . S-band 
0.03 deg 

289.3017 0.06 deg 

354.8253 6 min of 
a rC 

285.833 0.15 deg 
356.4758 

316.6314 9.8 

13.6014 640. I 
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Name 

Minitrack 

AN/FPS-16 

Verlort 

FPS-49 
(BMEWS) 

FPS-50 
Surveillance 
(BMEWS) 

Millstone 
FPS-44 

Trinidad 
FPS-44 

Goldstone 

Stanford Research 

Oop10c 

Spasur 
(detection) 

ESAR 

._----

Manufacturer 

Navy 

RCA 

Reeves 

RCA 

RCA 

Lincoln Labs . MIT 

GE 

NASA 

SRI 

Army 
BRL-ARPA 

NRL-ARPA 

Bendix 

Antenna Type 

Fixed array 

12-ft pa'rabolic 
44. 5-db gain 

10-ft parabolic 

84-ft parabolic 
39-db gain 

165 - x 400 -ft torus 
45-db gain 

84-ft parabolic 
37. 3-db gain 

84 - ft parabolic 
37.5 -db gain 

85-ft HA-OEC 
parabolic 

60-ft parabolic 

Tunable 
16-db gain 

50~dipole receiver 
400 ft long (1600 ft 
being installed) 

90-element linear 
array 

TABLE 3 

Tracking Fac ility Characteristics 

System Type Scan Rate Coverage Beam Width Frequency 

CW -bistatic Stationary Vertical fan 0 . 3° x 140° 108 and 135 mc 

Monopulse ; skin or Range: 10,000 yd/sec 3600 az ; -100 + 85° 1.2- 5400 to 5900 mc 
beacon automatic Azimuth: 40° Isec el (raster, circu-
tracking Elevation: 30° Isec lar and sector 

scan) 

Monopulse ; skin or Range: 10 , 000 yd/sec 360° az; -11. 25 2.5° S-band 
beacon automatic Az and El: 900 mils/ sec to 90· e l 
tracking 

Pulse -doppler. 3° to 15° {sec 3300 az 2° x 2° pencil 425 mc 
steerable automatic o to 90° e1 
tracking 

88 feed horns and 5° , 6-2/3° and IOo/sec 2 faos- - 3. 5° 1° elev width 425 mc 
2 dual organ pipe scan- in azimuth and 7° el angles 
ners 

2° Isec 3600 az 2.1° 440 mc 
o to 90° e1 
(conical scan) 

4.5°/sec (slew) 3600 az 2. 25° 425 and 438 mc 
o to 90° el 

Deep space 1. 0° and 0.03° /sec 360° az 1° at 960 mc 890/960 mc 
5° to 90° e1 0 . 4° at 2295 mc 2115/2295 mc (1963) 

Monostatic pulse 4° /sec (slew) 360° az 12° 106 . 1 mc Calif. 
0° to 90° el 200 to 400 mc Alaska 

CW doppler Stationary 3 fans 8° x 76° 108 mc 

Detection only Stationary Vertical fan 0.4°x1600 108 mc 
CW -tristatic fence (O.3"x 160° (108 and 428 mc 
interferometer proposed) proposed) 

±4S- az Transmit 1. 5° 425 mc 
±4So el pencil 85 0 mc 

Receive 1.5° 1275 mc 
cluster 



where 

D 

r 

dec lination of the satellite in in­
ertial coordinates 

declination of the station in in­
ertial coordinates 

geocentric distance of the satel­
lite. 

Examination of this equation shows that D in­
formation is lost when the azimuth Q' measure­
ments approac h 90°, that is, when the satellite 
heads due east from the station. In a like man­
ner, all coordinate transformations have am­
biguous answers where the inertial orbital ele­
ment cannot be determined at that time. One of 
the ways of resolving ambiguities is to have an 
overdetermined orbit; another way is to adjust 
the orbit or the station location such that the 
ambiguities do not occur. 

Errors may be minimized by suitable station 
calibration techniques and methods. 

It is undesirable to attempt an orbit deter­
mination from a single station I s data on one 
pass. The station I s random errors generally 
preclude computation or an orbit sufficiently ac­
curate to furnish position predictions which will 
enable a narrow beam radar to acquire one orbit 
revolution later. Experience dictates that data 
from at least one tracking pass from each of 
two well spaced stations (preferably through 
apogee, and 90° to 180° from apogee) is required 
to determine the initial orbit achieved. 

Satellites in highly elliptical orbits (perigee 
high enough to be free from drag effects) and 
space probes present less stringent require­
ments on the tracking system, unless midcourse 
guidance is involved, because more stations 
have visibility for longer periods of time and 
data is plentiful. Midcourse guidance requires 
rapid and accurate orbit determination if satel­
lite fuel requirements are to be kept within 
reason. As little as an hour may be available 
to track the satellite, process data, determine 
the orbit, and calc ulate the time and duration of 
the rocket firing for correction of the satellite 
trajec tory. 

Under these conditions , prelaunch planning 
must include limitations on the tracking time 
and the number of data points, to ensure that 
adequate computation time is available. Several 
data handling modes should be available so that 
last minute equipment failures do not jeopardize 
the mission. 

4. Da ta Handl ing 

Communications should be established at 
least one hour prior to the earliest scheduled 
liftoff to ascertain that complete circuit com­
munication is available . Once liftoff occurs, 
data should begin to arrive from the tracking 
stations. 

Teleprinter circuits are a favored method for 
transmitting data because they: 

XI-2l 

(1) Are readily available as a leased 
service. 

(2) Are the most reliable rapid communi­
cation . 

(3) Produce punched paper tape and 
printed, multicopy output. 

(4) May be gauged together on a single 
circuit at little extra cost. 

The received information may be: 

(1) Supplied as electrical impulses in 
teletype code to electronic conversion 
equipment which writes it on a magnetic 
tape in computer code, or enters it 
direc tly into the computer. 

(2) Punched onto cards by passing the 
paper tape through a tape-to-card 
machine. (These cards are checked 
for bad points and are then read into 
the computer.) 

(3) Manually transcribed to load sheets, 
keypunched to cards, and then read 
into the computer. (This method is 
used if the data is irregular in some 
respect and cannot be handled as 
described in the first two methods.) 

The availability of at least two of the above 
methods is recommended. Experience has shown 
that flexibility is a prime data handling require­
ment. Extremely useful observations may be re­
ceived in an irregular format when previously 
coordinated sources have failed to acquire the 
satellite, and the orbit determination agency 
should be prepared to use them. 

Generally, the transmission of information 
from tracking stations to a central data gathering 
center is over a narrow bandwidth channel such 
as a telephone circuit. This means that the in­
formation cannot be fed over the lines very rapidly . 
Error checking slows down the rate even more; 
to check for all errors would require an extremely 
long time. The result is that high probability 
error classes are checked automatically or semi­
automatically; low probability errors are not ex­
cluded. 

5. Data Filtering 

Two extreme cases of how the data could be 
processed are: (1) the raw data could be fed into 
a central data gathering center and processed 
there and (2) the data could be processed at each 
station. If each tracking station completely 
processes its own data, there is not only a duplica­
tion of computing equipment (one for each station) 
but each station is not taking full advantage of 
other stations I data. If all data is fed raw from 
each tracking station to one central computer , 
then far too muc h bad data gets into the orbit de­
termination routine. The usual compromise is 
to have one central computer do the final editing, 
smoothing and orbit determination, but have each 
tracking station perform its own local calibrations 



and some data smoothing and editing for grossly 
erroneous data. 

When a sufficient number of points have ac ­
cumulated, the preliminary precision orbit is 
determined. The differential correc t ion tech­
nique using least squared errors is the method 
usually used; it is described later. 

An optimum filtering scheme has two con­
flicting requirements imposed on it: (1) to use 
all the information contained in the observation 
and (2) to reject all misinformation contained in 
the observations. 

Since there are no perfect data, all observa­
tions have varying degrees of noise or unknown 
error s as socia ted wi th them. Using all the in­
formation contained implies accepting all data 
points. Rejecting all misinformation implies 
rejecting all data pOints. Filtering schemes 
attempt to improve the accuracy of an orbit de­
termination by various compromises with the two 
above cont radictory requirements. One such 
compromise is to reject all "obviously" bad 
data. Such data only degrade the curve fits, 
since they contain so little information. Another 
compromise is to maximize the probability of 
the accuracy of the estimates of the orbit 
parameters. This compromise is effected by 
determining the maximum likelihood estimates 
of the orbital parameter. There are two dif­
ferent ways of determining a bad pOint: (1) by 
taking more observations , thus increasing the 
probability of obtaining a more acc urate fit, 
or (2) by a priori knowledge of the true trajectory 
or a priori knowledge that a given point is bad. 

The best filtering of the data, if random errors 
(only) are present, uses a least square fit 
(described in Sections E. 2 and F) to curves con­
strained by the known (i. e . , well determined) 
laws of physics. Unfortunately, to use all the 
points in t he curve fitting procedure would de­
grade the orbit determination so much that the 
computation would almost always result in an 
ambiguous answer. (In other words, so many 
orbits would fit the set of observations that the 
estimates would not be consistent.) Additionally, 
if much of the bad data had been rejec ted pre­
viously by quicker methods, fewer computations 
would be needed to reject the bad data. 

An efficient filtering scheme must divide the 
filtering between the tracking stations and the 
central computer, such that most of the above 
problems are minimized. It is instructive to 
contrast the extremes of too much local filtering 
at the tracking stations and no local filtering. 

Excessive local filtering. If data is rejected 
on the basls of slmple curve fitting, the curve 
being fit would be in error and there would be a 
tendency to reject "good" data. 

If data is fit to curves representing the known 
laws of orbital mechanics, then a complex com­
puter is required at each station . However , each 
station would have the disadvantage of not using 
data from other stations. 
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If each station fits all data to curves repre­
senting orbital mechanics , then each is really a 
central station and there is inefficiency in that 
the same computations are being duplicated in 
each station. 

No filtering at local station. If no filtering 
occurs at each stattOn, the computation center 
is swamped with bad data, unknown biases (e. g. , 
biases known to local stations but not to central), 
increased transmission errors, and less infor­
mation per unit time being fed to central. 

D . DETERMINATION OF PRELIMINARY 
ORBIT ELEMENTS 

Two areas of the problem of orbit determina­
tion are generally distinguished: 

(l) Preliminary orbit determination-­
more or less approximate calculation 
of an orbit which was previously com­
pletely unknown. 

(2) Orbit improvement--refinement in ac­
curacy of elements already known 
approximately. 

This section considers the problem of preliminary 
orbit determination; Section F considers orbit 
improvement. Many methods of determining 
preliminary orbits are available. The best 
computation technique to use in a given problem 
depends on the types of data available. Table 4 
shows the appropriate computation schemes to be 
used for the various combinations of observa­
tional data . 

Several methods are described briefly below. 
Reference 4 considers some techniques in 
greater detail. 

1. Method of Laplace 

The method of Laplace depends on the solu­
tion of the differential equation of motion by 
Taylor series. That is, a solution of the equa­
tion 

(47) 

will be written in the form 

(48) 

Evaluation of the derivatives (the series coeffi­
cients) of Eq (48) from Eq (47) and collection of 
terms gives 

+. JeD + (49) 

(continued) 



TABLE 4* 

Observation Requirements for Preliminary Orbit Determination 

Observational Data 

Three 3-dimensional fixes 

Overdetermined system with 
more than three fixes 

Fifteen range measurements 

Eight range measurements 

Four range measurements 

One 1-dimensional fix (can be 
achieved in several ways: one 
vector measurement of range 
and range rate; three range 
and three range-rate meas­
urements) 

Two 3-dimensional fixes 

Azimuth, elevation (a, .) 

Azimuth, elevation rate (a, E) 

Azimuth , elevation change of 

rate (Ci , eO) all at one time 

Three elevatiOn} 
for three times 

Three azimuth 

(That is, each. i - a i pair is 

taken at three separate times ) 

Three range measurements 

Three range-rate measure­
ments 

Six range measurements 

Six range-rate measurements 

Other combinations of six 
observed quantities for three 
or more times 

Five observed quantities for 
one or two times 

Four observed quantities : 
for example, a , E , Q, E for 
one time; 2a, 2. for two 
times 

Four ranges for four times 

Two ranges, two range rates 
for two times 

a, • , range, range rate for 
one time 

Three observed quantities 

Two observed quantities 

*Adapted from Ref. 3 

Assumption 

None 

Random error 
distribution 

Low eccentricity 
circular orbit 
rectilinear 
parabola 

None 

None 

None 

None 

None 

None 

None 

None 

Parabolic or one­
condition orbits 

Circular or two­
condition orbits : 
for example , two 
ranges or two r ' s 
are assumed 

Thre e -cond ition 
orbit 

Four - cond i tion 
orbit 
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Method 

Herrick-Gibbs or Gibbs (with or 
without differential correction to 
reduce residuals and lor discard 
bad data) 

Least - square differential cor­
rection of initial orbit 

Gibbs 

Gibbs 

Gibbs 

Laplace, Lagrange 

Gauss (and variants) 

Laplacian 

Convert to a , E, i>, E, 0; , f. of 
middle data (Laplacian) 

Retain a, E 

Lagrange with Herrick-Gibbs 
velocity 

Gauss 

Gibbs expansion method 

Differential correction of pseudo­
Laplacian 

Differential correction of pseudo­
Laplacian 

Probably only differential correction 

Needs to be developed 

Modified Olbers 
Laplacian or similar method 

Standard circular orbit methods 

Needs to be developed 

Needs to be developed 



(49) 

From Eq (4 9), if the position vector ro and the 

velocity vector ~o are known for some time to' 

and if the series s a2}d a converge, the radius 
vector at any time, !" (t), is determined. But the 
radius vector r is related to the observations by 

where 

1\ ~ 

r=pp+R 

R 

p 

1\ 
P 

vector pos ition of the observer 

magnitude of the observation 
vector 

unit vector in the direction of 
observation 

Successive differentiation of Eq (50) gives 

~ ,, 1\ .f. i\ :.:. 
r=pp+2pp+pp+R 

(50) 

(51) 

The acceleration as given by dynamics (Eq (47» 
can then be equated to that given by the geometry 
(Eq (51» 

.. /\ .A i\:":' 
pp+2pp+pp+R 

/\ ~ 

pp+R 
3 

r 

The dot product of this equation with (~ x ~) 
gives 

(52) 

/\;..., '. /\ ... 1\;"" 
p (p x p • ~) - - (p x ~. R) - p x ~' R (53) 

. - (1 r 1) = (p x p . R ) R: - ~ 
Dotting Eq (50 ) into itself provides the additional 
relation 

2 2 2 1\ ~ 
r = p + R + 2 (p . R) p (54) 

If only dlrection data comprise the observations, 
p and r are the only unknowns in Eqs (53) and 
(54 ). Each of the vector products can be evaluated 
from the observations and the known position of 
the observer. Three observations, each con-
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sisting of two angular coordinates and the cor;­
responding time , are sufficient to determine p .. 0 
and 1i0 at some time to (generally the middle of 

the three observations), except when p x S ' S = 0 

at t = to' or if § = 0 at t = to' 

A convenient computation method for determina­
tion of the preliminary orbit of an earth satellite 
from three observations of right ascension and 
declination, 

t : A D a a a 

proceeds as follows. Four equations in the four 
unknowns sa' sb' aa and ab are obtained 

where 
1\ " 1\ 
Pi = cos Ai cos Dii + sin Ai cos Di j 

1\ 
+ sin D.k 

1 

The dot products of these equations with unit 
" 1\ vectors A and D, 

1\ /\ 1\ 
A = - sin Ai + cos Aj 

1\ 

D 

(in the direction of 
increasing right as­
cension) 

1\ /\ 1\ 
- sin D cos Ai - sin D sin Aj + cos Dk 

(in the direction of increasing declina­
tion) 

give the following equations to be solved: 
1\ 
A. 

1 

1\ ~(55) 1\ 
D.) +R .. D. 

1 1 1 

(55 ) 

l 

I 



where 

i = a, b 

20 Method of Gauss 

If three position vectors, r I' r 2 and r3 at 

times t 1 , t2 and t
3

, are coplanar, and ifr
i 

is 

not parallel or anti -parallel to r3 ' 

r2=c1rl+c3r3° 

With the notation of the previous subsection 
-'0 

r. = p.~. + R., i = I, 2 , 3. 
1 1 1 1 

These two equations give, 

Also, from Eq (56), 

so that 

r
I
xr

2 
k 

r 1 x;3 0 k 

Area L).OP
2

P
3 

Area L).OP1F3 

Area L).OP
I

P
2 

Area LS:OP 1 P 3 

PI 

(56) 

(57) 

The c' s are known as "triangle ratios" "Sector­
triangle ratios" can then be defined as 

"1 

" = 3 

area of sector OP 2P 3 

area of triangle OP 2P 3 

area of sector OP I P 3 

area of triangle OP 1 P 3 

area of sector OP 1 P 2 

area of triangle OP 1 P 2 

By Kepler's law of areas, the areas of the 
sectors are proportional to the time 0 Therefore, 

t3 - t2 "2 (58) c = 
t3 - tl 1 "1 

t2 - t1 "2 (59) c = 
t3 - t1 3 "3 

Additional conditions are imposed by Kepler's 
equation, 
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.! -rti (t. - t.) = E. - E. - e (sin E. - sin E
1
.) a"~ J 1 J 1 J 

(a dynamic condition) (60) 

where 

E = eccentric anomaly 

e = eccentricity of orbit 

a = semimajor axis of orbit 

J.l = gravitational constant 

and 

r. +r. = 2a - ae (cos E. +cos E.) 
1 J 1 J 

(61) 

(a geometric condition) 0 

Defining 2E .. = E. - E. as the change in eccentric 
1J J 1 

anomaly and 28 .. = 8. - 8. as the change in true 
1J J 1 

anomaly, the last equation gives 

r. + r. = 2a sin2 E .. + 2_~. cos 8 .. cos E . . 
1 J 1J ,i -J 1J 1J 

and Kepler's equation becomes 

!"f!(t. o t.) <: 2E .. - sin2E .. 
a a J 1 1J 1J 

(62) 

+ ~ orr.-r. cos 8 . . sin E .. o (63) a 1- i - j 1J 1J 

The following definitions will prove convenient. 

k
2 = 4r. r. cos 2 8 . . 

1 J 1J 

r. + r. 
1 + 21= 1 J 

k 

m
2 = ~ (tj _ \)2 

2 E . . 
x = sin ~ 0 

Solution of Eq (62) for a gives 

or 

2a sin2 E .. 
1J 

a = 
k (i + x) 

. 2 E Sln . . 
1J 

k (r. +r.) 
1 J 
k - k cos E .. 

1J 

(64) 

(65) 

Substitution of this a, obtained from geometrical 
constraints, into Kepler's equation, Eq (63), 
gives 

-fi7"(t. - t.) = (2E . . - sin 2E .. ) a 3 / 2 
1 0 J 1 1J 11 

+ 2 ~rl r3 cos 9ij sin Eij {?1 



or 

2 E .. - sin 2 E . . 
1J 1J 

sin3 E . . 
[k (£ + x)] 3/2 

1J 

+ k 3 /2 (£ + x) 1 /2 

With the de fi ni.tions 

2 
i +x=-;-

11 

2 E.. - si.n 2 E .. 
X (X)= __ ~lJL-~ ____ ~lJ_ 

sin3 E .. 
1J 

thi.s equati.on reduces to 

or 

3 T X (x) + m =m 
y TI 

2 
TI = 1 + -;- X (x) 

TI 

(66) 

(67) 

Di.fferenti.ati.on of the above defini.ti.on of X (x) 
wi.th respect to E .. gi.ves 

1J 

Then 

. 3 E ax sm .. ~ 3 Si.n2 E .. cos E .. X 

dX 
ax 

1J i.j 

+4Si.n
2

E .. 
1J 

dX dE. . 

dEi.j ---it-

4 - 3 cos E .. X 
1J 

si.n E .. 
1J 

1J 1J 

1 
1 .... si.n E . . 
,:, 1J 

Then expandi.ng X (x) i.n seri.es gi.ves 

where 

DO 

X (x) = 2.' 
i.=0 

2i.+4 dX_ \ . i. -I 
Ai. = ~ AU-I) from Ox - L1 Ai. x 

_ 4 
From Eq (66), A O - "3' Therefore, 

4 4 6 4 
X (x) ="3 +"3 5" x + "3" 6 8 x2 + ••• 

"0 "7 

(68) 

The soluti.on for a preli.mi.nary orbi.t by Gauss I 
method then proceeds as follows: 

(1) Select approxi.mate values for PI ' 
4 

P3, X"""3 ' Tl2 '" Tl3 '" 1, these values 
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to be i.mproved by i.terati.on, Take 
t3 - t2 t2 - t 1 

c 1 '" t _ t and c 3 '" t=""-=-t. ' 
3 1 3 1 

(2) Determi.ne r 1 and r3 from ~ = p. p. 
~ 1 1 1 

+ Ri. and determi.ne e l' e 3 and k from 

Eq (64), 

(3) Determi.ne m from t
1

, t2 and k by Eq 

2 m X 2 (64), Revi.se 112= 1 + ~ (iteration 
loop}, 11 2 

(4) Deri.ve £ from r l' r 2 and k by Eq (64), 

2 
Deri.ve x from x = ~~) - £ , Revi.se 

X from Eq (68) (iteration loop). From 
x obtai.n e., -e. and a from Eqs (64) and 

J 1 
(65), From E .. and e. , e . determine i. 

1J 1 J 

(5) Repeat (1) to (4) wi.th PI' P2 to get 11 3 , 
X3 ' 

(6) Repeat (1) to (4) wi.th P
2

, P
3 

to get 11
1

, 

Xl' 

(7) Obtai.n i.mproved values for c 1 and c 3 
homEqs (58) and(5~, 

(8) Obtai.n i.mproved values o f PI and P2 

from Eq (57), Note that thi.s i.s ac ­
compli.shed by dotti.ng i.n turn by 
A 1\ 1\ 1\ 
P2 x P3 and PI x P2 ' The values of PI 

+ P2 are then obtained from the follow ­

i.ng equations. 

1\ A A ~ 1\ 1\ 
c 1 (Pl ' P2 x P3) PI = - c 1 (R 1 ' P2 x P3) 

+ (R2 ' P2 x P3) 
~ 1\ 1\ 

- c
3 

(R
3 

' P2 x P3) 

A A A ~ A A 
c 3 (PI P2 x P3) P3 = - c 1 (R 1 ' PI x P2) 

(9) Repeat (1) through (8) wi.th i.mproved 
values of PI' P3 ' unti.l i.teration con ­
verges . 

3 , Gi.bbs I Modi.fication of Gauss I Method 

There i.s an alternati.ve method of soluti.on for 
c 1 and c 3 i.n Gauss I Method due to Gi.bbs, If 



~ = a 2 0 

-" ~ ~ -" 2--\ 3~ 4 
r3=aO+a1T1+a2T1 +a~T +a4 T 1 + 

d
2 r: 

Determination of ~ from these series, set ­
dt 

ting 

d
2 

r. r: 
1 1 

--::2dt = - J.l ----s ' 
r i 

elimination of the a s and substitution in 

gives 

Here 

where 

m 

T 2 

B1 = (mn + n-m) ~ 

T 2 
2 

B2 = (mn + 1) ---r2 

T 2 
B3 = (mn - n+m) --b 

m + n = 1 and n = T 3 IT 2 ' m = TIlT 2 

4. Method of Olbers 

(69) 

The method of Olbers is a technique for de ­
termining preliminary parabolic orbits. As in 
Eq (57), 

(70) 
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--_._-----

The dot product of this equation and (P2 xU) 

where U is coplanar 1\ with V and p~, 
;7 " .... P2 
u = P2 x V x-v 

is 
1\ 1\ -+ f\ 1\ ~ 

c1P1(P2 'P2xU)+c3P3(P3 P2 xU)=0 

(71) 

Then 

where 

M 

" 1\ ~ c 1 (p I . P2 x U) 

1\ 1\ ~ 

c 3 (P3 • P2 x U) 
(73) 

The computation then proceeds as follows: 

(1) Select initial approximate values for 
P I and for c I and c 3 such that 

Obtain P
3 

from Eq (72). 

(2) Obtain f'1' c 2 and P2 from PI' P3 and 

c
3 

by Eq (70). 

(3) Obtain f'3 and S = I r 2 - r 1 I from 

the law of cosines 

(4) Obtain 

(5) Correct PI in step (1) by iteration until 

(74) 

where X Y is the term in Euler's 
equation, 

6 -'Ii (t. - t.) ll"" J 1 

372 (r
i 

+ r
j
) 

(1 + X y)3/2 

± (1 - X Y) 3 12 = 3 X (75) 

(6) Obtain 11
1

,11 2 , 11 3 from ~ = c 1r I 
+ c 2r 2 and the sector to triangle area 

ratios defining the 1']' s. 

(7) Determine c 1 and c 3 from Eqs (58) 

and (59) and iterate until they agree 
with step (1). 



(8) From the corrected values of c 1 and 

c
2 

calculate P2 and compare with the 

" observed P2' This checks the assum-

Hon of Olbers t method that e :::: 1. 

E. THEORY OF OBSERVATION ERROR 

After a preliminary orbit has been determined 
as described in Section D, the elements thus de­
termined, together with a theory of motion, may 
be used t o calculate theoretical positions of the 
orbiting body at any time. If further observations 
of the body are then made, the observed positions 
will be found to deviate from the theoretical po­
sitions for the corresponding times. The dif­
ferences in observed and computed positions , or 
res iduals, may be attributed to three caus es: 

(1) Approximations involved in the theory . 

(2) Inaccuracies in the preliminary orbit 
e lements. 

(3) Errors in t~ observations. 

In the proble m of orbit improvement, to be con­
sidered in Section F, these residuals between 
observed and computed positions are used to im ­
prove the accuracy of the preliminary orbit ele ­
ments. Since the methods of orbit improvement 
are rathe r complex in themselves, some benefit 
may be derived from a review, preparatory to 
considering these methods in Section F, of those 
areas of statistics and numerical analysis which 
are basic to the orbit improvement theories. 

1. Data Err ors 

Data errors are of three types: systematic 
errors, which affect all measurements alike; 
mistakes, generally large errors due to careleS1l 
reading of indicators or inc orrect recording, 
which do not follow any law, and accidental 
errors, causes of which are unknown and inde­
terminate, and which are usually relatively 
small and follow the laws of probability. Syste­
matic errors can be corrected to some extent by 
calibration of instruments, and large mistakes 
can be eliminated from data by use of an appropri­
ate data rejection philosophy. The mathematical 
theory of errors to be discussed applies only to 
acc idental errors, and only these errors will be 
considered in the analyses. 

All kinds of accidental errors may be de­
scribed by frequency distributions, or probability 
density functions, curves which give the relative 
frequency of occurrence of the various values in 
a set of observations. By far the most useful 
frequency distribution is the normal or Gaussian 
distribution. 

f (x) = __ 1_ exp C -+ (x - f.l)i1 

y2rr a 2a J 
(76) 

which is found to describe most random or acci­
dental data errors. A spec ial usefulness of the 
normal distribution is also indicated by the math­
ematical theory as expressed in the central-limit 
theorem of statistics: 

L 
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" If a population has a finite variance a2 

and mean f.l, then the distribution of the 
sample mean approaches

2
the normal dis-

tribution with varianc e ~ and mean f.l as n 
the sample size n increases. " 

It is inte resting that, regardless of the form of 
the population distribution function, the sample 
mean will be approximately normally distributed 
for large samples. 

The parameters of the distribution, as pre­

viously indicated, are the varianc e a2 and the 
mean f.l. Sometimes, however, other parameters 
are employed: 

modulus of preciSion = h = ~ 
i2 

probable error = O. 6745a (normal distri­
bution only) 

In practice, since the actual parameters a and f.l 
of the theoretical population distribution are not 
known, they must be estimated from the avail­
able data. Statistical analysis shows that the 
maximum-likelihood estimates of these param­
et ers for the normal distribution, are 

M = ~! Xi = x 

i=l 

i=l 

2 
(x. - Xl 

1 

(77) 

(78) 

where n is the total number of data, x., in a 
sample. 1 

The significance of the distribution function 
is further indicated by noting that the area under 
the function contained between two arbitrary 
limits, Xl and x

2
' is the probability that a given 

observation will lie bet ween Xl and x
2

' i. e . , 

x 2 

= S f(x) dx 

1 e (79) 

Viewed from this aspect, the parameters of the 
normal distribution can be interpreted as follows: 

f.l = data value corresponding to the maxi­
mum value of the frequency distribution 

a = a span of x such that 68.26% of the area 
under the distribution curve is con­
tained between the limits /.i-a and f.l+a. 

f(x) 

= =----x 



I 
1 

Probability distributions for several variables 
(multivariate distributions) may be defined in a 
similar manner, i. e. , 

Y2 

S f (x, y) dy dx (80) 

where f (x, y) is called the joint density function 
for x and y. In particular , the bivariate normal 
distribution is 

f (x, y) = ____ 1 __ _ 

21Ta a -'17 x y l.L - P 

exp 

+ (Y :?) 'J1 
(81) 

which represents a bell-shaped surface over the 
x-y plane. The parameter p is called the cor­
relation between x and y . When the correlation 
is zero, f (x. y) becomes the product of two 
univariate distributions 

f(x.y) = gl (x)g2 (y) 

and the variates are said to be independently dis­
tributed. It is sometimes convenient to write 
Eq (81) in matrix notation: 

where 

la· ·1 1J 

1 exp 

21T ~ 

(82) 

= determinate of the makrix [aij] 

= the variance-co­
variance matrix 
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a 12 = a 21 = covariances 

a22 a 12 

[aij] laij I Fij] inverse of [aij] 

a21 a 11 -N laij 

The extension to the general multivariate dis­
tribution is obvious: 

k 

I 1)2 1 
\2iT fla .. 1 

1J 

exp 

- !-t.) (x. -!-tJ 
1 J JJ (83) 

Error analysis frequently requires consid­
eration not only of random errors in measure­
ments' but of errors in functions of the measure­
ments . That is, the quantity sought is some 
known function of several measured quantities. 
Of particular interest is the function consisting 
of a line ar combination of random variables. If 
xl' x 2 ' ... xk are independently and normally 

distributed random variables with means fJ. and 
. 2 d 'f var1ances a

i 
,an 1 

k 

u = I at Xi' (84) 

i=l 

where the a i are arbitrary constants, then u is 

normally distributed with mean 

and variance 

k 

a} = L 
i=l 

2 2 
a. a. 

1 1 

(85) 

(86) 

This case is of spec ial interest because, even 
if the function of interest, u, is nonlinear, the 
errors in u, 6u, can usually be accurately ap­
proximated by first -order differentials, i. e. , 

L'lu 

+ au L'I 
BXk xk 

which can then be treated as Eq (84). 



2. The Method of Least Squares 

The method of least squares is a method of 
finding the best possible values for a set of m 
unknowns, Xl ' x 2 ' . .• , xm ' satisfying n linear 

equations, where n > m. 

Since the number of equations exceeds the num­
ber of unknowns, and since the Yi may contain 

observation errors , the system of equations is 
not solvable exactly , i. e. , there is no set xl' 

x 2 ' ... xm for which each of the n equations is 

exactly satisfied. Each equation then has a 
residual of the form 

(i = 1, 2 , n) 

The least squares technique attempts to find 
values for xl' x 2 ' . . . xm which will make 

(87) 

6. 2 as small as possible . 
1 

This is the cri-

i=l 
terion for "best" solutions in the least squares 
method . If such a set of x. exists , it then sat-
isfies the cond ition 1 

:x1 I i=l 

a 
ax

2 

a 
ax 

n 

0. 2 = 0, 
1 

This differentiation results in the following 
equations 

i=l 

n 

I ail a i2 + 
i=l 

m 

I 
(continued) 
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n 

=L 
i=l 

i=l 

n 

+ xmL a i2 a im 
i =l 

a . a. 
1m 1m 

n 

I a i2 Yi ' " 
i=l 

(88) 

These equations comprise a system of m linear 
equations in the m unknowns Xl' x 2 ... xm ' which 

may be solved in a routine manne r, e. g., by 
Cramer IS rule. These equations are called the 
normal equations and are sometimes written in 
the following shorthand form: 

x 
m 

x
2 

+ . .. 

x
2 

+ .. . 

( 89) 

These equations apply in the case in which the 
equations of condition, Eq (87), are of equal 
weight, i. e . , all observations are assume.d to 
be made with the same precision. If this 1S not 
true, then each of the residuals ,'\ must be 

I 
__ J 



L 

assigned an estimated weight Pi' and each equation 

of condition multiplied b y the square root of its 
weight. Then the normal equations become 

+x a . - Yl')] 0 m 1m 

n 

I [Pi a i2 (xi ail + x 2 a i2 + ... 
i= 1 

n 

I 
i=l 

+x a. -Yl')] m 1m o 

+ x a . - y.)] = 0 
m 1m 1 

(90) 

The weights normally utilized in these equations 
are inversely proportional to the variances, i. e. , 

(91 ) 

where a. 2 is the variance corresponding to weight 
1 

p. and a2 is the variance corresponding to unity 
1 

weight. 

Use of the least squares method is not strictly 
limited to sets of linear equations . The method 
can be applied directly in the case of certa~n 
functions of an exponential type , but the usual 
procedure adopted in dealing with sets of non­
linear equations is to replace the functions by 
linear Taylor series approximations . Let the 
n observations a. be related to n nonlinear 

1 

functions of the unknowns to be determined , i. e. , 

i = 1, 2 , ... , n, n > m 

where the x. are the unknowns to be determined 
J 

and the 0i are the residuals , or errors in the 

observations. The desired solutions may be 
represented by sums of approximate solutions, 
{x 1)0' {x2)0' ... , {xm)O' and corrections to 

these approximate solutions , 
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Then expansion of the fi in Taylor series gives 

+ __ 1_ a f . I 

On setting 

a. - f. 
1 1 

2/ ax. 
J 0 

aX
2 o 

- a .. 
1J 

L X . 2 :::: 0 
J 

(92) 

Eq (92) corresponds to Eq (87), the linear equa­
tions of condition, and may therefore be solved 
for the "best" values of the x. in the manner out-

J 
lined previously. 

For the present purposes, it is convenient to 
formulate the weighted least squares estimate in 
matrix notation. Consider the equations of con­
dition, Eq (87) 

a .. x. 
IJ J 

the weighted least squares condition is that 

2 

be minimum. If the a i
2 do not vary significantly 

with xj' setting the m derivatives 

I (:J 2 o 

gives the following normal equations, 



L 

n 

L 
i= 1 

or 

1 
-2 
u. 

1 

k = 1, 2, , .. m 

In matrix notation , with 

- 2 
U1 0 0 

-2 0 U2 0 

[ v] ;: [ui -
2 

Oij] -

0 0 

the normal equations become 

n 

L 
i=1 

since 

n n 

[va] ik = L Vu aLk = L 
£=1 £=1 

-2 u3 

D 

-2 
u. 

1 

o 

o 

o 

x . = 0 
J 

x. = 0 
J 

where OJ £ is the Kronecker delta and is equal to 

1 (i = £) or 0 (i 1- £). Thus, [ va] ik = u
i

-
2 

a ik, 

But 

and 

, Jl ( ~1 [val \i aii) Xj 

(c ontinued) 
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m 

L 
j=l 

k ' 

Therefore, the normal equations may be written 

o 

k = 1, 2, , .. , m 

or 

Finally, the explicit solution for the m-vector of 
unknowns is 

or 

[ t ]-1 a va [a] t 

(93) 

where 

a = 

v 

n x m matrix of the a .. 
1J 

n x n diagonal matrix of the inverse 
variances 

y = n-vector of known data 

Several examples of the application of the method 
of least squares are given in the following sections 
for the cases of equiweighted data. 

a. Least squares fit of a straight line 

The sum of the squared residuals to be mini­
mized in fitting a straight line by the least squares 
technique is 

n 

L 
i=1 

n 

L 2 
(y i - 2 m xi y i - 2 ky i + 2 km xi 

i=1 

which is quadratic in k, i. e . , 

n 

L 
i=1 

__ 1 



where C contains all terms not involving k. 

or 

The minimum occurs for 

n 

oak L 
i=l 

2 nk + 2 

x. + nk 
1 

Similarly, the quadratic in m gives 

(94) 

(95) 

Example: Consider a plot of the inverse of the 
nondimensional acceleration ver sus time. Then 

I sp Xi = time points , Yi = ~ 
at 

From the raw data or specific impulse of an 
2 engine in the table, compute X, y, xy and X 

Raw Data for Specific Impulse of an Engine 

..1l ..:L ..EL 
2 x 

(120 sec) O. 1765 

0. 5 0.1 748 O. 0874 0.25 

1.0 O. 1731 O. 1731 I. 00 

1.5 O. 17 15 O. 25725 2. 25 

2.0 O. 1697 0 . 3394 4.00 

2. 5 O. 1680 0. 4200 6.25 

3. 0 O. 1663 O. 4989 9.00 

3.5 0.1 645 0. 57575 12.25 

4. 0 O. 1627 O. 6508 16 . 00 

4. 5 O. 1608 0. 7236 20.25 

5. 0 O. 1590 O. 7950 25 . 00 

5.5 O. 1571 O. 86405 30.25 

6. 0 O. 1553 0. 9318 36.00 

6.5 O. 1537 O. 99905 42. 25 

7.0 O. 1521 I. 0647 49 . 00 

7. 5 0.1504 I. 1280 56.25 

8 . 0 0. 1484 I. 1872 64.00 

8.5 O. 1463 l. 24355 72. 25 

9.0 O. 1444 I. 2996 8 1. 00 

9. 5 O. 1426 I. 3547 90. 25 

(130 sec ) 10.0 O. 1409 I. 4090 100. 00 

!: x = 105. 0 !:y= 3. 3381 !:xy= 
--- 2---

16. 00285 !: x : 717. 50 (120 to 130 sec ) 
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Then , from 

L:y = m L:x + n k 

2 
L:xy = m L:x + k L:x, 

{

3. 3381 = 105 m + 21 k 

16. 00285 = 717.5 m + 105 k 

Simultaneous solution of these equations gives 

m = - O. 003572207 

Isp = 279. 938 sec from 120 to 130 sec. 

b . Least squares fit of an ellipse 

A determination of the "best" elements of an 
ellipse from application of the least squares 
criterion to q sets of data (r, A , L, t), 

r radius vector 

A right ascension 

L = declination (geocentric latitude) 

t = time 

may be based upon q sets of equations of the form 

t = t + a - cos ---{f[ -1 (a -rk) 
k P ~ ea 

cos Ak cos Lk tan i sin n 

where 

- cos Lk sin Ak tan i cos n 

+ sin Lk = 0 

k = 1, 2 , ... , q, q> 3. 

(96) 

(97) 

Approximate values of the elements are assumed 
known. These rough values will be designated 
a O' eO' tpO' Then corrections oaO' oe O' otpo 

must be computed such that 

(t = time of perigee encounter ) 
p 

(98) 

are the elements that best satisfy Eq (96). Equa­
tion (96) can be written in residual form as fol ­
lows : 



Ok = tpo + otpo - tk + (aD + oaO) [~ (aD 

+ oao)] 1/2 [ cos -1 (aD + oao - r
k

) (ao eO 

This equation may be linearized in terms of the 
corrections by means of Taylor's expansion, 

where terms of order lo( )~2 and higher have 
been neglected. This approximation of the Taylor 
series terms involving higher powers of the cor­
rections will not affect the accuracy of the final 
solutions for which the corrections are very small, 
provided that further corrections of the form 
Eq (98) are applied, i. e. , that the solution is ob­
tained by a convergent iteration of the form 

(100) 

t = t + cSt 
Pn+1 Pn Pn 

Then the orbit elements which represent a least 
squares fit of the (rk , t k ) data can be determined 

q 

by stipulating that 2 Ok 2 be a minimum. Eval -

k=l 

uation of the partial derivatives of Eq (99) and 
substitution in Eq (1 00) yields the following final 
solutions fo,r the planar elements: 

a =a +1:. 
n+1 n d 

(1 01) 

q 
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where d 

'\ _ 2 
L """ k 
k 

'\ _ 2 

L "'"k 
k 

'\ _ 2 

L "'"k 
k 

k 
L 1lrk

2 

k 

q 

q 

(102) 

-2 
k 

=:k = -23 .r: (R - R ) _ ~ ~ra;;( rk)2 
,, ~ 1k 2k n 2k " Ii an 

In te rms of true anomaly instead of time, the 
solution is much simpler: 

J 



I 
I q 

1 - Pn- I L 9 k
3 

cos Ok 

I k-' 

(104) 

(105) 

where 

p = semilatus rectum of ellipse 

! 2 I8k
3 cos 8k 8k - Pn-1 

k=l k=l 

D= q i 8 k
4 L 3 cos 8k 

2 8k 8k Pn-1 cos 

k=l k=l 

1 
8k 8 1 + en _1 cos k 

This routine is suitable for computing ellipses\ 
parabolas or hyperbolas. There are no dis­
continuities since the denominator of 8 k becomes 

-1 
zero only for cos 8k = e' i. e., only for infinite 

orbital radius. 

The previous routines are concerned with the 
computation of the elements which describe 
satellite position in a plane. There remains the 
problem of solving for the elements which define 
the orientation of the orbital plane in space. The 
equation for the orbital plane in spherical 
coordinates in Eq (97). Then the q data points 
can be used to write q residual equatiogs. 

PI cos Lk cos Ak - P 2 cos Lk sin ~ 

The best values of the elements f2 and i are then 
determined as follows 

-1 = tan ( ;~) 
-1 ( P 1 ) = tan sin n 

(106) 

(107) 
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where 

p = 
1 

p = 
2 

I L cos '-'k sin L k cos Ak ~ 
k I 

I 
I 

L cos Lk sin L k sin Ak 
k 

'\ 2 2 L cos L k cos Ak 

k 

I 

I 
I­
I 
I 
I 
I 
I 

'\ 2 I 

- L cos Lk sin Ak cos Ak ! 
k I 

L cos
2 

Lk cos Ak sin Ak 

k 

'\ 2 .2
A L cos Lk sm k 

k 

'\ 2 2 L cos L k cos Ak 

k 

-L cos Lk sin Lk cos Ak 

k 

- L cos
2 

L k sin Ak cos Ak 

k 

I 

L 2 I 
cos L sin A cos A I 

k -K k I 

k 

L cos L k sin L k sin A k 

k 

L cos
2 '-'k cos A k sin "' 

k 

Equations (101) through (107) may be used to 
investigate the effects of number, accuracy and 
spread of data points on the accuracy of compu­
tation. 

These equations may be used to show the ef­
fects of spread of data over limited arcs of the 
orbit by letting sets of identical data be associated 
with various arc lengths. Errors due to limited 
sample size are to be precluded as far as possi­
ble; therefore, each set of data was selected to 
fit a normal distribution of zero mean and 1000-ft 
standard deviation in range and O. 005° in azimuth 
and elevation. The orbit selected for the first 
series of computations was the circular 6-hr orbit 

(r = 5.488164 x 107 ft). The results of the com­
putations are shown in Figs. 3, 4 and 5. Errors 
in computed eccentricity, semiparameter, incli­
nation and nodal longitude are plotted against the 
spread of equally spaced data points for sets of 
four, nine and twenty-five data. For data spread 
over arcs of 40° < are < 90°, the iteration con­
verged very slowly and for arcs less than 40° the 
solutions drifted. These figures provide a quali­
tative indication of the improvement of results 
with spread of data over wide arcs. 

As indicated in the statement of the central­
limit theorem in Section 0.1, the failure of a 
small sample of data to yield the mean of the 
true population gives rise to another type of error. 
The qualitative effect of this error may also be 
investigated with the previously derived solutions 
for least squares fit of an ellipse. Limited data 
samples of 6, 10, 20, 30 and 40 points were 
selected randomly from a normal population of 
CJ = 1000 ft. For the case of Fig. 6, the data were 
taken at equal intervals over two 15° arcs at 
opposite sides of a 6-hr circular orbit. In Fig. 7 

-.~ 



the results with a limited number of data are 
shown for data taken at equal intervals around two 
sample orbits, a circular 200-stat mi or 322-km 
orbit and an ellipse of e = 0.4 and p = 3.07425 

x 107 ft or O. 937031 x 104 km. The errors in 
computed eccentricity and semilatus rectum are 
shown as functions of the number of randomly 
selected data. 

3. Other Methods of Parameter Estimation 

Although the least squares method is most 
widely used, it is not the only technique available . 
Some other approaches are the minimum variance 
technique, the maximum likelihood estimate and 
the method of moments . 

a . Minimum variance 

The minimum variance estimate is that esti ­
mate which has a minimum variance-covariance 
matrix. When the errors are uncorrelated , i. e. , 
when the covariances are zero , the minimum 
variance and weighted least squares methods are 
identical. However , when the errors are corre ­
lated , the minimum variance approach may be 
superior because it includes the effects of the cor­
relations . That is , if one data type is highly cor­
related, the least squares technique may overly 
weight that data type . However, the least squares 
technique is generally used because the minimum 
variance computations are more complicated and 
require more detailed information about the co­
variances which is frequently not available. The 
improvement to be gained by use of the minimum 
variance technique is not of great significance. 

The basic equations of the minimum variance 
approach may be developed as follows . If xt is 

the true value of the unknown parameter x, and 
xe is its estimated value , 

Yi = a i xt + 0i (xt ) 

where Y i are the observed data and 0i (xt ) are the 

errors in the true unknowns, and 

n 

Xe I b i Yi' 
i= 1 

Therefore, 

n 

xe = 2: b i (ai x t + Iii) 
i= 1 

is a random variabl e s ince xe is a function of 0i' 

The variance of xe ' from Eq (86 ), is 

n 

I 
i=l 

where 

(Ji 
2 

= variance of 0i 
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if the iii ' S are uncorrelated. If correlation exists, 

n n 
2 I 2 2 )' b i b j Pij 

(l 08) (J b i (J i + x e -' 
i= 1 i , j= 1 

dj 

where 

Pij = covariance of 0i and oj' 

The first summation of Eq (108) comprises the 
diagonal terms of the variance -covariance matrix, 
and the second summation represents the off 
diagonal terms . The minimum variance tech­
nique, as the name implies, is based on a mini-

zation of (J 2, subject to the condition that the 
xe 

expected value of xe is xt . This minimization 

results in the following minimum variance esti­
mates . 

[ 
t -1 J -1 t -li t ~ xe f = a c a a c y 5 (109) 

where 

c = the nxn variance -covariance matrix 

This equation is completely analogous to that for 
the least squares estimate, Eq (93), and the two 
estimates are obviously identical for the case of 

zero correlation, c -1 = v. The variance of the 
estimates in matrix notation is 

2 [t -1 ] -1 (Jx = a ca. 
e 

(110) 

b . Maximum likelihood 

The maximum likelihood estimate is the esti ­
mate which maximizes the probability distribution 
of the data sample. If the errors are normally 
distributed , the maximum likelihood estimate re­
duces to that obtained by the minimum variance 
technique. 

c . Method of moments 

As an example of the method of moments , the 
problem of fitting a straight line, solved in Sec ­
tion D. 2. a by least squares , is presented. 

For a set of n values of (x. , y. ) the rth moment 
of y i s 1 1 

n 

~ I 
1 

where 

r is zero or a positive integer. 

Now obtain two equations in m and k by equating 
the zeroth and first moments of the observed y ' s 

--1 



to the zeroth and first moments, respectively, of 
the y's computed from an assumed y = mx + kline 
fit. All moments are taken about the origin of x. 
These two equations may then be solved for m and 
k. Let oY be observed y's and cY computed y 's. 

Then for observed y's the first moment is 

and zeroth moment is 

n 

~ L oYi . 
1 

Obtain computed y' s from y = mx. + k and get 
moments c 1 

n 
1 L xi (mxi + k) n 

1 

and 

n 
1 L mx. + k. 
n 1 

1 

Equating as previously indicated, 

n n 

~L 1 L (mx. + k) y. =-
1 n 1 

1 1 

Simplification of these equations gives 

x. + nk 
1 

n 

x i
2 

+ k L r i 
1 

(111) 

(112) 

These equations are the same as Eqs (94) and (95) 
in the least squares example. 

Solve these for m to get 

Example. 

I sp 
1 

m 

, xi = time points 

w~nl / . y i = g aT (correspondmg 
to x pomts). 

Thus 

I sp 

When n goes from 1, 2, n 

n 
'\ _ n (n + 1) 
L Xi - 2 
1 

n L xi 2 = n (n + 1~ (2n + 1) 

1 

F. ORBIT IMPROVEMENT 

It has been noted that the basic problem of 
orbit determination is solution for the six defining 
parameters of an orbit from a set of observations. 
Orbit improvement, as distinguished from pre­
liminary orbit determination, assumes that ap­
proximate parameters are already known and that 
these are to be improved in accuracy. The six 
parameters may be the classical orbit elements 
(a, e, i, w, n, t ), or the Cartesian position and 

p 
velocity components at a specified time, or any 
set of quantities which uniquely determine the 
orbit. Other quantities, in addition to the six 
orbit paramete rs, could be refined in the orbit 
imp'rovement process. For example, the accuracy 
of any geophysical constants which appear in the 
equations of motion (of which the six orbit param­
eters are constants of integration) may be im­
proved. Examples of these constants are drag 
coefficients, the various coefficients of the gravi­
tational potential function harmonics, inaccurately 
known locations of tracking stations, thrust cor­
rections' etc. The basic method of computing 
corrections to these constants and orbit parameters 
is known as the differential correction technique. 

1. Differential Correction Technique 

The equation of motion can be written, as indi­
ca ted in Cha pte r IV, as 

(113) 

where the F. are perturbative forces due, for ex-
1 

ample, to drag, oblateness, thrust, etc. If there 
were no errors in the observations or inaccuracies 
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in the physical constants of Eq (113), all data 
would be exact solutions to this equation. The 
six constants of integration (the orbit parameters ) 
involved in the solution of this equation could then 
be evaluated exactly. That is , if there existed an 
explicit solution for Eq (113), 

i = 1, 2 , ... , n 

where 

Yi = the observed data 

x. the unknown orbit parameters and physi-
J cal constants 

fi some nonlinear function, 

the m values of x. would be determined if at least 
J 

m values of data Yi were available . However, no 

obse rvation will be exactly correct , and so this 
equation becomes 

i = 1, . . . n , n> m 

where 0. is the error in the ith item of observed 
1 

information Yi ' Although the functional relation-

ship expressed in this equation is very compli­
cated, simple linear approximate functions of the 
corrections to the unknowns , box. , can be written 
from Taylor series 1 

af. 
fi (x Ol ' x 02 " .. , x Om) + axIl b.X l 

o 

af. I +_1 
aX2 o 

or 
m 

j = 1 

where x Ol ' x 02 ' ... , xOm are known approximate 

val ues of x. b.y. are the differences in observed 
J 1 

and computed or anticipated data and the corrected 
values of the param eters to be determined are 

This procedure is usefu l in the problem of orb it 
improvement, where a pproximate values of the 
parameters are assumed known from prel iminary 
determinations . Then, if an excess of data is 
taken, n > m, the "best" values for the corrections 
can then be determined by the method of least 
squares as outlined in Section E. 2 for 
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a .. 
1J 

af. 
1 

aXj 0 

The normal equations corresponding to E q (90) 
are 

n 

[ b.Yi 

m af. 
b.X j ] 

af. 

L 1 L 1 1 0 ai2 ax. aXk i = 1 j = 1 J 

j, k = 1, 2, ... , m (1 14) 

This process of correcting parameters which 
are known approximately, is referred to as 
differential corl?ection, and is not strictly limited 
to orbit improvement. In the case of launch of 
an artificial satellite, for example, the nominal 
trajectory parameters can be used as the initial 
approximate values to be refined . The only 
restriction is that the approximate values be 
sufficiently accurate to validate neglecting 
higher terms in the Taylor series (i. e . , assure 
convergence of the iteration). The results of 
Section E are applicable to this method of esti­
mation of orbit parameters. In particular, the 
matrix formul ation for the estimated values, 
from Eq (93), is 

[ t J-1 t ] ava [ a ] [ v 

where 

[ a ] = nxm matrix of the partial derivative 
coefficients 

[ v ] = nxn diagonal matrix of the inverse 
variances 

and the variances of the estimated values are , 
from Eq ( 108) or Eq ( 110) 

or 

n 

L b i
2 

i = 1 

2 
a· 

1 
(no correlation) 

(116 ) 

2. Determination of Partia l Derivatives 

In the matrix [ at~ J there are e lements of 
the form 

~ (aYi 
Lax. 
i = 1 J 

aYi \ 
ax ;) 

where Xj and xk are parameters at initial epoch. 

It is convenient, i n the calculation of partials 

of the form aaYi , 
x. 

to separate the partial into 
J 

components which may be determi ned i ndivid­
ually with greater ease. 



aYi aYi ax + 
aYi ay + 

aYi a4 
ax. ax aXj av aXj az- ax. 

J J 

aYi ax ay. aY aYi 2Z + + _1 + 
aX ax. 

aY 
aXj az 

ax . 
J J 

where (X, Y, Z) and ex, y, Z) are the current 
position and velocity components . The partials 
of the observed quantities, 

etc., are derivable in analytic form from the 
definitions of the Yi' The derivatives 

·ax ax 
axj ' aXj 

etc., are obtained by numerical integration. 
From the equation of motion, 

X = F, 

~ (:~) 
+ ~ ax + aFax + aF az 

ax 8Xj aY Oxj az' 8xj 

Equations of this type are doubly integrated 
numerically to give 

ax ay az 
Ox".'"" ~, --Xj Xj aX

j 

and differentiation of these partials yields 

ax air az 
ax. , ax.-' ax. . 

J J J 

3. Analytic Solutions for Partial Derivatives 

Corrections in a set of orbit e lements may be 
related analytically to corrections in the Cartesian 
coordinates. One convenient set of · orbit e lement 
corrections is dt , dt , d~ , dMO' da, de, where x y z 
the d~! s are rotations about the Cartesian axes , 

and 

dx = zd ~ - yd ~ Y z 

dy = x d~z - zd ~x 

dz = y d1Jr - xd ~ 
x Y 

dMO = correction in mean anomaly 

da = correction in semimajor axis 

de = correction in eccentricity 

(117) 

The differentials dMO' da, de are obtained from 

the equations of Keplerian motion. If p and q 
are unit vectors along the Xw and y waxes (the 

orbit plane coordinates defined in Section B. ) 

a (cos E - e) P + aC? sin E q (118) 

~( cos E - e) da + a (-sin E dE - de)] p 
+ l~ (sin E ria + a cos E dE) 

- . edeJ 1\ (119) a sm ~I 2 q ,1 -e 

The nomenclature is that of Chapter III. 

But, from Kepler!s equation, 

E - e sin E = Mo + !i;/2 (t - to)' 
a 

dE = 
a 
r 

3 
-2-

[sin E de + dM
O 

~/2 (t - to) ~a ] 

(120) 

Substitution of this equation in Eq (119) and noting 
that 

sin E = -

v 

gives 

dx 
w 

1 
r 

X r 
w 

[- a sin E p + a 

[Xw + m x: ] 
[a -~ 

da 
a 

~COSEqJ 
(121) 

dy = [Y 
w w 

+ m Y w 1 da - [~2 -~ sin EJ de 
nJa 1-e n 

(122) 

where 

(123 ) 

(124) 
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It is desirable to write the eccentricity sensiti­
vities in the form 

ox 
Be Hx+Kx, x -+ y, z. 

Solving the simultaneous equations 

gives 

Ox 
w 

"""Be Hx + Kx 
w 

ay ax 
x w _ y w 

K_wtre w~ 
- x y -y x • 

w w w w 

ax ay 
Substituting for Be wand ae w from Eq (122) and for 

x , y , x ,y from Eqs (118) and (1 21) gIves 
w w w w 

1 
H = -~ (cos E + e) 

1 - e 
(125) 

1 sin E 2 } 
K = n ::-----2 (2 - e - e cos E . 

1 - e 
(126 ) 

Then the final form of the differential correction 
equation is 

x X Xj n Hx+Knx+m -

~ HY+K~y+m ~z: 
Z Hz+K~ z+m­
n n n 

dljJx 

dljJy 

dljJz 

dMO 
de 

da 
a 

( 127) 

w here m, n, Hand K are given b y Eqs (1 23) 
through (126). This equation is due to Eckert 
and Brouwer, Ref (5). In vector notation, 

d; = (d;j7 x ;)+ ~ dM O + (H; + K ~ ) de 

~ v da 
+ (r + m n ) a' (128) 

Eq (127) can be transformed to the satellite oriented 
system (X • Y , Z ) by s s s 

dx = dr .-r 
s 

dys = dr 

dz = dr s 

. ~ 
/'\ . m. 
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Evaluation for e ach term of Eq (128) proceeds as 
follows . 

~ ... 
(dljJ x r) 1-

.. II 
dljJ' (r x r) = 0 

(dljJ x r) 
~ 

• it ~ • (r x ti) = dljJ . r ~ rdtjJm 

(dtjJ x r) 
1\ ... /\ ~ 

m = dtjJ · (r x m) = dljJ' (-rii) 

If d,i . % d·l • 'P + dljJ /\. + dljJ ~, 't' 't'p q q S 

(dtjJ x r ) • B = r dtjJ s 

- - /\ A A 
(dljJ x r) • m = - r dljJ p . n - dljJ r q. n 

p q 

"dljJ b sin E - dljJ a (cos E - e) 
p q 

Also 

V 2 
v A r a e sin E n r 

n r 

1 il-l p = 
2 

~1 2 v I' a n - e n n r r 

v A 0 n m= 

2 
" rH+K a e sin E . r 

r 

2 
~1 - e

2 1\ K~ n 
r 

(Hr + K.:!.) n 

A 0 m 

2 
~ = r + m ~ e sin E 

r 

2 
- V t\ a 
(r + m~) • n = m --r-

(r + m :!.-) . {rt,. O. 
n 

Then Eq (127) can be wr itten 

[

0:0 :o:B:rH+ KB:r+ mBl d"p 
I ' I I I 

0:0 : r:C:KC :mC d"q 
• • I I • 

b6inE: _ a (cos E - el: 0:0:0 : ° d"s 

dMO 

de 

~ 
a 

(129) 

where 
2 

B= 
a e sin E 
r 

2 p C = 
a 
r 



and H, K, and m are defined by Eqs (124) through 
(126). The transformations from the rotational 
element corrections (the dtjJ IS) to the classical 
element corrections proceed from a consideration 
of the accompanying sketch. From a projection 
of all vectors on the nodal line, 

di = dtjJ cos w - dljJ sin w • 
p q 

k 

em 

di 

dljJ 
q 

From a projection of all vectors on the line 
perpendicular to the nodal line in the orbit 
plane, 

do sin i = dtjJ cos w + dtjJ sin w • 
q p 

(130) 

(131 ) 

From a projection of all vectors on the normal 
to the orbit plane, 

dw + dO cos i = dtjJs· (132) 

Eq (129) can be transformed to topocentric 
coordinates by means of the transformations of 
Section B. 2. 

"T T T T -0 -0 -i -( r,) + e) 
(133) 

where T -0 symbolizes the transformation from Eel 

to topocentric coordinates. 

The final step in formulating the differential 
correction equations is the transformation to 
the differentials in the data. For example, from 
Eqs (42 or (45), 

[::] " 
Tl I~o( (134) 

or 

[00':: d~ " 
T ~d;O~ r 

(135) 

If Doppler d a ta a re availa ble, the E c kert 
Brouw er equations must be modified, as indicat­
ed in Ref. (6). 
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The orbit velocity is 

v = 1-; cos E {if. (-sm E p +~cos EJ~I>. 

Since 

dE= ~ [sinEde+dMo 

dv 

+ 

+ 

v;- ( ) da J ~/ 2 t - to -a - , 
a 

1\ [( X w p --2a 

~ a 3/2 -r 
r 

mx 

Xw dMO 

fJ.l-
a

3
/

2 
sin E {cos E ~ 

r 

a 
(cosE-e)} de] r 

w 

" [(-~ fJ.l-; my) q -3 . 2a 
r 

~ a 3/2 yw d MO 
r 

w 

fp: (a~ 0sin
2 

E 
r 

da 

da 

a .~ 2 E + e cos E)d J - -r-l'.l - e cos _r--2 e 

l'1 - e 

Then, after a procedure similar to the derivation 
of ldrs~' the result, analogous to Eq (12 9 ) i s 

obtained. For example, 

t;; 
r 

r;;-
-:r 

r 

3/2 ~ . 
a r 

a 3/ 2 
r 

" r = 

'" n 

/\ 
m 

a 
r 

~* (-H2 

0 

o 

A 
r -= 

V 
! ' 

-2'a 

(; sin E + m ;) 

_J 



(- - ~; m ;) -1/2 ~~!J. (1 - ell) v 
£ 2a ----..r r a 

I 

t v 
2ii.""""" 

Finally, 

0 

Jd ~f = 
0 

Y1 

where 

a '" 5 

r 

- ~ m;) • ~ = 

0 

0 

Y2 

a 
r 

a
3 

/3
3 

0 

a 4 
a

5 

0 /3
5 

0 0 

0 

a
6 

dlji 
p 

/3 6 
dlji 

q 

0 
edljis 

dMO + dljis 

de 

da 
a 

(1 36 ) 

- e 
2 ) 

a 
r 

( e et.) \Z- sin E + m -r 

/3 5 

/36 

Yl 

Y2 

a 
r 

a 
r 

cos E 

-1/2 ~ 
r 

sin E 

(Y; 
p 

r !J. ~ - e"'l) 

",f!J. a PCOSE 
r 

,r;;-
sin E 

r 

The velocity of interest is not the total velocity 
but the component of relative velocity along the 

line of sight. If R is the position vector of the 
observer in geocentric equatorial inertial 
coordinates (x, y, z) and p is the position vector 
of the satellite in topocentric coordinates, 

r = R + P 

L 
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z Satellite 

~--------------y 

x 

Differentiating, 

v = 

where 
dp 
dt 

dR 
'""(it 

is the velocity of the satellite 

relative to the observer and n is the angular e 
velocity of the earth's rotation, or 

d p 
CiT v - l'l e x r 

The Doppler shift being measured is 

dp = "p dp = pl\. (:;; _ ) crt . d t l'le x r 

where P' is the unit vector along the line of sight. 
Then, considering variations due to changes in 
the orbit elements only, 

6 ~~ r) = 
/\ ~ ~ 

p. ( 6 v - l'l e x 6 r) 

+ ( v - l'le x r) • a [;; Ii ] 
Since a R = 0 (i. e., the observer's position 
is not a function of the orbit elements) and 
aP = a r. t, 

6 (~f 1 {av} - {a;}. ~ x " p • 

~ ~ ] 

where 6 v and 6;, as preTiously given, are the 
differential correction expressions involving the 
corrections in the elements . 



G. ACCURACY OF DETERMlliATIONS 

1. Sources of Error 

The accuracy of an orbit determination de­
pends on not only the precision of the measure­
ments but on knowledge of the errors and how 
the errors can be eliminated. Errors are broadly 
divided into two classes : systematic and random. 
Random errors can be minimized if the statistical 
properties of the noise spectrum are known; sys­
tematic errors, if known, can be removed by 
various techniques such as calibrations against 
known standards. 

Systematic errors. Systematic errors are 
errors whlCh occur in the measurements (sensors), 
the station location (geodetic), and the description 
of the orbit (simulation). Equipment sensor 
biases may be due to refraction effects in the 
measurement of angles, mechanical misalign-
ment of the electrical axis with the geometrical 
axis of a parabolic reflector antenna (bore sighting) , 
drift of d-c reference voltages, surveying errors 
of true north or of the local horizon plane in the 
measurement of azimuth and elevation, error in 
the adopted value for the velocity of light, back­
lash in the servo gears which move the antenna, 
and sag in the antenna at different attitudes. 

Range measurements, assuming a monopulse 
radar, can have systematic delays in propagation, 
false signals due to reflections, timing errors 
and gating errors. Some of these errors are re­
moved by using a beacon on board the satellite 
which changes the frequency of the return with 
a known delay. 

Range rate errors, using a doppler technique, 
can acquire systematic errors due to variabl e 
ion densities which change the frequency of the 
carrier to give spurious doppler effects. If a 
transponder is used on board, there could be 
small systematic retransmission errors. If the 
station location is not well known, there will be 
systematic errors for example due to errors in 
the calculated velocity of the station about the 
earth I saxis. 

Other geodetic uncertainties, such as in the 
figure of the earth, gravity anomalies, and 
representation of the potential function may con­
tribute to Significant errors in orbit determination. 
The degree of completeness of the simulation 
model, for example the inclusion of nongravitational 
losses (radiation pressure, atmospheric drag 
fluctuations, etc.) and perturbations due to, say, 
other planets or other bodies, will contribute to 
errors. 

Noise. Some of the sources of noise which 
degrade observational data are atmospheric, 
cosmic, man-made, and thermal. Atmospheric 
noise is due mostly to electrical storms and 
varies widely throughout the year. Cosmic noise 
comes from the center of the galactic plane , the 
sun, and from a certain number of "radio" stars 
such as Cassiopeia. 

Man-made noise comes primarily from ex­
traneous electromagnetic radiation generated by 
electrical devices. 
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Much of the above noise can be minimized 
by modulation techniques which translate the in­
formation band to carrier frequencies that lie 
outside the noise bandwidths. 

On the other hand, thermal noise covers a very 
wide bandwidth of frequencies and can be mini­
mized by using specialized techniques such as 
phase-locked loops and cold-temperature re­
ceivers . 

One obvious method of minimizing all noise 
is to increase the signal power. This can be 
accomplished by putting a transmitter on board 
the satellite thus eliminating the need for skin 
tracking. 

The best set of carrier frequencies to use to 
minimize cosmic noise lies in the band between 
1000 mc and 10, 000 mc. Man-made and atmos­
pheric noise are also extremely low in this band. 

Thermal noise power at the receiver of a 
tracking antenna is caused by thermal agitation 
of electrons in the resistances in the input net­
work , Thermal noise received power can be 
expressed by 

P N = k . T . 6. f . NF 

where 

P
N 

= Available noise power at the receiver 
(watts) 

k = Boltzmann's constant = 1. 38 x 10-
32 

w-sec/o K 

T = Effective input temperature (not neces­
sarily the physical ambient te mperature) 
(OK) 

6.f = Effective input noise bandwidth (cps) 

NF = Noise figure of input circuit (up to the 
demodulator) . 

Reducing T, 6.f, or NF will reduce the noise 
power. Temperature T can be reduced by bathing 
the receiver in a cold environ'ment, using re­
ceivers whose effective temperature is low (such 
as reactive amplifiers and masers), and by 
"looking" only at cold space. Noise bandwidth can 
be reduced by using narrowband filtering but this 
also limits the signal bandwidth. 

As long as the signal is above a certain thresh­
old, modulatiop techniques such as frequency 
modulation and pulse code modulation can be 
utilized which very effectively suppress the noise. 
The improvement of signal to noise ratio is ff 
by using an f-m system instead of an a-m system 
with identical input bandwidth (for random noise), 

Another method of suppressing noise is to use 
a phase-locked loop in which a ground transmitter 
transmits to the satellite transponder which trans­
mits back down to a ground receiver . The ground 
receiver is kept locked in phase to a multiple of 
the transmitter frequency by a voItage-controlled­
oscillator which beats against the received fre­
quency and whose frequency is controlled by an 



error voltage from a phase detector. The voltage 
controlled oscillator "follows" the received fre­
quency but with just enough lag to allow a very 
narrow band of frequencies to filter through the 
loop. This narrow band is used as the information 
b.and;. and th.e information can be picked off by 
flltenng. Smce the bandwidth is so narrow the 
noise content is very small. 

2. Examples of Probable Errors 

Examples of the probable errors of orbit 
determinations based on measured standard de­
viations of radar stations versus various param­
eters follow (see Ref. 7) . 

Description: The sets of curves are plots of the 
la errors of the classical elements 
versus radar errors. Notice that 
the correlations between orbital 
parameters have not been plotted. 

Altitude 

370 km 

Observations 

Angles and range rate (range rate 
held fixed) 

650 km 

930km 

3700 km 

Angles and range (range held fixed) 

Angles and range (angles held fixed) 

Same 

Same 

Same 

Briefly, the studies produced outputs which 
were the standard deviations ( 1 sigma) of the 
geocentric spherical coordinates (r A D v 
v, Tj), orbit elements (a, e, i, £2, w,' M)' a~d ' 
periods (T) of various orbits of earth s~tellites . 

Key to Symbols: 

Lv A v = latitude, longitude re spectively of vehicle 
being tracked 

Ls As = latitude, longitude respective ly of sta­
tion(s) tracking vehicle 

A 

D 

v 

r 

v 

a 

= right ascension of vehicle 

= declination of vehicle 

= velocity angle with the lo.cal geocentric 
vertical 

= velocity angle with north on the local 
horizontal plane 

= geocentric distance 

= inertial velocity 

= semimajor axis of ellipse of vehicle orbit 

e = ecc entricity axis of ellipse of vehicle orbit 

w 

M 

T 

a. 
J 

= inclination of orbit plane with the equa­
torial plane 

= location of node of ellipse with respect 
to vernal equinox 7' 

= argument of perigee of ellipse 

= mean anomaly 

= period of orbit 

= standard deviation of any quantity j (a = a ) 
Cl E 
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h 

= number of observations 

= distance (in degrees ) of earth track of 
vehicle at closest approach to tracking 
station 

= altitude from surface of EB 

The spherical coordinates, orbital elements 
and periods were calculated by the computer 
program.and were based on least square fits of 
observatIons. The observations were generated 
from trajectory tapes with noise added. 

The inputs to the curve fitting program were 
observations (range, range rate, azimuth and 
elevation) of a "satellite" by a tracking station (s) 
versus time, the station location(s), assumed 
stan dard deviations of the observational data, the 
nominal orbit of the satellite, and the data rate of 
the station(s). 

To obtain the tables and graphs inc luded in 
this section, many of the input variables were 
varied to obtain various outputs. 

Quantities varied were : observational sigmas, 
station locations, orbit parameters, number of 
iterations, earth tracks of satellites and data 
rates. The earth track (designated EEl track) of 
a satellite is the projection of the orbit upon the 
surface of the earth; the earth track was speci­
fied by the number of great circle degrees away 
from the tracking station at closest approach. 

Thus graphs were obtained which were plots 
of a L , a , a · p p 

a e, a p' a p' EB track, h, T, A, L 

ae , a p' a p' EEl track, h, T, A, L 

Only graphs showing the spherical and orbital 
errors versus a and a are given in this section· e p , 
these result in 36 graphs. 

Other pertinent points: 

(1) All observations were some combina­
tion of range, range rate, azimuth and 
elevation. 

(2) All output sigmas are normalized to 16 

observations by multiplying by {Nj4 
where N is the number of observations 
in a given pass of data . 

(3) Azimuth and elevation sigmas are al­
ways assumed equal and are usually 
plotted as a. (a = a ) 

E a E 

(4) For comparison, most runs used only 
one iteration. 

- - -------------------



(5) Asymptotes are drawn on the graphs as 
straight lines. 

Most of the graphs tend to show din;:tinishing 
returns in accuracy of orbit determina tion in at­
tempting to improve the angular accuracy better 
than O. 5° (if the sigma of range rate is held fixed 
at 1 fps (0.3 mps ) and no range observations are 
taken). 

Using only range and range rate observations, 
the same accuracie s in orbit determination as 
above i. e . , (ue = 0.5° , up = 1 fps 0.3 mps) can 

be obtained if the deviations are 600 ft (183 m ) in 
range and 1 fps in range rate. 

Hence a "balanced " tracking system coul d be 
defined as one whose measurement standard de­
viations are as follows: 

u · 1 fps 0.3 mps (ra nge rate observation 
P error) 

U 
E 

600 ft 183 m (range observation error ) 

0.5° (azimuth and elevation angular 
observation errors) 

The word "balanced" used here is not to be 
used in the sense of optimum but rather in the 
sense that improving the accuracy of one (only ) 
type of measurement does not produce a propor­
tionate increase in the orbit determination (as­
suming a balanced system). 

3. Graphical Display of Observation Error s 

Three basic sets of information are presented 
for the mission analyst : (1) angular observation 
errors for an assumed standard deviation of 1 fps 
(0.3 mps) in range rate measurement up (2) angular 

observation errors for an assumed standard devia­
tion of 600 ft (183 m) inrange measurement 0'. , and 

P 

(3) range observation errors for an a s sumed 
standard deviation of 0.05° in azimut h and ele­
vation angle measurement O'E' For each set are 

shown the six spherical coordinates (u : A, D, r , II, 
7], v ) and the six orbital elements (u: a, e, i, n, W, 

M ) for orbits of four different altitudes (approxi­
mately 370, 650, 930 and 3700 km), 

(1) 

(2) 

( 3) 

Figures 8 thr ough 19 (Set 1). These 
figures show the standard deviations of 
the six geocentric spherical coordmates 
and the standard deviations of the SIX 
orbital elements as a function of the 
angular observation error for four alti-
tudes, where 0" = 1 fps (0.3 mps ). 

P 

Figures 20 through 31 (Set 2), These 
hgures show the same vanables where 
0' = 600 ft (1 80 m) . 

P 

Figures 32 through 43 (Set 3), These 
fIgures show the standard devIations of 
the six spherical coordinates and the 
six orbital e l ements as a function of the 
range observation error for four alti­
tudes, where u

E 
= 0.05°. 

The initia l conditions for both the angular and 
range observation error computations a re giv en 
in Table 5 as a function only of orbItal altItude. 

The asymptotic values of the standard devia­
tions of the six spherical coordinates and six or­
bital e l ements for Sets 1, 2 and 3 are given in 
Table 6 . These are the limiting values in each 
dependent variable as the independent variable 
becomes very large. Because the data rate is 
the saTIle for each orbital altitude, 18 observa­
tions are contained in the r esults for the 365-km 
orbit, 27 for the 645 - km orbit, 33 for the 922-km 
orbit and 91 for the 3710-km orbit . 

TABLE 5 

Initial Conditions for A ngular and Range Observations 
(see Figures 8 to 43 ) 

Altitude (krn) 

3.5 645 922 3710 

O· O· O· O· 

60· N 60· N .0" N .0" N 

o· 0" O· O· 

3530 E 3530 E 353 0 E 3560 E 

202.7· 202 . 7° 202.7· 202 . 7· 

O· O· o· o· 

90' 90' 90' '0" 

o· o· o· O· 

6.745 x 106 m 7.01 x 106 m 7.300 x 106 m 10 7 m 

7688 tn/sec 7534 tn/sec 7389 tn/sec 6286 tn/sec 

6.742 x 106 m 7.0J x 106 m 7.300xlO6 m 107 m 

0.00069 0.00009 0.0009 0,00012 

90' 90' 90' 90' 

n 202 . 7· 202.7· 202.7· 202.7· 

-213.2· -180· -180· _180· 

M 4.13 3. 14 3,14 3.14 

91. 86 min 97 . 6 min 103.4 min 168.07 min 

N 18 27 33 91 

3.4° E 3' E 3' E 10· W 
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TABLE 6 

Asymptotes of Dependent Variable, Figures 8 to 43 

Set of 1 as a -+ 00 (a· = 1 fps ) (0 . 3 mps ) 
• p 

365 645 922 3710 
(height in km) (height in km) (height in km) (height in km) 

a
A 

(deg) 0.033 0. 040 0.015 0.040 

aD (deg) 0.041 0. 038 0.017 0. 0036 
a (deg) 0.018 

v 
0.018 0.008 0. 0012 

a (deg) 0.018 
T) 

0.022 0.009 0. 023 

a
r 

(km) 3.688 3.658 1. 768 3.048 
a (m/ sec) v 0.43 4.27 2.0 0.30 

aa (m) 96.0 122 65.8 131 
- 7 -7 -7 0 . 870 x 10- 7 a 0.625x10 0.063x10 0. 030x10 e 

a i (deg) 0.018 0.021 0. 009 0.023 

an (deg) 0 . 032 0.04 0.015 0.041 
a

w 
(deg) 2. 6 26.0 12.4 2. 1 

aM (deg) 2.6 26.0 12.4 2. 1 

Set 2 as a -+ 00 (a = 180 m) • p 

a
A 

(deg) 0.040 0.031 0.026 0.019 

aD (deg) 0.038 0 . 021 0.016 0.005 
a

v 
(deg) 0.018 0. 010 0.007 0.0015 

a (deg) 
T) 

0. 022 0.016 0.014 0.002 
a

r 
(km) 3.658 2.377 1. 615 4.88 

a (m/ sec) v 4.27 2.0 1.6 0. 30 
a (m) 122 99. 1 94.5 110 a - 7 -7 - 7 0.55 x 10-7 a 6. 7 x 10 6.3 x 10 7.6 x 10 e 
a i (de g) 0.021 0. 017 0. 014 0.019 

an(deg) 0. 037 0.031 0. 026 0. 019 
a

w 
(deg) 25.5 14.0 21. 0 2. 2 

aM (deg) 25. 6 14.0 21. 0 2.2 

Set 3 as a -+ 00 (a. = 0. 05 deg) • 
a

A 
(deg) 0 . 015 0.014 0.014 0. 013 

aD (deg) 0.017 0.017 0 . 018 0.022 
a

v 
(deg) 0.0085 0.0083 0.0090 0.0085 

a (deg) 
T) 

0.0087 0.0082 0.0082 0.0077 

a
r 

(km) 1. 768 1. 798 1. 890 2. 012 

a y (m/sec) 2. 01 1. 92 1. 89 1. 83 
a (m) 70.4 79.2 88.4 131 a - 7 -7 - 7 2. 9x10- 7 ae 3.0 x 10 5.3 x 10 9.0 x 10 

a i (de g) 0 . 009 0.008 0.006 0.008 

an(deg) 0.015 0.014 0.018 0.013 

a
w 

(deg) 12.2 13 . 0 25.7 12.0 

aM (deg) 12.2 13.0 25.7 12 . 0 
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XII. GUIDANCE AND CONTROL 

SYMBOLS 

a Semimajor axis 

e Orbit eccentricity 

E Eccentric anomaly 

g Acceleration due to gravity 

i Orbit inclination 

L Geocentric latitude 

M Mean anomaly 

r Orbit radius 

R Radius of the earth 

Time 

Time of perigee passage 

v Magnitude of vehicle vel ocity 

a Azimuth of velocity vector relative to 
nominal 

f3 

y 

Azimuth of the orbit path rel ative to the 
north point on the horizon 

Flight path a ngle rel a tive to loca l 
horizontal 

8 True anomaly 

XII - l 

v 

p 

2 
u 

Gravitational constant of the earth; also, 
mean value in statistical discussions 

Angle from the ascending node to the 
projection of the radius to the vehicle 
on the equatorial plane 

Range; also, correlation 

Variance 

,- Orbit period 

w 

Earth central angle in the orbit plane 
from ascending node to the vehicle 
position 

Earth central angle normal to the orbit 
plan e 

Argument of perigee 

Longitude or right ascension of the 
ascending node . 

Subscripts 

a Apogee value 

p Perigee value 
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A. INTRODUCTION 

The purpose of this chapter is threefold. 

(1) Develop the gUidance and control re­
quirements as functions of the tolerances 
imposed on the trajectory. 

(2) Introduce the subject of satellite guid­
ance with a discussion of guidance tech­
niques. 

(3) Introduce the subject of attitude control. 

The first item can generally be discussed by de­
veloping an error analysiS relating the errors in 
a specified set of orbit parameters, or, analogously, 
in position and velocity at a specified time, to 
errors occurring at injection and then by relating 
errors at injection to errors in the powered ascent 
phase. The first analysiS is presented in Section 
B of this chapter (powered ascent trajectories are 
not covered in this manual) in a general form ob­
tained without sacrifice or assumption. The re­
maining discussions will be of a more qualitative 
nature. The difference in emphasiS is due to the 
fact that the field of guidance and control involves 
studies both of techniques and hardware to imple­
ment the desired changes; however, discussions 
of hardware have been omitted from this text due 
to its constantly changing nature. These dis­
cussions are presented in Sections C and D. 

B. GWDANCE AND CONTROL 
REQWREMENTS 

Since the goal of a guidance and control system 
is generally to bring the vehicle to a certain 
position with a certain velocity, the first step in 
design of such a system is generally ascertaining 
the accuracy in this position and velocity required 
by the mission. The mission requirements are 
usually expressed in terms of allowable tolerances 
in orbit elements or required position and velocity 
accuracies at some terminal point in the trajectory. 
Therefore, the designer must be able to relate 
these mission tolerances to tolerances in the 
final position and velocity of the trajectory phase 
in which the guidance system is operational. 
Relations between these tolerances are derived 
in this section. Errors in elliptic orbits are 
considered in Subsection 1, and errors in 
powered flight trajectories are co nsidered in 
Subsection 2. 

1. Error Analysis of Elliptic Orbits 

An elliptic orbit can be completely specified 
by assigning six independent parameters . Of 
particular interest are the classical elements 
(semimajor axis (a ), eccentricity (e), argument 
of perigee (w), time of perigee (t ), inclination of 

p 
the orbit plane to the equatorial plane (i) and the 
celestial longitude or right ascension of the 
ascending node (Q) and the polar position and 
velocity components (radial distance of the vehicle 
from the center of the earth (r ), central angle in 
the orbit plane from ascending node to vehicle 
position (<\>), position angle normal to the orbit 
plane (l\! = 0 nominally), vehicle velocity magnitude 
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(v), flight path angle in the vertical plane relative 
to local horizontal {y} and flight path angle in the 
horizontal plane (azimuth angle ) with respect to 
north ({JJ) . Differentiation of the equations re ­
lating these two systems provides a set of error 
formulas which serves as a basis for specification 
of guidance system requirements. 

a . General differential analysis 

Since the equations relating the planar 
parameters (a , e, w, tp and r , <\>' v, y) are not 

coupled with the equations relating the parameters 
defining planar orientation, the derivation can be 
conveniently considered in two parts. 

(I) Planar parameters 

Generation of the four error equations 

da f1 (dr, d<\>, dv, dy) 

de f2 (dr, d<\> , dv, dy) 

dw f3 (dr, dq" dv, dy) 

dt f4 (dr, dq" dv, dy) p 

must be based upon four independent relations 
between the variables (a, e, w , tp ) and 
(r, <\>, v , y): 

where 

2 
v J,t (~ -}) 

2 2 2 2 
r v cos y = J,ta (1 - e ) 

r = 1 + e cos ( q, - w ) 

tp - t = - / ~3 (E - e sin E ) 

(1) 

(2) 

(3) 

(4) 

These equations are, respectively, the energy 
equation , the law of areas (Kepler's second law), 
the equation of conic form (Kepler 'S first law) and 
Kepler's equation. The establishment of these 
laws is considered in Chapter III. Taking dif ­
ferentials of Eq ('1) gives the required linear 
error formula for the semimajor axis . 

da 
2 

a = 2 -"'2' 
r 

2 
dr + 2a v 

J,t 
dv (5) 

This equation is most conveniently expressed in 
normalized form with coefficients written in 
terms of only one variable, either r or 8 = <\> - w • 
From Eqs (1) and (3) 

I 

I 
I 

~ 



da 

or 

da 
a 

2 
= 2 

a 
dr 2 

r 

+ 2a2 I~ (~ - ~) dv 

2 (1 + e cos 6)2 

(1 _ e 2)2 
dr 

+ 2 (fa J 1 + 2e cos 6 + e
2 

a 2 
/.l 1 - e 

2 (~) d: + 2 (2 ~ - 1) 
dv 
v 

2 1 + e cos 6 dr 
2 r 1 - e 

(6) 

dv (7) 

(8) 

+ 2 (2 1 + e cos 6 _ ~ dv • (9) 
1 _ e 2 v 

(Also, since the orbit per iod T = 2 TT / ~ , 

dT = ~ da = 3 ~ dr + 3 (2 ~ _ 1) dV .) Dif -
T ",a rr r v 

ferentials of eccentricity may be determined 
from Eq (2). 

de 
2 2 

v cos Y (a _ r) dr 
Ilea 

2 
+ 2rv cos Y (a -r) dv 

Il ea 

2 2 . 
+ r v sm y cos Y dY 

Ilea 
(10) 

Substitution of Eqs (1), (2) and (3) and simpli­
fication gives 

de 

2 
+ 2 ~ (a - r) dv 

er 

±} J(l- e2
) [(~ - 1)2 - e

2
JdY (11) 

(e + cos e) (1 + e cos e) dr 

a (1 - e 2) 

2 1/2 
+ 2 (e + cos 6)[ a (1 - e) ) dv 

/.l (1 + 2 e cos e + e J 
sin 6 

dY (12) 1 + e cos e 
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or, in normalized form, 

1 - e
2 

d 1 2 ( 
de e (~ - 1) : + 2 -T- ~ -1) d: 

1 I 2 r,r 2 2J ± e (1 - e ) L(a- - 1) - e dY 

(e + cos 6 ) dr + 2 (e + cos 6) dv r v 

2 sin a 
+ (1 - e ) 1 + e cos e d Y 

From Eq (3), 

2 
cos (<\> _ w ) = a (1 - e ) - r 

er 

(1 3) 

(14) 

differentials of the argument of perigee may be 
written. 

_ sin (<\> - w) (d<\> - dw ) = 1 + e cos 8 da 
e a 

_ ( cos 6 + 2 1 + e cos e) de 
e 1 _ e 2 

1 + e cos 6 dr 
e r 

Substitution for da and de from Eqs (5 ) through 
(1 4) gives dw • 

1 
)1 

-[a (Ie ; e
2

) - r J 2 dr 
dw ± e r 

± ~ /1 _ [a (1 
_ e 2) - r J2 dv 

e er v 

1 
[1+ e

2 
- ~J dy + d<\> 2 

e 
(1 5) 

dw sin 6 dr + 2 sin 6 dv - -- -e r e v 

2 2e + (1 + e ) cos 6 
e (1 + e cos e) + d<\> (16) 

The linear error relation for the final planar 
e l ement, tp ' is obtained from Eq (4). 

d (t - t ) 3 da sin E p -
t - t - 2" a - E - e sin E 
p 

+ 1 - e cos E 
E e sin E dE 

de 

(17) 



L 

where 

dE = _ 1 1£ da _ (1 _ £) de _ drl. 
e sm E La a a e aj 

(1 8) 

Substituting for da and de from Eqs (8) and (13) 
or (9) and (1 4), and substituting Eq (18) in Eq (17) 
gives the required relation 

d (t - t) 
p 

t - t 
P 

2
3

/2 [ l 
+ k (1 - : 2) 1 - ~ (6)J dy 

(Hl) 

_ {3 (1 + e cos 8) 1 W [-2 - 'l 1 _ e 2 + M e sin e 

1 - e
2 J} dr 

+ (e + cos e) cos e + 1 + e cos ~ r 

+ [3 1 + 2 e co ~ 8 + e 
2 

1 - e 

_~ h-e
2 

sinel+ecos6+e2JdV 
M e 1 + e cos 6 v 

23/2 
+ 2.~ cos S dy (20) 

M e 1 + e cos 8 

where M = mean anomaly = E - e sin E . 

(2) Orie ntation parameters 

The out-of - plane coordinates and injection 
parameters (dljJ, the displacement in central angle 
normal to the orbit plane at injection, and d{3, the 
error in orbit azimuth or orbit orientation in the 
horizontal plane) determine the orientation of the 
orbit plane in space, as defined by the orbit 
parameters i, the inclination of the orbit plane 
to the equator, and n, the right ascension of the 
ascending node . 
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Equatorial 
plane 

90° 

The required error relations 

di = ~ dljJ + ~ d{3 

dn = ~ dljJ + W d{3 

can be determined from consideration of the 
accompanying sketch and Table 8 of Chapter III, 
the table of spherical trigonometry identities . 

cos (iO + L'>i) = cos (LO + L'>L) sin ({30 + L'>(3) 

Since only a differential approximation to the 
error is required, the terms of this equation 
may be expanded in Taylor series, and terms of 
second order in the errors may be neglected . 

+ cos LO cos {30 L'>{3 

- sin LO sin {30 L'>L 

Since cos iO = cos LO sin {30' 

L'>i :::: -
cos LO cos {30 sin LO sin {30 

L'>{3 + .. L'>L . 
sin iO sm 10 

(21) 

A relation 

L'>L = f (L'>ljJ , L'>(3) 

is then required for substitution in Eq (21) . Such 
a relation is obtained from application of the law 
of cosines to the spherical triangle formed by 
two meridians and the side L'>ljJ in the sketch. 

cos (90 0 
- LO - L'>L) = cos (900 

- LO) cos L'> ljJ 

+ sin (900 
- LO) sin 6. t)J cos (900 + (30 ) 



Simplifying and expanding in series gives 

6.L '" - sin f3 0 6.ljJ. 

Substitution of this equation in Eq (21) gives the 
error in inclination 

The error in nodal right ascension may be deter­
mined by noting that 

and 

cos (v
O 

+ 6.A - 6.S1) 

sin AA 
sin 6.ljJ 

cos (f30 + 6.(3) 

sin tiO + Ai) 

These equations on expansion give 

Then 

tan v 0 (6.A - 6. n) '" tan f30 6.{3 + cot iO 6.i 

cos f3 0 
6.A '" cos L 6. ljJ. 

o 

[
tan {30 cot iO cos LO cos f3 0J 

dS1 = - --+ . . 6.{3 
tanvO tanvOsm10 

[

COS f30 cot iO sin LO sin
2 

{3oJ 
+ --L- + t . . 6.ljJ. 

cos 0 an vo sm 10 

The di and dS1 solutions can be written completely 
in terms of Land i as follows: 

. L 2. sm 0 cos 10 

2 
sin iO cos LO 

di = -

dS1- ± 1 - 2 
cos LO sin iO 

sin LO 
. 2 . d{3 

sm 10 

. 2 L 
sm 0 

1 - _--,,----~dljJ 
. 2 . 

sm 10 

d{3 

(22) 

(23) 

The orbit plane orientation errors can also be 
derived in terms of a velocity azimuth error, dO' 
referenced to the local nominal direction of the 
velocity vector , rather than the orbit azimuth 
error d{3. That is, from the following sketch, if 
the orbit orientation is in error due to a AljJ but 
6.0' = 0, the incorrect orbit (as well as the correct 
orbit) is normal to the arc 6. ljJ . The new orbit 
azimuth angle , {31' is not equal to the nominal 

orbit azimuth angle, {30' even though the velocity 

azimuth error is zero. Then, from the spherical 
trigonometry relations of Chapter III, 

cos (iO + 6.i) = cos L' sin (f3 ' + 6.ljJ) 

in 6.NPN l' where the primed quantities relate to 

the intersection point of the nominal and incorrect 
orbit planes. Expansion of this equation in Taylor 
series and neglecting higher order terms as before 
gives 

6.i '" -
cos L' cos f3' 

. L 6.ljJ. 
sm 0 

Since 

tan f3' cos (90 - <l>o) 

where 

and 

sin LO 
6.i = - sin <l>0 6.ljJ = - --- 6.ljJ sin iO . 

Similarly, from 

when 

or 
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tan (v' + 6.n) sin L' tan ({3 ' + 6.ljJ) 

. L' 2, 
6.S1 '" sm 2cos v 6. y 

cos {3 ' 

. 2 L 
8m 0 

. 2. 
sm 10 

6.y. 



Now consider an error due to 6 a superimposed 
on the previously considered incorrect orbit as 
shown in the accompanying sketch. The addi ­
tional errors due to {j a will be denoted by {j ( ). 

where 

or 

sin (/31 - 6 a ) 
cos (10 + 6 iO) 

cos L1 

'" cos f30 cos LO 
.- 60' 

sin iO 

Also, from 

cos «\ - oa) 
cos (v 1 - 612) = sm (10 + 01) 

:::: -
cos /31 cos {31 . sin /31 
-'--1- - . I cot 10 61 + -'-1- 60' 
Sln 0 Sln 0 Sln 0 

_ sin LO 
- . 2 . 60' 

Sln 10 

The the tota l error formulas, analogous to Eqs 
(22) and (23), are obtained by adding the con­
tributions due to 6. lP and 00' (that is, forming 
6. i + oi a nd 6.12 + om. 

sin LO 
di = - sm 10 dlP + cos <PO dO' 

cos <PO sin LO 
df2 = ~ dlP + . 2. dO' Sln 10 sm 10 

(24) 

(2 5) 
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The differential error expressions derived 
in this section (Eqs (8 ), ( 9), (1 3) through (1 6 ), 
(1 9), (20), (24) and (25» are presented concisely 
for reference in T able 1. 

The inverses of the relations expressed in 
T able 1 (that is, the errors in polar position and 
velo city components as functions of errors in the 
classical elements) are also useful error formulas . 
These formulas can be generated simply by in­
verting the matrix of coefficients given in Table 
1. If Table 1 is expressed as 

where 

{Pi} = {d:, de, dw, 

= the six vector of nondimensional 
orbit parameter differentials 

{qj} ={ d;, d: , dy , d<p, dlP , d~ 
= the six vector of nondimensional 

polar coordinates 

a
1l 

a 1 2 0 0 0 0 

a 21 a 22 a 23 0 0 0 

a 31 a 32 a 33 1 0 0 

[aij] = a 41 a 4 2 a 43 0 0 0 

0 0 0 0 a 5S 
a

S6 

0 0 0 0 a
65 

a 66 

Then the required inverse matrix is 

where 

G l 1 J~iD 
LaijJ - laij I 

= adjoint of [aij] (transpose 

the cofactor .natrix) 

la. ·1 = determinant with elements a . . . 
~ ~ 

Inversion is most conveniently accomplished if 
the 4 x 4 submatrix of planar parameter coeffi ­
cients and the 2 x 2 submatrix of orientation 
parameter coefficients are inverted separately. 
The process is also simplified by noting that 

a
1l 

a 12 0 0 0 all a 12 
a 21 a 22 a 22 0 

1 
a 21 

a 22 a 23 
a 31 

a 32 a 33 

0 
a 41 

a 4 2 a 43 
a 41 a 42 a 43 

2 3/2 2 
- e ) (1 + e + 2e cos 9) 

e (1 + e cos 9)2 



The resulting inverse matrix is presented in 
Table 2. 

With the relations of Tables 1 and 2, errors 
in one phase of an orbit can be determined as 
functions of errors several phases prior to or 
subsequent to that phase. For example, errors 
in position and velocity at orbit injection can be 
used to solve for errors in the orbit elements, 
which can in turn be used to determine by the 
inverse relations, errors in position and velocity 
at any future time. 

b. Errors in orbit extrema 

Orbit tolerances are frequently specified in 
terms of allowable errors in apogee or perigee 
conditions. For example, in establishment of a 
low-altitude orbit, a perigee altitude tolerance 
may be specified in order to assure a long orbit 
lifetime . Equations for these errors in apogee 
and perigee conditions can be easily determined 
as a special case of the previous general analysis 
(Section B . 1. a . ). 

From Eqs (1) and ( 3) 

r = a 
a (1 + e ) (26) 

r = a (1 - e) (27) p 

va = J i 1 - e (2 8) 
1 + e 

vp = Ii 1 + e (29) r:e 

where subscripts a and p denote apogee and perigee 
conditions, respectively. These equations yield 
the following differentials . 

dr a = (1 + e ) da + ade 

dr = (1 - e) da - ade 
p 

va v 
dv = - - da - p de 

a 2a (1 + e )2 

v va 
dv = - -..E da + 2 de 

p 2a (1 - e) 

( 30 ) 

( 31) 

(32) 

( 33 ) 

These equations may be expressed in nondimen­
sional form as follow s. 

dr a _ da + tie 
r-- a 1 + e 

a 

dr da de 
~=a -r:-e 
rp 

dv a 
v a 

1 da de 
-"2 a - --2 

1 - e 

dv 
~=_!da+~ 
vp 2 a 1 _ e 2 

( 34) 

( 35) 

( 36 ) 

(37 ) 

Then 

and 

dr a 
r a 

1 

1 

1 
- "2 

d a 
a 

de 

'_~ 'l r:11 

1 - e 21 

-1 

~ 

1 

~ 

-1 
--2 
1 - e 

1 
--2 
1 - e 

Substitution of the a .. from Table 1 gives the 
1J 

differentials of the apogee and perigee values. 
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dr [ ~= ~ 2+!~ 
r r e a 

(1 - ~)J d: 

: [1 + ~ (1 -~U d: + 2 

± J 
2 12 ~ - 1) 

~ (~) '\ r _ 1 
e a (1 e 2) 

dr 
[2 _ (1 : e ) (1 - ~)J dr -p= a 

r r r p 

+ 2 a 
[1 - ~ (1 - ~)J d: r 

-1+e 
2 (2 ~ - 1) 

+-- ( ~) - 1 e (1 -e 2) 

dy 

dy 

dv 

= [- ~ + ~ (1 - ~)J dr + [1 -2 ~ a 
v r a 

(38) 

(3 9) 

+ ~ (1 - ~\J dv +" ! 
e i ) v e 

2 (2 ~ -1) 
(~) _r_ -1 dy 

a 1 _ e 2 

(40) 



.--

~ 
H 
H 
I 

O:J 

d. 

• 

d. 

dw 

d ( tp - t) 

---.--=t 
P 

di 

dO 

L 

I ~ 

d. 

dw 

~ 
t - t 
P 

di 

dO 

L __ _ 

f2 (l + e cos 0) 
, 2 

1 - • 

e + cos 9 

sin e -.-
3 (1 + e cos 0) 

1 _ e 2 
+~ G [ 2 

M ~ [ 

1 _.2 1 
+ (e + cos 0) COB 9 + 1 -I- ... "no nj 

2 ~ 
r 

_ .2 -.- (~- 1) 

.!. - ( _ f.(I_.2) _ r1 2 
± e ~l L er J 

3~±~ H _ l _ (~) 2 (1 _. 2)r /2 [- 2 

r a 1 - .2) {a 2 }] + a + (r - 1) (--r- r (1 - . ) - 1 

• 

TABLE 1 

Error Analy sis Equations 

2 1"" 2 e cos e .... e
2 

1 - e 2 

2 (e + cos 9) 

2 sin 0 --. 
1 .... 2e cos 0 .... e 2 

1 _ e 2 

-~ 1+ecos9+e 
2 l'1~ sin 9 I + e cos e - lVr • 

2 ( 2 ~ - 1) 

2 1 - .2 -.- (~- 1) 

±~~ - r(I-:: -rJ 
3 ( 2~ _ 1) 'F 2 r 2 

r M" Le 

2]1 /2 [ 2J 
- ~ - ~) 1 + F (1 :; ) 

2 

(1 _ .2) s in 0 
r:teCOSll 

2.+ (I + .2) cos 0 
e (1 + e cos O) 

1 (1 - .2)3/2 cos e 
V 1 + e cos a 

± }~1 - .2) ~i - 1)2 - .2 ] 

1 
-"""'2" 
• 

~ +e
2 

_ ~j 

1 (1 - . 2il/ 2 ~ r I ] l'if-----;;r-r -a ~ 

sin La sin 2 .fb 
51.0 10 

cosl3o COS 10 sin % cos tb 
CO"Sl:Q T sin 2 i o 

sin La cos
2 

iO 

sin iO cos 
2 

La 

± 1 g Lo 2 1 - --:-r.-
cos La sin to sin to 

o 

cos LO cos/b 
sin 10 

[cot
2 

iO cot
2 Ib - 1] 

1 

SlnCQ 

~ _ sin
2 

LO 

810
2 

iO 

sin LO 
-~ 

sin to 

I 

I 

dr 
r 

~ 
v 

dy 

d~ 

d~ 

dS 

dr 
r 

dv 
v 

d y 

d~ 

I d~ 

I dS 



[
_ ~ + ~ (~ _ 1 ~ dr 

r e r ~ r 

~ 2 ( 2 ~ - 1) ± !.. (~) r -1 
e a 2 

1 - e 

upper sign for + y , lower s ign for - y 

With coefficients expressed in terms of the 
variable e, Eqs (38 ) through (41 ) become 

dr 
a 

r a 

dvp 

v 
P 

1 dr r::--e ( 2 - e + cos G) r 

+ 1 ~ e (1 + cos G) d; 

s in 8 
+ (1 - e) 1 + e cos 8 d Y 

11 e (2 + e - cos 8 ) d; 

+ 1 '; e (1 - cos 8 ) d; 

sin 8 
- (1 - e ) 1 + e cos 8) dY 

-1 dr 
1 - e (1 + cos e) r 

1 (1 + + 2 8) dv - r=-e e cos v 

sin (:J 

1 + e cos 8 
dY 

1 dr - r+e (1 - cos 8) r 

-11 e (1 - e - 2 cos G) d; 

+ sin 8 dY 
1 + e cos 8 

dy 

(41) 

(42) 

(43 ) 

(44) 

(45 ) 

Eqs ( 38 ) through (45) are collected in Table 3. 
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c. Evaluation of critical cases (e "" 0, i "" 0°) 

Many of the error formula coefficients in­
volved in transformation from polar coordinate 
errors to orbit element errors (Table 1) are 
indeterm inate or inaccurate for e "= 0 or i "" 0° . 
Error formulas for these special cases may be 
developed by a Taylor series approach, as used 
in Ref. (1). If a = a O + D. a, r = rO + D. r, v = 

v 0 + D. v are substituted in Eq (1), 

[ 

_ (v O +fJ.D. V)2] - 1 
a O + D. a = r 0 .; D. r 

Since a O = rO and Vo = :/r~ for nominally circular 

orbits, 

(46) 

Neglecting terms of second order and higher in 
the Maclaurin series expansion 

2 
(l + et = 1 + ne + n (n-l) e 

2! 

3 + n (n - 1) (n - 2) e 
3 1 

2 
(e < < 1) 

+ •.• 

of the various terms of Eq (46 ) gives 

(47) 

(48) 

which checks with Eq (8) for nominally circular 
orbits (a O = rO in the coefficients ). However, 

s im ilar evaluation of D. e from Eq ( 2 ) (that is, 
lettingr=rO+D.r, v=vO+D.V, Y=D.Y in 

2 
e 

1 242 222 
1 + 2 r v cos Y - fJ. rv cos Y 

fJ. 

requires retaining second order terms in ap­
proximations by Eq (47 ) since the first order 
terms vanish. The resulting solution is 

2 
e2 ",, (2D.V +D.r) 

Vo rO 

(1 > > e
2

) 

2 
+ Y • (49) 



I 

:x 
~ 
~ 

I 
f-' 
a 

dr 
r 

dv 
v 

d~ 

d~ 

d~ 

d/l 

3 eMsinO (l+ecos O) 
1 - 2" (I _ e2)11 2 

1 [_ 1 + 3 eM si" 0 (i+ecos O)2 l 
2" (l_e2)37 2 (I+ e 2+2ecos 0 ) J 

3eM(e+cos O)(I +ecos 0)2 

2(I_e2)372(1+e2+2ecosO) 

2 
3 M (l +ecos 0) 

-2" (l_ e 2)372 

o 

o 

T ABLE 2 

Error Analysis Equations 

-~ cos 0 (l+e cos 0 ) 
1 - e 

1 cosO (I+ecos O)2 

~) (1 + e 2 + 2 e cos 0) 

sin 0 (I+e2 +ecos 0 ) (l+ecos 0 ) 

(l_ e 2) (l+e2+ 2 ecos 0) 

~ sin e (2 + e cos 0) 
1 - e 

o 

o 

M e sin 0 (1 + e cos 0) 
(1 _ e2)37 2 

2 sin B 

M eO +e cosO)2 (e+cosO) 

(l_ e 2)37 2 (I +e2+2ecos 0) 

M (l + e cos 0 )2 
(1 _ e 2)372 

o 

o 

sin LO 
SlrlL

O 
(cot

2 
iO cot

2 flo - 1) 

fSin LO + cos io sin 130 
- cos I\:> ~os LO sm to I 

TABLE 3 

E rror Analysis E quations 

dra A (2 - e + cos e) 1 
(l + cos e) (I - e) sin e 

ra - e r:e 1 + e cos e 

~ sin e I I~ rie (2 + e - COB e) 1 
(l - cose ) - (l + e ) rp 2 1+e 1 + e cos 

1 I~ dVa -A (l + cos e ) 1 
( I + e + 2 cos e ) sin e 

v a -r=e 1 + e cos a 
I I d~ 

~ 1 
(l - cos e) 1 

(l - e - 2 COB e) sin e 
Vp -1+e -1+e 1 + e cos 9 

dra ~ [2+ (l ~ e) (1 - i~ 2 ~[ 1 + ~ (1 - i~ ± ~ [I!:) 
2 2 ~ - 1 

_ 1r/
2 

r 
r a e a ~ 10/ 

dr 

(1 - ~ 2 ~ [1 - ~ (1 - ~ [ 2 2~- 1 r/ 2 
----E. ~[2_1+e .. ~ (!:) . ~ - 1 

I~ rp r e e a 1 _ e 

dVa - ~ +.!. (1 - ~) 1 - 2 ~ + ~ (1 - ~) + ~ [<i) 
2 2 ~ - 1 ] 1/2 d~ v;;:- --:---r - 1 r e r r e r 

1 - e 

dv 
- ~ +.!. (~ - 1) 1 - 2 ~ + ~ (~ - 1) 

[ 2 2 ~ - 1 J 1/2 ----E. ±.!. ( !:) ---!--r - 1 vp r e r e a 1 _ e 

o 

o 

o 

cos LO cos flo 

- sin LO sin
2 flo 

da 
a 

de 

dw 

d (tp - t ) 

--r=-r­p 

d i 

d<J 



Similarly the series approximation of Eq (47) 
gives, from Eqs (26) and (27), 

6r 6a a +e '" -- (50) 
rO rO 

6r 6a ----E.... - e (51) 
rO rO 

Substitution of Eqs (48) and (49) in Eqs (50) and 
(51) gives 

6r 6rO 6vO 
a .. 2 +2--

rO rO vo 

(52) 

6r 6rO 6v 
__ p_ .. 2 __ + 2 __ O_ 
rO rO vo 

(53) 

The elements wand t are not defined in the 
p 

circular orbit case and, therefore, will not be 
considered. However, di and d n are indeter­
minate for i = 0°. For this case, from spherical 
trigonometry, 

cos 6i = cos 6ljJ sin (90 + 6(3). 

v 

d 

The Maclaurin series approximation gives 

or 

(54) 

The error in n is not defined (since, for the 
nominally equatorial orbit, the ascending node 
is not defined). However, the node of the in­
correct orbit can be determined from 

sin v = tan 6 ~ "" 
tan 2S 1 

(55) 

The case of near circular orbits is also con­
sidered for the inverse transformation (errors 
in polar coordinates as functions of orbit ele­
ment errors) in Ref. (1). For the small eccen­
tricities of this special case, the planar 
variables can be expressed by the following 
series expansions, as given in Chapter III. 

~ = 1 - e cos M - ~ (cos 2 M - 1) 

(continued) 
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v 

,~ = 

e 

e 3 
--" (3 cos 3M - 3 M) 
2! 2'" 

2 
1 + e cos e + ~ (3 - cos 2 e) 

4 

e 3 
+ 8 (4 cos e - cos 3 e - 7) + .•. 

2 
M + 2 e sin M + ~ sin 2 M 

e 3 
+ TI (13 sin 3 M - 3 sin M) 

2 3 
y e sin e ~ sin 2 e + T sin 3 e 

M mean anomaly = r; (t - t ) 
~ a;j p 

(56) 

2 
For e < < I, approximate relations can be 
written. 

r "" a (1 - e cos M) 

v '" {f (1 + e cos M) 

e "" M + 2e sin M 

y"" e sin M 

(57) 

(58) 

(59) 

(60) 

From Eq (56) 

M = M +6M = ~ o 3 
rO 

1/2 
J.l J (t - t - ~t ) 

( 6a)3 pO p 
1+ -

\ r l 

or 

(61) 

The errors at any later time 6r2, 6v2, 6 Y2 

and 6 e 2 will be determined as functions of 6 T I' 

6 v I' and 6 Y 1 by varying one injection parameter 

at a time and assuming a linear combination of the 
individual errors. 

Case (1) [6 r 1 = 0, 6 vI = 0, 6 Y, I 0] 

If Y 1 is the only launch parameter which is in 

error, 6 r 1 = 0, 6 vI = 0, Y 1 = 6 Y l' and from 

Eq (49), e"" 16 Y 11 ' where 6 Y 1 is an error due 

to a velocity component normal to the desired 
circular orbit velocity at launch. For the cir­
cular orbit, M and t are referenced to the p 
perigee direction in the incorrect orbit. Since 
the semimajor axis a is a function of r and v but 
not Y, 6 a = 0 for this case. Then, from Eqs 
(57) through (61), 

6 r (l) "" - erO cos MO "" -rO 16 Y~ cos MO 

6
V

(I) - - I I v-:- "" 6 Yl cos M O 

° 

-------- __ J 



L 

L!.Y( 1) '" IL!.Y 11 sin MO 

From the 6r (1) equation, 6r = 0 whe n cos MO = 0, 

Therefore, for case (1), MO = 90 0 (for Y
1 

positive) 

or MO = 270 0 (for Y
1 

negative), The absolute 

magnitudes in these equations may be removed by 
defining a mean anomaly M

O
' referenced to the 

initial point, Then Ozo = MO - 90 0 for positive 

6Y1, and II?O = MO + 90 0 for negative 6Y
1

, Sub­

stitution in the previous equations gives , for 
either positive or negative 6 Y l' 

L!. r(1) 

'" L!. Y 1 sin 7!z0 (62 ) 
rO 

L!. v (1) 
'" - L!.Y 1 sin 17(0 (63) 

Vo 

L!.9( 1) '" 2 L!. Yl (cos Irt 0 - 1) (64) 

L!. Y(I) '" L!.Y 1 cos !ItO (65 ) 

In derivation of Eq (64) use is made of the fact 
that L!. 9 (1) = 0 at 0 0 = 0 sinc e the correct and 

inc orrect orbits intersect at the initial point. 

Case (2) rYl = 0 , L!.vl = 0 , L!.r l 1 ~ 
For L!. Y1 = 0 , L!.vl = 0 , L!.rl # 0 , Eqs (48) 

and (49) 

give 

6 a (2 ) 
'" 2 

L!. r 1 

rO rO 

e(2 ) '" ~ r l 

Then, from Eqs (57) through (61) 
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L!.v(2) L!. r 1 lL!.r11 
cos MO '" + --

Vo rO rO 

L!.rl ~ 
M (2 ) '" - 3 -- M - 4 6t 

ro 0 p 
rO 

+2 
lL!.r l l , 
-- sm MO 

rO 

L!. Y(2) 
IL!. r 11 

'" --- sin MO 
rO 

But MO = 00 for L!. r 1 positive , and M = 1800 

for L!.rl negative . Then , for htO = 00 at launch, 

L!.r(2 ) 
'" 

6 r l 
(2 - cos -nto ) (66 ) 

rO rO 

L!.v(2 ) 
'" 

L!. r 1 
(cos 7n.O - 1) (67) 

Vo rO 

(2 sin 711'0 - 3 71z 0 ) (68) 

L!.Y (2) rO sin 7710 (69) 

Case (3) [6 r 1 = 0 , L!. \ = 0 , L!.vl # 0] 

For the remaining case , where L!. r 1 = 0 , 

L!. Yl = 0 and 6v l # 0 , Eqs (48) and (49 ) gives 

6V 
(3) '" 2 1 va 

A procedure similar to that used in cases (1) and 
(2) gives 

L!. r(3) 
'" 2 

L!. vI 
(1 - cos '/ItO) 

rO Vo 
(7 0) 

6v(3) 
'" 

L!. v 1 
(2 cos 17(0 - 1) 

Vo Vo 
(71) 

M (3) - 37lt O 

L!.vl 
+4 

L!. vI 
sin'J?(O '" Vo Vo 

(72) 

L!. Y(3) '" 2 
L!. v 1 

sin ht O. (72) --
Vo 

The total error solutions are obtained by combin ­
ing the effect of all three errors linearly (adding 
Eqs (62), (66) and (70); Eqs (63), (67) and (71); 
etc. ), 

_. --- ------- ---~ 



6r 
"" sin lIzO 61'1 + (2 - cos~) 

6 r 1 -- --
rO rO 

+2 (l - cos ht O) 
6 v 1 (74) 
vo 

6v z - sin 7!to 6 Yl +(cos 77(0 - 1) 
6 r l 

vo rO 

+ (2 cos 7l( 0 - 1) 
6 v

1 (75 ) 
vo 

6¢ z 6w
1 

+ 2 (cos 7?t. 0 
1) 6 Y

1 

6r 
+ (2 sin77zo - 3i?{0 ) rol 

+ (4 sin I7z 0 - 3 »to ) 
6 v 1 (7 6 ) 
vo 

61' z coslJ[O 6Y1 +sin»zO 
6 r 1 
rO 

+ 2 sin »;0 

6 v
1 

vo 
(7 7) 

2 
« 1 e 

d . Statisti cal analysis 

The error formulas developed in previous 
sections serve to convert a specific set of errors 
from one system of orbit determining variables 
to another. However , in preliminary design 
work , specific sets of error s are frequently not 
of interest. Rather , the design engineer must 
determine the probability that a certain error will 
be less than the tolerable limit . That is , he r e ­
quires a probabalistic relation rather than an 
algebraic relation between the errors. This 
section concerns the determination of the error 
probabilities from the previously determined 
error formulas. 

(1) Probability of Linear Error Functions 

The majority of these error formulas are 
linear differential approximations of the form. 

u '\ a. x. , L 1 1 
I , 2 , . . • , k 

where the a
i 

are constants. If the xi (the errors 

to be transformed) are independently a nd nor ­
mally distributed with means /..I . and varia nces 

a.
2 , then the moment generatin~ function /..I ( t ) 

1 

for the distribution of the variate u is given as 
follows : 

k 
2" n '" '" '" 

m (t ) (2 ~) ClJ a~ ).) S ,) 
1 - 1 -00 - 00 - 00 

expft Iai xi - ~ L (xiu~ l1i) JdX 1 dx 2 · · .dx
k l 1 i 1 

Transformation to the standard form is conveni­
ent . 

Let 

Then 

a. 
1 

m (t) ( 21',r) k / 2ITi ()"'", . exp (ta. IJ..) exp (ta. y. u. 
1 1 1 1 1 

'" 
\ exp (- i [ Yi

2 
- 2tai y i ui + t2ai2ui2 J) dyJ 

l'
\ t2 \' 2 J exp t 1 a. l1. + -2 ) a . u . 

. , 1 1 _Ill 

1 i 

(7 8) 

However, the moment generating function for the 
normal distribution is 

1 2 2 
mn (t) = exp (tl1 + 2" t u) 

Therefore, Eq (78) is the moment generating func­
tion for a normal distribution 

n(u) = -rf;-; exp [- ~ (~~-~) 2J 

with mean and variance given by 

11 =l a i l1 i (7 9) 

2 =L 2 2 
u a . u. 

1 1 
(80) 

Similarly , if the xi are correlated instead of be­

ing independently distributed , u is distributed 
normally with 
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=) 
' ~ 

i 

a2 = j a.2 a 2 + ~ a .. a .. 
-oJ 1 1 L 1J 1J 
i i,j 

( 81 ) 

( 82 ) 

The covariance, a .. , is sometimes written p . . a. a. 
1J 1J 1 J 

where p . . is the correlation. These results (Eq 
1J 

(7 9) and ( 80 ) or (81 ) and (82)) then describe the 
probability distributions of the left-hand column 
vectors of Tables 1, 2 and 3 if the distributions 
of the right-hand column vectors are assumed to 
be normal. For example, from Eq ( 48 ), if 6r and 
6 v are normally distributed with zero means, then 
6a is normally distributed with zero mean and 
variance 

[ 

a2 a
2 

p a a J 4 6v + 6r + 2 6v6r 6v 6r 
-Z --z- Vo rO Vo rO 

(nominally circular orbits ) 

Once the distribution of the transformed error 
is determined, the probability that u will lie be­
twe en two given values ul and u2 is given by 

u2 

.)' n(u) duo 

u
l 

Since areas under the normal error distribution 
curve are widely tabulated, the probability that 
the error u will be less than a specified tolerable 
limit u~' , 

u* 

.\ n(u) du, 

o 
( 83 ) 

may be readily evaluated from tables . The solu­
tion for error probabilities has thus been obtained 
in all cases in which the error formula can be ap­
proximated by a linear function. 

( 2) Probability of Nonlinear Error Functions 

Although most of the error formulas are linear, 
certain formulas for nominally circular orbits (for 
example, Eqs (49 ), (52), ( 53) and (54)) involve non­
linear relations of the form 

u = Jx; + x; ( 84) 

Determination of the probability distribution of the 
function of Eq (84) is not so simple as in the case 
of the linear error formula , and the resulting dis­
tribution is not normal. If Xl and x 2 are assumed 

normally and independently distributed, their joint 
distribution is simply the product of the individual 
distributions, 
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The distribution of u may be obtained by elimi­
nating either Xl or x 2 in terms of u to obtain 

a denSity 

where each term in the summation represents 
one branch of a possibly nonmonotone function 
u(x

l
). The desired distribution, g(u), may then 

be obtained by integrating over the x 2 in g(u, x 2). 

00 

g(u) = \ g (u, x 2) dX 2 

In particular, for u = J x{ + x; 
Xl ± J u2 

- x; 

I~I u 

Thus, 

After the transformation 

t = x 2 
2 

this expression may be integrated to yield the re­
quired distribution 

[ 2 (7+ 7J J 10 [~2 (7 g(u) u u 
exp --a a 4 

Xl x 2 Xl x 2 x2 

7-)J ' 0 < 
2 < 2 ( 85 ) x
2 u , 

Xl 

2 2 
0 , x 2 > u 



This g( u) (and, in particular, the distribution of 
corrected orbit eccentricity error) is a skewed, 
single- sided distribution with positive mean and 
a shape similar to that of the gamma distributiono 

In manipulation of the distrib ution g( u) the fol ­
lowing definitions are conveniento 

The distribution is then 

Quantities of some significance in describing the 
properties of the distribution (e o go, central values, 
spread, skewness, etco ) are the moments of the 
distributiono The rth moment of g(u) is 

00 

"iir = S u
r 

g( u) du 

- 00 

After the transformation t = u2, the integral can 
be evaluated in various forms o 

00 -K t 
) tnE 2 III (K3t) dt = r (n + 1I + 1)( K2

2 

o 1 
2 - Tn

+ 1) -1I( K2 ) - K ) P ----
3 n J 2 2 

K2 - K3 

where the generalized Legendre function is given 
by 

1 z + 1 m/2 
-=r;---,-,- (--) ~ ( -n, n + 1; 1 r ( 1 - m ) z - 1 J 0 

2 1 
1 1 

- m; 2 - 2 z ) 

and the hyper geometric series is given by 

00 (a
1

) 0 

)' i 
.-J (YI ) 0 

i=O i 

Then 

- _ K1 r (~+ 1 ) 1 [r + 2 
I-Ir-YKr/2+1 -4-' 

2 

i z 
I! 

K 2l 
r ~ 4, 1; ( K:) J 

r (r + 1) 00 

2 ') 
(r+2 0) (r+4.\ 2i 
-4-; ~~ 1 \----;r-; 1; lJ (K3) 

K r / 2+ 1 L.J 
2 i=O 

1 0 (1 ; 1; 1) K2 

In particular, the mean of the distribution g( u) is 
given by 

3 

J [1. i. 1; (~: q Kl r(2 ) 
I-! 1 2K 3/2 

3 

K1 F [ ~ ~ K 2 " 
7 5 9 

1 +~(~ ) +4 4 4
0 

4(K3 ) 
= 4JZ372 1 0 1 K2 (2!) 2 K2 

2 

3 7 11 5 9 13 
+4 0 4 0 4 0 404 0 4 

(3!)2 

K 6 ] 
(K~ ) + 0 0 0 

T he second moment is of interest in determination 
of the variance of g(u)o 

- _ K1 r (2) ~~ 3 . (K3 )2J 
1-! 2 - """2 -=-z- J 1 , 2' 1, K 

K2 2 

K1 [ 3 (K3 )2 1 3 5 ( K3 )4 ==:z 1 + 2 K +212 0 2 K 
2K2 2 0 2 

+ l, ~ + H:: )6 + J 
T hen the variance is 

Thus, the probability distributions of errors 
given by nonlinear equations of the form of Eq 
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(84) are rather complex. Therefore, the prob­
ability that the error u will be less than a speci­
fied tolerable limit u* must be computed by nu­
merical integratio n or by the Monte-Carlo tech ­
nique . The probability could be computed, for 
the case of Eq ( 84) by numerical integration . 

p [u < u~ = ~ g( u) du, 

o 

where g(u) is defined in Eq ( 85 ). However , in 
general, this probability may be more readily 
computed from 

p [u < u~ = \ ~ • • • \ f (Xl' x 2' . .. xn) dX I dx 2· .. dXn 

u < u* 
( 86 ) 

where f (x 1, x 2 • • . , xn ) is the multivariate distribu­

tion of the errors xl ' x
2 
••• , xn and the integration 

limits are defined from the region in which u < u* . 
If the number of random variables xi is larger than 

five, the Monte-Carlo method is a convenient al­
ternate solution for the probability P that a multi­
variate normal variable lies in a region R . These 
methods of evaluating the probabilities are con­
sidered in the following section. 

The determination of the surface defining the 
region u < u~' (that is , the limits of integration) is 
generally not difficult . I n some cases, however , 
this surface may be difficult to construct . I n this 
eventuality a more general technique may be em­
ployed. ConSider for example an error function 
which is expressible as a sum of a normally dis­
tributed error L!.Pn and an arbitrary known func-

tion f (L!.q) of a second normally distributed vari ­
able , L!.q. 

L!.p = L!.Pn + f (L!.q) 

For a complicated function f(L!.q) , the determina­
tion of constant L!.p surfaces in the 6q, L!.Pn space 

become unwieldy. The individual density func­
tions of L!.Pn and f (L!.q) are readily obtainable, the 

latter by dividing the Gaussian density of L!.q by 

~L!.qq) . Hence, f(L!.p) , the denSity function of L!.p, 

can be formulated as a convolution integral of the 
individual density functions 

where 

00 

f(L!.p) = ~ g (L!.p - g ) z (g ) dg 

-00 

density function of L!. Pn 

density function of f (L!.q) 

( 87) 

( 3) Evaluation of Multivariate Normal Probabilities 
(Ref. 2) 

Error analyses and success probability deter­
mination for space missions (as well as other 
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areas) frequently require the integration of a 
multivariate normal distribution over some ap ­
propriate region. In some instances, it is pos­
sible to use special computational routines to 
obtain this integral. In other situations , the 
Monte-Carlo method may have to be used . A 
general formulation and an illustration of bot h 
methods follow . 

Theoretical discussion and special computa ­
tional routines . The probability P IS sought 
where 

U'l U'2 

P .~ ~. 
L' L' 

1 2 
( 88 ) 

with f (x
1

, ... ,xn) the multivariate normal distri­

bution with mean vector (M
1

, ... ,M n) and vari ­

ance- covariance matrix 

l = (crij ), i , j = 1. .. n, cr ij = cr ji · 

That is, 

1 

n n 

-~ L L 
j = 1 i= 1 

cr
ij 

(x. - M·) (x. - M '~ 
1 1 J J 

89 ) 

with cr1J the (i , j ) element in the matrix 4- 1 

and 141 denoting the determinant of the matnx 

! and where 

U' n - 1 

U' 2 

U1 = constant, Ll = constant 

( 90) 

In order to obtain the number P via the com­
putational routines, a transformation must be 
made to new variables zl' . . . , zn which have 

mean vector (0, . •• , 0 ) and variance-covariance 
matrix In ' the unit matrix of size n . That is, 

the distribution of (zl' . . . , zn) is 

I exp [ - 1:.2 (Z1
2 + z22 + .. . + 

( 27T)n/2 \' 
Z 2~ 

n Y91 ) 



I 

I 

I 
I_~ 

Of course, when a transformation is made to 
these new variables (zl' ... , zn), the limits of 

integration change as well as the integrand. 
Therefore, among all the possible transforma­
tions, one must be chosen which will render the 
limits in a suitable form for the computational 
routines. Such a transformation is 

i 

xi = J.l. i + L c ij Zj' i = 1, . .. , n (92 ) 

j=l 

with the coefficients c .. defined recursively by 
lJ 

c .. 
lJ 

,1<i<n 

i -1 

O"ii - L 2 
c ik 

k=l 

c .. 
JJ 

c . . = 0, I ~ i < j ~ n . 
lJ 

,l<i<n 

(93 ) 

n>i>j>l 

Now the integral of Eq (88), giving the probability 
P, is 

with 

(95 ) 

U
1 

= constant, L1 = constant 

where the limits Uk and Lk are obtained from Uk 
and Lk by substituting into the relations Lk ~ xk 
~ Uk expressions (92 ) for the x's in terms of z's . 

The following example may illuminate the 
preceding generalities . Let the requirement for 
a successful orbit be 

-B<or <or <A 
p - Ii 

(96 ) 
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for given positive numbers A and B . Equations 
(52) and (53) can be written more concisely in 
the following form: 

or = t -
P 3 

(97 ) 

(98) 

where (t
1

, t 2, t 3) has the multivariate normal 

distribution with mean vector (J.l. 1' J.l. 2' J.l.3) and 

varian ce - covariance matrix 

The numbers A and B are specified in the 
mission requirements; and J.l. I ' J.l.2' J.l.3' 0"11' 0"12' 

0"13' 0"22' and 0"33 (O"ij = O"ji) may be computed 

from the definitions of the ti (Eqs (52) and (53», 

the linear error analySiS of Section B . 1. d . (1) 
and given values of 0"" ' 0" A , 0" . To obtain .wr ,-"v y 
the probability P that Eq (96 ) holds, Eqs (97) and 
(98) are substituted into Eq (96) and the condition 
for success is symmetrized by making the pre­
liminary change of variable Xl = t 1, x 2 = t 2, x3 

= t3 - 1/2 (A - B). Then the criterion for success 

becomes 

+J X1
2 +X2

2 
<1/2 (A+B) (99) 

where (Xl' x 2' x 3) has mean vector J.l. I ' J.l.2' J.l.3 

- I /2 (A - B) and unchanged variance - covariance 

matrix 1. 
The region in the (Xl' x 2' x3 ) space is com­

posed of two conical segments, as shown in the 
following sketch. 

It is desired to integrate the distribution of 
(xl ' x 2' x 3) over the region determined by Eq 

(99). The resulting probability, analogous to 
Eq (88) is the desired result . The upper and 
lower limits analogous to Eq (90 ) are 

U' 3 

L' 3 

1/2 (A + B ) - J Xl 
2 

+ x 2
2 

-1/2 (A + B ) + J Xl 2 + x 2
2 



l 

Uz = J 1/2 (A + B) 2 - xl 2 

L Z = - J 1/2 (A + B) 2 - X 1
2 (100) 

U1 = 1/2 (A+ B), Ll = -1/2 (A+ B). 

Circle lies in the 
vertical plane, xl x 2 

In this instance, the transformation of Eq (92) 
to the variables (zl' z2' z3) is given by 

with the coefficients c .. given explicitly by 
1J 

c 33 = J a 33 - c; I - c; 2 

(101) 

(102) 

Introducing these c's into Eq (101) and the x's 
from Eq (101) into the relations Lk ::. xk ::. Uk (k = 

1, 2, 3) yields, analogous to Eq (95), 

U3 = C;; [- f..!3 + A - c 3l zl - c32 z2 

-J(f..!l + c ll zl)2 + (f..!2 + c 2l zl + C22 Z2)2] 

L3 ~ ~[- f..!3 - B - c 31 zl - c32 z2 

+ I (f..!1 + cll zl)2 + (f..!2 + c 21 zl + c 22 Z2 )2] 
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U2 = C~2 (- /-12 - c 21 zl + [1/4 (A + B) 2 

- (f..!l + c
il 

ZI)~1/2) 

L2 = C~2 (- f..!2 - c 21 zl - [1/4(A+ B) 2 

_ (f..!l + c
ll 

Zl)~ 1 /2} 

U1 = C~l [- f..!1 + 1/2 (A+ B~ 
(103) 

L = _1_ [- f..!1 - 1/2 (A + B~ 
1 c ll ~ 

Now the probability 

can be obtained from a suitable computational 
routine. 

Monte-Carlo method. Consider again the 
problem of obtaimng the probability P that a 
multivariate normal variable lies in a region R. 
The Monte-Carlo method may be used, for 
example, in situations where the number of com­
ponents of the random variable is larger than 
five (the routines previously described are no 
longer applicable). 

The method proceeds as follows . Select a 
sample of size N of the random variable of 
interest . Count the number NO of these sample 

values which lie in the region R. The fraction 
NO/N is an estimate of P. 

The question arises: how to choose the sample 
size N so as to estimate P with assigned preciSion. 
An answer can be given if the problem is formu­
lated this way. Choose N large enough for the 
probability that INo/N - PI < d to equal a for 

preassigned d and a . Then if a "guess" for Pis 
available, choose 

2 
P (1 - P) za 

N =--~~-=-
d2 

where za is defined by 

1 

o 
2 exp (-1 /2 t ) dt = a 

(10 4) 

and is obtained from tables of the normal distri­
bution. If no "guess" for P is available, 

2 
Z 

an upper bound on the choice of N is ~ . 
4d 



Thus, to estimate P within 0.1 with a proba­
bility of 0.95, a conservative choice for N is 

2 
(1. 96 ) = 96.04 

4 (0.10)2 

To estimate P to within 0.01 with a probability 
of 0.95, N must be 9,604 at most, To estimate 
P to within 0.01 with a probability of 0 . 95, if 
there is reason to suppose that P is near 0.9, 
Eq (104) yields 

2 
N - (0.9) (0 . 1 ) (1. 96 ) 

- 4 (0.01)2 
864. 4 . 

Thus, a reduction of almost 9000 in the sample 
size necessary to meet a certain criterion has 
been achieved by using additional information 
known to the experimenter. 

In conclusion, a remark should be made on 
the usefulness of the Monte - Carlo method in 
evaluating probabilities when the random variables 
of interest are not necessarily normally distrib uted . 
The estimate of the sample size required given 
above does not 'depend on the normality of the 
variables under consideration. It is valid no 
matter what their distribution is . (The fact that 
z in the formulas is obtained from tables of the a 
normal distribution is incidental. ) 

( 4) Probability Analysis of Vehicle Position and 
Velocity (Ref. 1) 

By means of the previously considered statis ­
tical theories and the equations of T able 2, the 
probability distribution of the position and vel ocity 
of an orbiting vehicle can be determined at any 
time. This section deals with a convenient method 
of analysis for the problem. Let 

{pJ = [aij ( e~ {q0 

represent the relation between the position and 
velocity errors Pi and the orbit injection errors 

q, . If the q, are normally and independently 
J J 

distributed without biases, their multivariate 
distribution is given by 

Then the multivariate distribution of the trans ­
formed errors is 

1

8 (q1' q2, ··· ,q6 )1 
g (PI' P2'· · ·' P6 ) = f (q1' q2' ··· ' q6 ) a ( ) PI' P2' ··· ,P6 

(l 06) 

The region g (PI' P2" '" P6 ) = constant is a six ­

dimensional ellipsoidal surface of equal probability. 
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This time-varying hyper surface provides a con­
venient definition of the region of occurrence of 
the vehicle position and velocity with given prob­
ability. 

For example, consider the simple case of 
only two orbit injection errors. 

Then if 

(107) 

where the quadratic form is 

Since the coefficients a" are functions of time, 
lJ 

the distribution changes with time . In this two­
variable case, g = constant defines an ellipse, 
Equations (107) and (l08) can be written in 
simplified notation as 

If the axis of the PI - P2 coordinate system is 
1 -1 ( 2B ) rotated through an angle "2" tan \x-:-c' the 

cross product term is eliminated. 

(109) 

where PI and Pz are the new coordinates. Also, 

D can be absorbed by defining new coordinates 
P" = p ' and p" = Dp' 1 1 2 2 ' 

g (p" p") = K' exp [_ 10. (p" 2 + p1l2 ~ (110) 
l' 2 D 2 1 2 J 

Again, variables can be changed to polar coor­
dinates so that the polar angle can be integrated 

, ( 2 ,,2 ,,2) 
from 0 to 27r and the radlUs R = PI + P2 from 

o to R . The probability of a vehicle being within 
R is then 



P (R) = 1 ( 111) 

27T K1 
because -D-- = 1 for the normalized distribution. 

2 . Error Analysis of Powered Trajectories 

Typical trajectory sequences consist of al­
ternating powered and free - flight phases . The 
final mission errors are functions of errors oc ­
curring in all such phases. This section considers 
the contribution of errors in the powered phases 
just as Section B . 1. considered errors in the 
free-flight phases . If the powered phases are 
short so that the impulse maneuver theories are 
reasonably accurate, approximate analytic rela­
tions can be developed . However, the increased 
complexity of motion in powered flight generally 
requires numerical analysis . 

a . Impulse analysis 

( 1) General case 

The equations describing addition of a vector 
impulse OV are the laws of cosines and sines: 

OV~~I 
E Y V 

V Y 

222 -ov +v +v ' -2vv'COS (y'_y)=O 

(112) 

f2 = OV sin E + v ' sin ( y ' - y ) = 0 ( 1 13 ) 

Symbols are consistent with previous notation and 
are further defined in the sketch. Errors in v ' 
a n d y I are to be determined as functions of errors 
in v, y, E and Ov. From Eqs (11 2) and (113 ) the 
error relationships, approximated by iinear dif­
ferentials, can be expressed as follows . 

-ov d(ov)+ v' d v ' + vv ' sin ( y' - y ) (dy' - dy ) 

- co s ( y ' - y ) (v d v ' + v' d v ) + v d v = 0 
a nd 

- sinE d(ov) - OV COSE dE+ sin (y' - y ) dv' 

+ v ' co s (y ' - y ) (d y ' - d y ) = 0 

Terms may be collected, and the resulting ex­
pressions solved by application of Cramer's rule 
for the errors dv' and dy '. I n this solution the 
Jacobian 

a (f
1

, f 2) 

arv~ 
2 

v' - v co s ( y ' - y ) vv ' sin ( y' - y ) 

sin ( y ' - y ) v ' co s ( y' - y ) 

= 2 v ' [ v' co s ( y ' - y ) - ~ 

is useful. The results are 

vv , 2 ~ 
_ 

[ 
OV cos ( y ' - y ) - 6V sin (y ' - y ) 

dv' d ( ov) 
- v ' co s (y' - y ) - v 

+ co s ( y ' - y ) dv - v sin (y' - y ) de 
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dy' 
sin (y ' - y ) [ { v ' - v cos (y' - y ») ;;; -

= ---- --v-'[v' cos (y' - y ) - 'J 
ov] 

d (OV) 

- sin (~,' - y) dv + [1 - ~, cos (y' - y )] dE + dy 

In terms of (y' - y ) or, in terms ofe 

dv' = [ :~ + :' cos j d( ov) + [0:, cos e + :J dv 

. ov . 
- v yr sm E dE 

v ) ov . d dy I = ----:2 sin e d ( ov - - 2- SIn E v 
VI VI 

+~ (ov+vcoSE ) dE +dy 
v ,2 

(114) 

( 115) 

(2) Nominally Tangential Impulses (e = 0 ) (Ref. 2) 

In many missions a velocity increment, ov, is 
added at the apogee of a coast period in a direction 
nominally parallel to the existing coast velocity, 
v . An attitude error, 6.e, during the apogee 
burning causes a nonlinear speed error in the 
system, in addition to a speed error representing 
a linear transformation of the other Gaussian 
sources . The geometry is shown in the accompany­
ing sketch. T he resulting speed error, 6.v l' due 

to this source is 

{!,v 

v 

Vertical 

Direction of OV 

Direction of v 

6.v
1 

v + OV - ~ (ov)2 + v 2 + 26v v cos 6.e 

(1 16 ) 

For small 6.e, Eq (116 ) becomes 

where terms up to second order have been 
retained. 

(117 ) 

The 6.E in Eq (117 ) is actually composed of 
two components in directions normal to v . T hese 
are typically a yaw attitude error, 6. e , and a 

y 
pitch attitude error, 6.e , as shown in the sketch. 

p 



I 

l. 

Thus Eq (11 7) becomes 

6v ~ 2 2J 6v
1 

= 6 ( 6. ) + (6. ) 
2(1+~) Y P 

v 

(11 8) 

To this must be added the Gaussian speed error, 
6vn , due to a linear transformation from the 

other sources (see previous section). T he total 
speed error, 6v, then becomes 

~6'y) 2 + (6'p) ~ + 6vn 

(119) 

The statistics of Eq (119 ) are non-Gaussian 
though 6. , 6. , 6v are Gaussian . It is again y p n 
convenient to consider the space of 6. , 6. , 

Y P 
6v which represents a trivariate normal density . 

n 
In this space, surfaces of constant 6v are parab­
oloids of revolution parallel to the axis 6v n as 

shown in the sketch. An analogous procedure is 
described in Section B . 1. d(3). Hence integration 
of the trivariate normal distribution of 6. y' 6. p' 

6v within the paraboloid (from 6v = - 00 to 6v) n n 
yields the probability that 6v is less than some 
specified value. Integration for different values 
of 6 v yields the entire statistics of 6v. 

6 v n 

An interesting optimization theory is often 
applicable, once the complete statistics of 6v 
are obtained. It may be desirable to modify the 
nominal value of v in the trajectory such that it 
is assured to any given probability (say 0 . 997 or 
3a) that the magnitude of the resulting speed error 
is less than 6v

O
' where it is desirable to m inimize 

6v
O

' This might be the case for example in a 

satellite which employs orbit corrections after 
injection, where minimization of the speed error 
at injection. 6vO' minimizes the propul SlOn capa-

bility required in the payload. This optimization 
is carried out as follow s . 
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The cumulative distribution function P (6v) is 
obtained as described above . The above optimiza­
tion requirement can be interpreted as a selection 
of the minimum continuous span in 6v over which 
the P (6v) function changes by 0 . 997 . DeSignation 
of the center of that span as the shift in nominal 
injection speed would then complete the required 
optimization. 

P (6 v) 
1.0 

6V 

The foregOing is easily carried out by choosing 
a running variable 6vO as a trial smaller extreme 

of the 0 . 997 span of 6v, and reading off in the 
figure the associated span of 6v which contains 
the necessary 0 . 997 change in P (6v). Plotting 
as a continuous function of 6v

O 
the quantities, 

half the span and the center of the span, permits 
determination of the optimum operating point as 
that value of 6v

O 
which has the minimum half 

span. This is shown in the following sketch. 
T he corresponding change in the nominal injec­
tion speed and the 0 . 997 error in speed, 6v

O
' 

are determined from the figure for this optimum 
AvO ' 

Actual shift Curve of trial shift 
fr om nominal in 
injection speed 

Curve of tr ial 
half span 

error) 

h 

This optimization procedure for nonlinear 
speed errors has been carried out for equal 
variances in 6. and 6. , and the results are y p 
presented in Fig. 1 . The reason that the optimiza­
tion procedure is useful is the skewed and biased 
nature of the density funct ion of 6vgiven by Eq (119), 
which is shown in Fig. 2. This suggests a shift 
in nominal operating value of speed as was for­
mally carried out . 



The technique Eq (87) could have been em ­
ployed as an alternative method of solution in 
Eq ( 119) . Note that y (6 e), the density function 
of 6 E in Eq (119), is a Rayleigh distribution, 
if the standard deviations of 6 E a nd 6 E are y p 
the same, 6 EO' 

o < 6 E < co (1 20 ) 

or 

z[f(6EU 1 
K e 

f ( 6 E) 
k o « 6e)< co (121) 

where 

k (12 2 ) 

and where f (6 E) is the non-Gaussian part of 
Eq (1 19). Hence , using Eqs (87) and ( 121 ) in 
( 119) yields . (6v _ ~ )2 

- 2 
20" 6v 

p (6v) 1 
k e 

n -=.e-;======- d ~ 
~ 2 1To"~V 

n 

Equation (123) can be expressed in terms of 
tabulated functions: 

p (6 v) = density function of 6 v 
2 

(12 3 ) 

X-: + i t":Vn) J[l -R(""\-" ~J 
(1 24 ) 

where 

exp (- t
2

/2) dt 

r;; 
R (u) = SU 

- co 

( 12 5) 

= a t abulated function 

Also the cumulative distr ibution P(6 v ) can be 
found by integrating Eq ( 124) 

P (6V) = cumulative distribution of 6V 

(12 6) 

XII-22 

b. General guidance error analysis (Ref. 2) 

The guidanc e e rror analys is procedure to be 
describe d is a universal one for satellite miss ions. 
It c an be applied to any type of traje ctory , with 
guidance provided by an arbitrary type of guidance 
system . and with an arbitrary criterion employed 
for error in final orbit. 

The type of powered flight trajectory that can 
be handled is perfectly general , although two or 
three discrete burns, each followed by a coast 
period, are the m ost common . The following 
sketches show some typical trajectories. Continu­
ous low-thrust burning. characteristic of nuclear 
stages . can a lso be accommodated within the error 
analysis procedure . Al so of a r bitrary assignment 
are the nominal orbit parameters at the end of 
each burning phase. 

Coas t 

First burnout ""'-

LaunCh

u
1 ~ 2 

Final orbit 
(not necessarily 
circular ) Second burning 

period 

(a ) Injection into Arbitrar y Orbit 
Using a Coast Period Between Burns 

Burnout 

Deboost 

(b) Re - entry from Orbit 

J 
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The error analysis procedure is capable of 
treating any type of guidance system , whether it 
be an inertial platform, a radio guidance system , 
an open loop autopilot system, or combinations 
thereof on the different stages. 

Finally, the statistical quantities of interest 
in the final orbit may be the elliptic elements (such 
as eccentricity, period, etc.) or the band of alti­
tudes within which the orbit should be confined 
according to some assigned statistical probability; 
or the impact error associated with a re-entry 
vehicle; or some other criterion. 

Basically, the approach may be considered as 
consisti.ng of four steps: 

(1) Determination of the B matrix which 
relates the injection error vector X to 
system error S 

X = BS 

(2) Determination of the covariance matrix 
which contains error-interrelations and 
is normalized to the one - sigma error 
values. 

(3) Determination of boundaries in Gaussian 
space along which quantities of interest 
are constant. 

(4) Integration over this boundary (if one 
variable is of interest) or over the inter­
sections of several boundaries (if several 
variables are of interest) . 

TABLE 4 

(1) Determination of the B matrix 

The linearity assumption is made that each of 
the N statistically independent error sources pro­
duces a proportional error in each component of 
the six-dimensional error vector at end of powered 
flight , X. Hence , there exists a 6 x N matrix B 
which relates the N-dimensional vector error 
source, S, to the six-dimensional vector, X . The 
element B .. in this matrix is the partial derivative 

1J 
of the ith component of X with respect to the one­
sigma value of the jth component of the error 
source , S (thus each component of S is normalized 
by its standard deviation for convenience, as defined 
below). The assumption of linearity is very good 
in nearly all cases. The notable exceptions and 
method of treatment have been noted (Section B -I-c). 

In the following analysis the basic error sources, 
S , are assumed statistically independent and un­
biased. The above definition is stated explicitly 
as 

X = BS (127) 

where each component Si is expressed in units of 

its standard deviation, ui . Table 4 shows the error 

sources that usually are most significant for each 
type of guidance system. 

Sourc es of Error f or Various Guidance Systems 

Guidance Inertial P latform Autopilot or Open 
Sy stem Guidance System Radio Guidance System Loop Guidance System 

Internal Platform and component Errors in measurement Initial alignment errors 
and initial alignment errors. of position and velocity of engine and inertial 
external coordinates due to basic elements. 
e rror Gyro drift. measurement devices and 
sourc es due to propagation refrac- Gyro drift. 

Accelerometer errors: tion through the medium. 
scale factor, bias , cross Gyro torquing error , 
coupling, etc. Ground based computer due to power supply and 

errors. gyro itself. 
Airborne computer errors . 

Engine shutdown errors. Vehicle center of 
Engine shutdown errors. gravity offset. 

Accelerometer errors. 

Propulsion system 
errors: I and weight 

sp 
flow. 

Engine shutdown errors . 

Timing errors. 
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The method in determination of the B matrix 
is to take each independent error source, one at a 
time, and find the six-dimensional error in X due 
to this, thereby yielding one column in the 6 x N 
matrix. This is done most expediently by using 
the same digital computer program which has pre­
viously been used in determination of the complete 
powered flight trajectory. N + 1 machine runs are 
made using this program, each one carried out 
from liftoff through each burning phase and coast 
phase until the end of the last burning period. On 
the first of these runs, all input conditions are 
nominal, and,of course, X is zero. On the second 
and each subsequent run, one input is perturbed, 
that being the error source under consideration for 
that run. As stated above, the amount of the per­
turbation is taken for convenience as the one-sigma 
value. The difference from nominal of the result­
ant output is X , which is the desired column in the 
B matrix, from Eq (127). 

(2) Determination of covariance matrix, 11. 

The vector X is a six-dimensional Gaussian 
density function since each of its components is a 
linear transformation of Gaussian error sources 
from Eq (127). The complete statistics of X a_re 
therefore given by the covariance matrix, A, de­
fined by 

where XT is the transpose of the column vector 
and E is the statistical expectation operator de­
fined by 

00 

E [h (xD = J h (x) f (x) dx 

- 00 

where h (x ) is any function of a variable of distri­
bution f(x) . Inserting Eq (127) in the equation for 
11. yields 

( 128) 

(129) 

6 x 6 matrix 

In deriving Eq (1 30), the following fact was used. 

E (SST) = unit matrix (130) 

This follows because of the statistical independence 
of the error sources in S, and because of the way 
B was defined in Eq (127). 
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In unusual circumstances where the assump­
tions given for Eq (127) are invalid, the same 
theory applies , but the expressions previously 
developed have additional terms. Such a situation 
might physically arise , for example , in a radio 
guidance system, if uncertainty in refraction causes 
a correlated (though unbiased) error in several 
basic measurements such as range, angle and 
their derivatives. The only change in the equations 
derived in this section caused by such a correla­
tion between the components of S occurs in Eq 
(129), which becomes 

(131) 

where the matrix E (SST) is no longer a unit matrix, 
but contains the correlation coefficients as off­
diagonal terms. Equation (131) then becomes the 
basic 6 x 6 matrix defining completely the statistics 
at final burnout, with all other equations remaining 
the same. 

If an error source is biased and the value is 
known (which is really necessary if it is to be in­
cluded in the error analysis) then the true system 
error can be reduced by inserting a compensating 
offset. 

3. Error Analysis of Various Trajectory Sequences 
(Ref. 2) 

As noted in the previous sections, the error 
analysis procedure generally requires machine com­
putation, although the transformation of errors in 
free-flight can be expressed analytically. These 
analytic expressions are useful, especially in cases 
where the errors at end of first burning can also be 
obtained analytically (for example, in a radio guid­
ance system). Thus, in these cases, the complete 
error analysis may be carried out analytically with­
out machine computation. 

Table 5 gives the in-plane errors for a fairly 
general trajectory, which invokes only the usual 
constraint that second burn occur at apogee of the 
coast ellipse. These equations become greatly 
simplified for a Hohmann transfer ellipse, as 
shown in Table 6. Table 7 is the transformation 
of errors in a nominally circular orbit. Table 8 
gives out-of-plane errors. 

The in-plane equations given in Tables 5, 6 and 
7 are derived by taking first order perturbations 
in the two basic equations of motion in a central 
force field given below. These are: 

1 - cos <l>f cos( YO + <l>f) 
2 + ---,-,--::--::-.,.----

}.. cos Y cos YO o 0 

1 + e sin(<I> - a) 
2 

}..O cos YO 
(132) 



2 3 
>"0 rO cos YO 

t z --'----=-----

where the zero subscript refers to conditions at 
beginning of coast. and the f subscript refers to 
quantities at apogee. 

TABLE 5 

In-Plane Errors at Injection in Terms of Errors 
Introduced During Each of Two Burns Separated 

by a Coast Time. t* 

Subscript 0 represents beginning of coast 
Subscript c represents end of coast 
Subscript f represents injection 
boT] represents pitch attitude error in second burn 
6v = velocity increment in second burn 

f..I = gravitational constant times mass of earth 
>.. = ratio of twice kinetic to potential energy at 

burnout 

1. Altitude Error 

1 - cos <P f 
2 

>"0 cos YO 

r f r f 12 (1 - cos <P f ) 

rO cos 2 YO t >"0 tan 130 
- sin.~ 

2. Velocity Error 

( aV) - [J.I. J.I. (a r ) ] oro t - vrO 2 --;:;;( -aro t 

(continue d) 
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TABLE 5 (continued) 

3 . Flight Path Angle 

6Yf = vc [(~) b.r + (~) b.vO+ f;;)6YO v for 0 t 0 avo t ~ 0 

- cos (YO + <pf)l (a <p ) J 1lVQ t 

(continued) 

* Tables 5 to 8 are analytic expressions for deter­
mining B matrix. The only constraint on the tra­
jectory is that the end of coast be apogee of the 
transfer ellipse. Gyro reference is assumed for 
apogee burn. 
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TABLE 5 (continued) 

_ Vo [- sin <P f sin {30 ~ - v 2 +cos (YO +<P f) 
c A. O cos 0 

( 8ej» (1 - e)2 [3 tan YOk1 
"BYOt 

o 

A. o (2 - A.
O

) sin 2Y
O 

e 

e 
2 1 - e 

e cos (<p - a) dej> 

[1 + e sin (ej> - a)] 3 

sin (<p - a) d<p 

[1 + e sin (<p - a)] 3 

1 1 sin <P f 

= 2" (1 - e 2) (1 - e sin <p f)2 

+ ~ 2e 2 + 1 sin <p f 

2 (1 - e 2)2 (1 - e cos <P
f
) 

. 2 ,h 
Sln 't'f) k 

+ 2 2 
sin {30 
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TABLE 6 

In-Plane Errors at Injection in Terms of Errors 
Introduced During Each of Two Burns Separated 
by a Coast Time, t, Yo '" 0° (Hohmann Transfer) 

where 

* The terms encircled are eliminated when a hori ­
zon scanner reference is used for apogee. 

TABLE 7 

Coast Phase Transformation of In-Plane Initial 
Errors 6rO' 6vO' 6yO Into Final Errors orf' OVf , 

6{3f' 64>f After Traversing an Angle 4>f in a 

Nominally Circular Orbit 

6 r f 
2-cos <P f 2 (1 - cos <P f> - sin 4>f 

rO 

6 vf 
- ( 1 - cos <P f) (-1+2coS 4>f) sin <P f 

Vo 

6 Yf - sin4>f - 2 sin 4>f cos 4>f 

64>f - 3 4> f + 2 sin 4> f - 34>f+4sin4>f 2(1-COS 4>~ 

~~-- ~~- ---~~-

6 r O 
rO 

6 v O 
Vo 

6 YO 

I 



TABLE 8 

Coast Phase Transformation 
for Out-of-Plane Errors 

Out-of-plane error /l' and ljJ in terms of initial 
errors, 0'0' ljJO and <Pf. ljJ and 0' are defined in 

Section B. 

= [cos <Pf 

sin <P f 

-sin <P~ [6O'~ 
cos <P f J 6ljJOJ 

4. Ballistic Trajectory Error Analysis (Ref. 3) 

The ground range over a nonrotating earth 
achieved by a ballistic missile is given by 

P '" g 
R tan _l __ Si_n_

y
=-O _C_O_S_Y~oc--_ 
~ - cos

2 
Yo 

rO vo 

2 

+Rtan-
1 

cos YO[l -(:~) cos
2 

YO 

+~ (:0 _ ~J~ _ :0 cos2 y~ -l 
rOvO f ~ovo f ~ 

(134) 

where subscript 0 indicates a cutoff condition, and 
subscript f indicates a final condition, and R is 
the radius of the earth, as shown in the accom ­
panying sketch. Differentiation of Eq (134) yie lds 
the following error partials. 

R 

Apogee 
~- ~ ..... 

" , , , 
\ 

, ( Any final 
\ point "f 

\ 

Spherical earth, 
no rotation 
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(135) 

. 2 2 
+ sm YO cos YO 

-,f 
(136) 

2 2:t -1 
+ sin YO cos Yrv 

2 

K2 1+{1_rOCOS2y +(vc) (rO_1):t 
r f 0 vo r f ~ 

-{R~: :)' (1 -, cos' Yo) + cos' vJ) 
'I[(:~)' -cos,S + sin' Vo cos' vol 

- {R sin YO [(:~j2 

-1 



where 

v C = circular orbit ve locity at cutoff altitude . 

These error sensitivities are plotte d in Figs . 3 
through 17. The quantity K

1
, which arises from 

the first term (cutoff to apogee term) of Eq (1 34), 
and which appears as the first term of Eq ( 136) 
and as a factor of Eq (1 35 ), is plotted in Figs . 3 
and 4 . The multiplying factor K2 is shown in 

Figs . 5 and 6 . The second term of Eq (1 36 ) 
8p 

(that is , the part of the error partial ~ arising 
rO 

during that portion of the trajectory between 
apogee and the final point) is given by Figs . 7 , 

8p 
8 and 9 . The first term of ~ (cutoff to apogee ) 

is shown in Figs . 10 and 11. The second te r m is 
shown in Figs . 10 through 15 . Figures 16 and 17 
are useful auxiliary graphs in using Figs . 3 
through 15 . The error sensitivities are also 
given (Ref. 4) in Figs . 18 and 19 as functions of 
r ange and Fig . 20 gives flight time as a function 
of range . 

C . SPACE VEHICLE GUIDANCE 
TECHNIQUES (Ref. 2) 

Once the requirements imposed by the mis ­
sion on the guidance system have been appraised 
by the methods of Section B , a gu idance philosophy 
may be selected to meet that requirement. 
Guidance may be defined as the processes of 
measurement , data extraction and smoothing , 
computation and control which are required to 
assure that a space vehicle reaches a desired 
destination from a given launch point. For the 
present purposes, the destination may be a point 
for injection into an arbitrary parklng orbit from 
a direct ascent trajectory to a point in space , 
with the proper six-initial cond itions to place 
the vehicle on a coast e llipse (for a transfer ma­
neuver), parabola or hyperbola to establish a 
lunar or interplanetary trajectory, or some other 
fina l -value condition. Thus, it is customary to 
classify the problem by : 

(1) Launch guidancE' 

(2) Midcourse guidance 

(3) Terminal guidance 

and to furthe r classi fy the guidance problem by 
the form of the mechanization and constraints, 
as : 

(1) Radio supervised (maximum radar range , 
minimum e levation angle, required look­
angles for antenna patterns, maximum 
slewing rates, etc. ). 

(2) Inertial (platform stability, linearity , 
threshold levels and dynamic range , 
integration accuracy, etc. ). 
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(3) Radio-inertial (combination systems 
where position may be derived from 
radar with inherent radar constraints , 
and veloci.ty from i.nertial measurement 
with inherent inertial system constraints) . 

T he literature is now becoming extensive on 
these more specialized problems of theory and 
mechanization . It is nearly impossible within 
the span of the handbook to do more than suggest 
different approaches to the guidance problem 
insofar as specific mechanizations are concerned. 
The chie f emphasis will be on providing the mis ­
sion analyst with general methods of guidance 
analysis applicable to any class of guidance s ys ­
tem. 

1. Formulation o f Guidance Equa tions 

The formulation of the guidance equations for 
the launch guidance phase may take the form of, 
(1) explicit guidance , (2) delta guidance , or 
(3) Q-guidance. 

Explic i.Lguidance. The r e quire d ve locity 

vector , vr ' is obtained in closed form as a func ­

tion of position and time. The velocity- to - be­

gained, v g ' is then obtained as 

v = v - v 
g r 

(1 38) 

where v is the instantaneous velocity of the ve ­
hicle . The vehic le is then steered in an efficient 

manner until v = 0 , at which time the engines g 
are shut off. 

De lta guidance . In delta guidance, the re ­
quired velocity vector is approximated by a 
functional expansion about the nominal expected 
burnout position and time (xn ' y n ' zn ' t n) as 

+ D (t - t ) + second order terms 
n 

(139) 

where v rn ' A , B, C, D are constant vectors and 

x, y , z denote the platform coordinate s ystem. 
Several second - order difference terms such as 
(x

n 
- x ) (z n - z) may be required to obtain the 

desired accuracy . The advantage of the above 
method is that only simple arithmetic operations 
rather than the square roots and divisions re ­
quired for explicit guidance need be performed 
by the airborne digital computer . The disadvant­
ages result from the larger number of constants 
that must be precalculated and inserted into the 
onboard digital computer. 

Q - guidance . Another method o f guidance is 
re ferred to as Q-guidance. This method giv es 
the velocity-to- be-gained directly by integration 
of 

v g 
( 140 ) Q 

i i . v 
J g 



where i, j = I, 2, 3 refer to x, y and z compo-
i nents) At are the components of thrust-drag ac-

celeration as measured by the accelerometers; 

and the matrix Qi is defined as 
J 

Bv i 
r 

Bx
j 

In explicit and delta guidance, it is necessary to 
perform a gravity computation, which is not 
required for Q-guidance. The only guidance con­
stants required for Q-guidance are the components 

of the Q-matrix and three initial values for ;~ . 
g 

The components of the Q-matrix will contain about 
10 trajectory-dependent constants . The disadvant­
age of Q-guidance is that the computer does not 
evaluate instantaneous position or velocity . These 
quantities are useful in orienting the body attitude 
during the coast period and for resetting the digital 
computer prior to the later burning periods. 

2. Launch Guidance 

a. Radio launch guidance 

A radio guidance mechanization of a space­
craft steering loop may proceed along the most 
general lines as shown in the sketch where the 
guidance complexity is placed in the ground 
equipment. An entire tracking network may be 
involved in gathering the tracking data. Depend­
ing on the nature of the tracking data (range-only, 
range-azimuth-elevation , angle-only) and the 
number of participating stations, an initial and 
then precision orbit is calculated by, say, an 
IBM 7990 computer; the actual orbit is compared 
to the desired orbit, and pitch and yaw steering 
commands or discrete commands are generated 
and sent to the control system of the spacecraft 
for thrust vector control. 

A single semispecial purpose guidance computer 
located at the launch site may be schematically 
represented as in Fig. 21. 

The missile dynamics for either a symmetric or 
nonsymmetric shape are given, tC?gether with all 
equations of motion reduced to a form suitable 
for digital computer calculation. Finally, a func­
tional block diagram is shown in Fig. 22 for a 
combination CW and pulse radio guidance system. 
One of the most severe constraints in a radio­
inertial s ystem is due to the antenna radiation 
pattern (see Fig. 23) and signal sensitivities of 
the spacecraft receivers. One way of overcoming 
such problems (though introducing other perhaps 
more flexible constraints) is to consider the 
usual inertial guidance mechanization. 

b. Inertial launch guidance (Re f. 5) 

To accomplish inertial navigation in a region 
containing gravity fields some method must be 
used for calculating gravity acceleration. If the 
path of the vehicle can be accurately predicted, 
the effects of gravity can be precalculated. In 
this case, guidance during flight would be done 
in terms of thrust acceleration and its time 
integrals only. As the path of a specific vehicle 
becomes difficult to predict (relative to the ac­
curacy requirement), it becomes necessary to 
make a gravity computation during flight. 

The following sketch shows, with an exag­
gerated scale, the powered flight trajectory of 
a space vehicle. A rectangular coordinate sys­
tem with origin in the vicinity of the trajectory 
and with the y -axis vertical can be used to ex­
press the components of gravity relative to a 
free - fall reference frame at the center of the 
earth as follows: 
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x g -
r 

y + rO 
g - r-

(141) 

[X2 + z2 + (rO +iJ3/2 

(142) 

y 
g Trajectory 
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------rc........:.---- x 
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I 
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I 



The gz term is similar to gx' but for simplic­

ity will be omitted here . x can be taken in the 
nominal plane of the trajectory and the problem 
considered in two dimensions . These equations 
are nonlinear and their mechanization requires 
considerable computer complexity. Simple line­
ar approximations which are valid near the origin 
of coordinates are 

go 
(143 ) g = - - x x rO 

g = y - go (1 
_ 2y ) 

r . (144) 
0 

The acceleration equations in component form are 

x (145 ) 

y = a + g 
ty Y (1 46 ) 

Block diagrams for the solution of these linear 
equations are shown in Fig. 24. The x channel 
has negative feedback and two integrations and 
thus has a sinusoidal response to an input dis­
turbance. The y channel has positive feedback 
and an input disturbance leads to a diverging 
value of y. 

The effect of the approximation in the gravity 
computer can, of course, be calculated for a given 
trajectory. Additional terms to include the non­
spherical gravity field of the earth can be included 
as necessary. If the acceleration free-fall refer­
ence frame is located in a satellite, for example, 
then the gravity components which give the dif­
ference in gravity between the location of the ac­
celerometer and the reference frame, would dif­
fer from those given in Eqs (141) and (142) . Be­
cause the satellite moves through the earth IS 

gravity field, the gravity components would vary 
with time. 

The effect of the gravity computation upon posi­
tion and velocity error buildup caused by acceler­
ometer or initial condition errors is of consider­
able interest . It can be investigated analytically 
in terms of perturbation equations of the form 

(147) 

(148) 

The differential coefficients are functions of 
space which can be obtained from Eqs (141) and 
(142). They should be evaluated along the unper­
turbed path of the vehicle . However, this leads 
to differential equations with time varying coef­
ficients which cannot be solved in closed form . 
For flights in a region of a few hundred miles 
breadth, the coefficients can be evaluated at one 
point in the vicinity of the trajectory with adequate 
accuracy for the purposes here . This gives the 
following equations for the perturbation in position 
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caused by thrust acceleration perturbation or ac­
celerometer error . 

l::.x· 
go 

(149 ) + -l::.x = l::.a 
rO tx 

l::.y. 2g
0 (150) - --l::.y = l::.a . 

rO ty 

The physical meaning of these equations is 
easy to see . For example, a positive error in 
vertical position leads to a calculated value of 
gravity acceleration which is too small and thus 
to a calculated value of true acceleration which 
is too large . This in turn integrates into an even 
lar ger positive pOSition error . 

The solution to Eqs (149) and (150) for constant 
values of thrust acceleration perturbations (ac­
celerometer bias or zero offset) are 

l::.atx 
[1 - cos r:f tJ (151 ) l::.x = 

gO/rO 

l::.a 

[COSh I ::0 t - ~ l::.y = ty (152) 
2go IrO 

The terms for initial condition perturbations are 
similar to these . Near the surface of the earth, 
the sinusoidal oscillation has a period of about 84 
min, that is, 

27f ' ro/go "" 84 min. 

Position errors caused by accelerometer er­
rors other than a constant bias can be calculated 
by well known methods. An offset in the attitude 
reference will cause a cross coupling error, thus 
l::.atx = /3aty, where /3 is the attitude reference er-

ror . A gyro drift rate thus gives an increasing 
position error . 

These perturbations or error equations illus­
trate a basic limitation of inertial guidance for 
long times of flight, namely, that errors in the 
vertical direction increase exponentially with time. 
However, errors in the horizontal direction caused 
by accelerometers are oscillatory with a period 
of 84 min. This makes practical two-dimensional 
inertial systems for aircraft and ships which can 
employ altimeters to measure altitudes . For 
flight times less th~n about 10 min, Eqs (1 51 ) and 
(1 52) can be approximated by the simple equations 

l::.x = l::.a t 
tx 

l::.y = l::.a t 
ty 

(153) 

(154) 

which are those that would be obtained by ignoring 
the feedback error from the gravity calculation. 
They would also be those obtained for navigation 
in a constant gravity field . 

Associated with the concept of this guidance is 
that of the standard or reference trajectory. Such 



a trajectory is one which a standard or nominal 
missile would follow under standard or nominal 
aerodynamic conditions . The path of any speci­
fic missile should follo"N the standard trajectory 
quite closely. In general, the specific paths will 
be statistically distributed about the standard 
which in some sense will be a mean of the distri ­
bution. 

A schematic of a steering computer is given 
in Fig. 25 . The angle commanded by the pitch 
programmer is comp3.red with the gimbal pitch 
angle to give a pitch steering command to the 
missile control system . The overall guidance 
loop is illustrated in Fig. 25 by the feedback from 
the missile control system through missile dy­
namics to the inertial measurement unit . 

Lateral and pitch steering having been accom ­
plished, the remaining problem is to terminate 
the missile thrust at the proper time so that the 
spacecraft will hit the intended aiming point . The 
proper combination of burnout values can be ob­
tained by considering the effects on target miss 
of small changes in the horizontal and vertical 
components of position and velocity . To express 
this analytically, the range of the missile is ex­
panded as a function of pOSition and velocity com ­
ponents about the standard burnout point . 

8p 8p 
p - Ps = =-:- (x - X ) + = (y - y ) ox S oy S 

(1 55 ) 
8p (. .) 8p (. ') +=x-x +~y-y + 
oX S oy S 

p deSignates range, the subscript s deSignates 
standard conditions, and the partial derivative 
coefficients are evaluated at the standard burnout 
point, 8p/8x;: C , etc . A computer which con-x 
tinuously calculates the downrange miss at the 
aiming point is shown in Fig. 26. Prior to the 
start of the flight, values of the standard burnout 
conditions, x s ' etc., are fed into the computer 

along with values of the coeffiCients , Cx ' etc . , 

which are calculated for the particular range de­
sired. At some zero time for guidance (which 
should be within a few seconds of the actual lift­
off time of the missile) the accelerometers are 
connected to the computer and torquing of the 
gyros at earth rate is stopped. Position and ve­
locity components relative to the launch point 
then appear in the channels indicated in the figure 
and the computer calculates the downrange miss, 
Mr' Early in the flight. the calculated value will 

be grossly in error because only linear terms 
are used in the expansion. Near burnout, how­
ever, the computation will be quite accurate . 
The thrust of the missile is terminated when the 
computed miss becomes zero . This will always 
occur because the missile is flying toward the 
impact point with an increasing velocity . 

The inertial guidance scheme should be evalu­
ated from several standpoints . For example, the 
need for the gravity computer should be investi­
gated. If the actual missile flight is sufficiently 
close to the nominal flight, the effect of gravity 
can be precalculated with sufficient accuracy and 
no gravity computer is necessary . On the other 

XII - 3l 

hand, and especially for extreme accuracy, addi­
tional terms in the gravity expansion might be 
necessary. If the variation in missile thrust is 
large, higher order terms might be needed in the 
expansion of the motor shutof~ Eq (155). Refine­
ments in the guidance scheme would include 
means of compensation for time of flight varia­
tions . The design of the system should include 
an error analysis of all of the principal compo­
nents so that a proper balance in design com ­
plexity can be obtained. For example, high ac­
curacy in the cutoff expansion in meaningless if 
the accelerometers are low accuracy devices . 
A thorough error analysis including the effects 
of inertial component tolerances is presented in 
Ref. 6 . 

3 . Midcourse Guidance 

Guidance principles applied to launch guidance 
have been discussed in the earlier sections . The 
spacecraft may be assumed to travel along a free 
flight path to its destination without further appli­
cation of thrust or guidance. This type of guid­
ance is accurate enough in general for establish­
ing earth satellite orbits, and possibly in more 
refined operations . However, for precise navi­
gation to the moon, to establish satellite orbits 
about the moon, or for interplanetary orbits mid­
course and terminal guidance will be needed . 
Midcourse corrections for lunar trajectories are 
considered in detail in the companion work, Lu­
nar Flight Handbook, Ref. 7. Differential cor­
rections are considered in Chapter VI of this 
manual. 

D. DESIGN OF ATTITUDE CONTROL 
SYSTEMS FOR EARTH SATELLITES 

(Ref. 2) 

The design of a spacecraft attitude control 
system is a complex problem. The specific 
stabilization and orientation requirements must 
be met, and compatibility with other spacecraft 
subsystems must be ensured. The early space­
craft, which were designed for long term oper­
ation, were spin stabilized . More stringent re­
quirements of present experimental, communi­
cations, interception or reconnaissance missions 
have demanded more precise or more complex 
control. The purpose of this part of the Handbook 
is to present several important problems which 
must receive attention in the design of the atti­
tude control system. Tradeoff and systems prob­
lems, considerations involved in a particular 
choice of an attitude control system, and design 
data which may be helpful for preliminary calcu­
lations are presented. The scope of the section 
is, by and large, limited to consideration of the 
attitude control of earth-orbiting satellites . 

The designer is confronted with the problem 
of choosing among a number of possible solutions 
for a particular attitude control system. Since 
no attitude control system can be broadly classed 
as optimal for every mission, a range of the pos­
sible control system selections must be reviewed 
in the preliminary design as each relates to both 
the required control system performance and the 
design of other subsystems . Often, the number 
of solutions can be quickly narrowed to one or two 
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logical choices . The designer must define the 
flight sequence, particular modes of control, and 
control laws, evaluate the effects of disturbing 
forces during operation, and assess the control 
system reliability to provide an optimum correc ­
tion technique for fine position and time control. 

To aid the designer and mission analyst in this 
task, the Handbook treats important system con ­
siderations of the mission and control specifica ­
tions; methods of obtaining control orientation; 
control system sensors and control modes . One 
typical satellite configuration is shown in the fol­
lowing sketch. 

z 

8 
1. Mission a~Control Configuration 

The purpose of this section is to survey the 
various types of spacecraft attitude control sys­
tems which might be used for various missions . 
It is important to begin with a general discussion 
of the broad specifications which are important 
in the preliminary design. Because control sys­
tem specifications for the spacecraft often differ 
depending on the mission, this section treats only 
broad requirements. Onc e th e missi.on is deter­
mined, the designer can look at various control 
schemes for the particular payload or range of 
payloads thai can be launched by the available 
boosters. This means that for some missions, 
studies involving the tradeoff between booster 
capability, weight of payload in a particular orbit 
or set of orbits, costs, reliability, the basic re ­
quirements 0f the missjon, and other system in­
terrelations are required . Pointing accuracy, 
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maximum attitude rates, system lifetime, reli­
ability, allowable weight , cost, state of hard­
ware development, orbital requirements, boost 
environment, etc . , are typical inputs to the con­
trol system design . 

a . Mission 

A limited set of possible missions will indi­
cate the range of similarities and differences of 
probable attitude control system requirements. 
Broadly, the missions have been categorized into 
experimental spacecraft, reconnaissance satel­
lites, communication satellites and missions re ­
quiring orbital docking. 

(1) Experimental spacecraft. The satellites 
and interplanetary probes fa-unChed to date have 
wide and varied stabilization requirements . Sat­
ellites containing equipment for detailed solar or 
stellar observations may need to stabilize with 
respect to the sun or star under observation to 
within a very few seconds of arc with very low 
rates (Orbiting Astronomical Observatory) . To 
obtain information concerning the earth's mag­
netic field, cosmic radiation, and the like, a 
satellite may need stabilization within the limits 
of only 10 or 20 (Orbiting Geophysical Observa­
tory) . Spacecraft for investigating vario us as­
pects of the moon, Venus and Mars, may require 
control during a landing operation as well as 
stabilization during space transit . The mid­
course orientation requirements may be similar 
to those of a satellite, but as the vehicle ap ­
proaches the planet, separate terminal control 
and guidance schemes are generally required . 
The lifetime of experimental satellites must be 
considered . 

(2) Reconnaissance satellite . Two types of 
vehicles to perform reconnaissance missions 
may be distinguished. The first is similar to 
the earth- pointing experimental satellite in that 
the mission function is to obtain pictures or data 
concerning earth topography or activities on the 
earth. BaSically, this system will have control 
requirements which will be a direct function of 
the resolution capability of the reconnaissance 
equipment aboard : good absolute pointing accu­
racy , and very low pointing error rates are re­
quired. A second type of reconnaissance vehicle 
is one for inspection in orbit of other satellites 
and space vehicles . Such inspection will probably 
require accurate orientation with respect to some 
other object, like the earth or sun. 

(3) Communication satellite. Various forms 
of control systems will be required to meet the 
needs of varying orbits, synchronism require ­
ments and antenna pointing. An oriented antenna 
may increase the antenna gain by as much as 10 
db . This could simplify the communication sys­
tem at the expense of additional control system 
complexity. The number of communication sat­
ellites depends on the orbit and coverage require­
ments . While more low altitude satellites are 
required for the same coverage as higher altitude 
satellites, the booster capability will allow more 
to be launched at lower cost, or alternatively, 
lower cost may be achieved through the use of 
simpler, more reliable boosters . The altitude 
also affects the control system design through 
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altitude- dependent environmental characteristics 
such as aerodynamics, gravity gradient, radiation 
and other phenomena. The number of satellites 
with synchronized orbits which require the addi­
tional complexity of a synchronizing or indexing 
system must be compared with those required 
in "random" orbits where such a system is not 
required. For example, 18 satellites in a 6-hour 
synchronized circular orbit are required for con­
tinuous coverage between New York and Paris, 
whereas approximately 21 are required in "ran­
dom" orbits for 99% coverage. 

(4) Orbital docking. Studies have indicated 
that the physical mating of two satellites in orbit 
is feaSible . This system would permit the trans­
fer of fuel to provide additional velocity to one of 
the vehicles (target vehicle) in orbit, essentially 
yielding an increase in booster capability. The 
actual mechanics and dynamics of the docking 
process and the problems of terminal guidance 
will require detailed attention by the mission 
analyst . For search, preterminal and terminal 
modes, the attitude control may require an earth 
or sun reference in addition to the tar get vehicle 
reference . 

b. Control configuration 

The limitations on size and shape which arise 
from the limited booster capabilities immediately 
constrain the configuration. The shape and partic­
ularly the moments of inertia are Significant. If, 
for example, the spacecraft is to be spin stabil­
ized, then for internal energy dissipation to pro­
vide stable damping, the moment of inertia about 
the desired spin axis must be larger than that 
about the other two axes. If, however, the vehi ­
cle is to be a low altitude, fully oriented satellite, 
the inertia configuration will determine whether 
or not the spacecraft is stable with respect to the 
torques generated by the earth's gravity field . In 
fact, the designer may choose configurations so 
that there is sufficient control moment to stabilize 
the vehicle from this effect alone . 

If the center of aerodynamic pressure does not 
coincide with the spacecraft's center of gravity, 
there may be large aerodynamic overturning mo ­
ments for the low altitude satellite which can af ­
fect the control system design and methods for 
generating countertorques. Principal axis {con ­
trol axis alignment, difference in inertias, may 
be Significant in the spacecraft dynamic response. 
In the design of momentum storage and mass ex­
pulsion systems, minimizing the moments of iner­
tia about the axes will help reduce the weight of 
the momentum storage and mass expulsion device . 
Unfortunately, the other subsystems, particularly 
the power supply and temperature control, may 
have a predominant effect on the configuration. 

(I) Power supply system. It is a nticipated 
that power supplies for earth satellites requiring 
long life will continue to use the sun ' s energy to 
provide primary power . Rechargeable batteries 
will be provided to supply the power during peri ­
ods of eclipse . The solar array size must meet 
the electrical power requirements of the system 
and recharge the batteries during periods of sun ­
light . 
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The power supply efficiency is maximum if 
the control system is capable of orienting the 
faces containing the solar cells toward the sun 
throughout the lifetime of the satellite--except, 
of course, during periods of eclipse (see Chapter 
XIII). If, however, a spin stabilized satellite is 
chosen, a maximum of only 250/0 of this power can 
be realized for a spherical satellite covered with 
solar cells in any orbit. Two particular spin 
axis orientations will provide more efficiency : 
(I ) where the spin axis is continually aligned along 
the sun line, the efficiency is equivalent to that of 
the oriented array; and (2) where the spin axis is 
oriented normal to the sun line, an efficiency of 
approximately 320/0 of that of the fully oriented 
array is achieved . 

The cyclic life of the batteries is affected by 
several things, including temperature, depth of 
discharge and height of charge . The control sys­
tem response characteristics during acquisition 
of the sun can effectively reduce the depth of dis­
charge required for a particular orbit through 
minimizing the time required for the solar array 
to reacquire the sun after an eclipse . The longer 
this takes , the more the batteries will be dis­
charged and the less time there will be for re­
charge before entering eclipse again. This prob­
lem is particularly significant in orbits with 
eclipse periods which exist for a significant period 
of time . 

During orbits with extremely long periods of 
sunlight compared to eclipse time, it may be de­
sirable to include in the solar array control laws 
a provision for charge-control to prevent over­
charging the battery . Since both continuous sun 
and earth orientation are impossible without an 
extra degree of freedom (except for special orbits 
and during particular periods in each orbit) sys­
tems which do not have a rotatable solar array 
have a reduced efficiency. However, if the power 
requirements are not extreme, it may be more 
reliable to have an unoriented rather than oriented 
array. This is an important tradeoff study to per­
form. 

The electrical power obtained from rotatable 
solar arrays must be transmitted from the array 
to the body. The control system, as will be 
shown later, can be used to eliminate the need 
for providing complete rotational freedom which 
would suggest the need of slip-rings for power 
transmission. Control laws can be used which 
limit the required solar array travel to ±90°. 

There are a number of other possible array 
configurations for which specific control laws 
can be generated. The problems associated with 
continuous but very slow drives may indicate that 
stepping the array or providing a set of multiple­
fixed positions is an easier and more reliable ap­
proach. 

(2) Temperature control. A number of active 
and passive temperature control systems are 
possible for satellite application. One system 
which has a great effect on both the control sys­
tem design and the configuration is one in which 
the main body is attitude controlled, so that the 
two surfaces perpendicular to solar array axis 



never see the sun. The temperature is controlled 
by insulating those four surfaces which sometime 
during the satellite lifetime will see the sun, thus 
preventing heat absorption. The other two sur­
faces contain shutters which are actuated to con­
trol the emissivity or radiation of internally 
generated heat into free space. These shutters 
will not be exposed to direct sunlight for long 
periods of time if the control system is working 
properly. If the satellite is earth oriented, sun 
control about the axis along the local vertical 
(yaw ) will prevent direct sunlight from impinging 
on these surfaces suggesting four design con­
siderations for the control system. These are : 

(1) Quick acquisition must be made to the 
sun orientation following separation 
from the boost vehicle to avoid long 
periods of unoriented attitude. 

( 2) Special methods of control may be re­
quired by the temperature control sys­
tems. The time required to acquire 
the sun when the spacecraft emerges 
from the eclipse must be controlled. 
The effect of low control gain during 
periods of high noon (i. e . , a condition 
obtained when the sun is in or nearly 
in the orbit plane) must be reviewed to 
keep from exposing these surfaces to 
the sun for long periods of time. 

(3) Any other modes such as rotation out 
of the required plane for velocity cor­
rections must take into consideration 
the possible exposure of these surfaces. 

(4) The sun-pointing accuracy during 
periods of normal control must satisfy 
the temperature requirements . 

(3) Orbit control system. For many earth 
oriented satellites, a system to provide change 
in the satellite ' s velocity during its time in orbit 
will be necessary. T he indexing into a syn­
chronous orbit of a communication satellite, the 
terminal guidance of a docking satellite , or the 
deboost of a vehicle for re-entry, are examples 
of systems which will utilize a propulsion system 
to change the spacecraft veloci ty while in orbit. 
The control system must be capable of properly 
reorienting the vehicle in space so the nozzle or 
rocket thrust will have the correct spatial attitude 
when the rocket is fired . Furthermore, since 
the thrust of this rocket will probably not pass 
exactly througfi the spacecraft center of gravity, 
a n overturning moment will occur . Sufficient 
control authority must be available to correct 
for t hese moments . In addition, most orbit con­
trol systems will have a fine or preci se vernier 
correction and/or a station - keeping mode that 
could easily use the control system nozzles and 
obtain energy from the attitude control system. 
Some simplification in hardware design will be 
obtained through integration of these systems . 

(4) Data link. Earth satellites will be re­
quired to communicate with earth based stations . 
For many systems specific antenna pointing is 
required . Ant enna gain and beamwidth, com­
m unication security, ground receiver flexibility 
and coverage are areas which affect the system 
desi gn. For earth satellites, pointing accuracy 
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of a few degrees is sufficient to retain most of 
the power in the transmitt ed signal. With proper 
orientation of antennas for interplanetary probes, 
increased data transmission rate may be possible. 

The data link, or communication system, can 
also be used to command special modes of con­
trol. For example, through analysis of telem­
etry data it may be learned that a component has 
failed . The communications system may then 
send a command to switch in a redundant com­
ponent. 

(5) Control configuration environment and 
reliablhty. The environment in which the attitude 
control system will be required to operate is of 
extreme importance. Control and disturbance 
torque generation and sensing requirements are 
discussed later. The principal considerations 
which affect the control system reliability and 
equipment design may be itemized as follows: 

Boost environment. The control system in 
the satellite must meet the requirement that it 
be operable after boost into orbit . During the 
first seconds of boost, the high accelerations 
(say 10 g ), vibration, and heat environment 
impose severe restrictions on all components . 

Vacuum. The pressure at 100 naut mi or 

185 km is approximately 10- 5 mm Hg, decreasing 

rapidly to 10- 10 mm at 1000 naut mi (1850 km) and 

to 10- 13 mm at 100,000 naut mi (l 8, 500 km) . In 
vacuum, there is no resistance to sublimation and 
evaporation of molecules of surface materials. 
There is a tendency for systems to "out-gas, " 
creating additional control system torques and re­
ducing the supply required for control torque gen­
eration. Substances with a low vapor pressure 
should be used to reduce the evaporation. T he 
positive e limination or proper sealing of r ubbing 
surfaces can reduce the problem to negligible pro­
portions. As an example , slip rings for trans­
ferring power from the solar array to the main 
body can be eliminated by employing special yaw 
and solar array control laws (described later) 
which limit the solar array travel to ±90°. If 
mot or - drive n sensors , ine r tial wheel s , a nd servos 
are used, t hey must be sealed to pr event t he evapo­
r ation of lubric a nts from redu cing the lifetime of 
t he bearings . 

Micrometeoroids . The average control sys­
tem torque caused by this effect is small and 
can generally be ignored in comparison with 
other torques experienced in space . Chapter II 
considers the quantity and energy distribution of 
micrometeoroids in space . Two additional con­
siderations are the possible puncture of the gas 
tank by a large micrometeoroid, and the general 
effect of bombardment on control system sensors 
and other components which are directly exposed. 

Particle radiation . Shielding is necessary to 
protect such components or surfaces as are ex­
posed to the bombardment of high energy protons 
and neutrons . Radiation damage can occur to 
sun sensors using solar cells, horizon scanners 
utilizing susceptible optical and detector ma­
terials, solid- state electronics, etc . Radiation 
damage depends on orbit altitude and inclination 
and must be evaluated. 



Other considerations . Other environmental 
considerations include ultraviolet rays which 
serve only to increase the rate of s:lblimation; 
X-rays and gamma rays which are only signifi­
cant during solar storms and can be essentlally 
eliminated by the same mechanisms that protect 
against high energy protons and neutrons; and 
cosmic flux which appears to be of insignificant 
consequence in ionization. 

Reliability. The degradation of system re­
liability due to space environment is difficult to 
predict . The use of failure rate data to assess 
the reliability of the control system is an im­
portant design tool and warrants further consid­
eration. The number of components in the pre­
liminary control configuration can usually be 
estimated. These estimates then form the basis 
for a reliability study. 

Assume that the failure of a single component 
will cause the entire system to fail and that the 
extrapolation from a laboratory environment to 
an operating space environment can be performed 
realistically. Even in the event of errors w 
extrapolation, the relative reliability of different 
design approaches can still be evaluated. 

The failure rate data for some commonly used 
components are given in Table 9 . These data re ­
fer to a laboratory environment with an ambient 
temperature of 30° C and applied electrical 
stresses of approximately 25% of the rated. In 
the period between "infant mortality" and "wear 
out , " most components experience a constant 
percentage random failure rate, Ac ' The prob-

ability of a system operating successfully for 
time, t I , is defined by 

P = e -Atl (1 56 ) 
s 

where 

A composite system failure rate in 
space environment 

tl length of operating time . 

TABLE 9 

Some Commonly Used Failure Rates 

Inherent Laboratory 
Failure Rate 

Component Per 109 Hours 

Silicon transistors 153 
Silicon diodes 51 
Resistors (film) 8 
Pots (composition) 38 
Capacitors (paper) 3 
Capacitors (solid 

tantalum) 40 
Transformer /winding 

(low voltage ) 10 
Relays (DPDT) 296 
Motors and tachometers 

(ac) 200 
Magnetic amplifiers 30 
Control windings 10 
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The failure rate data is often expressed in 
units of frits which are defined as the number of 

failures in 109 hr . If there is a requirement for 
a I-year operation and the system in space en­
vironment is assumed to be degraded over the 
laboratory environment by a factor of 3, the 
probability of one year's successful operation is 
then 

PI year 

l frits x 3 x 8760 hours 

10
9 

(157) 

2. Control Orientation Methods 

T his and the succeeding sections define some 
of the methods, techniques, ao.d problems as­
sociated with the design of the attitude control 
orientation and stabilization system. A most 
important choice in the early design is the method 
of obtaining attitude control torques . This 
section provides brief discussions of the important 
methods for providing control orientation. 

Each method is speCifically concerned with 
the effects of space environment and other changes 
of momentum the spacecraft may experience. It 
is important to remember the fundamental dif­
ferences between torques which are constant in 
inertial space , always resulting in additional 
momentum to the system, and torques which are 
constant with respect to body coordinates and are 
in many cases cyclic in inertial space . Such 
cyclic torques do not necessarily require the re ­
moval of momentum from the system. 

The followina items and combinations of them 
are briefly disc~ssed: (1) methods such as in­
ertial orientation (spin stabilization); ( 2) the 
manipulation of the natural forces of space, such 
as gravity gradient, solar. pressure, eart~ mag­
netic field, and aerodynam1cs; (3) the ments of 
internal rotating momentum storage and mass 
expUlsion. A choice from among the several . 
possible approaches is generally necessary qU1te 
early in the design . Special mod.es. suc~ as . 
separation rate control , acqu1s1hon, eC~lpse, 1n­
dexing, terminal gUidance, etc. , may d1ctate 
special control requirements. These modes are 
discussed separately in a later section. 

a . Inertial orientation 

The simplest means of obtaining control is to 
spin the vehicle about a known axis. If th~s axis 
is either the minimum or maximum prmc1pal 
axis of inertia, the momentum imparted by the 
spin rate will cause (without the influence of. 
external disturbances) the spin axis to remaw 
fixed in inertial space. If there is no need to 
orient a particular axis or antenna on the vehicle 
to the earth and if sufficient energy can be ob­
tained from the sun for electrical power, this 
method is the simplest. Pioneer V , Explorer VI, 
Courier and others have been stabilized in such 
a manne'r. The final orientation of the spin axis 
in space will be the inertial orientation which 
exists at the time the spacecraft 1S spun. If 
there is initial momentum not along the spin axis, 
the system is stable only if the spin axis is also 
the axis of maximum inertia. Mercury ring 



dampers are sometimes utilized to remove the 
wobble which occurs due to separation rates and 
dynamic unbalance effects . 

There are several possible control orientations 
that might be required. Some of the more usual 
ones are sun orientation and stellar orientation: 

(1) Sun orientation. It is possible to orient 
the spin axis towardthe sun. This orientation 
gives the same power efficiency as an oriented 
solar array but it could complicate a communi­
cation system because of the time-dependent 
orientation of a body-fixed antenna with respect to 
the earth. To maintain the spin axis orientation 
to the sun will require precession of the spin 
axis at the rate of one revolution per year plus 
that required to compensate for the regreSSion of 
the orbit line of nodes. A very simple attitude 
system can be used to obtain this orientation, if 
the pointing requirements are not too stringent. 

(2) Orbit plane orientation. A spin stabilized 
satellite with its spin axis normal to the orbit 
plane can be used for a number of applications , 
for example, satellites r equired to photograph or 
otherwise survey the earth ' s surface and com­
munication satellites where the antenna provides 
a toroidal pattern about the spin axis . If the 
earth-sun line remains normal to the orbit plane, 
then a high efficiency solar array can be mounted 
normal to the spin axis. If the inclination of the 
orbital plane to the ecliptic plane is small, solar 
cells mounted on a cylindrical surface about the 
spin axis will operate for the satellite lifetime but 
provide a maximum power per cell of only 1/ 1i x 
the power per cell that would be achieved with cells 
in a comparable fully oriented array. If the orbit 
is unrestricted, then on the average each solar 
cell on the spinning vehicle will provide only 1/4 
the power per cell of cells in the comparable fully 
oriented array. 

(3) Other orientations. Spin stabilized satel ­
lites can conceivably be employed to maintain 
other orientations than those discussed above . Such 
tasks as pointing telescopes at fixed stars can 
easily be performed; however, s'.lch requirements 
are often associated with scientific missions where 
data transmission considerations require earth 
oriented antennas for communication, and an 
oriented sol ar array for power. These au.xiliary 
tasks cannot easily be performed with a spin 
stabilized satellite . 

Spin stabilization does not appear to be a 
satisfactory control scheme for earth orientation 
of an axis of an earth orbiting satellite. Either 
large torques ( large energy expenditure) are re­
quired to maintain this spin axis rotation, or 
internal moving parts such as reaction wheels are 
required. Torque impulse, if applied properly, 
will require an energy expenditure of Hw per 
revolution where H is the total momentum of the 
satellite and w is the average satellite orbital rate . 
If wheels are used, they must be capable of storing 
momentum at least equal to the spin momentum; 
for this reason they introduce signifi cant stability 
problems and require complex implementation. 
Other problems, such as achieving the proper 
initial orientation and devices for damping the 
nutation must be considered . The spacecraft de -
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sign yielding maximum flexibility will not, for 
most cases, rely on spin momentum for stabiliza­
tion and orientation. 

A symmetric body spinning at an angular 
velocity, PO' about either maximum or minimum 

principal axes of inertia will, in the absence of 
any external moments, maintain its initial orienta­
tion constant in inertial space. If the body total 
angular momentum vector initially coincides with 
the spin axis , and if an impulse angular momentum 
is now added normal to tile spin axis , the body 
spin axis will precess about the new system total 
angular momentum vector . The rigid body axes 
are defined in the sketch. The body is considered 
to be symmetrical about the spin axis . 

The motion of the satellite spinning at a con­
stant spin rate in the absence of any external 
torques will generally be perio'dic about the spin 
axis. To simplify the solution of the equations 
of motion, a complex angular velocity, wn ' is 
defined as 

w 
n 

W ..L i uJ 
x y 

(158) 

Substituting this equation into Euler ' S equations of 
motion for a rigid body, the so lution which defines 
the frequency of angular nutation is obtained in 
body coordinates. This means i f the total body 
angular momentum, Ht , is about some other axis 

than the spin axis , the spin axis will experience 
nutation (free precession) about the total momen­
tum vector. The following sketch shows the trace 
of the tip of the body spin axis under such an in­
fluence . 

AXIS 

, HT , 
Hr " 

r--SPIN AXIS 
- - .., / MOTION 

A point on the nutating body rotates at a fre­
quency, given by 

I 

rl=(r- ~ PO 
x 

( 159) 



where I z is the moment of inertia about the spin 

axis and Ix is the moment of inertia about a trans ­

verse axis . For an inertial observer watching a 
hxed pomt on the body, this frequency is simply 

IzPO 
S1i = -1- for small 9. (1 60 ) 

x 

The half angle cone, 9, for the motion of z is 
given by 

( 161) 

Passive dampers dissipate energy to remove the 
nutation (but do not change the system angular 
momentum) causing the z-axis to be aligned with 
Ht . Precession of the vehicle angular momentum 

vector is obtained by application of a moment im­
pulse applied normal to the momentum vector . 
Any nutation that results from momentum vector 
reorientation can be damped passively by several 
schemes and it can also be prevented by proper 
application of another impulse also normal to the 
z-axis . 

If an impulse is applied normal to the spin 
axis to cause a precession, then the application 
of another moment impulse (equal to the first 
and also normal to the spin axis ), after the body 
has rotated through an angle cj> given by 

1 x 
<j> = I 1f 

Z 

radians (1 62 ) 

will eliminate the nutation and will have caused 
the z-axis to precess through an angle of 29. 
Energy considerations will show that, for passive 
damping schemes, the moment of inertia about 
the spin axis must be greater than that about a 
transverse axis . 

The advantages and disadvantages of spin 
stabilization as contrasted with control of non­
spin configurations are presented below. 

Advantages . (1) Fixed inertial orientation 
with limIted accuracy can be achieved with a 
completely passive system; (2) accurate orienta­
tion with respect to a fixed star or slowly rotat­
ing line of sight can generally be achieved with a 
fairly simple, lightweight system; and (3) most 
disturbances including torques from velocity cor­
rection jet misalignments have only a small effect 
on the accuracy of a spin stabilized body . 

Disadvantages . ( 1) Only one axis can be con­
trolled; ( 2) a complex control system is required 
to point the spin axis along a rapidly rotating line 
of desired orientation; and (3) spin speed control 
may be required on systems where disturbance 
torques may cause large changes in the spin mo­
mentum of the system. 

b . Use of natural forces of space environment 

This section discusses the major sources of 
torques which will be experienced by the vehicle 
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during its lifetime in orbit . These torques may 
be harnessed for control purposes or treated 
simply as disturbing influences for which control 
moments from other sources must be provided . 
Four major sources of torque which mig;1t be 
used for con~rol are solar radiation pressure, 
graVIty gradIent , earth ' s magnetic field and aero­
dynamics . Gravity gradient, aerodynamics and 
earth ' s ~agnetic field have their greatest effect 
at low altItudes; solar radiation pressure is 
largely independent of altitude, and depends on 
the spacecraft surface area facing the sun. 

(1) Solar radiation torque. The torque due 
to solar radiation pressure forces acting on a 
satellIte vehIcle is significant and must be eval­
uated . The combined equations necessary to 
express these torques in the general equations 
of motion of the vehicle are highly nonlinear . 
The purpose here will be to discuss briefly the 
cause of solar radiation torque and its effe ct on 
spin stabilized spacecraft and satellites with 
active attitude control orientation in an earth­
sun reference. 

Every satellite vehicle is composed of a 
number of distinct surfaces, each with particular 
surface reflective properties and characteristics . 
The bombardment of these surfaces by photons 
emanating from the sun will create forces on the 
spacecraft . The magnitude and direction of these 
forces are determined by the reflective proper­
tIes of the surface . If the center of radiation 
pressure through which these forces act is not 
coincident with the vehicle center of mass, then 
a torque acting on the vehicle will be developed . 
ThIS torque may be of sufficient magnitude to 
affect the control system design . 

The radiation power in the vicinity of the 

earth is 1. 94 cal/cm 2-min corresponding to a 

pressure of 9.4 x 10- 8 psf (4.48 x 10- 6 n/m2) 
~or complete absorption . In preliminary design 
It IS necessary to calculate an upper bound on the 
radiation torque in order to determine the space­
craft momentum storage requirements for control 
system design . 

The effect of the solar radiation torque on a 
spin stabilized satellite depends on the orientation 
of the s pin axis with respect to the earth - sun line 
and the vehicle projected area facing the sun. 
The force parallel to the spin axis during one 
spin cycle will have no net effect on the vehicle . 
That force perpendicular to the spin axis can 
create precession of the spacecraft if it does 
not pass through the center of mass . The nature 
of the momentum change will depend on the orbit. 
For example, in a polar orbit (where there is no 
orbit plane regression) the net momentum caused 
by this torque will average to zero in one year . 

For a fully oriented satellite with sun-earth 
orientation the torques will depend on the control 
laws and the inclination of the orbit with respect 
to the sun . Where the sun lies in the plane of 
the orbit, the torques in two axes will be cyclic 
in inertial space except for any rectification 
because of the constraint of earth orientation. 
Consider the example where the solar radiation 
torques are due solely to a solar array, as shown 
in the following sketch. 



The radiation force acts through the center of 
pressure (CP) and creates constant moments 
about the z- and x - body axes, Ml and M2 respec-

tively . If the z -axis is continuously oriented 
toward the earth and the sun is perpendicular to 
the orbit plane, the torques are cyclic in inertial 
space. For the sun in the orbit plane the moment 
is constant in inertial space . A plot of these 
torques in inertial space for orbits possessing 
inclination with respect to the sun of 90° and Co 
is shown in the following sketches . 

The solar radiation torque may also be used 
to provide useful control system torques . It has 
been proposed to equip the spacecraft with a large 
weather-vane type of reflective sail and control 
the vehicle by actuating this sail to create control 
torques . Such a scheme is difficult to implement 
and requires special control during eclipse and 
som form of momentum storage during periods 
when control torques about required axes cannot 
be obtained . Figure 27 presents the torque from 
solar radiation as a function of area and radiation 
pressure lever arm for total absorption . 
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(2) Gravity gradient . Th earth I s gravitational 
potential varies with altitude . For this reason the 
center of gravity and the center of mass of a satel­
lite are not xactly coincident. Unless the force 
of gravity, applied at the center of gravity, acts 
along a line passing through the center of mass, 
a torque tending to rotate the satellite will result . 
This torque can be employed to stabilize a salel­
lite with respect to the earth ' s gravitational field . 
The gravitational torque may represent a disturb­
ing input which must be overcome by the satellit 
control system . 
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The force due to gravity on a unit mass can be 
expressed in terms of the negative gradient of the 
gravitational potential as 

F = - v( -: ) ( 163 ) 

where 

I' the magnitude of r, a radius vector 
from the earth's center to the unit 
mass 

the product of the universal gravita­
tional constant and the mass of the 
earth 

the gravitational potential, a 
representation sufficiently accurate 
for the purpose here . 

The torque M tending to rotate the satellite about g 
its center of mass is then 

( 164) 

where p is a radius vector from the satellite 
center of mass to the differential mass dm and 
the integration includes all mass of the satellite . 
For conditions where p is very small with respect 
to r, a condition always satisfied for earth satel ­
lites, the preceding integral expression for torque 
can be evaluated to yield 

where 

and 

k) (I - I ) 
yy zz ( 165) 

k) (I - I ) 
zz xx 

( 166 ) 

M = 3J.l
3 

(t; . j ) (t; . j ) (I - I ) 
gz r I' xx yy 

i , j, k 

rO (1 67 ) 

(1 68 ) 

= unit vectors along satellite 
principal axes of inertia 

= ·unit vector for and magnitude 
of radius vector from the center 
of the earth to the satellite 
center of mass, respectively 

ill-Q..m..!ints of inertia about 
i, j, k respectively 

Examination of lhese torque equations shows that 
all three torque com ponents will be zero when 
L( is aligned with a principal axis of inertia . 

I' 

However, a stable torque-free orientation will 
exist only when the principal axis with minimum 

.. -~ 



moment of inertia is aligned with u
r

' Complete 

stable orientation is possible only for the above 
condition when, in addition, the axis of maximum 
moment of inertia is aligned perpendicular to the 
satellite orbit plane , Gravity gradient torques 
provide the vertical orientation of the axis of 
minimum moment of inertia and result in a satel ­
lite rotation of the orbit rate , Gyroscopic action 
tends to orient the axis of maximum moment of 
inertia perpendicular to the orbit plane and thus 
along the angular rotation vector , 

To establish more clearly the effects of gravity 
gradient on a satellite it is convenient to consider 
the satellite in a cir cular orbit shown in the fol­
lowing sketch. If all error angles are small, then 
the torque components due to gravity gradient are 

*''---_.1...-'-__ 1 

2 (1 69 ) M -3w (I - I ) <I> 
gx o yy zz 

M 
gy 

2 
-3wO (lxx - 1zz ) e (170 ) 

M 
gz 

0 (17 1 ) 

where Wo is the orbit rate . The time rate of 

change of angular momentum of the system is 
equal to the applied torque and for spall error 
angles, the angular velocity vector n, is given by 

The linearized equations of motion for the system 
become 

I .!- + 4wO 2 (I - I ) <I> = 0 xx 't' yy zz 
(17 3 ) 

I e + 3W02 (I - I ) e = 0 yy xx zz 
(1 74) 

I d, + W 2 (I - I ) ljJ = 0 
zz 't' 0 yy xx 

(17 5) 

where cross-coupling terms have been neglected, 

An undamped motion will occur about the 
orientation where all three error angles are zero 
if I > I > I . In order to stabilize a satellite yy xx zz 
by use of gravity gradient torque some aUXiliary 
damping system is required. Such damping can 
be provided by reaction wheels driven from 
sensors within the satellite. 

A more attractive scheme is to provide the 
necessary damping by passive means such as 
body flexure, liquid dampers, or passive inter­
actions with the earth ' s magnetic field . Un­
fortunately, such passive techniques are not yet 
completely understood, and at present their de­
sim is difficult unless very small damping factors 
can be tolerated. 

The limitations of the usefulness of gravity 
gradient torque for stablizing a satellite with 
respect to local vertical and the orbit plane are : 

( 1) Gravity gradient torques decrease 
with altitude while some disturbance 
torques (notably solar radiation pres­
sure torques ) are invariant with alti­
tude, thus it is difficult to design high 
altitude satellites to operate primarily 
with gravity gradient stabilization. 

( 2) Orbit eccentricity introduces disturb­
ances in the gravity gradient control 
which preclude the use of this type of 
control for highly eccentric orbits. 

( 3) At low altitudes aerodynamiC torques 
are encountered which greatly com­
plicate the design of a gravity gradient 
controlled satellite . 

( 4) Satellite requirements such as solar 
arrays to collect solar energy, com­
munication antenna placement, booms 
for experiments, and restrictions on 
configuration for compatibility with the 
boost vehicle may so constrain the 
satellite configuration that gravity 
gradient stabilization cannot be achieved. 

( 5) Highly accurate orientation is difficult 
to achieve since attitude errors must 
be developed to provide gravity gradient 
torques to counter disturbance torques. 

Gravity gradient torques become disturbance 
torques when other than local vertical orientation 
is desired , or when control is accomplished pri­
marily with other techniques such as gas expUl­
sion systems operated from a horizon scanner . 
In the latter case, gravity gradient torques will 
generally constitute system disturbances even 
when the desired orientation is apparently the 
stable gravity gradient orientation. The active 
control system will always attempt to align with 
respect to the control axes, which will coincide 
with the principal axes of inertia only in the case 
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of perfect alignment . Furthermore, if a solar 
array that rotates with respect to the satellite 
proper is used to generate electrical energy, the 
principal axis of inertia will rotate with respect 
to the control axes and an additional system dis­
turbance will result . 

(3) Earth ' s magnetic field . The magnetic 
field of the earth can be used in conjunction with 
magnetic rods or current carrying coils to provide 
control torques. The earth 's magnetic field has 
already been used with magnetiC rod arrays to 
provide "des pin systems" on Transit 1B and 2A 
satellites. It is now evident that a complete con ­
trol syste m is feasible based on obtaining control 
moments from the energizing of satellite-fixed , 
current-carrying coils . For lower altitudes , the 
torque obtained from the coils can offset the ef­
fects of disturbance torques without lar ge expendi ­
tures of power or extremely weighty coils . For 
designs utilizing other torquing schemes it is 
imperative that care be taken to reduce the mag­
netic moment of the spacecraft so that magneti­
cally induced disturbance torques are not signifi­
cant . 

All the factor s contribUting to the earth 's 
magnetic field are not well understood, but it is 
clear that for satellites greater than 100 mi above 
the surface of the earth, circulating currents in 
the atmosphere and surface field irregularities 
do not significantly affect the approximation of a 
field which will be produced by assuming a simple 
magnetic dipole at the center of the earth. 

The axis of this dipole , which best represe nts 
the magnetic field, is skewed at an angle of ap ­
proximately 18° with respect to the earth 's spin 
axis. The North Magnetic Pole is at approxi ­
mately 70° N Latitude, 97° W Longitude . The 
South Magnetic Pole is at approximately 73 . 5° S 
Latitude and 155° E Longitude . This means that 
the axis of the dipole, and hence the field, pr e ­
cesses around the earth ' s spin axis . This pre­
cession is significant and means that only in 
orbits which are synchronous with respect to the 
earth's spin w ill the effects of the magnetic field 
be the same during successive orbits or sets of 
orbits (depending on the synchronous period) . 
Only in a 24-hour orbit which contains the dipole 
is it impossible to generat e torques for complete 
three-axis control. In general, the field will 
vary constantly with respect to system axes . In 
anyone day (due to the field's precession about 
the earth's spin axis ) it appears possible to gen­
erate control torques about all of the required 
control axes . These torques may not be available 
at the instant they are required, suggesting the 
requirement for momentum storage . Further, 
the magnitude of the field is different on each 
successive orbit, depending on the altitude , in­
clination, eccentricity , time of launch, point of 
injection, control axis orientation (control laws) 
etc . Knowledge of the field magnitude and direc­
tion is essential to the proper energizing of coils 
and must be supplied either by computation or 
measurement. The data essential to the prelim­
inary de Signer is the magnitude of the field as a 
function of altitude and variations typical of those 
which will be experienced in the particular orbit . 
Figure 28 shows the total magnetic field as a 
function of altitude for the dipole representation . 
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A current carrying coil in the magnetic field tends 
to assume a position that will result in the largest 
possible flux through it in a positive sense. That 
i s , the force F on an el ement of wire in a flux 
field , B, i s given by 

F = i dl x B (176) 

or a coil whose center is along the spacecraft 
z-axis would cause the spacecraft to experience 
a torque, Mm in dyne-centimeters of 

where 

2 
7r r 

M = __ c_ n (; B +; B ) 
m 10 x y Y x 

(177) 

Ux and u
y 

= unit vectors along x and y 
spacecraft axes r e spectively 

r c 

B 

n 

= the radius of the coil in centi ­
meters 

the current in amperes 

= the flux density in gauss 

= the number of turns. 

It is interesting to not e that 0 . 1 gauss acting 
normal to a 10-turn coil of No . 14 (standarrl 
household wiring) copper wire 1 ft in (0 .3 m) radi ­
us (weight less than 1 lb (4.4 newtons) without sup­
ports) when energized with 1 w will produce a 

-5 -5 
torque a pproximately 5.8 x 10 ft-lb. (7.9 x 10 
m-newtons) This i s potentially a n extr emely at ­
tracti ve torque for control. This torque i s about 
a n order of magnitude above tha t anticipated for 
e ither solar rad iat ion or gravity gradient with 
rea sonabl e design practices . The magnitude of the 
control torque obtainable for a coil with a I-ft 
(0.3 m) radius over the magnetic equator is plotted 
in Fig . 28 as a function of altitud e . 

There are some interesting tradeoff studies 
betwe en weight, power, wire size,and the use of 
materials that can be considered. For example, 
for a circular coil the torque in a constant field 
is equivalent to 

Torque = k1 pl / 2W 1 / 2 Rp-1 / 2 (178 ) 

ki = constant of proportionality (i 1,2,3) 

P = applied pow er 

W weight of the coil 

R radius of the coil 

p = relative resistivity of the material. 

Th e most significant increase in torque is ob­
tained with larger radius coils . Larger coils 
of the same size wire with the same power show 



A knowledge of the variations of the earth ' s 
magnetic field along the orbit is important . The 
combination of nodal regression , dipole axis pre­
cession, and orbit period means that the flux will 
vary each revolution and is different from time to 
time, except for those that have a period which is 
a multiple of the earth 's spin rate . The variations 
of the flux density in an inertial coordinate system 
are plotted as a function of time for orbit inclina ­
tions of 0°, 30°, 60° and 90° for two consecutive 
orbits of 400 naut mi (741 km ) in F ig . 29 . The 
inertial coordinate system for these plots has the 
x-axis along the earth-sun line at the vernal 
equinox, the z-axis essentially along the positive 
earth spin vector, and the y-axis to form the right ­
handed set . To see the effectiveness of control, 
the component of flux density along the earth ' s 
local vertical is plotted as a function of time for 
the 400-naut mi orbit in Fig. 30 . 

For the purposes of calc ulation , the earth's 
field can be simply expressed in terms of the 
axial and normal component from the earth's 
magnetic dipole . The equations are 

where 

(1 - 3 cos 2 6) 
Haxial = 0 . 308 (r/R )3 (17 9) 

H = O. 461 sin 2 6 
normal (r/R )3 

(1 80 ) 

rl . I and H 1 = the components of field 
aXla norma intensity in oersteds 

6 = the angle between the earth's magnetic 
dipole axis and the radius vector to the 
satellite 

r = the radius vector to the satellite from 
the center of the earth in centimeters 

R = the radius of the earth (6 . 371 x 108 cm) 

If the dipole is aligned along the earth 's spin 
axis (a reasonable assumption for preliminary 
calculations), then the latitude, L, is equal to 
(90 - 6)° . Figure 31 shows the total magnetic 

field (H . 12 + H 12) 1 / 2 as a function of 
aXla norma 

latitude for this assumption . 

Some of the limitations a nd considerations on 
the usefulness of earth's magnetic field for stabil­
izing a satellite are : 

(1) Since the torque generated is always 
about an axis perpendicular to the 
earth ' s field , only two axe s can be 
controlled at once . It is necessary to 
add devices such as inertia flywheels 
or gyros to store the momentum along 
the axis which cannot be controlled 
until the spacecraft reaches an orbit 
pOSition where the momentum may be 
magnetically transferred from that axis . 

(2) The magnitude of the control torque 
must be greater than the sum of the 
internal and external disturbance 

torques . It is not difficult to achieve 
fairly significant control torques at 
altitudes up to 10 , 000 mi. (16,000 km) 

(3) The earth ' s field in body coordinates 
is continually changing. In-fli ght com ­
putation based on this field must be 
performed or the direction of the field 
must be sensed in order to determine 
proper current patterns required by 
the coils . This might be done using 
magnetometers as magnetic field sen­
sors and primary orientation signals 
obtained from earth local vertical sen­
sors, sun sensors, or star trackers 
and others . 

( 4) The stability of a system using body­
fixed coils in the earth's magnetic 
field is questionable because of the 
difficulty imposed by the inherent 
cross- coupling torques due to the action 
of the magnetic field on the coil. Cur­
rent carrying rods or sheets may pro­
vide one solution. Another possible 
solution would be to use the magnetic 
field to induce momentum in a controlled 
way by providing eddy current damping 
to the momentum wheels . Unfortunately 
the amo unt of momentum imparted to 
the body by this method is, for practical 
purposes, quite low. 

( 4) Aerodynamic torques . The earth satellite 
in a low altitude orbit, or with a low altitude peri­
gee , will experience aerodynamic forces during 
its lifetime . The nature of these forces, depend­
ing on the orientation of the vehicle and its altitude , 
may be of consequence and may require an expen ­
diture of a significant amount of control system 
momentum. In fact, for some extremely low 
altitude satellites, certain proposals have been 
made to use the aerodynamic torques through a 
lar ge rudder or actuating trailing drag device to 
obtain control torques . Since somewhat higher 
altitude satellites are being considered here, the 
aerodynamic torque will be treated as a disturb­
ance torque with simplified methods for computing 
its effects . 

Knowledge of the density of the upper atmosphere 
is constantly improving. The ARDC 1959 Atmos­
sphere, which is frequently used, represents the 
a verage density when perigee is in twilight near 
the time of a sunspot maximum . The density can 
vary conSiderably from the ARDC 1959 model. 

"Hyperthermal free molecule" flow theory is 
generally used to obtain the shearing and normal 
stresses on the various flat surfa ces of a space 
vehicle . Although this theory has been adequately 
described, two important criteria associated with 
it are worthy of note . 
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(1) The mean free path of the air molecules 
must be many times greater than the 
size of the body moving through the air . 
In the vicinity of the body, the frequency 
of collisions between air molecules is 
negligible relative to the frequency of 
collisions between the molecules and 
the body surface . The above condition 



is realized for most spacecraft since 
at an altitude of 150 mi (280 km ) , the 
mean free path of free stream molecules 
is approximate ly 1000 ft ( 300 m ) where­
as the largest body dimension i s usually 
l ess than 15 ft. (5 m ) 

( 2) The term "hyperthermal" im plies a 
vehicle speed much greater than the 
mean free stream molecular speed . 
The orbital speed of spacecraft at 150 
mi (280 km ) i s roughly an order of mag­
nitude greater than the mean mol ecular 
speed , and hence , the hyperthermal con­
dition is deemed acceptable . 

The equations which describe the pressure, 
P, and the shearing stress, S, are 

P = 2( 2 - a ') q sin 
2 13 

S = 2a q sin 13 cos 13 

(1 81) 

(182 ) 

where the pressure, P, acts normal to the surface 
and the shearing stress, S, tangent to the surface 
in the direction of the normal projection of the 
velocity vector on the surface . The angle of at­
tack, 13 , may be expressed in terms of the yawing 
angle, ljJ, for the body surface . Hence , 13 = ljJ and 
13 = 90° - ljJ for surfaces whose normals are along 
the y- and x-body-axes, respectively (see sketch 
Section D. 1. ). It can be shown for the solar array 
that sin 13 = sin ljJ cos <1> . The previous angle p 
relations are valid only when the velocity vector 
lies in the xb ' Yb plane . Computation of force on 

the body and array surfaces as a function of 13 or 
ljJ and <I> is a straightforward process provided 

p 
the surface area is known. The question of sur ­
face area arises when it is realized that at most 
yaw angles the leading paddle partially shades the 
body and portions of the body partially shade the 
trailing paddle from possible molecular collisions . 
As a result, shading factors must be calculated. 
Since for this type of flow the center of pressure 
is essentially at the center of the exposed surfaces, 
it is necessary to calculate the latter in conjunc­
tion with the shading factors . 

T he two quantities, a and a', respectively , 
defined as the surface reflection coefficients for 
tangential and normal momentum exchange, have 
a significant influence on the magnitude of the 
pressure and shearing stress . The nature of the 
molecular re-emission, and hence the value of a 
and a' , are functions of the type of surface mate­
rial, the velocity angle of incidence , and the wall 
temperature . The value of a and a ' can vary be­
tween 0 and 1. T he few measurements made on 
typical engineering surfaces indicate values of a 
between 0.8 and 1. O. For low angles of attack it 
appears that the characteristic of re-emission 
may be altered sufficiently to cause considerable 
deviations of a' from these values . The quantity , 
a' , had not yet been measured experimentally; 
however, the values of a and a' should not differ 
greatly. The surface interaction experiments 
which have been conducted imply that most mole­
cules do not rebound in billiard- ball fashion, i. e . , 
with the angles of incidence and reflection equal, 
but that they are diffusely scattered due to 
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(1) physical roughness of the surface, and (2) 
temporary trapping on the surface. T he effect 
of changes of these coefficients on the maximum 
disturbing moments must also be considered in 
the design until better data are available . 

For preliminary design , an approximate 
maximum moment due to aerodynamics for a 
spacecraft similar to that shown in the sketch 
of Section D. 1. can be computed quickly . Com­
pute the offset of the center of area from the 
cenler of mass and the exposed area for the 
fJ or b ' s which appear critical. The torque 
due to drag is simply 

where 

(183 ) 

CD = the drag coefficient or 2(2 - a' ) 

LD = the. assumed center of area offset 
from the center of gravity 

A = the total area bombarded by molecules 

q = dynamic pressure at th~spacecraft 
altitude equal to 1/2 P v . 

If aerodynamic torques are a problem, the 
length , L D, which is determined by the center 

of area normal to the airstream, must be closely 
controlled . 

If the yaw angle is such that the spacecraft 
does not shade impinging molecules from one 
paddle , then no net equivalent lift torque is ex­
perienced . However, there will be a torque if 
the yaw angle is such that one of the paddles is 
shaded. The moment which tends to rotate the 
body about the axis is given approximately by 

where 

ML = CL (1 - f) LL Ap q sin
2 

ljJ cos
2 

<l>p sin <l>p 

(184) 

C L = lift coefficient or 2(2 - a' - a ) 

LL = the distance of center of solar paddle 
area from center of vehicle mass 

f the shading factor on one paddle 

Ap the area of one solar paddle 

'l' the angle with respect to the velocity 
vector (yaw angle ) 

<I> = the solar array angle . p 

This express ion is not evaluated since the 
shading factor is also a function of .jJ and possibly 
<1> . The equations presented for these torques 

p 
are approximate and are pres nted only to allow 
a rough determination . Different equations, of 
course, must be derived for other configurations 
and , in any event, a more refined analySiS of 
these torques should be performed if a problem 
area is suspected. 



c. Use of momentum storage devices 

The use of rotating devices to provide momen­
tum storage in a spacecraft has been described 
extensively in the literature. Such devices are 
generally used to continuously absorb the effect 
of disturbance torques, to store momentum due 
to orbital rate , and to perform special control 
maneuvers . Constant speed rotating inertial 
devices may be used to change the gyroscopic 
coupling torques about a particular axis or axes . 
In designing a system for momentum storage, it 
must be remembered that the momentum storage 
requirements are determined by inertial torques 
as they appear in body axes . A constant external 
torque with respect to inertial space will change 
the total momentum of the system, and hence the 
storage requirements will increase with time. 
However, disturbance torques which are fixed in 
the body may require momentum storage that is 
cyclic in inertial space, dependent on the orienta­
tion of the body axes with respect to inertial space. 
Understanding the relationship of the inertial and 
body reference frames is a fundamental point in 
determining how stored momentum must be han­
dled . For example, assume a spacecraft is to 
rotate uniformly in such a way as to point to the 
earth as it progresses in orbit; to do so requires 
a rotation of 3600 per orbit . In the absence of 
any applied torques, the stored momentum of the 
system will remain constant with respect to iner­
tial space. In general, at any point in orbit, the 
momentum can be considered to be stored in 
three-body-fixed wheels whose axes may not 
coincide with the inertial frame. In such an in­
stance the wheels will change speed continuously 
in order to transfer momentum from one body axis 
to another (although the momenta are fixed in 
inertial space) in order that at every instant the 
sum of the individual momenta will equal the total 
constant momentum. 

The effectiveness of reaction wheels is based 
on the law that the time rate of change of wheel 
momentum is equal to the torque . The attitude 
error signal is used with filtering to control the 
wheel speed, meaning that for nonzero constant 
momentum storage there must be an angular 
pointing error. Integral control can be used to 
alleviate this problem in the steady state. Since 
most momentum storage devices are limited in 
their storage capability, momentum storage may 
be used in conjunction with momentum expulsion 
devices to allow operation beyond the capability 
of the storage device for removing the momentum. 
Such systems then combine the most useful function 
of the momentum storage (to absorb continuously 
without extreme energy expenditure the momen­
tum imparted by disturbance torques and orbital 
maneuvers) and that of the mass expulsion system 
(to remove momentum from the system only when 
it saturates the storage device). 

The momentum storage system adds complexity 
to the system. If the problem of coupling between 
axes is significant, careful design will be required. 
Methods proposed for obtaining momentum storage 
include rotating inertia (a motor-driven inertial 
flywheel, gyro stabilizer gimballed gyroscopes) 
and the control of the motion of a fluid moving in 
an enclosed circuit. In an attempt to reduce the 
cross-coupling terms, a free sphere has been 

proposed. The present satellite designs gene rally 
.use the single-axis.motor-driven flywheels. 

d. Use of mass expulsion devices 

The attitude control of a spacecraft with 
initial rates in the presence of an external torque 
field can be simply achieved through the use of 
a variety of mass expulsion devices. The actua­
tion of such devices will be controlled by the out­
put of a sensor and used to change the angular rate 
of the spacecraft to keep it within some attitude 
error limit or to precess the spin axis of a spin 
stabilized spacecraft . The mass expUlsion system 
may either produce a torque proportional to the 
error signal or produce quantized torque levels 
for controlled periods of time to maintain the ve­
hicle angular momentum below some prescribed 
limit. 

The governing problem in del:!ign is the trade­
off between weight and reliability. The simplest 
system is the single level thrust, on-off system 
used to maintain the spacecraft attitude error 
and error rate within certain limits. The im­
pulse required for such systems is a direct func­
tion of the limit cycle rate, the lowest value of 
which is determined by such parameters as rate 
gain, position gain, filtering, sensor noise, valve 
actuation hysteresis, valve time delay, thrust 
build-up and decay characteristics, design thrust 
level, etc. 

The use of cold gas such as dry nitrogen with 
nozzles and regulators designed to produce thrusts 
of the order of O. 1 to O. 001 lb (.4 to . 004 newtons) 
is acceptable for most present spacecraft weights 
and lifetimes. Of course, larger thrusts will be 
required to provide control moments for large 
satellites or during periods when the booster stage 
i s attached to the spacecraft or when misalign­
ments of the thrust used for midcourse corrections 
require a larger control authority to overcome 
overturning moments. Hot gas systems will have 
a specific impulse considerably greater than 
that of the cold gas; however, problems as­
sociated with multiJ?le starts, obtaining the low­
thrust l evel, and thrust characteristics may not 
make such a system attractive except where 
larger thrust levels are required. 

The on-off system, when used as the only 
means of obtaining control torques, reqUires a 
significant amount of impulse for long-term 
operation. If thrust is made proportional to the 
attitude error (such as is possible with propor­
tional jets) it will react to disturbance torques 
continuously except when operation is within the 
low signal nonlinearities of the valve. The con­
tinuous operation in response to cyclic disturb­
ance torques will also require a large expenditure 
of impulse over a significant lifetime. A more 
suitable design for long lifetime missions will 
be to expend electrical power (which can be re­
plenished easily using solar cells) to control 
body-fixed reaction wheels in response to the 
angular momentum changes. The mass expul­
sion system would only be used to remove the 
effects of secular torques . 

The development of more efficient, higher 
impulse systems such as plasma, ion and vapor 
propulsion is necessary for propulsive systems 

XII-43 



in satellites which must achieve the longer life­
times of several years- -probably a requirement 
of the near future . With these systems, a signifi­
cant weight advantage will be obtained if their 
reliability is acceptable. 

Proportional and simple on-off controls have 
been mentioned as possible means of obtaining 
control torques without any additional torque­
producing requirements . Other schemes have 
been proposed. One reduces the gas required by 
a simple on-off single level thruster by using the 
flexibility of a two-level thrusting system. Such 
a system, if properly designed, does not require 
rate information for stabl e operation . Another 
method with some advantages is modulation ot 
the pulse duration applied by a single level jet as 
a function of the error signal. This system is 
also stable without rate information. 

e. Combination systems 

Momentum expulsion and momentum storage 
devices can be designed to complement one an­
other. The storage device will control or store 
momentum due to cyclical torques on the space­
craft without gas expulsion and the jets will over­
come long-term constant disturbance torques by 
periodically de saturating the storage device by 
expelling mass from the spacecraft . The jets 
will be needed also to counter initial body attitude 
rates, when the vehicle is separated from its 
booster, and perhaps torques produced by rocket 
thrust misalignment during guidance maneuvers . 

The desirability of such combined systems will 
be determined on the basis of the factors of weight 
(including power consumption) and reliability for 
a given lifetime. 

3. Methods of Attitude Sensing 

The purpose of this section is to examine im­
portant methods which could be used for sensing 
the a ttitude of spacecraft from which attitude error 
signals can be generated. BaSically, the methods 
will include earth, sun and stellar sighting, the 
use of inertial instruments, and the use of ambient 
fields. 

a . Earth horizon sensors 

The achievement of many earth orbiting mis­
sions will require the spacecraft to point one axis 
along or at some preset fixed angle with respect 
to the earth's instantaneous local vertical. There 
are a number of earth sensing devices, generally 
referred to as horizon scanners, which may be 
employed for this purpose. Horizon scanner 
operation depends on the detection of the difference 
in radiation emitted or reflected by the earth and 
the earth's atmosphere, and the radiation emitted 
by free space. The radiation emitted by the earth 
and the earth's atmosphere approximates black 
body radiation at a temperature which varies from 
220 0 K to 2800 K . In addition to the emitted radia­
tion, the earth reflects solar radiation dependent 
on the relative earth and sun pOSitions. This dis­
cussion will be confined to devices which utilize 
only earth and earth's atmosphere emitted radia ­
tion and thus capable of both night and day operatinn. 
operation. 
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A horizon scanner consists of four basic parts: 
an optical system; a scanning system; a radiation 
detector; and an information processing system. 
The optical system's principal function is to con­
centrate the energy in the optical field of view 
onto a suitable detector system. The scanning 
system moves the optical field of view in some 
precise manner relative to the spacecraft . The 
radiation detector may be a single element or 
system of elements which are sensitive to the 
radiation to be measured. The information 
processing system contains the logic circuitry 
necessary to provide proper error signals to 
the control system. 

There are basic limitations to the accuracy 
of horizon scanners which are dependent on the 
altitude of the spacecraft relative to the earth. 
The limitations involve the shape of the earth, 
and the variations in the earth-space radiation 
difference . By proper selection of the radiation 
spectra used by the detector and canning 
mechanism used to locate the earth, these in ­
accuracies may be minimized . 

The most widely accepted detector for applica­
tion in horizon scanners is the thermistor balom­
eter . This device has substantially a flat spectral 
response from ultraviolet to the far infrared and, 
for uncooled detectors, exhibits the best detection 
in the infrared spectral range . The precise spec­
tral range for detector operation is determined by 
the selection of elements in the optical system. 

The method used for scanning depends upon 
the orbital parameters of the spacecraft mission, 
overall system accuracy, and the requirements 
for earth acquisition. 

There are three principal types of scanning 
techniques: a fixed field of view continuously 
scanning in a cone; an edge tracker system which 
locates and tracks the horizon in a fixed plane; 
and a passive scanner which utilizes a wide field 
of view imaged on a detector array. There are 
other scanning systems which will not be discussed, 
such as a rosette scan pattern or the possible use 
of image tube techniques for electronic image 
plane scanning. 

(1) Conical scanning. Figure 32 depicts a 
typical conical scanner system (two scanners) in 
normal operation. The optics for each scanner 
consists of a prism and lens system which causes 
the field of view. focused on the detector, to scan 
in a circle in some fixed half-angle cone by con­
tinuous rotation of the prism. 

A schematic of the scanner optics is shown in 
Fig. 32b. The detector output signal for each 
revolution of the prism is shown in Fig. 32c . 
Each scanner controls one of the vehicle axes. 
The control signal is generated by sensing the 
width of the balometer output pulse on either side 
of a reference signal, which is aligned with the 
vehicle control axis . Referring to Fig. 32d, the 
vehicle is aligned in roll when A-C is equal to C-B. 
Control relative to two axes may also be obtained 
with the same type of scanners in alternate scan 
orientation. Referring to Fig. 32e, the vehicle is 
aligned in roll when A-C is equal to C-B, and 
aligned in pitch when A-B is equal to A '-B'. This 
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type of scan technique is best applied to space ­
craft missions which have nearly circular orbits. 
Since the scanner is generally best designed for 
operation over a limited range of altitudes, the 
large variation in the ratio of earth-to-space re­
turn signals obtained in highly eccentric orbits 
will create a special design problem if accuracy 
is required. 

The conical scanner can be designed also to 
operate with a half-angle cone equal to 90°. Two 
such scanners would control a spacecraft in two 
axes in the same manner as the scanner described 
above, where the axes of rotation of the prisms 
are normal to each other. The scan pattern would 
appear similar to Fig. 33 except the scans would 
intersect along the vehicle yaw axis, coincident 
with the local vertical when no spacecraft pitch 
or roll attitude error exists. 

(2) Ed~e Tracking. The sketch shows a 
schematic 0 a single edge tracking horizon scan ­
ner. This scanner uses the detector output to 
drive a mirror. The field of view of the mirror 
is continuously oscillated through some small angle 
in a plane independent of the mirror drive . The 
mirror drive is nulled when the detector output is 
a square wave, which indicates that the mean posi­
tion of the small oscillation of the field of view, 
and hence the mirror, coincides with the earth 
horizon. 

EARTH 

The field of view of the mirror may be oscil­
lated by many techniques--for example , byoscil­
lating the mirror as shown in the figure , or by 
interrupting the incoming radiation with a shaped 
reticle. Figure 33 indicates how three-edge track ­
ing scanners may be used to generate spacecraft 
pitch and roll control signals. The angle of each 
mirror is measured relative to a vehicle reference 
axis . The field of view of each scanner searches 
in a fixed plane relative to the spacecraft. The 
pitch and roll attitude error signal may be gener­
ated by processing the difference in the angles 
measured by trackers A and D, and the angles 
measured by trackers A and B . A fourth tracker , 
C, may be used to provide the redundant error 
signals. 

(3) Passive scanner. A simple example of a 
passive scanner is shown in Fig. 34. A wide ­
angle lens system images the earth's radiation on 
a detector array. The control error signals are 
obtained by differencing the detector outputs. This 
system is only workable for spacecraft missions 
with near circular orbits, since the detector array 
must be sized for a near constant size earth image. 

--- --- --- - -----, 

Other passive scanners might include electronic 
imaging tubes and simple shadow bar techniques 
for operation at extreme disturbances . 

The scanners also suffer from the problem of 
sun interference. The presence of the sun with 
its high energy in the balometer field of view for 
extended periods will cause erroneous signals to 
be generated and may possibly damage the detector. 
Means of determining the sun's presence and elim­
inating its effect on the control Signal must be pro­
vided. The paSSive scanner with its large field of 
view will contain the sun more during orbital life 
than the other scanners. During this time the scan­
ner must not only be made inoperative but, in order 
to protect the detector system from damage due to 
solar radiation, some positive filtering of the sun's 
energy must be accomplished. 

b. V /H technique 

The V /H technique, as applied to attitude con­
trol, is described in Ref. (8). The V /H technique 
is also a potentially accurate navigation system for 
close orbits of a planet. From correlation of stored 
strip pictures of the expected track of the vehicle 
and real-time pictures taken from the satellite, de­
viations from the desired orbital position could be 
determined . Velocity information could be obtained 
by correlating two successive pictures taken with 
a fixed time delay. 

Basically, the method consists of measuring the 
ratio of satellite velocity (V) to altitude (B) by the 
use of the following equation: 

V _ 0-
R - --2 -

cos Q 

B R tan Q 

where Q is the angle between some object on the 
ground and the vertical. This is mechanized by 
correlation of video signals from successive frames 
of a vidicon. Image velocity V' is directly pro­
portional to V /B. 

V' = B' . ~ 

where B' is the focal length of the instrument. 

A mechanization diagram of the optical corre­
lator for the V /H orbital guidance system is shown 
in the following sketch. 

The reference map is formed electronically by 
exciting an optically thin CdS (cadmium sulfide) 
film by a long persistence blue phosphor light, 
thus creating a pattern of absorption. The blue 
phosphor light renders transparent object areas 
upon illumination. The CdS film must be of suf­
ficient thickness to provide a volume absorption 
which would prevent obtaining false results. False 
results would be obtained if the film were not 
thick enough, and some unmatched part of the 
scene would have greater transmitted brightness 
than the correlation peak. The optimum film 
thickness should be obtained by experimentation. 
The green emission is eliminated by the green 
filter, and the transmitted light will have the 
characteristic of two patterns multiplied together. 
When this distribution is integrated, the correla­
tion function is formed except that some back­
ground level will be transmitted. However, the 
peak will exist and can be detected. 
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c . Sun sensors 

The sun is an excellent reference for many 
satellites in that fairly simple sensors can be 
used to attain both a measure of yaw orientation 
and, if a rotatable solar array is used, solar ar­
ray orientation. Spacecraft for solar experiments 
will use such devices for orienting along the sun­
line . The principal problem with sun sensors 
occurs when the vehicle is in eclipse and such 
sensors can no longer be used . As will be indi­
cated later in the discussion of modes of attitude 
control, several steps may be taken to minimize 
effects of. such a problem. 

The Simplest form of sun sensor employs 
photovoltaic solar cells . These cells can be 
used in a variety of ways to provide angular er­
ror information. For most applications the line ­
ar range i s limited to ±20 to 40° with a sat­
urated output over the rest of the 360°. The 
following sketch illustrates such a characteristic. 

If relatively high accuracy is required, a de­
vice similar to that indicated as yaw scanner in 
Fig. 35 will, by measuring dwell amplitude on 
the scanning mirror, give about 0 . 05° for linear 
ranges up to 10° . (A reduction in accuracy will 
be imposed if greater linear ranges are required.) 
If accuracies no better than about O. 5° to 1° are of 
interest , then the extremely simple shadowing 
array such as the array orientation sensor , one­
half of which is shown in Fig. 35 , or the T-bar 
arrangement shown in Fig. 36 may be employed. 
It should be noted that such devices are subject 
to null shifts and gain variation, due to the dif­
ference in thermal properties of the cells . 

Refe r en ce m a p 

Green filt e r (5600 A) 

Blue phos phor 
cathode ray tube 

Vidicon 

A relatively new method of sun senSing is the 
use of a spot pOSition transducer . This device is 
a solid-state transducer whose output is sensitive 
to the position of a light spot on its surface . This 
transducer converts the light-spot x and y dis­
placement into a pair of voltages V x and V y pro-

portional to the displacement . The displacements 
are referred to the cell center where x, y , V x 

and V are all zero . By using a simple lens, the 
y . 

sun may be imaged on the transducer . A functlon 
of the angular pOSition of the sun is then obtained 
in the two axes normal to the position of optical 
axis of the system. The linearity and accuracy 
which may be obtained with this device are deter­
mined by the sophistication employed in the op­
tics and the desired field of view . 

Many systems are available for measuring 
deviations from the sun. The three presented 
here represent only a very small sample. 

d . Gyro mechanisms 

Error signals for control to an inertial refer­
ence can be provided by gyro mechanisms . Both 
single- degree-of - freedom and two -degree - of­
freedom gyros could be used for this application . 
For long term operation, gyro drift will cause 
major attitude reference errors unless means for 
resetting the gyro and/or in-flight calibration to 
eliminate drift are incorporated. This might be 
done with information derived in the vehicle with 
relationship to stars, sun, etc . , or on ground­
command based on ephemeris or telemetry data . 

One means of determining spacecraft error 
from the orbit plane is to operate a gyro whose 
input axis is to be aligned in the orbit plane in a 
rate mode. Such a gyro , if not oriented in the 
orbit plane, will sense some fraction of the or­
bital rate of the earth - oriented vehicle as it pro­
ceeds in its orbit around the earth. The use of 
this rate essentially provides a gyrocompass 
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scheme for determining orbit plane reference 
above very low altitude orbits where the orbital 
rate is high . Such a system has practical diffi­
culties . Compensation will be required for the 
spacecraft rates in roll (or pitch) which will also 
appear in the output of the gyro. The drift char­
acteristics and basic accuracy of the gyro limit 
the ultimate accuracy of the system. For a small 
input axis alignment error, e z ' the gyro output, 

e , will be the component of pitch and roll rate, 
. g 
eh , along the axis plus the component of orbital 

rate, wOez ' 

( 185 ) 

By properly introducing the component of error 
due to input other than orbital rate, eh, (see 

sketch) the output of a rate integrating gyro in a 
rate mode can be approximately that of the com­
ponent of orbital rate . For convenience, the roll 
axis is to be aligned in the orbit plane . Thus eh 
becomes e . Note that the noise introduced from x 
the sensed motions about the roll axis may be sig­
nificant, and if the orbital rate is too low (reduced 
as a function of altitude) the system is impractical. 

RATE 

INTEGRATING 
-----f 

GYRO 
(ROLL) 

GYRO 

TORQUER 

HORIZON SCANNER 
ROLL ERROR 

" 
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The use of the gyrocompass technique as 
standard practice requires additional power for 
temperature control, and is subject to the long 
term reliability problems generally associated 
with most gyros. 

Other schemes for orienting the body with re­
spect to the orbit plane should be studied. It is 
possible to use ephemeris data, from which sunl 
orbit plane orientation with respect to one another 
can be predicted. This, combined with the con­
trol law s, will provide knowledge of the satellite 
yaw attitude with respect to the orbit plane . Sun 
sensors can be used to determine when the space­
craft is in the noon, or near-noon, condition (that 
is, when the solar array goes through 0°). At 
this time the vehicle yaw angle is known and can 
be used. A gyro will maintain inertial orientation 
about the yaw axis and additional commands are 
necessary only to remove the errors due to gyro 
drift and to the regression of nodes . 

e. Celestial observations 

The star field may be used in two ways for the 
orientation of the satellite. First, a particular 
star might be used as the sun or the earth are 
used to maintain a fixed orientation with respect 

XII-47 

to that star . (In the case of complete star ori­
entation perhaps two or more stars may be chosen 
for such an orientation . ) Secondly, the star field 
of motion as observed in the vehicle can be used 
to measure the rate of change of the vehicle. 

(1) Attitude. Sighting on distant stars may be 
used with an inertially established frame of refer­
ence to achieve initial alignment of the references 
or to prevent long term drift, if necessary . It is 
possible to use optical sightings, such as a tele­
scope, or even the radio frequency noise sensed 
by a radio-telescope . The two severe problems 
encountered in the use of celestial sensing are the 
acquisition of the star, and the amount of compu­
tation required to transform the star reference 
set of axes into the appropriate vehicle control 
error signals. One excellent way in which a star 
may be used to obtain continuous or intermittent 
information without complicated computation is in 
orbits where a pole star is available. A very 
good application of this method is in an earth equa­
torial orbit. Actually, any inclined orbit about a 
spherical body with a pole star would be accept­
able, but, because of the regression of the line 
of nodes due to the earth ' s oblatenesS, computa­
tion is required for most earth-orbiting vehicles. 
The tracking of stars with high precision tele­
scopes and very accurate telescopic drives is 
necessary to obtain exceptional accuracy . Of 
particular interest is the Orbiting Astronomical 
Observatory which is under development by NASA, 
i n which absolute sensor accuracies on the order 
of seconds of arc are required . 

(2) Attitude rate . Considerable interest has 
been expressed in what are often called "celestial 
driftometers . " A telescope or some other optical 
means is fixed relative to the axes of the satellite 
and drift velocities of the stars across the field 
are measured. From this, one can obtain a com­
ponent of the angular velocity of the star field 
relative to the vehicle which is then a component 
of the angular velocity in inertial space. The 
main purpose for this device is to provide rate 
measurements for precise control with respect 
to the orbital rate vector. 

f. Other ambient field sensors 

It is possible to obtain certain information 
about the vehicle's orientation in space through 
the use of ambient fields other than those previ­
ously discussed. Fields which can be used ap­
pear to be the gravity field, the magnetic field, 
and, for extremely low altitude orbits, the at­
mosphere. It has been suggested that if cosmic 
rays are directional in space, the gradient in its 
intensity may be used as a sensor . 

(1) Gravity gradient . A vehicle will tend to 
align its axis of minimum inertia along the local 
vertical to the earth, and its axis of maximum 
inertia normal to the orbit plane, due to the effect 
of the gravitational field . This effect acts as a 
torque which provides control, and also as a sen­
sor of direction of the gravitational potential. In 
other words, the restoring torque appears in the 
equations of motion as if it had been introduced 
by an independent control system operating on 



external information. It is also impossible to 
imagine instruments constructed such that they 
would operate independently on the gravity field 
to determine the direction of the local vertical. 
Such instruments have been mentioned as possi­
bilities, but none have been given serious con ­
sideration . The two possible types are the pendu ­
lum type, utilizing two pendulums forming a dumb ­
bell free to turn about one axis, and the other in ­
volving the use of accelerometers operating dif ­
ferently to provide a direct measure of the gravity 
gradient. 

(2) Magnetic fields . The earth I s magnetic 
field could conveniently be used as an orientation 
reference for satellites in near - earth orbits . T his 
is reported to have been done in Sputnik III. More­
over, it seems that the magnetometers could be 
put to good advantage measuring the magnitude of 
the earth I s magnetic field . T he primary diffi culty 
is not so much one of the inherent measurin g ca­
pability of the instrument itself, but of measuring 
the precise direction of the magnetic field with 
respect to the vehicle in its orbit because of he ­
terogeneities in the earth I s fiel d , ionospheric 
currents, geomagnetic storms , and fields pres­
ent in the spacecraft itself . However , if magne ­
tice torques are to be used to advantage , some 
measure of at l east the d i rection of th e magne -
tic field must be obtained. 

(3) Atmosphere . In any low altitude orbit it 
may be possible to use such devices as are em ­
ployed in airplanes, missiles , etc . , which are 
most sensitive to the very nearly negligible at ­
mosphere. For example , a weather vane might 
provide information about the relative winds for 
one set of axes . Using an extremely sensitive 
pressure device would allow the nulling of such 
pressures to achieve appropriate orientation . 
However , the pressure at the altitudes above 
100 mi suggests that, at present , this is an im ­
practical approach. 

(4) Other ambient fields . atural radiation 
such as cosmic rays , micrometeoroids and ion 
streams could be exploited for the use of attitude 
control system sensors . Most of these devices , 
however, appear to present no advantage over 
those being used and are not receiving a great 
deal of consideration. For example, the direc­
tion of the spacecraft velocity can be determined 
by the relative bombardment of charged particles 
with respect to the body axis . Ion "traps" flown 
on Explorer VIII have indicated that sufficient 
current can be obtained to orient the vehicle rela ­
tive to the velocity vector . The accuracy of a 
system using ion traps will probably be below 
that of optical systems, but it may find applica­
tion when other sensors are inoperative due to 
occulting of the sensed body . 

Another potential method would include the 
use of radio techniques wherein the difference 
between the received signals of two antennas 
would be a measure of the attitude error in a 
plane containing the two antennas . This differ­
encing could be obtained electrically in the space­
craft or through the use of interference techniques . 
An additional method might be the use of return 
signals from a body which is receiving the output 
of a satellite- contained radar . Such schemes 
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have been proposed for the landing of spacecraft 
on distant planets , as well as for achieving some 
measure of stabilization information at low alti­
tudes . 

4. Modes of Attitude Control 

T his section will discuss some primary modes 
of operation that are generally necessary in order 
that the spacecraft mission can be performed . 

In general, the spacecraft will be separated 
from its booster with potentially sizable errors 
with respect to the final orientation requirements 
in both attitude and attitude rate . An initial mode 
of operation will be to control the initial rates and 
provide the proper attitude orientation . The proc­
ess which describes the acquisition from separa­
tion to the final orientation is often called "acquisi­
tion" and generally consists of at least three sep­
arate modes- -initial rate adjustment , search, and 
final acquisition . The actual switching and se­
quencing for achieving acquisition will vary be­
tween spacecraft systems , depending on the ori­
entation requirements, sensor limitations, meth­
ods of obtaining control orientation, etc . 

The second major control mode will be the 
mode of operation required to maintain the proper 
attitude orientation and stabilization . This mode 
is often referred to as the "normal" operating 
mode . Special operating provisions may be re­
quired when the normal control system operation 
is not possible; this occurs, for example, when 
the sun or star sensors are occulted by the earth, 
or when the spacecraft axis about which sun sen­
sor information is used lies along the sun lines . 
Each orientation requirement defines a set of op­
erating requirements, for example, control laws 
associated with solar array orientation, orbit 
plane orientation, and the like must be imple­
mented. Other modes of control might include 
providing proper orientation of the spacecraft 
during velocity corrections required for orbit 
control , terminal maneuvering for docking, and 
deboost preparatory to re - entry . 

a . Acq uisition 

During the separation of the spacecraft from 
its booster , angular impulses will be imparted 
to t he spacecraft, resulting in initial rates which 
cannot be ignored . The first step after the con­
trol system has been electrically activated will be 
to control or null these rates with respect to some 
reference axes . For a spacecraft which uses a 
solar array, it is often desirable to null the rates 
in two axes about the earth-sun line by immedi­
ately orienting the solar array (held fixed with 
respect to the spacecraft during acquisition) to 
the sun . In the case of systems using the manipu­
lation of the forces of space such as gravity gradi­
ent , earth I s magnetic field, etc., momentum 
storage and/ or mass expulsion devices are gener­
ally needed to reduce initial body rates to an ac­
ceptable level. Body-fixed rate measuring instru­
ments providing attitude rate signals to momentum 
transfer devices can be used to reduce these rates 
before orientation of the body axes is achieved . 

Once the body rates are reduced to small mag­
nitudes, a search mode of operation will generally 



be required. During this mode the sensors are 
caused to perform a search for those objects 
which they will sense to provide attitude error 
signals . There are many alternative approaches 
to the search mode. The selection of the approach 
is often dependent on a tradeoff between the dy­
namic range of the sensor, orbit conditions for 
acquisition, operational launch time requirements, 
etc. Depending on the sensor and the control sys­
tem, either the entire spacecraft is rotated or it 
may be desirable to perform the search by articu­
lating the sensor (like a radar dish, star tracker, 
etc .) with respect to the body . 

Acquisition of proper orientation when the con­
trol torques are generated by essentially passive 
means is generally simpler than acquisition with 
active control systems . In the case of spinning 
satellites, lateral impulses at separation of satel­
lite and booster will produce a free precession or 
nutation of the vehicle . An inertially fixed ori­
entation is established by this satellite as soon as 
the nutation of the vehicle about its momentum 
vector has been damped. Such damping, as indi­
cated previously, may be provided by a simple 
device like an annular ring of mercury 10 cated 
about the spin axis . A new inertial orientation 
of the spinning body is achieved by a controlled 
precession of the spin axis in a plane containing 
the initial momentum vector and the final desired 
orientation of the spin axis . 

With the use of gravity gradient, once the ini­
tial rates have been stopped and sufficient damping 
has been added, the system will automatically ac ­
quire the earth I s local vertical with the principal 
axis of minimum inertia and have the principal 
axis of maximum inertia normal to orbit plane. 
The angular error associated with the acquisition 
will depend on the relative magnitude of the dis­
turbance and control torques and the misalignment 
of the control axis with the local vertical. The 
time required for acquisition depends on the capa­
bility of the damping devices and the initial condi­
tions. 

In the design of the acquisition mode, any re­
quirements which severely limit the time to "ac­
quire" must be carefully reviewed . Such limita ­
tions are significant in the determination of the 
amoelnt of gas else:!, size of the pneumatic jets, 
torque requirelnents of the reaction wheel , etc . 
For example, the gas jet control moment may 
have been determined to provide a certain factor 
of desaturation to a set of reaction wheels oper­
ating in dual mode operation. However, the jet 
control moment that is determined for desatura­
tion is usually not the best size to meet the rate 
nulling requirements . If this is true , a com­
promise solution will be necessary . The sen­
sors used for acquisition may significantly affect 
the gas consumption . It may be desirable, for 
example, to add an auxiliary rate gyr o and / or 
provide a sensor with a wider dynamic range . 
Neither of these requirements is necessary for 
normal operation . Additional electronics are 
required to perform the switching and logic func­
tions required in this mode . 

Final operational steps of acquisition, con­
sisting of separate and succ ssively more accu­
rate modes of control, each operating over the 
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dynamic range consistent with the devices which 
are used for control sensing and orientation may 
be necessary . To obtain extremely precise ac­
curacies, several of these modes of operation, 
each successively more accurate than the previ­
ous one, could be used . 

b . r ormal control 

The orientation requirements of the spacecraft 
are mission-dependent . Those satellites oriented 
with a particular axis to be aligned along the 
earth I s local vertical will have simple control in 
pitch and roll , generally nulling the outputs of 
earth horizon scanners. The control about the 
axis aligned along the local vertical (yaw axis ) 
may depend on the orientation requirements with 
respect to the sun or other bodies . The yaw con­
trol may involve: orientation of the roll axis in 
the orbit plane; orientation of the solar array 
about the roll axis when the yaw axis points to 
the earth; special star orientation; or be simply 
unspecified . 

The essential modes of control within the nor­
mal control for a nons pin earth -oriented satellite 
follow. 

(1) Pitch/roll control. For purposes of dis­
cussion , the yaw axis is to be pointed along the 
earth I s local vertical. A ngular deviations from 
the local vertical can be determined by horizon 
scanners, processed and used directly for attitude 
control error signals . 

( 2) Yaw control. The yaw control problem is 
significant and depends on the spacecraft control 
requirements . The three most interesting cases 
are yaw orientation with respect to the orbit plane, 
yaw orientation to provide maximum solar energy 
on rotatable or nonrotatable solar cells , and no 
yaw requirements. 

(a ) Orbit plane orientation. Orientation with 
respect to the orbit plane is often a difficult con­
trol problem. The difficulty is primarily one of 
sensing rather than the need for any unique con­
trol laws . Gyrocompassing provided by the orbit 
rate coupling either through the use of gravity 
gradient or by mulling to the output of an orbital 
rate sensor are excellent schemes if there is suf­
ficient orbital rate . 

(b) Solar array /yaw orientation . Since the 
orbit plane can have any inclination with respect 
to the earth-sun line, it is necessary to provide 
two degrees of freedom to maintain a flat plate 
oriented normal to the sun line . In addition to 
solar array rotation, yaw orientation must be 
performed for maximum efficiency . If the solar 
array is not oriented, then yaw control with re­
spect to the sun will in general improve efficiency 
over control with respect to the orbit plane or no 
control. 

If the coordinate system shown in Fig. 37 is 
used, the following control laws indicate the yaw 
motion of the spacecraft (zero yaw angle occurs 
when the roll axis is in the orbit plane, and zero 
array angle when the sun is perpendicular to the 
earth satellite line). From the figure it follow S 
that 
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combining Eqs (186), (187) and (190), the ideal 
array angle is given by 

sin <I> = cos 0' • cos S (191) 
p 

combining Eqs (186), (1 87), (1 88) and (189) 

and 

sin ljJ = Si~o~ ~os S (192) 
p 

sin s cos ljJ = 
cos <l>p 

(193) 

combining Eqs (192) and (193), the ideal yaw angle 
is given by 

sin 0' 
ta:rlT (1 94 ) tan ljJ 

In order to eliminate the need for slip rings, 
the array angle and hence the yaw angle may be 
restricted to ±90° . Figure 38 show s variation of 
arrayangl and yaw angle , respectively, with 
satellite location in orbit . 

( c ) Unspecified yaw orientation. For some 
missions there may be no specific requirements 
for orientation about the yaw axis . How ever, a 
requirement to maintain low yaw rates may exist 
due to requirements of on-board equipment or 
experiments. Even when such is not the case, it 
will generally be necessary to reduce yaw rates 
to within limits tolerable to th other axes con­
trols befor acquisition is complete . 

(3) Eclipse . On systems where the sun in­
formation is used to determine yaw attitude error, 
the mode of op ration during eclipse of the sun 
must be carefully reviewed. Often, yaw control 
is not required during eclipse. In such instances 
reacquisition of the sun when the spacecraft 
emerges from eclipse is necessary . If yaw con ­
trol is required during occulting, then a special 
sensor or sensors must be provided in order to 
obtain appropriate attitude error signals. Yaw 
orientation might be maintained inertially with 
a programmed angle with respect to the orbit 
plane in order to have proper orientation at the 
time of emerging. A simpl r scheme would be 
to maintain the spacecraft rate about the yaw 
axis below a known low value . In this case, re­
acquisition of the sun is still required upon 
emergence from eclipse, but may not require 
expenditure of as much impulse as the uncon­
trolled method . 

It is interesting to note that, unless special 
provisions are incorporated, when th eclipse 
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region is entered, the momentum stored in the 
yaw inertia wheel will be dumped into the vehicle, 
creating an uncontrolled rotation . This occurs 
because the yaw loop is essentially opened, result­
ing in a zero wheel speed command . It may be 
desirable in some systems to damp the initial 
yaw wheel speed during eclipse to avoid the mo­
mentum transfer . For a sun-oriented, spin­
stabilized spacecraft the problem of eclipse is 
not serious since the sun is essentially fixed in 
inertial space during the time of eclipse . 

(4) Noon control. An additional control prob­
lem arises when the axis for which control infor­
mation is being obtained is aligned along the line 
of sight of the sensed object providing that infor­
mation. A sun-oriented spacecraft requires 
special control system operating provisions to 
maintain proper attitude orientation during peri­
ods in some orbits where the angle of the control 
axis with respect to the line of sight is not suffi­
cient to obtain useful attitude angle information . 
For an earth -oriented satellite with a solar array, 
this condition occurs when the sun is in the orbit 
plane (s = 0 ) and the satellite yaw axis lies along 
the earth-sun line . This situation is often re­
ferred to as "high noon." If a sun sensor is used , 
the gain in the yaw axis will go to zero at this 
point again causing the momentum in the yaw wheel 
to be dumped into the body. For the control laws 
shown in Fig. 38, a 1800 yaw rotation of the space­
craft is required at this time (0' - 0 ). This is 
often referred to as the "yaw - turn" and can be 
performed in a variety of ways . If there is a gyro 
present in the yaw axis, it can be used to provide 
stabilization during the maneuver . In many cases, 
the turn can be adequately performed by program­
ming yaw reaction wheel speed in a manner which 
will cause the vehicle to rotate . In any case, pre­
cautions must be taken to minimize expenditure 
of impulse for eclipse and noon control. 

c . Orbit control 

Frequently velocity changes are required for 
orbit control or midcourse correction. The con­
trol system must have sufficient control authority 
to offset the disturbing torques caused by thrust 
misalignments from the propulsive devices used 
to correct the velocity . For system design sim­
plicity it is usually desirable to have only one 
thrust nozzle on the vehicle . The control sys­
tem is then required to orient the vehicle to al­
low the nozzle thrust to be applied in the correct 
direction. This will require a special orientation 
mode and perhaps a special sensor, depending on 
the orientation accuracy required. Large propul­
sive devices will be used for coarse orbit correc­
tions . If precise corrections are required, it is 
likely that low thrust (probably cold gas ) devices 
will be used to perform vernier indexing and long 
term station keeping. The required design of the 
vernier system in terms of the nozzles, gas sup­
ply, etc . , should be integrated with the pneumatic 
system used for attitude control. 

d . Oth 1" modes 

The flight sequence must be determined early 
in the preliminary design . Such a sequence, if 
properly conceived, will define the operational 
requirements for the control system and, hence, the 



major modes of control. This, coupled with a 
failure analysis, will be used to completely de­
termine the primary and various alternate or 
backup modes of operation . A major number of 
modes of control beyond those described above 
are possible . Most of these modes are purely 
misSion-dependent and must be considered for 
each particular mission . 

The terminal mode of operation involved in 
the orbital docking maneuver of two satellites in 
orbit will be based on the particular design of the 
terminal sensors and the terminal guidance equip­
ment that is used . A large number of possible 
modes exist with manned spacecraft wherein the 
primary motive is to recover the pilot (or crew ) 
and allow him to participate in the navigation and 
r:ontrol of the spacecraft . Clearly, modes of 
control covering such flight phenomenon as abort, 
re-entry , orbit maneuvering, etc., each using 
a combination of ground-based, on - board and 
manual senSing and torquing, may be required to 
achieve a well-integrated gUidance and control de­
sign . In addition , special modes of unmanned 
vehicles such as a picture-taking mode, a mode 
for obtaining a star fix , etc . , are conceivable . 

5 . Design of Spacecraft Control Systems 

An example is provided to show specific de­
sign procedures for attitude control systems . 
From a given vehicle configuration and for n 400-
naut mi (740 km ) orbit, a reaction wheel /gas jet 
dual mode system is to be des igned . Consider the 
following problem. 

Example 

a . Problem statement 

Given the following control and spacecraft con­
figuration specifications, design a dual mode re­
action wheel/ gas jet attitude control system. 

Orbit 

Specifications 

400-naut mi, ( 740 km ) c i r­
cular 

Lifetime One year 

Orientation Yaw axis pointed to earth 
requirements local vertical to ±1°, solar 

array face p rpendicular to 
sun line within ±5° 

No slip rings 

Acquisition Thirty min after separa­
tion from booster, maxi­
mum i nitial body rate 1° / 
sec in all axes . 

Vehicle Configuration 

The vehicle configuration will be the 
same as shown in the sketch of Section 
D- l, with the following specific prop­
erties . Vehicle inertias for two solar 
array angles 

For <p = 0° 
p 

For <p = 90° 
P 

Solar array area 

1"00 

100 

I I ...xL zz 

160 115 

150 12:i 

50 ft2 or (5 x 5 it each 
2 

pnddle) 4.65 m 

Gas jet lever arms 2. ;) it all axes ( 7 . 63 m) 

Vehicle dimension 4 x 4 x 5 it ( 1. 2 x 1 . 2 
x 1.5 m) 

b . Control laws 

The requirement for elimination of Slip-rings 
on the solar array means that the laws derived in 
Section C-4 are applicable . These laws are shown 
in Fig. 38 . 

c . Disturbance torques and momentum storage 
requirements 

The calculation of disturbance torques for this 
example is limited to those due to solar radiation 
and gravity gradient. Other torques are consid­
ered negligible in comparison. In practice, all 
torques must be estimated . 

(1) Solar radiation torque . We will assume 
a O. 5-it (o. 5 m) offset between the center of gravity, 
and a 50% reflectivity yielding an effective radia­
tion pressure 1. 5 times that for total absorption . 

The projected areas are 50 sq ft (4 . 65 m 2) for solar 

array, 20 sq it (1. 86 m 2) as seen along the pitch 

or roll axis, and 16 sq ft ( 1. 49 m 2) as seen along 
the yaw axis . 

In the case where the sun lies in the plane of 
the orbit the torques will be cyclic except for rec­
tification which occurs because of eclipse and yaw 
control law (see Fig. 39a). In the case where the 
sun is perpendicular to the plane of the orbit where 
no eclipses occur, the torque will bc periodic in 
inertial space . Then, the net momentum change 
per cycle will be zero . The component of momen­
tum in inertial space is shown for sun inclination 
of 0° in Fig. 39b. 

( 2) Gravity gradient torques . The torques due 
to the gravity potential have been treated in Sec­
tion D-2 . By applying the vehicle parameters to 
the equations for determining gravity gradient 
torques, the total momentum change per orbit can 
be determined and is plotted in Fig. 40. Since 
the rotation of the solar array changes the space­
craft inertia, the momentum change is a function 
of the inclination of the sun with respect to the 
orbit plane . The stored momentum is plotted for 
three sun inclinations . As expected, the space­
craft is unstable with respect to gravity torques 
since the z-axis is not the axis of principal inertia. 

(3) Total momentum requirement . The cycli­
cal value of momentum shown in Figs . 39a and 39b 
will be used to provide information for the sizing 
of the inertia wheel. A conservative value of 
cyclical momentum would be 0.02 ft-lb/sec (0 . 27 

m-newtons ) gravity grad ient (height in Fig . 40 ) and 
sec 
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0 . 006 ft -Ib /sec (0 . 008 m - newtons ) fat' solal' raciia-
sec 

tion (h e ight in Fig. 39 ). These are c rude est i ­
mates for the preliminary design, but fortunate ly , 
a s will be seen, fllrn out to be of se('ol1dan im ­
portance to the total storage t'equirements . 

Over each orbit the momentum added to the 
system will be that Wilicll I» nut cyclical. Gravity 
gradient for>; = 45° will add about 0 . 052 ft-lb/sec 
(0.071 m-n/s) and solar radiat ion I'or S = 0 will 
add 0,008 ft - lb / {O, 0 11 m-n/s ) sec per Ol· bit. The 
inclination of S = 0 is the WOl'St case for' sol ar 
radiation s i nce the maximum eclipse time occur's 
at this inclination. The gravity gt'ad ie nt dictates 
the most stt'ingent requir·ement. Integrating 
0 . 06 ft-lb/sec (O, 08 m-n/s ) over the 5250 or'bits 
in one year , an impulse of approximate ly 12 5 Ib ­
sec ( 557 n-s) is obtained . 

(4) Design of a torque-producing system . The 
torque-producing system must provicle sufficient 
impulse to overcome the sec ul ar effec ts of dis­
turbance torques and mllst be designed to pro\'ide 
the minimum system weight while not appreciably 
reducing system reliabili ty . Only two of these 
several approaches will be com pared . Th ese are 
th e simple on - off (or contractor) mass expulsion 
control system using gas jets, and the dual mode 
system utilizing th rust devices (gas jets) and mo­
mentum storage ( motor driven in rtial flywheels ) . 

The simple on-off or contractOl' control sys­
tem will be acceptable if the resultant body rates 
are not too high and if the gas consumption over 
the requir d lifetime docs not appreciably exceed 
the equivalent wight required for the momentum 
storage system . A block diagram of such a sys­
tem is shown in Fig. -ll; the system produces a 
limit cycle in attit ude en'or with errOl' rates as 
shown in the phas portrait of Fig . .J2 . 

Th design of these systems is well - known . 
Th e c hoic of acceleration (torque-to-inertia ratio) 
depends on the initial acquisition conditions and 
the characteristics of the sensor. A total thl'ust 
per axis oj' 0.02 lb (0 . 09 n) adequately satisfies 
the acquisition requirement. :\ .let lever ann of 
2 , 5 ft (0 . 61 m) an attitllde er['or dead zone of' O. !,>o, 
hysteresis of I ",; , rate-to-position gain of ]0, and 
negligible time delay were chosen for sample cal­
c ulation . The t'esuHing limit cycle period was 
800 sec with a limit cycle r'ate of apPt'oximalel.\ 
0.00 25° /se(' , For three channels of opet'ation the 
total impulse requirements 1'0) ' one ,\eal' will be 
approximately :3000 Ib-sel' (1 3 , .. 00 n-s), 0)' fo) ' a 
cold gas pneumatiC' s,\'stem like nitrogen Ot' at'­
gon, approximatel,\ 120 lb (535 n ) a l'e requit' ed 
for the gas and tankage weight. This weight 
t'epresents a lat'ge fractioll of the total satellite 
weight and should be )'educed, if possible . For 
lo w body rates sllch as thi s system pr·oduces , 
the mo st significant term is h,\slet'esis . ince 
this example uS s ] o~ h,\'stet'E'sis, ('ollsidered a 
present state - of-the-art limit , and ignores time 
dela,\, which is also significant , a pr'adical de­
s ign would probably t'esult in inCt 'eased gas cun­
sumption fol' the on - off s., ste m , 

(5) Design of d ual mode system . The block 
diagr am shown i n Fig. (4 :3 ) is lhat of a clual mode 
system a nd represents the addition to the gas jet 
system of motor-driven flywheels, which pl'O­
vid s the capability of stol'ing the C) clical mo­
mentum . Since th gas jets al'C not used to force 

the system into a hard limit cycle , the only gas 
required is that to J' emove stored momentum clue 
to secular tOl'ques a nd that necessary 1'01' initial 
sun-earth acquisition and speciaJ modes requir­
ing the usc of gas jets . Figu)'e 4-l shows the typi­
cal error angle-angular rate' plot for the system 
undet' the e[[ect of a constant disturbance torque . 

(a ) l\lomentum storage system . The first 
job to bCTi'cated- rn- the' design of the system will 
be to size' the inertia wheels and determin e the 
tOl'que requireme nts o n the drive motol'. Th e 
l'(~quiremenls for pilch and roll reaction wheels 
a l'e cletennined sepal'ately from those [or the 
,yaw wheel. 

Pitch / roll wheel sizing. T he pilch and roll 
wh<'els win be requil'ed to store the momentum 
clue to tOl'ques which arc cyclical in inertial space 
and to store the momentum which m ust be trans­
fer red from another axi s to that body axis as the 
vehicle rotates in inertial space . In the disturb­
ance torque calcul a tions a peak cyclical momen­
tum storage requirement of 0 . 026 ft-lb/sec (0 . 035 
rn-n / s ) was determined, inclu ding the effects of 
both gravity gradien t a nd solar radiation. In gen­
et'al, the wheels must also be capable of storing 
the body Inomentu In required for the spacecraft 

orbita l t'ate which is 1.05 x 10- 3 rad/sec of 0 . 17 
ft -lb /sec (O , 23 m-n/s) if it occurs in the pitch 
axis or 0.105 ft-lb/sec (0.14 3 m-n/s) in the roll 
axis . Combining this with the disturbance torque 
t'equir'ements, momentum storage of 0. 250 ft-Ib/ 
sec (0. :H1 m-n/s) will be chosen. If we c hoose 
the maxi mum allowable speed of the motor to be 
;j00 rad/sec, the flvwheel inertia then must be 

O - ]0- 3 1 (' 2'{0 68 0- 3 2) S' , :) X S ug- t . x 1 kg-m . lnce 
the o rb ital momentum in a nyone axis can be 
transferred to any other ax is, during or bital 
malleuvers, a wheel of this size will be used in 
both the pitch and roll axes . This represents a 
solid s t eel whe 1 approx imately -l in, (l 0, 2 cm) 
in diameter ', l /2-in, (1 . 2 cm ) thick a nd we ighing 
appt' ox imately 2 Ib (8 , 9 n ), 

It is lVell to revif>w the pit ch a nd roll momen­
tum storage capability from the standpoi nt of ac ­
quisition . Generally w heels will not have suffi­
cient momentum storage capability to continue 
the initial l'ates. During acquisition the body 
rates must be r educed to a sufficiently low mag­
nitude so that the whe 1 is ab le to store the r e ­
sidual momentum i n the body . In many cases 
this will corrrspond to the contractor servo limit 
cycle rates . For the acquisition system design, 
which is discussed later, a torque -to-ine rtia 

ratio of approximately 3 . 5 x 10--l rad/sec 2 will 
be determined to meet the acquisition system 
requirements . 1£ a n equivalent hystereSiS of 50/0 
is lIsed for the design, a limil cycle rate of ap­
proximately 0 . 05° /sec will exist . This rate 
dictates wheel momentum storage capability of 
af least 0 , 05 ft-lb/sec (0.0 8 n-m/s), we ll within our 
pl'evious l ,\ determined wheel storage capab ili ty . 
L,'udhel', it might be required th a t und l' normal 
op ration the momentum s torage capability be 
such as to maximize the time between gas jet 
fil 'ings . Note from Fig. -l.J that , after gas is 
['ired, it appear s that the most desirable a ttitude 
woul d be at .:ero error s i gna l or tha t represent ed 
by complete wh el desaturation (a ). If the wheel 
mementum is not completely removed or if too 
much is added by the gas system , the final attitude 

l 
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will o ccur at (b ) or (c ), r espectivel y . With a 

torq ue - to-inertia rat i o of 3 . 5 x 10 - 4 rad/ sec 2 , 
a rate- to-pos i tion gain of 11. 25 and a hysteresis 
of 5% , a gas jet firing will remove approximate ly 
30% of the wheel l s saturation momentum . 

If the jet firing i s requ i red to complete ly de­
saturate the wheel, a spacecraft angular rate at 
the time the jet is t urned off , appr oximately 
0.0015 rad/ sec is necessary . For a system with 
t he same gain rati o and hysteres i s , a torque -to-

inertia ratio of 3 . 8 x 10 - 3 rad/ sec i s r equ ired 
to compl etely desaturate t he whee l. T he pres-

- 4 2 
ently chosen 3 . 5 x 10 rad/ sec will r e move 
only 30% of the stored momentum . 

Yaw wheel size and motor torque . The yaw 
whee l must not only be ab le to store the same 
momentum as the pitch and ro ll wheel but it 
must he lp to perform the yaw t urn required at 
high noon . If it i s assumed that the yaw turn 
is to be performed within 15° of high noon (solar 
array angle equa l to 75°) and if it i s ass umed 
t hat the turn is to be performed strictly on 
wheels Ii. e . , no gas is to be fired), it is possible 
to determi ne the yaw wheel and motor torque 
requirements . The time for the sate llite to move 
15° in its orbit is 250 sec . Then for a maximum 
effort t urn (c;onstant torque ) as s hown in the fol­
lowing sketch , the motor torque requ i red is 1 . 25 
in . oz (O . 008 9 m - z ). At the maximum spacecraft 
rate, the momentum which must be stored is ap ­
proximatel y 1.56 ft - lb / sec (2 . 13 n - m / s) . Sinc e in 
a practical motor it is not pass ibl e to attain full 
torque as the speed increases , a 2 - in . oz (0 . 014 
m - n ) motor is ci!Osen. The momentum to be 
stored is 1.56 ft -Ib / sec {2 . 13 m - n / s } for the turn , 
plus the 0.25 ft-Ib / sec (0 .34 m - n / s ) (storage re­
quirement c apability ne cessary for momentum 
transfer from pitch and / or roll whee l s ). The y aw 

whee l inertia will be 3 . 2 x 10 - 3 slug-ft2 (4 . 3 x 
-3 2 10 kg - m ) for the 500 rad/sec top motor speed . 

About a 6 - in . diameter by I - in . (2 . 5 cm ) thic k solid 
steel whee l we ighing approximate ly 7 l b (31 n ) is 
necessary . 

BEG IN TURN 

I 
I 

YAW ANG LE 

90 
MAXIM UM POSITIVE YAW 

ACCELERATION 

_ _ _ ___ ...:.,'5-:-:0,----4C----.:.1:;..5 o _ ___ ~a ORBIT ANGLE 

I M AXI M U M NEGAT I V E YAW 
ACCE LERATION 

TURN CO MPLET E 

Yaw An g l e Dur ing Noo n Turn 

P itch and roll motor torque requi rements . 
T he torque requirement for the pitch and r oll 
motors may be based either on the h igh noon" 
turn req uirement or on the cancellat i on of 
spacecraft momentum before the phase pla ne 
trajector y reaches the opposite swi tching line 
(trajectory d in F i g . 44 is such an examp le ) 
thus causing unnecessa ry gas to be fi r e d . Each 
time a jet fires, about 0 . 5 in . - oz (0 . 0036 m - n ) of 
torque is required to provide a trajectory to keep 
the other gas jet f r om firing . For thi s example, 
it has been assumed that the yaw turn maneuver 

m ust occur wi thin ± 15° of the noon condit ion . 
This means that the p itch and roll wheels must 
be capable of transfer ring the maximum momen­
tum stored by each to the other in 250 sec . For 
the maximum effort t urn as shown in the previous 
sketch , t he torque required to accomplish the 
transfer of the maximum momentum (0 . 250 ft­
lb/sec ) (0 .34 m - n/s ) i s 0 . 71 in . - oz (0.0051 /m-n) 
in pitch and 0. 82 in. - oz (0 . 0058 m - n ) in roll. 
Commerc ia lly availabl e 1 in . - oz (0 . 00711 m - n) 
motors are c hosen for the pitch and roll motO r s . 

(b ) Mass expul sion system . The mass ex­
pulsion system is designed on the basis of three 
requirements : first , the torque leve l is deter­
mined in concert with the sun sensor linear 
range and to obtain acq uis i tion within the re­
quired t ime with minimum gas consumption; 
second , the total impulse requirements are 
equal to t he s um of separate impulses required 
for acquisition , removal of secular disturbance 
torques , reacquis ition , redundancy and con­
tingency a nd; third , the design parameters are 
dete r m i ned on the bas i s of practical values of 
equivalent hyste r esis , dead zone , valve dynamics , 
etc . For a 1° lim itation in loc a l ve r t ica l, if the 
maxim um orientation pitch occurs at the same 
instant that t he ro ll error i s maxi mum , then the 
errors in ind ividual axes must be no greater than 
the 0 . 707° to meet t h e 1° requ i rement. The 
maximum dead zone in pitch and roll axes , for 
thi s example , will be des igned to approximately 
0 . 5° to allow for sensor errors , no ise and m is­
alignment. 

As will be shown in t h e acquisition design , the 
thr ust l e vel per axi s (usually two nozzles ) will be 
about 0 . 02 lb (0 . 08 n l. A n impulse of 210 lb - sec 
(938 n -s ) for 1 y r of operation will be required 
from the fo llow ing sources . 

(Lb-Sec) (n- s ) 

Disturbance torques for 1 yr 120 536 

Init ial acqui Sition 36 161 

Three r eacqui s i tions 3* 13 .4 

20% contingency 32 143 

R eq uired because of pressure 19 85 
regulator l imitations 10% 210 938 .4 

*Assumi ng that the m a x imum m omentum 
of a ll t he wheels i s dumped i nto the 
body . t he rea cquiSition requirement 
is still l ess than 1 lb - se c (1.4 n-s ). 

The pne umatic gas system i nc l ud ing t he 

tankage will weigh app roximately 9 lb (40 n ), as ­
suming nitrogen with about 60 l b-sec of i mpu lse 
(80 n-s ) per pou nd (4 . 4 n) of weight, p lus a n ominal 
140% a llotment for tankage factor . The compari­
son of the two s ystems in weight for a year ' s op­
eration finds the on - off s y stem weighi ng a m i ni­
mum of 120 lb (536 n ) compared to t he dual mode 
s y stem weighing appr oximate l y 39 Ib (173 n ) 
including 20 lb (89 n ) for the reaction whee l s, 
motors , and circuit r y p lus 9 lb (40 n ) for pneumatic 
s y stem, plus the additional power supply required 
to drive the motors (estimated to be l ess than 
10 lb ). 
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(c) Acquisition sequence . For power supply 
requirements and temperature control it is neces­
sary to cause either the yaw or pitch axes to lie 
along the sun line within 30 min of the time of 
separation from the booster vehicle. The space­
craft initial rates and initial attitude orientation 
will be assumed the most adverse , namely: 1°1 
sec and 180° from desired orientation. 

When separated from the booster , the space­
craft is misoriented and possesses booster 
separation-imparted body rates. The process 
of achieving normal control requires that the 
rates be nulled and that the sun and earth be 
acquired while the vehicle is in the sunlight. Of 
the several possible sequences the one chosen 
is as follows. 

The rate null mode. During this mode the 
solar array is fixed at + 90° and the yaw axis of 
the spacecraft is pointed at the sun , and rates 
about this axis are nulled. Information is pro­
vided by sun sensors and a yaw rate gyro. The 
array sun sensor provides roll signals and the 
yaw sun sensor provides pitch signals. By point­
ing the body at the sun initially, the power sup-
ply is immediately oriented for maximum charging 
and the orientation is proper for temperature con­
trol. In addition , the need for rate gyros in the 
pitch and roll axes is eliminated. 

The orientation mode. During this mode the 
spacecraft is slowly rotated about the yaw axis 
to obtain horizon scanner returns from the 
earth. The solar array meanwhile maintains 
itself normal to the sun line . This method re­
quires simple logic , little gas consumption , 
and ensures earth acquisition regardless of the 
position in orbit provided that the spacecraft is 
not in eclipse and that the scan angle coverage 
of the horizon scanner is sufficient. 

The vehicle is now in its normal operating 
mode, the horizon scanners and sun sensors 
provide the information in pitchl roll and yaw 
to stabilize the spacecraft in the presence of 
disturbance torques , and the solar array is 
oriented so that the solar cells are facing the 
sun. If earth reference is lost , the vehicle will 
automatically return to the orientation of the rate 
null mode and reacquire the earth by repeating 
the above sequence . The block diagram of the 
acquisition mode is shown in Fig. 45. 

(d) Design (or acquisition. The following 
design is based on single axis computations 
which are considered adequate for preliminary 
design. All details of switching and choice of 
parameters must ultimately be determined by 
a three - axis study. The filter in the gas jet 
system is to be designed for rapid convergence 
from high rates to low limit cycle rates. The 
larger the rate gain , for a single axis at least, 
the lower the time and the less the gas that will 
be required to converge. For passive networks, 
practical upper limit for KR is approximately 

15. A filter F (s) is assumed where 

F()=12.5s+1 
s 1. 25 s + 1 (1 95 ) 
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The equivalent rate-to-position gain for the switch­
ing line is assumed to be 11 . 25 . * Clearly one of 
the principal design parameters to be chosen will 
be angular acceleration (torque-to-inertia ratio) . 
A decrease in torque will increase the gas con­
sumption and the time required for sun a cquisi ­
tion . An increase in thrust will suggest an in­
crease in sun sensor linear range in order to 
keep the gas consumption down. 

Assume that the thrust is essentially the 
same for all axes and that yaw rates and error 
signal coupling between pitch and roll can be 
neglected . A conservative estimate of the total 
time for acquisition can be obtained by assuming 
consecutive pitch and roll system operation. The 
phase plane of Fig. 46 shows the operation in one 
axis, assuming the worst initial conditions . Figure 
47 shows the maximum angular rate that the 
spacecraft will encounter versus torque-to-in­
ertia ratio, assuming the initial c ondition of 
1°1 sec and 180° attitude error . This curve is 
for the switching lines for the filter that is used. 
With a dead zone of about 1° about the yaw axes 
the rate at switching , if the sun sensor linear 
range is ± 30° , will be 2.6°1 sec and a torque-to-

inertia ratio of 3 . 5 x 10 -4 radl sec 2 will be re­
quired . It is next necessary to compute the time 
to acquire and the gas consumption. These can 
be determined approximately from the phase 
plot or from the rate diagram. An approximate 
closed form solution for the convergence in a 
single axis has been developed and is given by 

t acq 

where 

"'0 

F 

R 

2 2 
(rr/180) Wo 

2KR F2r2 [
12 + 12 J 
xx YY (cj>p =-900) 

(1 96 ) 

initial crossover rate in degrees 
per second which is approximately 
2 . 6°/sec 

thrust per axis 

thrust level arm 

and since torque-to-inertia , >.. , is given by 

t acq 

Fr 
-r-

1.53x10-4 

11. 25 

1720 sec 

(1 97 ) 

2 

( 
2.6) 

3. 5 x 10- 4 
x 2 

(198) 
which is slightly less than the specified 30 min . 
Here the torque-to-inertia ratio is assumed the 

*In practice, the effect of acceleration and higher 

terms in the expansion F (s ) = 1 + 11 . 25 s - 14.2 s2 
+ ..• must be considered . These terms may 
alter the limit cycle switching line, and hence 
gas consumption, significantly . 



same in both axes. Figure 48 shows a few cyc les 
of the settling transient for a similar system . 

Because of the differences in inertia , and if 

~ = 3.5 x 10 -4 , the total thr ust should be 0 . 014 
lb (0.062 n ) in the roll axis and 0. 22 Ib (0 . 98 n ) in 
the pitc h axis . We will use a thrus t of 0 . 0 2 l b 
(0 . 089 n) per axis or nozzles acting in pairs 
with a thrust of 0 . 01 l b (0 . 044 n). (Some of the 
foregoing calculati ons could now be refined us ing 
the correct ~ ' s rather than the same ~ for both 
axes .) A crude estimate of gas co nsumption 
for acquisition would be (assuming the jets are 
on at a ll times ) 

Pitch and roll 

I Yaw w 
r 

(1720) (0 . 02 ) '" 35 lb-sec 
"" 156 n - s 

115 (1/57.3 ) '" 1 lb-scc 
2."5 '" 4.4 n-s 

Total = 36 lb-sec 
160 n - s 

(199) 

If, instead of ± 30°, a linear range of ± 15° is 
chosen for the sun sensor , the necessary ~ to 
keep the solution in the linear range of the sensor 
would decrease by a factor of about 7 and the ac­
quisition time would be increased by a factor of 
about 10 . The resultant gas consumption would 

-3 
be up by only 40% . For the ~ of 3 . 8 x 10 , 
which provides for perfect wheel desaturation 
(see Fig. 44), the sensor linear range should 
be at least 65° . 

(6) Sensor design 

(a) Sun sensor . The sun sensors located on 
the array for array error angles and on the body 
(or array) for yaw error angles will have a 
linear range of ± 30 . The operation around the 
null and the absolute linearity are not critical 
since accuracy to no better than ± 2° i s all that 
is required for the 5° pointing requirement , in­
dicating that simple shadowing techniques can 
be used. Although the calculations of acquisi­
tion are based on a ± 1° dead zone for yaw , they 
are crude and will not be seriously altered with 
the 2° dead zone . 

(b ) Horizon scanner . The scan angle , ~ , 
(see sketch) for this system must be determined . 
Two requirements aid in the selection of this 
angle . 
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In order to ensure acquisition , the edge of 
the scan pattern must scan the earth for any 
spacecraft position. At 400 naut mi (740 km) the 
earth s u btends approximately 135 ° at the satellite, 
ind icating that a half angl e cone of at least 24 ° 
i s requi red to ensure acquisition. This, however, 
since it is at the very edge of the earth , will 
provide a very nOisy signal. 

From the linearity consideration of a change 
in pulse width per change in angle , a scan angle 
which normally crosses at 45° of the portion of 
the earth that is seen by the satellite is reason­
able (see the following sketch). 

Equivalent earth's radius seen 
at 400 nautical miles (740 km) 
is approximately 1520 nautical 
miles (2815 km) 

The scan angle for this configuration then 
should be approximately 50°. The uncertainty 
due to ionospheric noise considered to be about 
7 mi ( 13 km) ind icates that a scanner error of 
about 0 . 27° in roll and pitch i s possibl e . Other er­
rors due typically to optical irregularities, mo~nt.ing 
m i salignment, thermistor balometer charactenshcs, 
etc. , must also be considered . The proper scan 
rate would be determined on the bas is of the 
tradeoff between inherent scanner signal- to- noise 
ratio and system bandwidth. This is not a signifi­
cant problem for a 400-naut mi (740 km) orbit. 
Typical system bandwidth in excess of 3 cps is 
easily attained with a nominal scanner rate of 30 rps. 

(7) System description . The system.block 
diagram is shown in Fig . 49 . The reactlO~ wheel 
size has been selected and the torque requlre­
ments of the motor obtained , the gas jet has been 
determined and the impulse requirements per year 
established . The sun sensor and horizon scanner 
requirements have been briefly examined . To 
complete the study , a reliability analysis is 
nec essary but has been excluded for this example . 
T he acquis i tion noon-turn logic and solar array 
drive must , of course, be included . No special 
eclipse requirements are assumed . Reacquisition 
of sun must be studied and if only a small amount 

XII - 55 

'\ 
\ 
\ 
\ 
\ 

....tIll FIELD 
IIW" OF VI EW 

--'-___ --L-

I 

I 
I 
I 
I 



of gas i s required , it can pr obably be performed 
upon emergence from each eclipse . A s implified 
block diagram of the normal mode is shown in 
Fig. 49 . 
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A. INTRODUCTION 

Once a satellite mission has been conceived 
to accomplish a given function (e. g. , reconnais­
sance' communications, meteorological deter ­
minations, etc. ), the question arises as to what 
orbit or orbits would best be suited to accom ­
plishing the specified mission. Selection of the 
best orbit depends upon a multitude of factors 
such as periodicity, area coverage capability, 
target coverage capability, satellite and sub­
satellite point illumination and vehicle tracking 
considerations. These factors will be investi ­
gated in order to provide a basis for orbit selec­
tion in a given mission plan. Section B considers 
the general nature of the various types of missions 
and indicates how the above factors are involved 
in orbit design for each mission. Detailed quanti­
tative analyses of the various factors are contained 
in Sections C, D and E. 

B. MISSION CONSIDERATIONS 

Although each mission has its individual re ­
quirements, most satellites may be categorized 
for general study as follows: 

(1) Reconnaissance satellites . 

(2) Communications satellites. 

(3) Navigation satellites . 

(4) Meteorological satellites . 

(5) Scientific satellites. 

In general, orbit des i gn for each of the missions 
will require consideration of ground tracks , cov ­
erage and sensor limitations . In addition , when­
ever photographic determinations are made, or 
solar power supplies are used , various solar prob­
lems (e. g ., heating, time in sunlight , relative 
orientation of the vehicle - sun-line , etc .) must be 
considered. Table 1 lists most of the factors in ­
volved in selection of each orbit e lement . The 
following subsections qualitatively relate these 
factors to the above mission types. 

1. Reconnaissance Satellites 

One function in which satellite systems are 
we.ll suited is that of scientific or military recon­
naIssance. ~bservations made by a satellite sys­
tem can prOVlde valuable information on the nature 
of this surface of the earth, and of the number 
locations and state of development of installati~ns. 
In making these observations, a satellite system 
has the .ad~antage ?f covering large areas rapidly 
and perlOdIcally wIth no risk to the observer . 

From a general point of view, selection of an 
optin:~m ~econna~ssance satellite orbit, involving 
specifIcahon of SIX orbit elements, is based upon 
the following philosophy : 

(1) In most missions , orbits of low eccen ­
tricity should be selected to allow uni ­
form sensor performance throughout 
the orbit . Thus , for the limiting case 
of e = 0, two additional elements w 
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and Tp (the argument of perigee and 

the time of perigee passage ) may be 
selected arbitrarily because they have 
no real meaning. 

(2) In general, choice of orbit altitude de­
pends on a tradeoff between sensor power 
and resolution requirements for low alti ­
tude on one hand and coverage and orbit 
lifetime requirements for high altitude 
on the other. Decay of the orbit altitude 
due to atmospheric drag is prohibitive 
for altitudes less than 150 km, and or­
bits of altitude less than about 225 km will 
require periodic corrections even for use­
ful lifetimes of a few weeks. The added 
complexity of orbit correction systems 
and the added fuel requirement, as deter­
mined in Chapter VI , are certainly fac­
tors in the selection of an orbit altitude 
for extended missions. The effect of low 
altitude in decreaSing area coverage is 
discussed in some detail in Section E. 
This factor is especially significant for 
missions requiring continuous photo­
graphic coverage for extended periods , 
where the film bulk can be quite large . 
The sensor requirement for low altitudes 
is discussed in Section F. 

(3) For fairly low altitude satellites, the in ­
clination of the orbit to the equatorial 
plane must be at least as large as the 
latitude of geographical areas to be ob ­
se rved. Thus , as an example, if there 
is a requirement for complete coverage 
with low altitudes , polar orbits are re­
quired (Section E ). 

(4) The right ascens ion of the ascending node, 
as determin ed by the launch t i me, could 
be sel ected arbitrarily for m is s ions of 
extended duration or miss ion s aimed at 
more or less total coverage . However, 
for short-term missions requiring photo­
graphic inspection of a specific geographic 
area, the node should be selected so that 
the satellite passes over the area of in­
tere s t during the local daytime. 

2. Communications Satellites 

Satellites can be used as component stations 
of a communication system relaying Signals from 
one point on the earth ' s surface to another. Their 
advantage in this application is primarily one of 
coverage. Range limitations of conventional radio 
transmission can be overcome and reliable inter­
continental radio telephone links established. 

Com.munications satellites may function actively 
or passlVely. That is, an active satellite con­
tains receiving and transmitting equipment so that 
it can receive a signal from earth , amplify it and 
retransmit the same signal signal back to earth. 
A passive satellite, which may take the form of 
a large, metallic skin balloon, merely reflects 
incident radiation from the earth so that a portion 
of this radition is scattered back in the direction 
of the earth . Examples of the two types are the 
ECHO balloon satellites and the TELSTAR active 
satellites. Passive systems would require ground 
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TABLE 1 

Factors Involved in Orbit Selection 

Altitude Factor Eccentric ity Factor Inclination Factor Node Factor 

High (1) Maximum Low (1) Uniform Low (1) Elimination Special (1) Selection of 
coverage (e '" 0) coverage of earth value daytime over 

over large relative mo- a reconnais-
High (2) Minimum areas tion in the sance or cov-

drag per - case of the erage area 
turbations Low (2) Uniform 24-hr orbit 

(e "'0) sensor Special (2) Selection of an 
High (3) Minimum resolution High (2) Complete value optimum or uni-

oblateness and power global cov- form coverage perturba- require - erage pattern 
tions ments 

Specific (3) Optimum Special (3) Maximization of 
Low (4) Sensor Low (3) Elimina - values or uniform 

resolution (e "'0) tion of coverage value time in sunlight 

and power earth 
for solar power 

limitations relative Specific (4) Tracking 
motion in values station 

Low (5) Minimum the case utilization 
solar and of the 24-
lunar per- hr orbit Specific (5) Reconnais-
turbations values sance or 

Low (4) Ease of coverage 
Low (6) Propellant (e "'0) position of a partic-

expenditure predic- ular area 
in launch tion and 

uniform Specific (6) Regression 
Specific (7) Achieving ground values rate set to 
altitudes synchro - track 0.986°/day 
(24-hr, nous per - for a given 
6 -hr, formance Low (5) Secular altitude (al-
etc., see (orbit (e '" 0) pertur - lows orbit 
Section period a bations plane to fol-
D . 2.) rational can be low the sun) 

fraction largely 
of a day) compen-

sated for 
See (8) Avoiding in achiev-
Chapter II Van Allen ing syn-

belts chronous 
orbits 

High (6 ) Increased 
coverage 
over 
limited 
areas for 
fixed 
launch 
propellant 
expendi-
ture 
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station transmitters of much higher power than 
would active satellites. On the other hand, the 
complexity of vehicle-borne equipment leads to 
limitations on reliability and mission duration 
for active systems. 

Mission requirements for a complete communi­
cations system would probably aim for continuous 
24-hr coverage between virtually every pair of 
points on the earth's surface. One orbit design 
which has been frequently mentioned in connection 
with this requirement employs the 24-hr satellite 
orbit. Because this orbit has a period of one day, 
satellite motion is synchronized with the rotation 
of the earth . In the case of the 24-hr equatorial 
circular orbit, the satellite would appear to hang 
motionless in the sky above an observer on the 
earth. Elliptic or nonequatorial 24- hr satellites 
perform diurnal excursions relative to the obser­
ver. The 24-hr orbit is described in greater de­
tail in Section D. The advantages of the 24-hr 
orbit in communications systems lie in the station­
ary nature of the satellite and the wide coverage 
of each satellite (the 24- hr circular orbit altitude 
is 35 ,777 km) . At the 24 - hr orbit altitude, each 
satellite can view very nearly half of the earth's 
surface. Thus, three satellites could provide 
very adequate coverage which could only be 
achieved by hundreds of satellites in low altitude 
orbits . Also, ground antennas could be fixed, 
and tracking would be extremely simple. A dis ­
advantage of the 24-hr orbit system is the rela ­
tively high power required to transmit to this high 
altitude. 

Whatever altitude is chosen, it should be such 
that an integral number of periods are cor.tained 
in a day. Then the ground track, the trace of the 
subsatellite point on the surface of the rotating 
earth, will repeat daily. This condition is ob ­
viously desirable from the standpoints of ease of 
prediction of satellite position and utilization of 
the system. That is, the user would know what 
satellite service is available at a given time with ­
out referring to a complicated ephemeris because 
a satellite is at the same place at the same time 
each day . SynChronous orbits, which exhibit a 
daily repeating ground track, are those of 24, 12, 
8, 6, 4, 3 and 2 sidereal hour periods. The alti ­
tudes corresponding to these periods are tabulated 
in Section D. 

For communications systems which aim for 
literally world-wide service, circular orbits offer 
the advantage of uniformity in coverage. However, 
if the system is to provide coverage primarily in 
one hemisphere or primarily during the daytime, 
high eccentricity orbits could be chosen. These 
orbits can be achieved more economically than 
could circular orbits of their apogee altitude (apo­
gee altitude is the criteria here in order to provide 
a large communication range). The elliptical or­
bits WOUld, of course , be launched so that apogee 
conditions occur over the daylight side of the earth 
or over the hemisphere of interest. 

3. Navigation Satellites 

Artificial satellites can be used as references 
for all-weather navigation systems determining 
position and velocity of a surface vehicle, aircraft 
or space vehicle . The conventional navigation 
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methods, e. g., dead -reckoning, star and sun 
sighting during clear weather and storage of 
reference information by inertial guidance in­
struments, provide navigation information of 
adequate accuracy . However, such information 
must be periodically corrected to maintain ac ­
curacy, and the replacement of star and sun sight­
ing with satellite sighting would permit this up­
dating to be performed at any time, regardless of 
wea the r conditions . 

a. Satellite navigation methods 

Various methods of satellite navigation may be 
considered, depending on the nature of available 
equipment, data available from sources other than 
the satellites and the nature of the position or ve­
locity information to be obtained. 

(1) Sphereographical navigation 

The position of an observer on the earth 's sur­
face can be determined from a pair of observations 
of the angle between the local vertical and the line 
of sight to a celestial body . Of course, in order 
to make these observations, the local vertical 
must be obtained by means of a pendulum, plumb 
bob or some other device. Any celestial body, 
e. g., the sun, a star or a satellite, could be ob ­
served as long as its angular position is accurately 
known. Determinations based on satellite positions 
will obviously be complicated by the high relative 
velocity of the observer and the satellite. However, 
the fundamental technique is the same. The ob­
server , equipped with a vertical reference and an 
electronic sextant, measures the direction angles 
of a radio signal continuously emitted from the 
navigation satellite. 

(2) Doppler navigation 

The sphereographical technique employs the 
classical angular measurements of celestial navi­
gation. Satellite systems employing radio tech­
niques are not limited to these methods. One 
radio technique is based on the Doppler effect. 
Radio signals received from a moving vehicle ap­
pear higher in frequency as the vehicle approache.s 
the observer and lower in frequency as the vehicle 
recedes from the observer. The difference be­
tween the observed frequency and the known trans­
mitter frequency , the "Doppler shift, " is a meas­
ure of relative motion (or relative pOSition when 
these shifts are integrated) of the vehicle and ob ­
server and, therefore, can serve as input to a 
navigation system. Knowledge of local vertical is 
not required. The TRANSIT satellite program em­
ploys a purely Doppler system. 

(3) Complete geometric determination 

Systems for navigation on the surface of the 
earth can implicitly make use of the knowledge 
that the observer is a known distance from the 
center of the earth, the origin of the coordinate 
system in which the satellite pOSitions are known. 
A more general problem may be hypothesized as 
follows: the position and velocity of a vehicle in 
space is to be determined solely from data con­
sisting of range and range rate relative to the navi ­
gation satellites. The observer is assumed to have 
no knowledge of his orientation, position or velocity 



from other sources such as plumb bobs, altimeters, 
etc. If a complete determination is to be made 
from a set of observations made at any given time, 
the observer must simultaneously note the range 
and range rate of three navigation satellites, the 
positions and velocities of which are known. Then 
his position is determined as the intersection of 
three spheres. 

where 

(1) 

i = 1, 2, 3 

Cartesian position coordinates 
of observer 

known Cartesian position co­
ordinates of the three naviga­
tion satellites 

ranges from the three naviga­
tion satellites to the observer. 

The observer's velocity is determined from 

(V 0 - Vi) . P io 

Pio 

where 

V-V. 
o 1 

(x
o 

- x.) i + (y - y.) j 
1 0 1 

+ (Z - z.) k o 1 

(2) 

:k 
0' yo, i 

0 
Cartesian velocity coordinates 
of observer 

Xi' Yi' Z. 
1 

Cartesian velocity components 
of the three navigation satellites 

Pio 
the range rate data 

and p-. is given from Eq (1). 
10 

Differentiation of Eqs (1) and (2) gives the 
following error formulas. 

( ::: i r~:: ~:: ~::J (~ ) (3) 

dz o l~31 C 32 C 33 ~ 
where 

6.. = (x - x.) dx. + (y - y .) dy. 
101101 1 
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2
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1J 

(x - x
3

) 
s (ys -Y3) (z 

s - z3) 

and C .. is the cofactor of the (ij)th eleme nt ofKT. 
1J 

6
1 

PlO 
6' +6 "\ +--

PlO 1 1 
1 

K C 21 C 22 C 23 (;U 0 

rll C'2 C13] 
C 31 C 32 C 33 

62 
P20 

6' + 6 " +-
2 2 P20 

+ P30 6'+6 " 
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where (4) 

6. ;: (x - x.) (dx. - dx ) + (y - y.) (dy. - dy ) 
101100 t to 

+ (z - z.) (dz. - dz ) 
o 1 1 0 

+ (zo - zi) (dzo - dz j ) 

6.";: (x - x . ) 6.~. + (ys - y.) 6.y. + (z - z.) 6.Z. 
1 S 11 11 S 11 

and K and C .. are those defined in Eq (3). 
1J 

b. Selection of navigation satellite orbits 

The navigation satellite system is similar in 
most functional requirement aspects to the com­
munications satellite system, with perhaps more 
emphasis on precise orbit determination and 
minimum sensor power requirements in the nav­
igation system case . Here again, the require­
ments of wide, uniform coverage with the fewest 
satellites, low transmitter power and synChronous 
motion are important considerations in specifying 
optimum orbits . Since navigation requires satel­
lite tracking by eac h observer as opposed to 
tracking by a few high-powered transmitters in 
the communications system, an increased em­
phaSis on lower altitudes is required in navigation 
system orbit design . Also , since each observer 
must locate the satellites by means of an accurate 
ephemeris, the ephemeris should be as simple and 
easily updated as possible. This requirement 
makes selection of one of the synchronous orbits 
attractive. From a general standpoint, the re­
quirements taken as a whole seem to indicate 
choice of circular 4- or 6-hr orbifs for use in 
navigation system orbit patterns. For specific 
miSSions, Sections C, D , E and F offer data 
upon which a quantitative tradeoff may be based. 
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4. Meteorological Satellites 

Satellite systems offer several advantages in 
meteorological determinations. The area over 
which observations can be made is , of course, 
much larger for a satellite system than for a 
ground station. By means of this greater cov­
erage, a complete storm structure, as evinced 
by component cloud formations, may be observed 
from the satellite. During daylight conditions the 
satellite determinations can be photographic. The 
photographs could provide information on the size, 
structure and location of a storm, and series of 
photographs would reveal the nature and time 
history of the storm development and its motion. 
When the satellite is above the night side of the 
earth, observations can be made by an infrared 
scanning system operating at wavelengths which 
are emitted from the earth and on a spectral band 
which is reflected or absorbed by clouds . 

In addition to storm observations, satellite de­
terminations could include atmospheric moisture 
content from radar and i.nfrared measurements 
of water vapor absorption bands, atmospheric 
density, and radio noise, which indicates the lo­
cation of thunderstorms, line squalls and fronts 
where the atmosphere is unstable. 

The TIROS satellites, a series of experimen­
tal television-equipped meteorological satellites 
launched in a NASA program, have proved very 
successful. In addition to known cloud and 
weather phenomena, processes which apparently 
had not been previously investigated were observed. 

From the standpoint of orbit design the require­
ments of the meteorological satellite mission pri­
marily involve achieving proper altitude and cov­
erage. The orbit should be high enough to permit 
adequate area coverage (Section E) of high alti­
tude cloud formations and yet be low enough to 
provide good resolution with available sensors 
(Section F). Eccentricity should generally be low 
to provide uniform coverage and resolution. The 
TIROS I orbit altitude was approximately 750 km. 
Required orbit inclination is determined from the 
latitude range to be covered, as considered in 
Section E. 

C. SOLAR PROBLEMS 

For many satellite missions the following 
considerations involving the relative positions of 
the sun and the vehicle are important from a 
mission design standpoint: 

(1) Times of satellite ec lipse, i. e. > time s 
when a vehicle enters and leaves the 
shadow of the earth. 

(2) The duration of an eclipse, or the per­
centage of time spent in shadow. 

(3) The time history of the relative positions 
of the vehicle, the sun and the earth . 

These factors are useful in analysis of the follow­
ing mission requirements: 

(1) Compensation for radiant heat absorbed 
through the vehicle skin. 
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(2) Provision for adequate power supply 
by solar cells. 

(3) Provision for tracking the sun. 

(4) Assurance of optimum illumination of 
the subsatellite point for photographing 
certain geographical phenomena. 

These various problems related to solar effects 
and their effects on mission performance there­
fore merit some consideration. 

1. Relative Geometry of the Vehicle , Earth and 
Sun Positions 

Since analyses of these solar problems de­
pend on knowledge of the positions of the vehicle, 
earth and sun relative to each other , it is con­
venient to first derive equations for the instan­
taneous relative positions. These equations will 
provide a basis for the individual analyses. 

is 

a. Position of the satellite in an earth 
centered inertial (ECl) coordinate system 

yl 

-+-----+----1'---=--'----\- x I 

The equation of an ellipse in polar coordinates 

r s 
a (1 - e 2) 
1 + e cos e (5) 

or in rectangular coordinates 

12 
+~~=1 

a (l-e) 

for coordinates in the orbit plane, Xl toward 
perigee. These coordinates may be transformed 
to ECI by the following rotations as outlined in 
Chapter XI. 

C) [0'" 
-sin n 

:] [: 
0 

:"nl : = :in 0 
cos n cos i 

0 sin i cos 1 

[C~' w 

-sin w :](:J Sln w cos w (6) 

0 0 



I 

L_ 

Zl 

x 

z 
y' 

Vehicle 
'JII<o=~-7'-r y 

Equator ial 
plane 

The direction cosines of the position of the ve­
hicle in ECl are obtained by substitution of 
Eq (5) in Eq (6): 

x 
s = cos (9 + w ) cos n - cos i sin (9 + w ) sin n 

rs 

ys 
= cos (9 + w) sin n + cos i sin (9 + w) cos n 

rs 

Zs 
= sin (9 + w) sin i 

rs 
(7) 

The rectangular coordinates (x , y , Z ) are 
s s s 

obtained in terms of the parameter 9 by s ubsti ­
tution of Eq (5) in Eq (7). 

b. Position of the sun in an Eel coordinate 
system 

The definition of solar position in the ECl 
system is simplified by choice of vernal equinox, 
CP, the direction of the intersection line of the 
ecliptic and equatorial planes, as one of the sys­
tern axes. Many astronomical tab les provide 
solar position in terms of right ascension , A , 
and declination, D, as functions of time. 

Z 

J\.. 

/ 

y 

cr 
cos DO cos A xo = r 

0 0 

yo = r cos D sin A 
0 0 0 

Z 
0 

= r 
0 

sin D0 (8) 
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However, a more convenient system for study 
purposes is one employing obliquity, i0 ' and 

ecliptic angle from equinox, e. The obliquity 

iO = 23° 27 ' 08.26" - 0.4684" (t - 1900) 

(where t is the calendar year) is practically con­
stant, and the solar position can then be specified 
by only two variables, r6 and (3 . The angl e e can 
be found by the inverse solution of Kepler 's 
equation for the eccentric anomaly as a function 
of time. Then , the e can be found as a function 
of E. However, since the orbit of the earth is 
nearly circular, 

e e =0 . 0167272, 

r O is nearly constant (0.983273 au S rO :::.. 

1. 016727 au) and e can be approximated as 

e = 0 . 98563 dey> 

where dey> is the number of days past vernal 

equinox (::::: March 21). 

In either case , the solar position in terms o f iO 
and e is given as follows : 

Xo = rO cos €I 

Y0 =r 
0 

cos iO sin e (9) 

Zo =r 
0 sin iO sin e 

c. Position of the sun in a vehicle-centered 
inertial coordinate system (VCl) 

The position of the sun in the VCI system is 
obtained by subtracting corresponding ECl com ­
ponents of the vehicle and the sun. 

x x0 - x 
s 

y 
yo - Ys 

(10) 
Z Z - Z 

0 S 

where (x , y , zO) and (x , y , z ) are given 
o O · s s s 

by Eqs (7) and (8) or (9). The distance from the 
vehicle to the sun is 

r = ,/ (x
0 

- x )2 + (y; - y )2 + (z _ z )2 
s O r . s 0 s 0 s 

( 11) 

and so Eq (10) may be expressed in direction 
cosine form as follows: 

cos Cl'X 

cos Yz 

x - x o s - ---
r 

sO 

z - z o s 
r 

sO 

( 12) 



d . Position of the sun in a vehicle - centered 
local horizontal coordinate system (VCL) 

ECI coordinates may be transformed to VCL 
by successive counterclockwise rotations abo ut 
z through n , about x through i and about z through 
( 6 + w) . 

z 

x 

[

I;J [COS ( 6 +w ) 

: = ~sin ( 6 + w) 

sin ( 9 +w ) 

cos ( 9 + w) 

o 

o ] [COS n 
s in i. - s in n 

cos 1 0 

o sin n 

:] [J cos i cos n 

o -sin i 

8m i sin (9+ wj x 

sin i cos (6 + w) y 

cos i z r
eos fl cos (9 +w) 
- sin n cos i sin (9 + w) 

- cos n sin (8 + w) 
- sin n cos i cos (8 + w) 

Sin n sin i 

sin n cos (9 + (0) 
+cos n cos i sin (6 + w) 

- sin 11 sin (9+ w) 
+cos n cos i cos (8 +w) 

- cos n sin i 

(1 3 ) 

Substitution of Eq (9) in Eq ( 13), followed by trans­
lation of the vehic le radius r i n the I; direction , 

s 
gives the direction cosines of the solar posi.tion 
in VCL coordinates: 

cos Q'I; = ~o = :0 f cos e I cos n cos (9 +w ) 
s O s O ( L 

- sin n c os i s in ( 9 + w~ 

+ sin e c os i O [ sin n c os (9 + w) 

+ cos n c os i sin ( 9 + w~ 

+sine siniO [ siniSin(9+ wj) 
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r s 
r 
sO 

c os f3 = :0 = :0 { cos e [ cos n sin (6 + w) 
T) s O sO 

- sin n cos i cos (9 + wj 

+ sin 8 cos iO [ - sin n sin (9 + w) 

+ cos n cos i cos (9 + w~ 

+ sin 8 sin iO sin i cos (9 + w~ 
14) 

cos Ys 
So r 

[cos 8 sinn 0 
r r 

SO s O 

- sin 8 cos iO cos n sin i 

+ sin e sin iO cos ~ 

sin i 

The last equation of Eq (14) is especially interest­
ing since the true anomaly 9 is not involved , i. e . , 
cos Ys is a function only of the time of year (8 ) 

and the orbit orientation (n and i) . In fac t , for 
low altitude orbits rO '" r and Y~ approa c hes . s O ., 
the angle between the earth -sun line and the 
n o rmal to the orbit plane. 

cos Y
n 

= cos e sin rl sin i 

- s i n e cos iO cos rl sin i 

+ sin e sin iO cos i (1 5) 

This is a useful parameter in determining time 
in sunlight (Section E) . The sin Yn and cos Yn 
are plotted in Figs . 1 and 2 (Ref. 1) for a 
particular orbit to show the form . 

2 . Eclipses of Earth Satellites 

There are several important areas to be 
considered in the study of eclipsing of earth 
satellites by the earth I s shadow . The areas 
discussed in this section include the following . 

(1 ) General geometry of eclipses by the 
shadow. 

(2) Equations leading to the prediction of 
eclipses by the shadow. 



(3) General geometry of eclipses by the 
penumbra. 

(4) Equations leading to the prediction of 
eclipses by the penumbra . 

(5) Eclipse information obtained by 
analytical means . 

(6) Complications involved in the problem . 

(7) Chart and equations for a computer 
program. 

In the material to be presented, all angular or­
bital elements are referred to the plane of the 
ecliptic . Since thes e angles are referred to the 
plane of the equator for earth satellites, the 
reader should see Chapter XI for the appropriate 
coordinate transformation. 

a. General geometry of eclipses by the 
shadow (Ref. 2) 

For simplicity, Figs. 3 through 5 show the 
orbit of the satellite through the center of the 
shadow. Figure 5 shows a case where the 
shadow is not at the node . In' all three fig ures , 
PI is the point where the satellite enters the 

shadow and P 2 the point where it leaves the 

shadow. P 3 is some point outside the shadow 

(that is, in sunlight) . Let s be the size (angular 
radius) of the shadow and a s the angular dis -

tance from the center of the shadow to any point 
in the orbit. When as > s the satellite is in sun-

light; when as < s the satellite is in shadow. 

b . Equations involved in prediction of 
eclipses by the shadow (Ref. 2) 

The angular size of the earth ' s shadow is 
computed from 

s = 102 
TOO 

where R is the earth,s radius 

and 

r = 
2 

a (1 - e) 
1+ecos8 G 

= semimajor axis 

= eccentricity 

= true anomaly 

(16) 

and the factor 102/100 is due to the refraction 
of the atmosphere. Now , using the following 
sketch 

cos a = cos ~>.. cos ~a 
s 

+ sin ~>.. sin ~a cos ie (17) 

where 

~A. = >2 - >.. (shadow) 

~a = a - a (>2) 

and 

A (shadow) = longitude of the shadow 

a (>2) 

i e 

= longitude of the sun + 1800 

= true anomaly at the node 

=- w 

= inclination of orbit plane to 
ecliptic plane 

Orbit 
plane 

Ecliptic 
plane 

The solution of the equations for s = as will 

gi ve values a 1 and a 2' the true anomaly at the 

point of entering the shadow (P 1) and at the point 

of leaving the shadow (P 2) respectively . For 

each of those conditions 

where 

then 
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cos E 
cos a + e (18) 

1 + e cos 8 

M E - e sin E (1 9) 

If o < a < 180 or If 180 < a < 360 

then o < E < 180 then 180 < E < 360 

and 0< M < 180 and 180 < M < 360 

and t M r;; 
(20) -n l n = -;;!T'J 

e eccentricity 

E 

M 

t 

n 

eccentric anomaly 

mean anomaly 

time from perigee passage (t ) p 

mean m otion 

G M , the product of the universal 
gravity constant and the mass of the 
earth 

1. 407648 x 10 16 ft3/ sec 2 (adopted 
value) 

398,601. 5 km 3 /sec2 

Time in umbra (21) 

___ J 



If Eq (21) is negative, add the orbital period to 
the answer. 

To determine eclipse duration on any later 
revolution, it is necessary to update the past 
values of the orbital elements which have been 
changed as a result of various perturbations 
(see Chapter IV), and the position of the shadow 
(approximately 0.9856 deg!day) . The equations 
for sand 9 s are again solved for the points where 

s = 9 . s 

c. General geometry of eclipses by the 
penumbra (Ref. 2) 

To find t ime in penumbra, an approach is 
followed similar to the study for the time in 
umbra or shadow. In this case, however, the 
penumbra is a ring around the umbra as shown 
in Figs. 6 and 7 . 

From Fig. 6, it can be seen that, if the sat ­
ellite orbit is circular (i. e. , r 1 = r 2)' 

But 

and 

6. T 1 OP 1 

1800 - L0 1 OT 1 - LT20 O 2 

1800 (900 
- a) - (900 

- (:3) 

a+{:3 

L T 1 OT 2 + L T 2 OP 2 - L T 1 OP 1 

L T 1 OT 2 = a + {3 . 

Thus the angle tjJ is very nearly constant regard­
less of the size of the circular orbit and is ap ­
proximately equal to 0.540

• 

d. Equations involved in prediction of 
eclipses by the penumbra (Ref. 2) 

Whether a satellite enters the penumbra or 
not (in a particular revo lution about the earth) 
is a similar problem to that o f finding out whether 
it enters the umbra (shadow) or not. We simply 
increase s by tjJ and then compare e s with s + tjJ . 

The satellite enters and leaves the penumbra 
cone at the points 9 s = s + tjJ . For these points 

use Eqs (18), (19) and (20) obtaining tIp and t 2p ' 

relative time of enter~ng penumbra and time out 
of penumbra . If there is not an umbra eclipse in 
that revolution . then 

Time in penumbra = t 2p - tIp (22 ) 

If there is an umbra eclipse in that revolution . 
then there will be two times in penumbra (first 
going from point PI to point P 2 and then going 

from point P 3 to point P 4 as shown in Fig . 7 . 

namely . 
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Time in penumbra (1) 

Time in penumbra (2) 

= t l - tl u P 
= t

2p 
- t

2u 

(23) 

(24) 

If any of Eqs (22), (23) and (24) is negative , add 
the orbital period to the answer. 

e . Alternative solution for eclipse times 

An alternative solution for eclipse times may 
be formu lated from consideration of Fig. 9. Let 

(x, y, z) be unit vectors in an ecliptic coordinate 
system (xe ' Ye ' ze ) · 

Then 

and 

~ 

r 

"-s 

A 
r 

..... 
s 

radius of the sun 

radius of the earth 

geocentric radius vector to the sat­

ellite (unit vector r) 
distance between the centers of 
earth and sun 

unit vector along the direction of 
the earth-sun line 

geocentric celestial longitude of 
the vehicle (ecliptic) 

geocentric celestial latitude of the 
vehicle (ecliptic) 

heliocentric celestial longitude of 
the earth (ecliptic) 

angle between 0 and 5 

cos 1. cos )." ~ + cos 1. sin" y + sin 1 Z 

-cos AE!) x - sin A E!) Y 

cos q, = r · s 
The condition for entering or leaving the penumbra 
is that e = 0 (e defined in Fig . 8) . This condition 
can be determined from 

. -1 Re = a - {3 + IT - q, - sm --
r 

where 

. -1 RO 
a = Sln r=====~======-

r cos 

_ ~ (..E... )2 + ..E... cos q, 
,:, r e r e 

------ ----



and 

f3 
. -1 r sin <p SIn 

i 2 + 2 - 2 rel r cos <p rEI) r 

[1 -i (¢J 
2 

"" 
r sin <p 

rel 

2 J 
+ i (r: J cos ~ 

~ >~ (::~ 2 ; 1 » (r: 1 J 
The solutions for penumbra entrance and exit thus 
satisfy 

R [1 sin j e ~ +~ cos <p 
r 

R: 
- RO rel rEI) 

+ 1T - <l> - sin 
- 1 Rel = 0 r 

The umbra entrance and exit conditions can be 
written by taking 

where 

. -1 RE& = 1T - <p - (a - (3) - s m 
r 

( 1 + ~ cos <l> + ~ sin q) 
r El) r o 7 

(as indicated by Fig. 8) and where a is taken in 
the opposite directio n to that for the penumbra 
solution , i. e. , a is the angle between the vehicle ­
sun line and the lower tangent to the solar s ur ­
face. 

No correction for refraction of the light 
waves has been made in this material. However, 
it is noted that the apparent effect at the vehicle 
will be to make the sun appear larger. Thus , 
an ac curate correction can be made by utilizing 
the apparent rather than the true radius of the 
sun. 

f. Eclipse information obtained by analytical 
means (Refs . 1, 2 and 3) 

An exact closed - form analysis o f general 
satellite eclipses is impracticable ; however, 
some useful information can be obtained by t his 
type of analysis. Very little can be done wit h an 
eccentric orbit , as may be inferred fro m the 
previous sections, but with unperturbed circular 
orbits several important eclipse properties may 
be determined . 

XIII - II 

(1) Eclipse season 

If it is desired to find the days on which an 
eclipse occurs, or so-called eclipse season, one 
may do so with the aid of Fig. 9 

sin "u 
sin s 
SIn Ie 

(25) 

where s would be the maximum size of the shadow 
for an eccentric orbit . 

Then 
. (umbr~ " u 

ecllpse season \only ) "" 2 o:-mnr days (26) 

where 0 . 986 is the mean velocity of the sun in 
degrees per day. 

The exact eclipse season is difficult to com­
pute analytically: (1) due to the regression of the 
nodes the inclination with respect to the ecliptic 
varies and it is difficult to predict the inclination 
when the earth's shadow is near the node ; (2) if 
the orbit is very eccentric the size of the shadow 
at perigee would be much larger than that at apo­
gee , and again it would be necessary to predict 
the position of perigee at the time the shadow is 
approaching the node. For many applications, 
however , the simple method presented above is 
adequate. 

To determine the eclipse season including the 
penumbra, the above equations may be used but 
s must be increased by l/J (l/J = 0° . 54)' as sh(i)wn 
in the following sketch . 

. ( umbra and) " up 
ecllpse season penumbra '" 2 O. 98563 

2 

.-I[sin(s+l/J~ SIn 
sIn Ie 

O. 98563 
(27) 

Obviously , if the inclination with respect to 
the ecliptic is smaller than the angular radius 
of the shadow (ie < s), there will be an eclipse 

at every revolution. 

Also it must be remembered that due to ob­
lateness (and also luni -solar perturbations in 
certain cases) the nodes regress, and a more 
realistic expression for Eq (26) would be 

" eclipse season = 2 u an (28) 
0.98563 + at 

where d nldt = rate of regression of the nodes 
with respect to the ecliptic. It should be noted 
that, with proper selection of orbit inclination 
and altitude, the regression rate can be made 



equal to the earth revolution rate, ~~ = 0 . 986°/ 

day (i. e. , the orbit would follow the sun) . In par­
ticular, if the initial orbit were chosen to have 
this regression rate and, furthermore, to be 
continuously in sunlight with 

the satellite would be in sunlight for its entire 

lifetime. The orbit condition for dl1 = l°(day is 
dt 

7/2 
cos i", - 0.1 (~ ) 

i. e . , 90 < i < 180° . 

No straightforward analytical expression exists 
to give the rate of regression of the nodes with 
respect to the ecliptic similar to the expression 
(to first order) which gives the rate of regression 
of the nodes with respect to the equator . The 
reason for this fact is shown in the following sketch . 

Uniformly 
regressing - ---.-, 
orbital 
pla ne 

Ecliptic 
plane 

Equatorial 
plane 

Thus, the equator ial noda l position and the periodic 
perturbutions of the node must both be considered 
in the definition of nodal position relative to the 
ecliptic. A graphic study shows, however, that 
the regression of the nodes with respect to the 
ecliptic is negligible in most cases . In cases for 
which it is not, ie <. s and, therefore, is of no con -

sequence in the computation of the eclipse season, 
since for i e < s there is an eclipse in every 
revolution. 

(2) Maximum time in umbra (eccentric orbits) 

To get an idea of the maximum time in the 
umbra the following method may be used. 

Let the size of the shadow at apogee be sa 

and the angular velocity at apogee, wa 

where 

then 

w 
a 

ra a(1+e) 

maximum duration of eclipse 

where sa is given by Eq (16). 
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(3) Curves of maximum eclipse duration and 
eclipse season (circular orbits) 

In the case of unperturbed circular orbits a 
simplified approach is possible. A set of general 
curves is included for circular orbits; clearly, 
the results obtained from these curves cannot be 
extended to eccentric orbits. A Simple method 
of computing and presenting maximum eclipse 
durations and eclipse seasons is given in the 
following material. 

Figure 10 shows maximum time in umbra 
versus semimajor axis, which is obtained from 

maximum time in umbra = 2 ~ 
n 

where n is the mean motion 

n = 

(29) 

(30) 

Maximum time in umbra and penumbra versus 
semimajor axis is obtained simply from 

maximum time in umbra 

s + l/J and penumbra = 2 --- . 
n 

(31) 

Figure 11 shows the same information as Fig . 10, 
but with expanded scale. 

Maximum time in penumbra where there is no 
umbra eclipse is computed from 

cos 69 = cos (s + l/J) (32) 
cos s 

which is obtained from the following sketch. 

. Ii 9 
Then, maximum time tn penumbra = 2 n 

Figure 12 shows maximum time in penumbra 
versus semimajor axis. Figure 13 shows the 
same information as Fig . 12 , but with expanded 
scale . 

Figure 14 shows eclipse season (umbra only) 
versus semimajor axis and inclination , which is 
obtained as illustrated in Fig . 9 . Figure 15 shows 
eclipse season (umbra and penumbra) versus 
semimajor axis and inclination obtained as illus­
trated in Fig . 9. 

Figure 10 showed that , for fair ly low altitude 
orbits (less than one earth radius) , the times 
in umbra and penumbra differ by a fraction of a 
minute or less than 1% of the orbit period. In 
this region the earth shadow can be accurately 
approximated by a cylinder . With this assump ­
tion the ec lipse duration solution for unperturbed 
circular orbits can be further simplified. The 
simplified problem has been considered in various 
references , e.g . , Refs. 1 , 3 and 4. 

-
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I 
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If the shadow made by the earth is approximated 
by a cylinder, this cylinder will intersect the orbit 

plane in an ellipse with semimajor axis of ~Y 
cos 

and semiminor axis of R , as shown in Fig. 16, n 
where cos yn is given in Eq (15) and plotted in 
Fig. 2. The per cent time in sunlight is t hen the 
same as the per cent of the orbit arc not contained 
in the shadow ellipse, as shown in Fig. 16. The 
problem then reduces to the simple determination 
of the angle q, from the intersection of the orbit 
and the projected shadow ellipse: 

(~2 
\cos Yn) 

r s 2 (orbit) 

2 
+ y 

RT 
1 (shadow ellipse) 

Substitution of y from the first equation in the 
second equation gives 

2 2 2 2 2 
x cos Y n + r - x = R 

or 

x = 

Then 

I R 2 1 - (r-
cos q, = ~ = s) 

r s sm Y n 
, 0° < q, < 90° 

The per cent time in sunlight is 

ts ~ x 100% for sin Yn.> J1 - 6.:) 2 

,. 100% for sin Yn S. 1 -J (r: ) 2 

Substitution for q, 

sin Y n 
(33) 

This equation determines the orbit orientation 
Y required for any desired per cent sunlight time 

n 
t . Equation (15) in turn provides the combina­
s 

tions of time of year, orbit ascending node and 
orbit inclination possible for a given ts ' 

As examples, circular orbits of various alti ­
tudes and inclinations were considered. The 
value of cos Y

n 
for various orbit altitudes as a 

function of per cent sunlight time is plotted in 
Fig. 17. Another presentation of the same rela ­
tionship is given in Fig. 18. These values are 
obtained from Eq (33). Then horizontal lines 
across Fig. 1 or Fig. 2 at each t level determine 

s 
the (a, n) loci for the given per cent time in sun­
light. These loci have been replotted in different 
form in Figs. 19 through 23. These figures show 

very clearly the required longitude of ascending 
node, n, required to provide a given sunlight time 
ts a+ any given time of the year. For example, 

for 125-naut mi (232 km) orbits, 100% sunlight 
may be achieved only in alternate quarters of the 
year, the quarters near autumnal and vernal 
equinoxes. During quarters centered about the 
summer and winter solstices, the maximum time 
in sunlight is 80%. For 500-naut mi (930 km) 
orbits, 100% sunlight may be obtained at any time 
in the year. 

Other curves which may prove to be useful 
are: 

( 1) 

(2) 

Inclination with respect to the ecliptic 
(i E) versus longitude of the node wit h 

respect to equator (n) for different 
inclinations with respect to equator 
(i) (Fig. 24), computed from 

cos iE = cos 23.4 cos i 

+ sin 23.4 sin i cos n (34) 

which is obtained from the following 
sketch . 

Angular radius of shadow versus distance 
from center of earth, Fig. 25 [see Fig. 
3 and Eq (16)J. Figure 26 shows the 
same information as Fig. 25, but with 
expanded scale. 

g . Chart and equations for a computer program 

The following reasons indicate why a closed­
form analytical solution is not easily obtained: 

(1) 

(2) 

(3) 

(4) 
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Time of launch--the longitude of the 
node at burnout will vary with the time 
of launch. 

Date of launch--the initial position of 
the sun will be different for different 
dates of launch. 

Eccentricity of orbit--the shadow is not 
a circle , but has an egg-shaped contour. 

Regression of the nodes - -the longitude 
of the node will vary constantly due to 
oblateness. 



(5) Advance of perigee- - the argument of 
perigee will vary constantly due to 
oblateness ; the size of the shadow at 
the nodes will vary fro m maximum if 
perigee is at the node to minimum if 
apogee is at the node. 

(6) Drag--the size of the semimajor axis 
of the orbit will decrease due to atmos ­
pheric drag . 

(7) Luni -solar perturbations--all of the 
orbital elements will vary to some 
extent due to luni -solar perturbations. 

A method for obtaining a more precise solu­
tion to the general problem of earth r s satellite 
eclipses is given in this section . 

The most efficient method of calculating eclipses 
is by means of a computer program, a simple 
example o f which is represented in Fig . 27, from 
Ref. 2. 

It must be noted at this point that this program, 
as well as any of the analytical methods described , 
will produce only times in umbra and times in 
penumbra at a given revolution, but not the time 
of day at which these phenomena happen. This can 
be roughly determined by knowing the time fr om 
perigee passage at which the phenomena occur , 
the period , and the time of p erigee passage for 
some date. If the time o f perigee passage for date 
D 1 is T 1 and the p eriod is r , then the approximate 

time of perigee passage for some other date D
2

, 

AD days fr om D 1 , is 

(35) 

where N is the integral number of periods in AD. 
If the motion of perigee due to perturbations is 
large, the anomalistic period (time fr om perigee 
to perigee) should be used in Eq (35). 

The results of machine computations are shown 
in Figs . 28 through 30 . The luni-solar perturba­
tions were added by first running another program 
which computes changes in equatorial e leme nts 
due to various perturbations (a complicated pro­
gram in itself), and then using the output as the 
input to the eclipse program. Also included in 
the above set of curves is one showing the eclipse 
pattern when launching the same vehicle at dif­
ferent times of day on the same date and at the 
same time of day on different dates . 

D. GROUND TRACKS (REF. 3) 

The equations for the ground track of a satel­
lite orbit may be written, from an application of 
spherical trigonometry to Fig. 3 1, as follows : 

Geocentric latitude: 

L = sin -1 (sin i sin 4» 

Geocentric longitude: 

(36 ) 
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where 

-1 
A = tan (cQ.s i tan 4» + AnD 

i 

A t 

K 

n 

a 

e 

R 2 

( ae) (lc~S) )2 
( 37 ) 

= inclination of the orbit plane to the 
ecliptic plane, 0 < i < 180°, measured 
+ from east at ascencTIng node 

orbit central angle between the satel­
lite and the ascending node 

initial geocentric longitude of the as­
cending node, 0::: AnD::: 360°, meas-

ured + toward the east 

rotation rate of the earth, 4 . 17 8074 

x 10- 3 deg/sec 

initial geocentric longitude of the as­
cending node 

= time measured from the initial con­
dition 

57 . 2958 deg/rad 

mean motion = 

- 3 
1. 0823 x 10 

equatorial radius of the earth 

orbit semimajor axis 

orbit eccentricity. 

Equations (36 ) and (37). presenting satellite 
pOSition with respect to a rotating oblate earth, 
neglect second order oblateness perturbations. 

These equations may be use d to gen erate th e 
ground track as a series of points (L , A) as a 
function of the parameter 4>. This determination 
is simple in the case of circular orbits, but 
somewhat complicated for elliptical orbits due 
to the nonlinear behavior of the angular rate . 

1. Elliptical Orbit Ground Tracks 

The difficulties of ground track predictions 
for elliptical orbits arise from the fact that the 
angle in orbit plane (from ascending node to 
satellite) is a nonlinear function of time . For 
large eccentricities, Chapter III expresses this 
angle in the form of a Fourier-Bessel infinite 
series . For small eccentri cities , the angle can 
be expressed as a simple sine series where the 
constants are determined by the corresponding 
eccentricities . 

- ---- ------ ------

I 

I 

I 

J 



Satellite latitude and longitude are f irst es ­
tablished with respect to a nonrotating earth, as 
a function of time . Rotation of the earth, regres­
sion of the nodes and precession of the perigee 
are then used as corrections for longitude a nd 
latitude on a rotating earth. Six input parameters 
are needed (e. g. , hO ' vo' YO' L O' AO and (30 ). 

From these data all the necessary information is 
obtained by the equations of spherical trigonome­
try and planetary motion along the Keplerian 
ellipses . 

The geometrical representation of the prob­
lem, indicating the most important quantities 
used in the calculation procedure, is given in 
Fig. 31. It should be noted that the longitude of 
the ascending node ( S1), as well as the angle of 
perigee (w) and the angle of the satellite ( q,) from 
the node are all functio n s of time . 

The properties of the Keplerian ellipse are 
as follows: 

Semimajor axis: 

a = (38) 
2 -

Eccentricity: 

e = ( 39 ) 

Period: 

T = 21f ~ ( 40 ) 

Next the central angle from perigee is derived. 
First, the local flight path angle is seen from the 
following geometry to be 

tan Y = r 
r8 

1 dr 
= r as 

r p 
1 + e cos 6 

Therefore, 

dr 
as 

p e sin 6 e sin 6 
-£....:--=-=----=---,,2 and tan Y 1 + e cos 6 
(1+ecos6) 

This is expressed as 

t e , 1 - cos 2 6 
an Y = 1 + e cos 6 

and the following is derived. 

e cos 6 = sin2 Y ± cos Y ,'-e-2-_-s-i-n-2- y-

From this, the initial central angle from perigee 
is obtained. 
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-1 
60 = ± cos [ 

. 2 
sm YO ± cos :0 

( 41) 

Equation (41) gives four possible answers and the 
correct one should be selected as follows: 

Flight Path 6
0 (from perigee) 

Angle Radius 

YO> 0 rO < a 00 < 60 < 6* 

YO> 0 rO> a 6* < 60 < 180 0 

YO < 0 rO> a 1800 < 60 < 360 0 - 6* 

YO < 0 rO < a 3600 - 6* < 6
0 

< 3600 

-1 where 8* ;: 1800 
- cos e (see Fig. 31) 

Now the inclination of the orbit is obtained by 
spherical trigonometry. 

( 42) 

i = cos -1 (cos LO sin I3
OI

), (43) 

where I30I is obtained as follows. 

Rene 
1301 = 130 + cos LO cos 130 Vo cos Yo 

The component of velocity parallel to the 
earth's surface is found by v' = Vo cos yO . The 

component due to the earth's rotation is simply 

ve = R ne cos LO · 

From trigonometry, 

v 
e 

sin L:l. f3 
v' 

v ' 
= cos f3

0 
• 

Because L:l. 13 is a small angle, sin L:l. f3 '" L:l. 13 is a 
good approximation. Finally, since 

v R n 
L:l. B = ~ cos f3 = e cos LO cos 130. ( 44) 
'v 0 Vo cos Y O 

Now 

1301 = f3 0 + L:l.f3. 

T he initial angle from the ascending node is 

. -1 [ sin L ol 
q,0 = sm SInTj 

( 45) 

(46) 

and the initial perigee angle from the node (Eqs 
(41 ) and (46 » is 

( 47) 



Denoting the time from the initial point (L O' 11.0 ' 

hO) by A t . Then, 

t = to + ~ t . 

where to is the time from perigee found from 

Kepler's equation 

to ~ i. C' ke -,:: -1 + 2 tan 

(48) 

( 49) 

For a nonrotating earth, the following equa­
tions are derived from spherical trigonometry. 

Latitude: LI = sin- 1 (sin i sin <p) (50) 

- 1 
Longitude: Ar = tan ( cos i tan <p) + II.h (51) 

Next, consider a rotating earth with oblateness ef­
fects . Due to the precession of the apsides, the 
perigee of the orbit is a function of time, and the 
angle of perigee from the ascending node is given 
by 

. A t 
W = Wo + K W 'T 

where 

(:e) 
2 

( 2 
5 . 2 .) - 2 sm 1 

2 2 (1 - e ) 

(52 ) 

n == ~ = /~ (53) 
'T a 

For an easterly launch, the node is given for a ro­
tating oblate earth as 

{ e cos i R ~ 2 
= 0 -0 ~ t - KnJ A t \ -

o e a (1 _ e2)2 

(54) 

where 0 0 II.nO + Greenwich Sidereal Time 

-1 (COS <PO \ 
= 11.0 - cos cos Lor GST (55 ) 

(Longitudinal shift of the ground track is plotted 
in Fig. 30 .) Now, the angle from node can be 
found from a Fourier - Bessel series expansion 
as a function of time . 

2 · t 52 · 2 <P = W + nt + e sln n + 4 e sln nt + . . . . 
(56 ) 
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Expressing Eq (56) in terms of to and using Eq 
(52), 

[ 

R 2 (2 5 . 2 .)] 3 ( e\ - 2" sln 1 

<P = <PO + n~t 1 + 2" KJ 2 a ) 2 2 
( 1 - e ) 

+ 2e (sin nt - sin ntO) + i e 2 
(sin 2 nt 

(57) 

For a few revolutions, Eq (57) can be approxima­
ted by 

<P = <PO + n~t + 2e (sin nt - sin ntO). ( 58) 

Finally, the desired relations for satellite posi­
tion with respect to a rotating oblate earth are 
given by Eqs (36) and (37 ). Also, the orbit radius 
can be expressed in series form as 

r = a [ 1 - e co s nt - ~ ( co s 2 nt - 1) - . . J. 
( 59) 

If extreme accuracies are needed, it should be 
remembered that nand w in Eqs (52 ) and (54) 
can be considered as simple constants only for 
integral numbers of revolutions . For some frac ­
tion of a revolution, the rates of regression of 
the nodes and precession of the apsides are ac­
tually periodic functions, which contain sines or 
cosines of the geocentric latitude . These func­
tions result in an oscillation about the mean 

values given by 0 and W utilized here . The more 
accurate perturbation models are described in 
greater detail in Chapter IV. 

2. Synchronous Orbits 

As noted previously, because synchronous or­
bits yield ground tracks which repeat daily, they 
have special advantages for certain missions, 
e . g . , navigation and communication, and, there ­
fore, merit special consideration. The periods 
and altitudes of the synchronous orbits are given 
in Table 2. This table is based on the following 
equation . 

Of particular interest, because of limited 
ground track excursion, is the 24- hr satellite . 
The circular equatorial 24-hr satellite does not 
move relative to the rotating earth, and so its 
ground track is simply a point on the equator. 
Circular 24- hr orbits of nonzero inclination ex ­
hibit limited excursions. The ground tracks for 
these orbits , shown for i = 40°, 50° and 60° in 
Fig. 32 . have the shape of a figure eight . El­
liptical inclined 24- hr orbits have ground tracks 
resembling skewed figure eights . Examples of 
these are shown in Figs. 33 and 34. 



1_ 

sidereal 'r sideral 
(sid hr) (sol sec) 

24 86,164 .09 

12 43,082.05 

8 28,721.36 

6 21.541.02 

4 14,360.68 

3 10,770.51 

2 7.180.34 

TABLE 2 

Synchronous Orbits 

Semimajor Axis Semimajor Axis 

a (ft x 108 ) a (km) 

1.383408 42,166.28 

0 .871 558 26,565 .08 

0.665182 20,274 . 76 

0 .549151 16,738.13 

0.419 175 12,776.46 

0 . 346109 10,549 .40 

0.264281 8,055.28 

Circular Orbit 
Altitude 

(Re = 6378.15 km) 

h (km) 

35,788.13 

20,186 .93 

13,896 . 61 

10,359.98 

6,398 .31 

4,171.25 

1,677 . 13 

E. SATELLITE COVERAGE 

Coverage concerns the ability of a satellite­
borne observer or sensor to view a point or area 
on the surface of the earth or, from the opposite 
standpoint, the ability of a satellite to be viewed 
from a point or area on the earth. As noted in 
Section B, most types of satellite missions, in­
cluding reconnaissance, communications a nd 
navigation missions, impose certain coverage 
requirements. ThiS section considers the de­
gree of coverage available with a given orbit or 
pattern of orbits. Because of the basic differ­
ences in area coverage and point coverage, these 
topics will be considered separately. 

1 . Area Coverage 

Area coverage, as distinguished from point 
coverage, will be taken to imply interest in a 
wide area, e. g., the entire globe , a certain range 
of latitudes , a continent , etc, Point coverage in ­
volves coverage of specific areas of limited ex­
tent, such as specified landing sites, tracking 
stations, small reconnaissance targets, etc . 

a. Coverage by a single satellite 

The total area on the earth ' s surface theore­
tically visible from a satellite at a given instant is 
given by the following expression: 

where 

d RO' R co s -1 (R ~ h) ( 60 ) 

R earths ' s radius (637 1. 02 km ) 

a central angle between the sub satellite 
point and the outer edge of area visible 
from the satellite 

h a ltitude of the satellite (in km) 

If the angle of incidence is re stricted to be 
larger than a given minimum viewing angle cr, 
then the coverage arc length can be expressed by 
the followin g equation ( see sketch). 
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[ 
-1 

d = RO' = R cos 
( R cos 0'\ 
\ R + h 1 ( 61) 

This equation is plotted in Figs . 35 and 36. The 
coverage angle, a, in degrees can be found from 
the corresponding arc length by the conversion 

Q" = 0 . 0089929 d (deg) 

where d is in kilometers . This conversion is 
based on the radius of a sphere of volume equiva­
lent to that of the earth. The percent of earth's 
surface area visible from the satellite can be 
found immediately from the coverage angle, a, by 
comparing the area of the visible segment with the 
total area of the globe. 

Area of segment 

A = 21TR2 (1 - cos a) 
s 

Total area 

2 
At = 41T R 

Percent area visible 

01 As 01 [1 -'lcos a] x 100010 A70=rxlOO/o:;; 7' 
t 

If range, in addition to viewing angle, is a sen­
sor limitation, the dashed lines on Fig. 35 (the 
loci of maximum range ) together with the maxi­
mum viewing angle loci determine permissible 
regions of coverage half - angle and altitude. 

R sin a ( 62) p = cos (a + O') 

It is frequently necessary to relate the cover­
age information of Eq (61) and Figs . 35 and 36 
to geocentric longitude and latitude on the earth's 
surface. If at a certain time the subsatellite 
point is located at geocentric longitude AO and 

geocentric latitude L O' the circular perimeter 

of the spherical segment of half-angle a (the area 
in view of the satellite) may be determined as 
follows . In the following sketch, let (L, A) de­
note a point of the perimeter to be determined. 
If 

t:. A - A- AO 



and A A* is measured on a great circle, the law 
of sines of spherical trigonometry gives 

or 

sin AA* = sin A ll. sin (90 0 
- L ) 

sin A A* 
sin All. = cos L ( 63 ) 

From the following sketch, also by the law of 
sines , 

sin AA* = s in (3 sin a ( 64) 

where (3 is an arbitrary azimuth angle (the param­
eter of the perimeter solution) and a is the cover ­
age half - angle defined in Eq ( 60 ). Equations (63 ) 
and ( 64) give 

sin All. = sin a sin (3 
cos L 

Also from spherical trigonometry 

Since 

cos a 
cos y*= cos A A* 

- 1 
90 0 

- L * = La + cos ( 
cos a J 

cos A A*) 

But, from the preceding sketch 

or 

cos L * = cos (90
0 

- L ) 
cos A A* 

sin (90 0 
- L *) sin L 

cos A A* 

( 65 ) 

( 66 ) 

(67 ) 
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Equator 

Eqs (66 ) and (67 ) give 

sin L = cos A A* sin [ LO + - 1 ( cos a Jl 
cos \cos A A* JJ 

which , after substitution into Eq (64) and simpli ­
fication , yields 

sin L = sin LO cos a + cos La sin a cos (3 ( 68 ) 

Equations (65 ) and (68) then comprise a solution 
for t he perimeter of the instantaneous coverage 
area in terms of the parameter (3 , the coverage 
half - angle a , and the geocentric longitude and 
latitud e of the s ubsatellite po int (>-'0 ' L O)· 

Equations ( 65 ) and ( 68) may also be used to 
define the areas on earth which are not v isible 
from a given ring by making the following sub­
stitutions : 

La = ± ( 1f (2 - i ) 

a = ± ( 1f (2 - a ). 

Now , differentiating Eq ( 65) with respect to 
f3 and equating the result to zero yi elds the maxi­
mum longitudinal incr ement of an area which is 
uncov ered by a particular ground swath. This 
derivative is 

COS6Ad (611) 1 [ 
crp cos2 Leos (3 sin a cos L 

- sin (3 sin a ~ (cos L~ 

Using Eq ( 68) and the trigonometric identity 

co s 
2 

L = 1 - sin 2 L 

( 69 ) 

it fo llows that 

d 
2 cos L (fjj (cos L ) = 2 sin L (cos LO sin a sin (3 ) 

or 

d (fjj (cos L ) tan L cos LO sin a sin (3 (7 0 ) 

I 
I 

I 

I 

I 
I 
I 
I 

~ 



From Eqs (69 ) and (70 ), 

d (Cill) 
----crrr-

Q. L .2 Q .2 cos I-' Sln cr cos - sm I-' Sln cr cos LO tan L 

If 
d (.:VI) 
--crp- = 0, 

it is implied that 

cos c:,.f';. cos2 L 

(71) 

cos {3 sin cr cos L - sin
2 

{3 sin
2 

cr cos LO tan L = 0 

( 72) 

Squaring Eq (68) and substituting into Eq ( 72 ) yiel ds 

(sin LO cos LO sin cr cos cr) cos
2 

{3 - ( 1 

. 2 L 2 .2 2 L ) {3 - sm 0 cos cr - sm cr cos 0 cos 

+ sin LO cos LO sin cr cos cr = 0 

Equation (73) can be simplified, yielding 

cos - 2 -2 [ cot cr tan LOJ 
(3 sin 2 LO tan 2 cr 

Defining 

K = cot cr 
sin 2 LO 

cos{3+ l 

the azimuth for maximum longitude deviation, 
Ll.Li.max is given by 

cos {3LlA 
max 

K- ~ 

Taking the limit i n Eq ( 75) as LO -+ 0 , K-+oo 

and lim (cos f3 Ll A ) = O. Thus , the 
LO-+O max 

time that the azimuth angl e {:3 Ll.Li. (which 
max 

(73 ) 

o 

(7 4) 

( 75) 

( 76 ) 

locates the maximum value of Ll.Li. ) equal s 90 0 

corresponds to the center of the area u ncovered 
by the ground swath on the equator. The angle 

{:3 Ll .Li. is less than 90 0 for north ern latitudes 
max 

and greatel:' than 90 0 for southern latitudes . 

The previous analyses concern the instantane­
ous coverage available from a satellite. Since 
the satellite is moving relative to the earth ' s sur­
face, the spherical segment of covered area also 
moves along the surface, thus generating a track 
(the "ground swath") of area covered at some 
time during the lifetime of the satellite . 

The edges of the ground swath of a single satel­
lite may be determined from the area coverage 
per imeter solutions previously obtained and the 
ground track equations developed in Section D. 
The problem is illustr ated in the following sketch . 

Ground L2 

swath LO 

Ground Ll 
track 
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Again, let the position of the sub satellite point 
in geocentric coordinates at a certain time be 
(L O' Au ). The locus of points on the perimeter 

of the area covered when the satellite is located 
at this position is given by Eqs (65) and ( 68) . Two 



of these points will also be points on the ground 
swath edges to be determined. Namely, the two 
points are those at the intersections of the circu­
lar perimeter and the major circle through (L O' 

Aa) and perpendicular to the ground track. Thus, 

the two intersection points may be determined by 
solving Eqs (65 ) and ( 68 ) for two particular values 
of 13 . 

13 = 130 ± 90° 

where 13
0 

is the orbit azimuth angle relative to 

the rotating earth defined in the previous ground 
track analysis, Section D, Eqs (44) and ( 45 ). 
That is, the solution of 

sin L = sin LO cos a :;: cos LO sin a sin 130 

sin a cos 130 
sin .c.A = ± cos L 

(77 ) 

(78 ) 

provides two points on the ground swath edges. 
Then the complete ground swath outline may be 
generated by solution of Eqs (77 ) and (78) for sets 
of values (L

O
' A

O
' (3 0 ) generated from the ground 

track solutions, Eqs ( 36), ( 37 ), (44) and ( 45 ). 
For low altitude orbits , ground swath outlines can 
usually be calculated to adequate accuracies with­
out correcting the orbit azimuth angle in inertial 
space, f3

OI
, for rotation of the earth. Of course, 

rotation must be included in the ground track 
equations used to generate the set of base points 
(Aa' LO). 

In determination of the long term coverage 
available from a given satellite, the longitudinal 
shift of the ground swath, as computed from Eqs 
(77 ) and (78 ), is of interest. At each latitude, the 
longitude of the ground track (and hence the longi­
tudes of the ground swath outlines) shifts an amount 

where 

.c. A 7 r2e 7 nodal 

= rotation rate of the earth 
-3 

= 4 . 178074 x 10 deg/sec 

( 79) 

7 nodal = nodal period of the satellite orbit . 

For circular orbits, 

where 

7 

1 » J 3 

Keplerian orbit period = 21TrO 1:0 

circular orbit radius 

(80) 

Equation (79) is plotted for the case of circular 
orbits in Fig. 37. The longitudinal shift may be 
obtained to five place accuracy by multiplying 
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7 

nodal from Fig. 38 by 7 from Table 1 of Chapter 
7 

III and multiplying this result by Qe . 

The previous analyses, and those of Section D, 
are concerned with the determination of the ground 
track and ground swath for a given set of orbit 
elements and sensor limitations. From the op­
posite point of view, the equations of these sectililns 
can be used to select orbit elements and sensor 
requirements to achieve total or optimum coverage 
in a certain area. The typical pattern of area 
covered by two consecutive ground swaths is shown 
in the following sketch. During any given day every 
point in the latitude region of total coverage is in 
view of the satellite at some time . This region can 
be determined from the previously derived ground 
track and ground swath equations by solving for 
the intersection points of two consecutive swath 
outlines . However, if mission requirements per ­
mit coverage of each point in a latitude band once 
in several days, the total coverage area may be 
increased. That is, if the orbit altitude and in­
clination are selected so that the longitudinal shift 

.c. A = m .c. A7 (h, i) (81) 

(where m = number of orbit periods in one day, .c.A 
7 

is given by Eq (79 )') experienced in one day is of 
such a magnitude that the orbits of the second day 
are out of phase with those of the first day, then 
the lune - shaped uncovered areas below the total 
coverage region will be partially or totally covered 
by the swaths of the second day. The diurnal 
longitudinal shift of the ground track is 

where 

• 

(82) 

n = the integral number closest to __ d __ , 
7 nodal 

or that for which .c.Ad is minimum 

d = one sidereal day, 86,164 mean solar 
seconds. 

Equation 82 , plotted in Fig. 39. is then a quantity 
of interest in determining coverage available over 
several days . Of course, for missions of long 
duration, total coverage is available in the latitude 
range L = ±(i +~, provided that the ground track 
does not repeat diurnally . When mission length 
is limited to a few days or weeks, and total cover­
age of a specified latitude range is required, 
optimum coverage is achieved by selection of 
orbit altitude and inclination such that 

.c. A ± ~ .c. A (h, i) d = m 7 
( 83) 

where 

k an integer 

m = mission length in days. 

An orbit chosen on this basis would obviously pro­
vide the most uniform coverage with minimum 
overlapping of ground swaths . 



b. Pattern coverage (Ref. 3) 

If mission requirements specify continuous 
total coverage of alar ge area by at least one 
satellite or frequent coverage from low altitudes, 
more than one satellite will be required. Optimiza­
tion of coverage available from a pattern of several 
satellite orbits requires a somewhat different ap­
proach thEm that for the single satellite case. 

(1) General approach 

It is obvious that infinitely many possible 
arrangements of orbital planes and satellites in 
orbit could be considered for a satellite pattern 
covering either some well-defined region or the 
total surface area of the earth. To simplify the 
problem and provide for constant angUlar separa­
tions between the orbital planes, consider that the 
orbit planes are equally inclined to the equator. 
Second, the uniform coverage requirements can 
be best met by arranging the nodes of orbital 
planes at equal distances along the equator, by 
distributing satellites in equal numbers among 
all the orbital planes and by placing satellites in 
circular orbits of common altitude (so that the 
distances between all the satellites in one ring 
will be as uniform as possible). 

In Ref. 5 the following set of equations is pre­
sented for optimization of satellite networks for 
zonal coverage of a latitude belt in both hemi­
spheres (see the accompanying sketch), consider­
ing N the total number of satellites, n l the number 

of orbit planes and n
2 

the number of satellites in 

each orbit plane: 

Equator 

" .. I 

/ ( -1 
[cos ( ~) h .. R (cos a cos t cos cos T' 

+ a ~ - 1) ( 84) 

Equator 

where r is the ground swath angular half-width, 
given by 

-1 
T' '" sin fs in Leos i l' max 

7T - cos cos L sin iJ max 

Note: 0 < r < 90° is required, also 

r 2: cos 1 - sin i sin -l~ 2 2 
n

1 

k = the least integer such that 

cos i cos T' 

(86) 

(87) 

k > ~ - 2 - : 1 tan-.1 [ J' 2 

sin r 1-sin~ i sin2 7T 
n

1 

( 88) 

a = minimum incidence angle for the sensor. 

The relationship between the ground swath angular 
half-width, r, and the ground coverage angle, a, 
is given by 

cos a '" cos r cos n 2 
(89 ) 

as shown in the accompanying sketch, in which 
consecutive satellites in the same orbit are 
located at A and B. 
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In Ref. 5 the above equations are solved for 
various polar and inclined orbit planes, as shown 
in Figs. 40 through 43. 

Figure 40 gives the total number of satellites, 
N, required for polar orbits consisting of from 
2 to 6 orbit planes. As a numerical example, a 
reconnaissance system of 36 satellites providing 
complete global coverage is considered. The 
results are shown in the following table: 

Orbit Satellites / Required Altitude Planes Plane h n
1 

n 2 (km) 

2 18 2780 
3 12 1245 
4 9 968 
6 6 1245 
9 4 2780 

Considering sensor limitations, the 4-orbit 
plane system is obviously optimum for the case 
considered. 

Figure 41 gives the comparison between the 
theoretical optimum curve and the practical 
optimum curve for polar orbits with minimum 
incidence angle cr • 0°. The effects of increasing 
minimum incidence angles are also shown. 

Figure 42 gives the comparison of polar 
satellite networks providing coverage from the 
poles to a fixed minimum latitude Lmin' con-

sidering cr '" 0° and Lmin '" 60°, 30° and 0° (note 

that Lmin '" 0° gives the complete global coverage 

given by the step-function on Fig. 41). 

Finally, Fig. 43 shows the comparison of 
inclined satellite patterns to the polar pattern 
for complete coverage. It can be seen that polar 
orbits are preferable, at least under 350D--km 
altitudes. 

As a more particular example, following 
slightly different lines of approach, the optimiza­
tion of a specific orbit pattern is analyzed more 
fully in the next subsection. 
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(2) Specific example: 6-hour orbit pattern 

Although the equations and data presented in 
the preceding subsection provide a general basis 
for orbit pattern selection, a specific mission 
may present special problems. As an interesting 
example, consider the selection of a navigation 
satellite orbit pattern which must fulfill the re­
quirement that at least three satellites be visible 
from any point on the earth's surface (and, there­
fore, from any point in space near the earth) at 
any given time. Definition of the required pattern 
entails specification of each of the following param­
eters: 

(1) Orbital period (i. e. , altitude). 

(2) Number of satellites in each ring. 

(3) Orbital nodal positions (number of 
rings). 

(4) Orbital inclination. 

(5) Orbital eccentricity. 

The synchronized pattern obtained from these 
considerations must also be subjected to a pattern 
proof, including the effects of small changes in 
inclination. The earth's oblateness effects are 
included in the determination of the exact orbital 
altitude. 

The altitude of the navigation satellites depends 
on a large number of factors as noted in Section A . 
Some of the most important are: 

(1) Resolution limitations. 

(2) Perturbations. 

(3) Repeatable daily ground track. 

(4) Number of satellites employed. 

(5) Van Allen radiation belts. 

For the best resolution at sea level, the 
satellite orbits should be as low as possible. On 
the other hand, oblateness perturbations are 
largest for low altitude orbits; for higher orbits 
the perturbations caused by the sun and the moon 
increase in relative importance. A repeatable 
daily ground track will simplify the preparation 
of the required ephemeris which makes navigation 
possible; therefore, it is desirable to have an 
integral number of revolutions per day. The 
number of satellites in a given ring will further 
define the necessary altitude and period for the 
desired ground coverage. To keep the molecular 
breakdown of the solar cells and similar electronic 
apparatus to a minimum, the Van Allen radiation 
belts should be avoided as much as possible. 

From all the above considerations, the 6-hr 
orbit was considered as the most promising for 
the present application. 

--I 



The 6-hr orbit retraces its ground track on a 
daily basis and that ground track results from 
four orbital revolutions. For an ideal spherical 
earth, the period of this orbit would be exactly 
one-fourth of a sidereal day . Since the earth is 
actually oblate, the orbit plane regresses slowly; 
and in order to repeat the desired ground track 
(i. e ., to achieve a sidereal period of 21, 541. 02 
mean solar seconds), the semimajor axis required 
is 16738 .1 3 km . (A complete set of synchronous 
orbit semimajor axes is included in Section D . 2. ) 
The circular orbit altitude corresponding to this 
value of semimajor axis is about 10,360 km . 

At this altitude, the ground coverage is 135.26°, 
as can be seen in the following sketch: 

h~ 
Satellite 

-1 ( R ) 2a = 2 cos \ ~ = 135.26° 

Thus, three or more satellites will be required 
to provide continuous coverage of a band on the 
earth (the width of this band being a function of 
the number of satellites). Because the overlap 
of the covered areas is small with only three 
satellites per ring, four satellites will be placed 
in each ring at 90° intervals. In general, only 
one satellite is seen on the earth's surface from 
a given satellite ring. Furthermore, there are 
two areas around the axis perpendicular to the 
orbita l place of a given satellite ring where no 
satellites from this ring are visible. To ensure 
that in these regions at least three satellites are 
visible, three more satellite rings are required, 
placed so as to make at least one satellite visible 
from each additional ring at all times. Since 
uniform ground coverage is desirable, the nodes 
for the four satellite rings must be displaced 
from each other by 90° on the equator. This 
brings the total number of satellites employ ed in 
the navigation pattern to 16. 

To equalize oblateness perturbations for the 
four orbital planes, the inclinations must be 
equal. From this condition, it can be seen that 
the most sy mmetrical distribution of orbital 
planes in inertial space results if each set of 
two planes intersects at a latitude of 45° (that is, 
halfway between the poles and the equator) . The 
orbital inclination which satisfies these conditions 
was found from spherical trigonometry as: 

n x 

Orbital eccentricity produces periodic relative 
motion of the satellites in each ring (Fig. 44) 
which, in turn, produces irregular ground coverage. 
While this in itself does not eliminate eccentric 
orbits from consideration, it does make the re­
sulting a nalysis and pattern utilization more diffi­
cult, because the solution for position as a func­
tion of time becomes transcendenta l. For these 
reasons, the orbits considered are circula r (1. e. , 
zero eccentricity). 

To avoid crowding a considerable number of 
satellites over the same region of the globe, one 
satellite was pla ced at the node for Planes I and 
II (which are consecutive), while the positions 
in Planes III and IV were displaced by 45°. The 
initia l l a titudes, longitudes and central a ngles of 
all 16 satellites are given in Table 3. 

TABLE 3 

Initia l Positions of 16 Satellites 

Initial 

Orbit Plane Latitude Longitude Central 

and Satellite (LO) (~) Angle (8
0

) 

Numbers (deg) (deg) (deg) 

I-I 0 180 W 0 

1-2 54.7 N 90 W 90 

1-3 0 0 180 

1-4 54.7 S 90 E 270 

II-I 0 90 W 0 

II- 2 54.7 N 0 90 

II-3 0 90 E 180 

II-4 54.7 S 180 E 270 

III-I 35.3 N 30 E 45 

1II-2 35.3 N 150 E 135 

III-3 35.3 S 150 W 225 

III-4 35 .3 S 30 W 315 

IV-I 35.3 N 120 E 45 

IV-2 35 . 3 N 120 W 135 

IV-3 35.3 S 60 W 225 

IV-4 35.3 S 60 E 315 
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The ground track of a satellite, as noted in 
Section C, is given by the equations: 

L .. sin -1 [sin i sin (60 + 6) ] (90 ) 

+ n - n t o e 

(91 ) 

where flight time is given for a circular orbit 
by the equation 

t = <iT) 6. (92 ) 

A complete ground track during one day was 
computed for the first satellite in the first orbit 
plane by Eqs (90) and (91 ) . The result was plotted 
in Fig. 45. It should be noted that the same pat­
tern of four revolutions is identically repeated 
during each day. This is due to the fact that the 
sidereal period is exactly one - fourth of a sidereal 
day . 

Initial positions and ground tracks for one­
half of a revolution are given in Fig. 46. It is 
obvious from this figure that the distribution of 
satellites is not completely uniform over the 
earth's surface at all times . However, there 
are no serious crowding problems and thus, this 
pattern is satisfactory. 

The placement of the four orbit planes in 
three - dimensional space is indicated in Fig. 47. 
The first of the two drawings shows the inter­
sections of the orbital planes in inertial space 
(the earth should be visualized as rotating within 
this fixed framework). The second drawing shows 
the initial positions of the 16 satellites as given 
in Table 3 and Fig. 46 (except the ones hidden by 
the earth). 

The proof of satellite pattern. It must now 
be shown that the pattern specified actually 
satisfies the requirement that at least three of the 
vehicles are always visible at any point on earth's 
surface . Secondly, small changes in the orbit 
inclination must be investigated in order to justify 
the optimum inclination selected (i = 54. 736°) . 

In order to rigorously prove the satellite pat ­
tern, the concept of ground swath was used . 
Swath in the case of this problem is defined as 
the region on a nonrotating earth where at least 
one of the four satellites in the ring is always 
visible. 

From Eq (8 9), it can be seen that the width of 
the ground swath (to either side of the ground 
track) is given by: 

r = cos- 1 f-co~:oo\ = 57 .421° 
\. cos --'--J n 2 

180° 180° n;:- = ----:r 45° 

Outlines of ground swaths were obtained as in­
dicated in Section E . 1. a . Areas not included by 
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the swath generated by the satellites in four orbit 
planes are shown in Fig. 48 . No satellite from 
the ring indicated by the Roman numeral is visible 
inside either cross-hatched area of the same num ­
ber . Because no cross-hatched areas intersect, 
the figure proves that at least three satellites 
are visible at all time s at every point on the earth's 
surface . On a rotating earth the eight cross ­
hatched areas must be visualized as moving with 
a 24-hour period but maintaining the given topo­
logical pattern. The horizontal and vertical 
distances between any two adjacent cross-hatched 
areas are essentially equal (5. 4° on a great circle ). 

The effects of small changes in orbit inclina­
tion on the pattern of circular areas shown in 
Fig. 48 may be investigated by means of the 
equations of Section E. 1. a , with swath width 
denoted byr instead of C1 . 

The results of the foregoing analysis are pre­
sented in Fig. 49 which show s that the require­
ments placed upon the pattern can only be met in 
the range of orbital inclinations between 49 . 6° 
and 57 . 4° . The selection of the optimum inclina­
tion with this range must be based on visibility 
criteria because there are definite limits which 
must be imposed on the minimum elevation angle 
between the satellites of the pattern and the hori­
zon to make navigation practical. This optimum 
inclination angle is 54.7 36° because only this in­
clination ensures that all of the visible satellites 
will be at least 5° above the horizon. This analy­
sis also proves that the minimum altitude for a 
pattern of 16 satellites, which will ensure a mini­
mum elevation angle above the horizon of 5° for at 
least three of the satellites at all times, is that of 
the 6-hr orbit. 

2 . Point Coverage 

In many satellite missions, area coverage as 
discussed in the previous section is not a firm 
requirement; rather, it is desired to maximize 
the time spent over a specific set of points on the 
earth. These locations may be tracking stations, 
ground data links , landing sites , or points under 
surveillance. Various problems connected with 
point coverage are considered in this section. 

a . Determination of the zenith angle of a 
satellite 

A problem of interest to satellite tracking and 
communication is tha t of determining the conditions 
under which the satellite is visible, or a bove the 
horizon, when viewed from a point on the earth. 
To solve this problem assume that a satellite S 
is in an orbit inclined at angle i to the earth's 
equator, and assume a point of observation P on 
the earth at a latitude L. Consider a coordinate 
system, its origin at the point of observation, 
with the Z - axis vertical, the X-axis due east (i. e. , 
in the direction of motion of the point of observa ­
tion ) and the Y - axis due north. Let the distance 
from the center of earth to the point of observation 
be R and the distance from the center of the earth 

e 
to the satellite be r. 

The satellite's position is determined by a central 
angle cj> measured in the orbital plane from the s 
ascendino; node, a nd the position of the point of 



observation is determined by an angle 4> e measured 

from the longitude of the ascending node (Fig. 50). 
In terms of the usual variables, the angles 4>s 

and 4> e are given as 

4>s w + e 

4> '" 11.. - A e p n 

where A = longitude of 
P observation point 

A c longitude of nodal 
n point 

The coordinates of the satellite in the X, Y, 
. Z system are as follows: 

x = r (cos i sin 4>S cos 4>e - cos 4>S sin 4>e) 

y = r [cos L sin i sin 4>S - sin L (cos 4>S cos 4>e 

+ cos i sin 4>S sin 4> e)} 

z = r [sin L sin i sin 4>8 + cos L (cos 4>8 cos 4> e 

+ cos i sin 4>S sin 4> e) ] - R 

The distance between the point of observation and 
the satellite is 

p "'~ r2 + R - 2 r R cos IjI 

where 

where 

n = the rate of regression of the nodes of 
the satellite (rad/sec) 

4>1 .. A - A pO nO 

For the satellite 4>S '" 4>8 (t) + <PO' where <PS (t) is 

the equation relating the central angle to time in 
the general elliptical case, and <PO is the initial 

angle of the satellite with respect to the ascending 
node. For a circular orbit <PS (t) .. Ws t, where 

Ws is the angular velocity of the satellite. The use 

of these equations is illustrated by the following 
example. 

Assume an orbital inclination angle of 30· 
and a point of observation at a latitude of 3 0·. 
Assume further that the satellite is in a circular 
orbit at an altitude such that it makes 15 revolu­
tions relative to the ascending node in the time it 
takes the earth to make one revolution relative to 
this node. The regression period is then about 
50 days and the period of the satellite about 1. 59 
flr, rather than the 1. 6 -hr period if the regression 
were neglected. For this example this small 
difference is neglected and a satellite altitude of 
357 stat mi and r/R '" 1. 0902 is assumed. To e 

cos IjI = sin L sin i sin 4>S + cos L (cos 4> cos 4>S 
p p e 

find when the satellite is above the horizon for a 
point originally along the meridian through the 
node at the time the satellite was at the node (i. e., 
4>1 "4> 0 = 0, 4>e = ne t and 4>8 = 15 ne t), the pro-+ cos i sin 4>e sin 4>S) 

and IjI is the angle b~tween the radius vectors from 
the earth I s center to the point of observation and 
to the satellite (see Fig. 50 ) . 

The direction cosine, 1 z' (i. e., the cosine 

of the angle () between the Z-axis and the radius 
vector from P to S) is 

r cos </I - R 1 z 
z '" -p-" ~ r2 + R _ 2r R 

cos IjI 

r 
R cos IjI - 1 

The satellite is above the horizon as viewed 
from the point of observation if lz > 0 and, since 

l z is the cosine of the satellite I s zenith angle, 

any value of the satellite elevation a ngle can be 
specified and the corresponding l z determined. 

Any lz above this value corresponds to a satellite 

passage at an elevation angle equal to, or highe.r 
than, the specified value. 

For the point of observation 4> = (n + n) t + 4> l' e e 

cedure is first to plot 

1. 0902 cos IjI - 1 
1 '" cos () z 

~1 + (1.0902)2 - 2 (1.0902 cos 1jI) 

as a function of cos IjI (Fig. 51). Note that l z > 0 

for 0.9173 cos IjI < 1. Next plot cos IjI as a func ­
tion of 4> '" n t (Figs. 52 and 53). The values of 

e e 
4> for which 0.9173 < cos IjI (indicated on the fig-

e -
ure by a solid line) then represent the values of 
t '" 4> In , for which the satellite is above the 

e e 
horizon. If it is required that the satellite be 30· 
above the horizon, then 0.5 < l z and O. 9916 ~ cos 

1jI. This line is indicated on the figure by a dotted 
line. The angle 6, defined by cos 6 = lz' is 

actually the zenith distance of the satellite and the 
angle 4> can be considered the "hour angle" of P 

e 
with respect to satellite node. 

Finally, Fig. 54 presents in English units a 
solution for the line-of - sight range to the satellite 
and the distance of the sub satellite point from the 
observation point on the earth I s surface. This 
information is presented in different form in 
Figs. 55 and 56, also in English units. It should 
be noted that Figs. 35 and 36 present the same 
information in metric units when the coverage 
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half-angle, a, is interpreted as ground range, ct, 
and the minimum viewing angle, cr, is interpreted 
as elevation, E • 

S 

b. Visibility time durations 

Visibility times for satellites in elliptical 
orbits must be computed from Kepler's equation, 
tabulated in Chapter 3. However, in the case of 
circular orbits, the equations for visibility time 
are sufficiently simple to warrant presenting 
parametric results. Visibility time from a point 
on a nonrotating earth is then 

(93 ) 

where r = circular orbit radius . The visibility 
time of a satellite moving in a circular orbit 
exactly in the direction of the earth's rotation is 

where 

T e = period of earth rotation, 86,164 sec 

T = orbit period = 27T r ff 
F0r satellites moving directly opposite to the 
direction of the earth's rotation, the visibility 
time is 

(95) 
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Equations (93), (9 4) and (95 ) are plotted in Figs. 
57 and 58 . 

c . Visibility and call-down time computation 

The computation of call-down time (the time 
interval during which a vehicle may initiate a 
landing sequence terminating at a specified land­
ing site) or visibility time proceeds by solution 
for the intersections of the ground track, as given 
by the equations of Section D, and the perimeter 
of a test region. In the case of visibility time , 
the test region is 
simply the spherical 
segment determined 
by the maximum 
ground range of the 
tracking station. The 
perimeter of the test 
region is then given 
by Eqs (6 5) and (68) 
where (LO' Aa) is in-

terpreted as the loca­
tion of the tracking 
station and a is the 
maximum ground range. In the case of call-down 
time the shape of the test region is a function of 
the maneuverability of the landing vehicle . This 
particular subject is treated in some length in 
Chapter VIII . 

F. SENSOR LIMITATIONS ON ORBIT SELECTION 

The selection of orbit elements to best fulfill 
given mission requirements must obviously be 
subject to any sensor limitations. Although sen­
sors may take a wide variety of forms, considera­
tion will be limited to the two largest classes, 
optical and radio systems . The primary limita­
tions of these systems are power and resolution 
requirements. 

1. Radio Systems 

An important limitation of radio systems and 
the primary limitation for communication applica­
tions is the restriction on range imposed by 
transmission power limits. The range equation 
may be written in several forms: 

Gr At 
= --=-----z 

47T p 

G G ;\.2 
t r 

2 
( 47T p ) 

for simple one-way transmission. 

Where 

P r received signal power 

( 96 ) 

I 

I 
~ 



P t = transmitted power 

Ar = effective area of the receiving antenna 

At = effective area of the transmitting 
antenna 

Gr = receiving antenna gain 

Gt = transmitting antenna gain 

>.. = wavelength 

p = range from the transmitter to the re cei ver . 

In skin tracking, the transmitted radio beam is 
reflected by the ObJect tracked, and a portion of 
the reflected energy is then received at the trans­
mitter station. For skin tracking, then, 

where 

P r _ Ao Ar Gt 
P t - ( 47T p2 )2 

G
t 

G A2 A 
r 0 

2 2 47T ( 47T P ) 
( 97 ) 

Ao = scattering cross-section area. 

Typical gains and effective areas for use in the 
above equations are contained in Table 4 from 
Ref. 6. 

TABLE 4 

Effective 
Antenna Gain Area 

sotropic 1 
>..2 

41T 

nfinitesimal dipole 1. 5 
1. 5 >..2 

47T 

Half -wave dipole 1. 64 1. 65 >..
2 

47T 

Optimum horn 10. 0 A 0. 81 A 
>..2 

Parabola. or lens (6. 3 to 7. 5) A (0 . 5 to O. 6) A 
>..2 

Broadside array ¥ (maximum) A (maximum) 
>.. 

The minimum detectable signal is not deter­
mined by the ability to amplify the signal, but by 
the noise which obscures the signal. T hat is, if 
no interference were present , any signal trans­
mitted over any distance could be detected by 
providing sufficient amplification in the receiver . 
Noise limiting the usable range may enter the 
radio system at the transmitter , at the receiver or 
in the space link. The noise power produced in 
a bandwidth M is given by 

P n = kTM ( 98 ) 
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where 

k = Boltzmann's constant = 1. 38 x 10-
23

, 
w-sec/o K 

T = absolute temperature of the circuitry, 
OK 

M = bandwidth, cps 

The temperature T is the weighted sum of the 
various component source temperatures, the 
weights being high (unity) for noise sources in­
ternal to or surrounding the receiver or low if 
the noise enters through a fraction of the receiver 
surroundings. Typical equivalent temperatures 
of internal receiver noise are 2000° K for con­
ventional receivers, 100° K for parametric 
amplifier receivers and 10° K for masers. Equiv­
alent temperatures of external noise are dependent 
on frequency and, in the case of atmospheric 
noise, on elevation angle. External noise is 
shown in the following sketches from Ref. 6. 
The blackbody radiation of the earth also com­
prises a noise source which increases for low 
elevation angles. Thus, low altitude satellites, 
which spend relatively long times near the horizon 
of an observer on earth, entail greater noise 
problems. Other sources of noise are the sun, 
the moon and the planets. 

1000 

\ Elevation angle 
Cosmic from horizon 
noise \ ~ 

0° 
Q Minimum 

100 ;:, 
QJ 
~ 
;:l .... 
<1l 
~ 
QJ 
0. 10 
S 
QJ 10 E-< 

Frequency (Mc) 

The ratio of received power, P r ' to inter­

ference power in the bandwidth M determines 
the range at which communication is feasible . 
A ratio of unity is defined as threshold reception. 
The threshold reception range for space-to-earth 
communication is 

Usable ranges may be about one-third of this 
value . 

(99) 
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In addition to range limitations, missions em­
ploying radar systems may encounter resolution 
problems. The angular resolution of a radar is 
determined by the narrowness of the antenna 
beam. The apparent angular extent of an object 
detected is increased by the width of the antenna 
beam, and objects separated by less than the 
beamwidth are interpreted as a single object. 
Consequently, for a given system bandwidth, 
the minimum resolution distance increases with 
increased altitude . Range resolution depends 
mainly on the pulse duration of the transmitted 
signal. 

Just as noise determines the minimum detect­
able signal for range limitations, the obscuring 
of echoes by ground clutter and sea return is 
closely related to resolution capability. For 
example, in detection of a ship by means of an 
overhead airborne radar, difficulty is experienced 
in distinguishing the ship from the sea because 
the ranges differ by less than the pulse duration. 
The problem of relating radar resolution in the 
presence of clutter to orbit altitude is too complex 
to consider here except by generally noting the 
importance of low altitudes in achieving high 
resolution and minimizing power consumption. 

2. Satellite Photography Systems 

Resolution attainable in satellite photography 
i s related to orbit altitude , and so the photographiC 
system limitations are factors in cHoice of orbit 
elements. Investigation of this relationship, in 
order to be meaningful, must consider the entire 
photographic system performance in some detail. 

Among the factors which determine the degree 
of detail that can be detected or identified by a 
visual or photographic system are the object 
distance and the focal length of the viewing lens . 
The ratio of object distance, d, to focal length, f, 
is referred to as the scale number , S. 

d 
S=y- (100) 
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Then one cm on a photograph corresponds to S 
cms on the ground. Thus larger scale numbers 
mean greater difficulty in discerning fine detail. 

A second parameter useful in defining optical 
system capability is resolution, the ability to 
distinguish parts of an image . In photography, 
resolution is the ability of a film -lens system 
to distinguish a standard pattern of black and 
white lines. Thus a film-lens system may be 
described as providing resolution of r f lines per 

millimeter. Ground resolution is the distance on 
the ground equivalent to one barely resolvable 
line . Thus, if a film-lens system provides a 
system resolution of r

f 
lines per mm, and the 

scale number is S, the ground resolution, r g' is 

(102) 

In terms of commonly used units, 

r (meters) = . S . . . 
g 1000 r f {lmes per mIlllmeter} 

Although ground resolution is a ratio, the effects 
of graininess influence a selection of lower values 
of Sand r f to attain a given r g ' From Eqs (101) 

and (102), the maximum orbit altitude can be 
determined as a function of system resolution, 
focal length and ground resolution. 

(103) 

where 

h = orbit altitude in meters 

f = focal length in meters 

r g ground resolution in meters 

r f = system resolution in lines per mm . 

Equation ( 103 ) is plotted in Fig. 59. However , 
in order to use this data or Eq (103) it is neces ­
sary to describe the quantity r f (or system 

resolution). This resolution is a function of 
many separate factors and will be discussed 
in the following paragraphs . 

The overall performance of a photograrnic 
system depends on the contribution of each 
el~ment of the system. The elements of a photo­
graphic system are: 

(1) The scene, with its contrasts . 

(2) The atmosphere, which modifies the 
light from the scene before it enters 
the optical system. 

(3 ) The optical system, which images 
the scene on the film . 

( 4) The camera system, through which 
uncompensated motion and vibration 
enter the system. 

- , 



(5) The film, which records the final 
image. 

Each of the elements which fo llows the scene 
alters the contrast in a different manner . It is 
desirable to have a method of analysis which 
permits the examination of each of these elements 
in the same terms so that the individual elements 
can be compared on a common basis, and which 
presents the result in the same terms . 

Such a method is the sine wave response 
analysis which describes the effects of each 
element in terms of its modulation transfer 
function, . T (K). The method is analogous to 
the transfer function analysis of servomechanisms 
in which the modulation transfer function describes 
the response of the element as a function of the 
spatial frequency. The overall system performance 
is then the product of the modulation transfer func­
tions of the individual e l ements. 

a. Modulation transfer function 

Consider a scene in which the intensity varies 
according to the following relation 

I = I A + IV sin (¥) . 
o 

This is a series of lines spaced KO units apart 

(see following sketch). The maximum intensity 
is IA + IV and the minimum intensity is IA - IV' 

with the intensity varying sinusoidally between 
these limits. Since all of the lines are the same 
distance apart, they represent a constant spatial 
frequency, KO' The modulation transfer function 

can be defined as the ratio of IV to I A ' Therefore 

for this scene the modulation transfer function T (K ) 
is given by IV/IA' 0 

H 

K -
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Now consider the image which is produced when 
light from a scene (see following sketch) which 
has a modulation transfer function of unity but 

11llTI 
increasing spatial frequency is passed through a 
diffraction limited lens. At some spatial frequency 
the diffraction patterns of the individual lines begin 
to overlap and the contrast in the image is reduced. 
As the lines become closer together the contrast 
becomes further reduced until at some frequency. 
the lens gives essentially no response to the 
modulation in the scene. The modulation of the 
scene-lens combination might appear as shown 
in the following sketch. The corresponding 
transfer function is given in Fig. 60. Since 
the scene has a modulation transfer function 
of unity. Fig . 60 is the transfer function of 
the l ens a lone. 

j 

By determining the modulation transfer function 
of each element of the system, the modulation 
transfer function of the £lnal image as recorded on 
film can be determined. thereby determ ining the 



performance of the system. The modulation trans ­
fer function of each of the elements of the system 
is discussed in the follow ing paragraphs. 

b. The scene 

The scene to be photographed is usually a 
complex mixture of contrasts and spacings , 
and its transfer function, although theoretically 
obtainable, is too complex to be of practical 
value. Fortunately, we are rarely interested 
in the performance of the system against a 
particular scene; we are usually interested in 
the ability of the system to resolve detail. 
This can be done by evaluating the system per ­
formance against an artificial scene which 
lends itself to analysis, such as the scene 
represented in the foregoing sketch. 

Such artificial " target" scenes are character ­
ized by a constant contrast, and therefore a con­
stant transfer function, for all spatial frequencies . 
The transfer function varies with the contrast in 
the following manner: 

(104) 

where C is the brightness ratio of the peaks to 
the valleys of the sine wave. 

Equation (104) is plotted in Fig. 61. The scene 
contrast is seen to act as a "gain" factor which 
multiplies the system sine wave response, and, 
therefore, to compare systems on a common 
basis, it is necessary to use a common value of 
scene contrast. For satellite photography a 
brightness ratio of 8 .• 1 is usually assumed. 

c. The atmosphere 

In addition to the obvious effect of clouds, the 
atmosphere affects the system in two ways. The 
first of these, scattering, causes some light from 
the sun to be scattered directly into the system 
and some image forming light from the scene is 
scattered out of the system. From a satellite, 
looking through the entire thickness of the atmos ­
phere' the scattering causes the target contrast 
to be reduced by a factor of four, so that the ef­
fective contrast seen by the system is 2:1, giving 
a transfer function of 0 . 33 from Eq (104) . 

The second effect is due to turbulence, and it 
affects only very high acquity systems. The tur ­
bulence causes a random angular displacement of 
the rays making up the image, and its value for 
satellite photography has not yet been adequately 
determined. It is felt that it will lim it the ulti­
mate system performance to the order of one foot . 

d . The lens 

The transfer function of the lens depends on 
its diffraction pattern and aberations, and for a 
particular lens this can be measured after the 
lens is manufactured. For system design, which 
must be performed before the lens is manufactured, 
it can be assumed that the lens has no aberations 
and is diffraction limited . For a well designed 
lens, this will be very nearly true on axis, but at 
the edges of the field the performance will be con­
siderably reduced. 
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The modulation transfer function for a diffrac­
tion limited circular aperture, when viewing a 
line image, is given by Ref. 7 

T(K) = ~ [ cos- l (AK) - AK J 1 - (AK)2 J 
(105 ) 

where 

A = N" 

" = wavelength of light 

N = focal ratio (f-number) of the lens 

K = spatial frequency 

The transfer function of an ff 4 lens for light o f 
6000 A was given in Fig. 60. Equation (102) is 
plotted in Fig. 62 and the transfer func t ion for 
ff 1 to ff 12 lenses is given in Figs. 63 and 64. 

e~ Image motion 

The camera introduces two types of image mo­
iion into the system, vibration and linear motion. 
Although it is generally impossible to determine 
the expected vibration environment at the time of 
system design, the transfer function for vibration 
is useful in that it can be used to determine an al­
lowable vibration level which will not seriously 
degrade the system. By finding that transfer 
function which degrades the system performance 
by the allowable amount, the vibration level which 
produces the transfer function is determined . 

The transfer function for vibration is given by 

T(K) = J O (IT AK) (Ref. 7) 

where 

J 0 = zero order Bessel function 

A = amplitude of the vibration 

K = spatial frequency 

(106) 

Linear motion between the film and the image 
during the exposure time can arise from several 
sources . These include: 

(1) Uncompensated vehicle rotation rates. 

(2) V/H measurement errors. 

(3) Camera pointing errors. 

(4) Film drive speed errors . 

The magnitude of the motion from these sources 
can usually be predicted at the system design 
stage and the effects of the motion can be calcu ­
lated. 

The transfer function for linear motion is given 
by Ref. 7. 

T(K) sin IT AK 
IT AK 

(107) 

-, 



where 
A = distance of the motion (in the 

focal plane) 

K = spatial frequency 

Equation (107) is plotted in Fig. 65. 

f. The film 

The modulation transfer function of the photo­
graphic film is determined experimentally and 
can be obtained from the film manufacturer. An 
example of the transfer function that might be ob­
tained from satellite photography films is shown 
in Fig. 66. 

g. Interpretation 

The overall system transfer function represents 
the response of the system to lines of width which 
vary from very broad. to lines which are finer 
than the system can resolve, and therefore is a 
good description of the system performance. How­
ever. it is often desirable to describe the system 
performance in terms of a single number, the 
resolution. It has been found that the minimum 
detectable resolution occurs at a response of 0.04, 
and the spatial frequency at which 4% response 
occurs is becoming accepted as the system resolu­
tion. 

h. Illustrative example 

To illustrate the use of modulation transfer 
functions in analyzing systems. the following ex­
ample is presented. Assume the following system 
characteristics: 

Aperture--18 in. or 0.492 m 

Focal ratio - -f /4 

Orbital altitude--125 naut mi or 232 km 

, -6 
Image motion--equivalent to 2.5 x 10 rad 

Target contrast 8:1. reduced to 2:1 by the 
atmosphere. 

These values lead to the following transfer func­
tions: 

The lens, being f/4, is described in Fig. 60. 

The image motion is determined as follows: 

-6 
A = 2.5 x 10 rad x 72 in. (focal length) 

x 25.4 millimeters/in. = 4.57 x 10 -3 mm. 

This yields the transfer function shown in Fig. 67 
for image motion. The film will be represented 
by the transfer function of Fig. 66. Table 5 gives 
the values of the transfer function for the example, 
and they are plotted in Fig. 67. 

The 4% response point is seen to occur at 140 
lines per millimeter,. The corresponding resolu­
tion· in the scene is determined by multiplying the 
distance in the image (1/140 mm). by the scale 
number, as in Eq (103)* or utilizing Fig. 59. 

---_. --- ---

TABLE 5 

Transfer Functions for Illustrative Example 

Spatial The Scene 
Frequency + Atmos- Image 
(lines/mm) phere Lens Motion Film 

10 0.33 0.96 0.99 0.96 

20 0.93 0.98 0.90 

30 0.90 0.96 0.85 

40 0.87 0.94 0.80 

50 0.84 0.91 0.74 

60 0.81 0.88 0.70 

70 0.78 0.84 0.66 

80 0.75 0.79 0.63 

90 0.72 0.74 0.60 

100 0.69 0.68 0.58 

110 0.66 0.63 0.55 

120 0.63 0.57 0.53 

130 0.60 0.51 0.51 

140 0.57 0.45 0.50 

150 0.54 0.3~ 0.48 

160 0.51 0.33 0.47 

170 0.48 0.27 0.45 

180 0.45 0.21 0.44 

190 0.43 0.16 0.43 

200 0.40 0.10 0.41 

1 125 miles 1 in. 
r f = 140" mm x 72 in. x 25. 4 mm 

x 6076 ~ = 2.97 ft 
mt 

= 0.974 m 

Overal 
~ystem 

0.30 

0.27 

0.24 

0.22 

0.19 

0.16 

0.-14 

0.12 

0.11 

0.09 

0.08 

0.06 

0.05 

0.04 

0.03 

0.026 

0.019 

0.013 

0.010 

0.005 

i. Tabulation of transfer function values 

Reference 7 also presents the following table 
of values for the transfer functions. 

AK 

0.05 
0.10 

0.15 
0.20 

0.25 
0.30 

0.40 
0.45 
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~O (Tr AK) 

0.994 
0.975 

0.945 
0.904 

0.854 
0.790 

0.646 
0.560 

TABLE 6 

Values of T(K) 

sin Tr AK/Tr AK 

0'.996 
0.983 

0.963 
0.935 

0.900 
0.858 

0.756 
0.699 

2 [ -1 ;r cos (AK) 

- AK 11 - (AK2~ 
0.963 
0.873 

0.810 
0.747 

0.685 
0.623 

0.506 
0.442 

(continued) 
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TABLE 6 (continued) 

2 G -1 
i cos (AK) 

AK ~O (TT AK) sin TT AK/ TTAK - A.K ~1 - (AK2)] 

0.50 0.473 0.636 0.389 
0.60 0.293 0.525 0.285 

0.70 0.110 0.368 0.188 
0.75 0.025 0.300 0.138 

0.80 0.234 0.104 
0.90 0.109 0.038 

0.95 0.052 0.015 
1. 00 0 0 
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<.l1 
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A s longitude of the sun at 
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----------
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- - - - - - -- -- - - - - - --- -----, 
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. 9's: e = 360· - WE + .6.9, compute 
1 E ' Of ' Wf s (Eq 16) and then s + til (~ = 00 .54) 
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s + !.Ji = 9s and 

s = 9 
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with possible results of 

r was it case (1)1 

+ No 
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n n - • (see Chap. IV), I 

= A h + 0 .9856 Lill 
S n - 1 I 

• deg/day (mean daily I 
motion I I of sun) Stop No Dn = D n_l + 6D L ________________________ J 

Os 

* o ,. days from RO 
Do ,. 0 
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APPENDIX A 

GLOSSARY (REF. 1) 

A 
Aberration: apparent displacement of a body from 

its actual position due to the observer's motion, 
the object's motion and the finite speed of light. 

Aberration, planetary: aberration including ef­
fects of the object's motion as well as the ob­
server's motion during the time light travels 
from the object to the observer. 

Aberration, stellar: aberration including only the 
effect of the earth's motion around the sun, 
mean value 29.9 km/sec. 

Ablation: the gradual removal or erosion of an 
exposed surface of an object resulting from 
its high speed passage through a resistive 
medium. 

Abort: the termination of a space mission after 
an emergency forces return to earth. 

Albedo: fraction of total incident light reflected 
by a body. 

Albedo, average geometric: ratio between the 
average brightness of the object to the bright­
ness of a white screen of the same size nor­
mal to the incident light (lunar albedo O. 105) . 

Albedo, spherical: ratio of the light scattered in 
all directions by the object to the total incident 
light (lunar albedo = 0.073). 

Almucantar: a parallel to the horizon. 

Altitude (also elevation): a topocentric coordinate 
in the horizon system; the angular distance 
of an object above the horizon, measured on 
a vertical circle. Also synonymous with the 
height of an object above some surface. 

Analytical integration: the specification of an ex­
plicit closed algebraic or series relation to 
represent the integral of a given function. 

~!... 2 • 
Angular momentum: the quantity mr x r ( = r e 

in polar coordinates) constant for conic mo­
tion. 

Anomaly: or angle; see true anomaly , mean 
anomaly, and eccentric anomaly. 

Aphelion: the point on a heliocentric ellipse 
farthest from the sun. 

Apocynthion (also aposelene or apolune): the 
point on a selenocentric elliptic orbit farthest 
from the moon's center. 

Apofocus: the apsis on an elliptic orbit farthest 
from the principal focus or center of force. 

Apogee: the point on a geocentric elliptical or­
bit farthest from the earth's center. 

Apsis (plural, apsides): the point on a conic where 
the radius vector is a maximum or minimum. 

The line of apsides is the major axis extended 
indefinite ly. 

Argument of latitude: the angle in the orbit from 
the ascending node to the object in the direction 
of motion; the sum of the argument of perifocus 
and the true anomaly. 

Argument of perifocus: the angular distance 
measured in the orbit plane in the direction of 
motion from the lines of nodes to line of 
apsides . 

Aries: an astronomical constellation; a portion of 
the celestial sphere which contained the vernal 
equinox. 

Aries, first line of: the direction of the vernal 
equinox (the name is a carryover from a time 
that the vernal equinox was in the constella­
tion Aries). 

Aspect: angular position of a body relative to its 
line of advance in orbit. 

Astrodynamics: the engineering or practical ap­
plication of celestial mechanics and other allied 
fields such as high altitude aerodynamics; 
geophysics; attitude dynamics; and electro­
magnetic, optimization, observation, naviga­
tion, and propulsion theory, to the contemporary 
problems of space vehicles. Astrodynamics 
is sometimes also meant to include the study 
of natural objects such as comets, meteorites 
and planets. 

Astronomical unit (AU): the mean distance or 
semimajor axis of the orbit of a fictitious un­
perturbed planet having the mass (0.000,002,819 
solar masses) and sidereal period (365 . 256,383,5 
mean solar days) that Gauss adopted for the 
earth in his original determination of the grav­
itational constant Ks ( = 0.017,202,089,95) . 

Approximately equal to 92,914,000 statute 
miles or 149,530,000 km. 

Azimuth: a topocentric coordinate measured in 
the plane of the horizon from the north (or 
south) point on the horizon clockwise to the 
object. 

B 
Ballistic trajectory (also coast trajectory or free ­

flight trajectory) : motion of the space vehicle 
without rocket burning or thrust forces . 

Barker's equation: an equation that relates po­
sition to time for an object trave l ing in a 
parabolic orbit . 

Barycenter: center of mass of a system of 
masses. 
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Base altitudes: reference altitudes or levels of the 
atmosphere between which the atmospheric 
temperature gradient is assumed to be a con­
stant. 

Boltzmann's constant: the ratio of the mean total 
energy of a molecule to its absolute tempera-

ture. Its value is 1. 380 x 10- 23 joule/oK. 

Braking: the deceleration of a space vehicle by 
rocket thrust or by atmospheric drag. 

Braking ellipses: a series of ellipses whose semi­
major axes decrease due to the atmosphere of 
a planet when a vehicle attempts a landing on 
that planet . 

Burnout: end of rocket burning for a particular 
rocket engine in a given stage of the rocket. 

c 
Call-down frequency: the frequency with which a 

vehicle can be recalled from orbit and landed 
at a specific site. 

Cartesian coordinate system: a set of (usually 
three) mutually orthogonal straight coordi ­
nate axes which form a right-handed coordi ­
nate system. 

Celestial equator: the great circle in which the 
plane of the terrestrial equator intersects 
the celestial sphere. The north celestial 
pole is the point of intersection of the earth's 
spin vector with the celestial sphere. 

Celestial sphere: a hypothetical sphere of infinite 
dimensions, centered at the observer (or center 
of the earth or sun, etc.), on the inner surface 
of which the celestial bodies are projected and 
appear to move . This sphere is fixed in space, 
and thus , because of the earth's rotation, ap­
pears to rotate from east to west . 

Centrifugal force: a fictitious position - dependent 
force that apparently arises when the motion of 
an obj.ect is observed with respect to a rotating 
coordmate system. The relationship yielding 

this "force" is - m;:;-x (;;X;), where m is the 

mass of the object and ;:;- is the angular velocity 
vector of the rotating coordinate system. 

Characteristic velocity: the sum of all absolute 
velocity changes required 'of a vehicle for a 
particular space flight (a measure of the total 
energy requirement for a flight) . 

Circle, galactic: fundamental plane of the galactic 

reference system (north pole at 12h 44m right 
ascension and +27° declination) , inclined 62° 
to the celestial equator . 

Circle, hour: secondary circles of the equatorial 
coordinate system, i. e . , planes normal to the 
celestial equator. 

Circle, secondary: great circles (or planes 
through the origin) which pass through the 
poles of a given coordinate system. 

A-2 

Circle , vertical: intersections of the celestial 
sphere by vertical planes in a horizontal co­
ordinate system. 

Circumlunar trajectory: a trajectory from the 
vicinity of the earth which passes behind the 
moon and returns ballistically to the vicinity 
of the earth . 

Cislunar space: the region of space around the 
earth and moon, usually taken as being syn­
onymous with the sphere of influence of the 
earth - moon system. 

Collision parameter: the offset distance between 
the extension of a velocity vector of an object 
at a great distance from a center of attraction 
or repulsion and this center. 

Colure, equinoctial : the plane, secondary to the 
equator , which passes through both the celes­
tial poles and the equinoxes. 

Colure, solstitial: the plane, secondary to the 
equator, which passes through both the celes­
tial poles and the solstices. 

Conjunction: a point in the orbit of a planet (or 
moon) where its celestial longitude equals that 
of the sun. If the alignment is sun-planet­
earth, the planet is said to be in "inferior con­
ju.nct~on." This configuration is possible only 
WIth mferior planets; if it is planet - sun-earth, 
the planet is in "superior conjunction." Sim­
~larly, when the moon (or a superior planet) 
IS between the earth and the sun, i. e., "new," 
it is said to be at conjunction. 

Coordinate systems: one of a number of sets of 
celestial coordinate systems used in astro­
nautics (Chapter XI) . 

(1) Ecliptic System uses the plane of the earth's 
orbit (ec liptic) as the reference. The axis 
of the poles of the ecliptic is at right angles 
to this plane. This system is most useful for 
intrasolar system work since all the planets 
move in or near the plane of the ecliptic . 

(2) Equatorial System uses the celestial equator 
as the reference plane. The celestial equa­
tor and celestial poles coincide with exten­
sions of the earth's equator and poles on the 
celestial sphere. This system is the one 
most commonly used in astronomy. 

(3) Horizon System uses the observed horizon 
as the reference plane and is the common 
system of celestial navigation . 

Coriolis force: a fictitious velOCity dependent 
force that apparently arises when the motion of 
an obj.ect is reckoned with respect to a rotating 
coordmate system. TE:e relationship yielding 

this "force" is -2m~ r . where m is the mass 
~ r 

of the object, w is the angular velocity :::.ector 

of the rotating coordinate system, and r is r 
the velocity of the object reckoned with respect 
to the rotating system. 
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Cosmic dust: fine dust particles (micrometeorites) 
that are concentrated in the solar system in the 
plane of the eCliptic (e. g., giving rise to the 
phenomenon of "zodiacal light") and also 
dispersed in a more rarefied manner in inter­
stellar space, being more concentrated in the 
galactic spiral arms; also a component of 
comets. 

Cosmic rays (direct): high-energy charged parti­
cles (e. g., with energies in excess of 100 Mev) 
such as protons, alpha particles and heavy 
nuclei which have apparently been ejected by 
stars and accelerated by vast magnetic fields 
in interstellar space. 

Cosmoparticle: discrete material entities of sub­
meteoritic mass, either in or from space. 
They may be "free" or individual molecules 
or atoms, or molecular or atomic constituents 
of any kind, e. g., ions, atomic nuclei, protons, 
neutrons, electrons, positrons, etc. 

Cross product: or vector product (denoted by A 
x B) of two typical vector quantities A and B 
can be defined either as a vector mutually 
perpendicular to both A and 13 with magnitude 
A B sin (A, B) or equivalently as 

(A B - A B ) I + (A B - A B ) J yz zy zx xz 

+ (A B - A B ) K 
x Y Y x 

where the subscripts denote the components 
of the vectors on the three orthogonal axes 
denoted by the unit vectors I, J, K. 

Culmination: The time at which a heavenly body 
reaches the meridian of an observer. Upper 
culmination occurs near zenith, lower culmina­
tion near nadir. 

o 
Day, sidereal: the period of one rotation of the 

earth relative to inertial space (the stars), 

23
h 

56m 04s . 090 mean solar time. 

Day, solar: the time between two successive 
upper (or lower) culminations of the sun, 

24h 03m 56s . 556 sidereal time. 

Declination: the arc of an hour circle (great 
circles passing through the poles) intercepted 
between the celestial equator and the object; 
angular distance north or south of the celestial 
equator. 

Definitive orbit: an orbit that is defined in a 
highly precise manner with due regard taken 
for accurate constants and observational data, 
and precision computational techniques including 
perturbations. 
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Differential correction: a method for finding from 
the observed minus computed (0 - C) residuals 
small corrections which, when applied to the 
elements or constants, will reduce the devia­
tions from the observed motion to a minimum. 

Dip: the angular distance between the true hori­
zontal and the observed horizon for an observer 
above ground level. 

Direct motion: the term applied to eastward or 
counterclockwise motion of a planet or other 
object as seen from the North Pole (i. e., in 
the direction of increasing right ascension). 
Thus, it is motion on an orbit in which i < 90 
degrees. 

Diurnal: daily. 

Diurnal motion: the apparent revolution of the 
heavenly bodies around the earth. 

Dot product: or scalar product (denoted by A EI) 
of two typical vector quantities A and 13 can be 
defined as AB cos (A, B) or equivalently as 
A B + A B + A B where the subscripts xx yy zz 
denote the components of the vectors on three 
orthogonal axes. 

Drag: the force occasioned by the passage of an 
object through a resistive medium acting in a 
direction opposite to that of the object's motion 
relative to the medium. 

Drag coefficient: the total drag force acting on an 
object divided by one-half the local atmospheric 
density, the projected frontal area.of the object, 
and the square of the magnitude of the velocity 
of the object relative to the resistive medium. 

Drift, anomalistic: the variation or drift of a 
frequency source (e. g., a crystal oscillator) 
such that the frequency changes due to a variety 
of causes (e. g., temperature variation, com­
ponent aging, etc.), none of which can be pre­
dicted in advance or completely controlled. 

E 
Eccentric anomaly: an angle at the center of an 

ellipse between the line of apsides and the 
radius of the auxiliary circle (which has radius 
equal to semimajor axis of ellipse and center 
at center of ellipse) through a point that has 
the same x-coordinate as a given point on the 
ellipse. 

EccentriCity: the ratio of the radius vector through 
a point on a conic to the distance from the point 
to the directrix. 

Eclipse: a name applied to cases where a non­
luminous body passes into the shadow of another; 
eclipse of the sun means the interposition of the 
moon's disc between the observer and the sun. 

Ecliptic: the great circle formed by the intersec­
tion of the orbital plane of the earth (the ecliptic 
plane) and the celestial sphere. 



Ecliptic coordinate system: axes with the ecliptic 
as the fundamental plane and with spherical co­
ordinates: celestial longitude and latitude. 

Elements of orbit : any six independent constants 
defining the orbit, e. g. , (1) orientation ele­
ments: n longitude of ascending node; i inclina­
tion of orbit plane; w argument of perifocus; 
(2) dimensional elements: e eccentricity; a 
semimajor axis; (3 ) time element: T time of 
perifocus passage. 

Elevation, angle of: the angle between the itlertial 
velocity vector r and the local horizontal, i. e. , 
the plane normal to rpassing through the ve ­
hicle. 

Eliminant: a determinant that is formed when 
n - 1 linear unknowns are eliminated from a 
set of n equations. The e limination of x and y, 
for example, from 

y ields the eliminant: 

o 

Elongation, angle of: the angle between the di­
rection to an object and to the center of the 
coordinate system reckoned at the observer . 

E nergy integral: one of the integral s of two-body 
motion expressing conservation of energy. 

Entry a ngle: the a ngle between the ve l ocity vector 
of a space vehicle relative to a resistive medi­
um and the local horizontal. 

Ephemeris (plural, ephemerdies ): a table of cal ­
culated coordinates of an orbject with equi ­
dis tant dates as arguments. 

Ephemeris time (ET ): uniform or Newtonian 
time, defined by mean frequency of rotation 
of the earth around the sun for the year 1900. 

Epoch: arbitrary instant of time for which the 
elements of an orbit a r e valid (e. g. , initial , 
injection, or correction time) . 

Equator , celestial: the great circle in which the 
plane of the terr estrial equator intersects the 
celestial sphere . 

Equator, terrestria l : the c i rcle in which the 
plane through the ea.rth ' s center normal to 
its axis of rotation (the e quatorial plane ) in ­
tersects the earth ' s s urface. 
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Equatorial bulge: the excess of the earth's 
equatorial diameter over the polar diameter 
(i. e., about 27 miles, 43 km); oblateness. 

Equatorial satellite: a satellite whose orbit 
plane coincides with the earth's equatorial 
plane. 

Equatorial system: rectangular axes referred to 
the equator as the fundamental plane a'nd 
having spherical coordinates, right ascension 
and declination. 

Equilateral triangle solutions: a particular solu­
tion of the three-body problem in which an 
object situated at one vertex of an equilateral 
triangle formed with the sun and a planet has 
a stable orbit. It was predicted by Lagrange 
(1772) and amply confirmed in the case of 
Jupiter. See Trojan asteroids. 

Equinox, nutation of: arises from nutation of 
equator . 

Equinox of date: pOSition of equinox at epoch 
being used in discussion. 

Equinox , precession of: arises from precession 
of equator . 

Equinox, true: equals equinox or vernal equinox , 
q . v ., "true" being used to emphasize distinc­
tion from mean equinox . 

Equinoxes : intersections of the equator and 
ecliptic, the vernal equinox being the point 
where the sun crosses the equator going from 
south to north (descending node of earth's orbit) . 

Euler's equatlOn: a relation in a parabolic orbit 
involving two radii vectors, their chord, and 
the time interval between them; discovered 
by Euler (1744) . 

Evection: a large perturbative term in the 
moon's longitude discovered by Hipparchus, 
amounting to 1° 15' at maximum. 

F 
Feasibility orbit: an orbit that can be rapidly and 

inexpensively computed on the basis of simpli­
fying assumptions (e. g., two-body motion, 
c ircular orbit, three -body motion approxima­
ted by 2 two -body orbits, etc. ) and yields an 
indication of the general feasibility of a system 
based upon the orbit without having to carry 
out a definitive orbit computation. 

Free - molecul e flow (or free - molecular flow) : 
flow regime in aerodynamics in which mole ­
cules emitted from an object, as it passes 
through a resistive medium, do not affect 
t he flow of oncoming molecules by scattering 
interactions, i. e., the mean free path of the 

I 

I 

I 
I 
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emitted molecules is much longer than a 
characteristic linear dimension of an object. 

G 
Galactic system: a system based on the center­

line of the milky way . 

Gaussian gravitational constant, Ks: factor of 

proportionality in Kepler's third law; the 
numerical value depending on the units em­
ployed. See astronautical unit. 

Geocentric: referred to the center of the earth 
as origin. 

Geocentric parallax: see parallax. 

Geocentric subvehicle point: the point where the 
radius vector from the geocenter to a space 
vehicle intersects the spheroid. 

Geodetic subvehicle point: the point where a 
line through a space vehicle normal to the 
spheroid intersects the spheroid. 

Geoid: the mean sea-level figure of the earth. 

Geoidal surface: the mean sea-level surface of 
the earth; surface of gravitationa l equipotential. 

Geometric meter: the standard meter. 

Geopotential meter: a unit of length employed in 
reckoning geopotential altitude. 

Gravitational potential: at a point, the work re­
quired to remove unit mass from that point 
to infinity. 

Greenwich meridian: the zero meridian from which 
geographical longitude is measured (passes 
through the Greenwich Observatory, England). 

Ground trace: a succession of subvehicle points 
on earth or on any other celestial body. 

Ground swath: a re gion around the ground trace, 
the boundaries of which are specified by the 
lateral distance from the ground trace. 

Guidance and control system: a system that ac­
tively counteracts or overcomes the effects 
of deviations (from nominal conditions) in 
order to accomplish the given mission with 
the desired degree of exactness. Navigational 
inputs allow the guidance and control system 
to sense these deviations. 

Guidance law: the equations which are mechanized 
in the guidance and control system. 

Guidance law, explicit: the guidance computer in 
the vehicle predicts and the vehicle is steered 
along a trajectory which brings it to the de ­
"'ired end conditions. 

Guidance law, implicit: the vehicle follows a 
nominal trajectory while the guidance system 
is active. 
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H 
Harmonics of the earth's gravitational field: a 

series representing the gravitational potential 
of the earth whose terms form a harmonic 
progression, i. e., include powers of the re­
ciprocal of distance. 

HeliocEW-tric: referred to the center of the sun as 
origin. 

Hohmann orbit: an elliptic heliocentric trajectory 
for interplanetary flight, having tangency to the 
earth at one apsis and to another planetary 
orbit (e. g., that of Venus or Mars) at the op­
posite apsis. More generally stands for any 
such doubly tangent transfer ellipse. 

Horizon, apparent: the horizon forme.d by the 
horizontal plane through the position of the 
observer. 

Horizon, rational: the horizon formed by the 
plane through the center of the earth paraliel 
to the observer's horizon. 

Horizon coordinate system: a system of topo­
centric coordinates either spherical (azimuth 
and altitude) or rectangular, having as 
reference plane the celestial horizon, which 
is perpendicular to the direction of gravity 
at the observer. 

Horizon scanner: an optical device that senses 
the radiation discontinuity between a planet 
or lunar surface and the stellar background 
of space. It can be utilized to establish a 
"vertical" reference based upon a "visual" 
horizon (which differs from both the astro­
nomical and geodetic horizon). 

Horizontal plane: that plane perpendicular to the 
direction of gravity at any place. 

Hour angle (LHA): angle between the observer's 
meridian and the hour circle passing through 
the object, a coordinate in the rotating equa­
tor system, positive toward west, 0 to 24 hr. 

Hour circle: anyone of the great circles that 
pass through the celestial poles and, therefore, 
are at right angles to the equator. 

I 
Inclination i: angle between orbit plane and 

reference plane (e . g., the equator is the 
reference plane for geocentric orbits and the 
ecliptic for heliocentric orbits). 

Inertial axes: axes that are not in accelerated 
or rotational motion. 

.Injection: the addition of an "instantaneous" in­
cremental velocity vector to the satellite 
velocity vector at a prescribed time and place 
to establish a new orbit. 



InjectlOn conditions: position and velocity of 
rocket at the instant when the thrusting of 
rocket motor ends and the ballistic portion of 
the trajectory begins . 

Inte rmediate orbit: an orbit tangent to the actual 
(or disturbed ) orbit, having the same coordi­
nates but not velocity at point of tangency. 

Inversion: in this context is meant to be synony­
mous w ith the numerical solution of a set of 
linear algebraic equations. 

Ionosphere: the ionized portion of the atmos­
phere above about 60 km. 

Isostatic equilibrium: a situation in which the 
pressure under the earth's surface is the 
same regardless of whether it is measured 
under a mountain, valley or ocean, i. e. , 
lower density strata underlie mountains 
while higher density strata underlie oceans. 

J 
Jacobi's integral: an integral of the equations 

of motion in a rotating coordinate system 
which relates the square of the velocity and 
the coordinates of an infinitesimal body re ­
ferred to the rotating coordinate s ystem. The 
constant of integration associated with Jacobi's 
integral is known as Jacobi's constant. 

Julian date: the number of mean solar days that 
have e lapsed since midnight, January 1, 4713 
Be; e . g., the Julian date of January 1, 1960 
is 2,436,934, and of February 1, 1965 is 
2,438,792, etc. 

K 
Kepler's planetary laws: (1 ) every planet moves 

in an ellipse about the sun with the sun at one 
focus; (2) every planet moves in such a way 
that its radius vector sweeps over equal areas 
in equal intervals of time; (3) the square s of 
the periods of revolution of two planets are to 
each other as the cubes of their mean distances 
from the sun. 

K -1 min: the characteristic time for ge ocentric 
e 

orbits, i. e., the time required by hypothetical 
satellites to move 1 radian in a circular orbit 
of radius a (equatorial earth's radius ); equal 

e 
to 13,447,052 min. 

K -1 day: the characteristic time for heliocentric 
s 

orbits, i. e., the time required for a planet at 
1 astronomical unit to move 1 radian (or 1 a. u. ) 
along its orbit; equal to 58.132,440,87 days. 
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L 
Lagrangian solutions: particular solutions of the 

three-body problem in which an infinitesimal 
object moves under the attraction of two finite 
bodies (e. g . , the sun and Jupiter) which re­
volve in circles around their center of mass 
and in which the distances from the infinitesi ­
mal object to the finite bodies remain constant. 
See also equilateral triangle solutions and 
synodic satellites, i. e., the so-called straight 
line solutions. 

Lambert 's equation: an e quation of the 8th degree 
expressing the curvature of the apparent path 
of a body moving around the sun, as seen from 
the earth: discovered by Lambert (1771). 

Latitude, astronomical: the angle between the 
direction of gravity through a point and the 
equatorial plane. 

Latitude, celestial: the angular distance of an 
object north (+) or south (-) of the ecliptic 
plane; a coordinate in the ecliptic system. 

Latitude, geocentric: the angle between the 
equatorial plane and a straight line from the 
observer to the center of the earth . It differs 
from astronomical and geodetic latitudes be­
cause of the oblateness of the earth, 00 to 900 

north or south. 

Latitude, geodetic (or geographic latitude): the 
angle between the plane of the equator and a 
normal to a reference spheroid . Geodetic 
and astronomical latitudes differ only because 
of local deviations in the direction of gravity , 
00 to 900 north or south. 

Least squares inversion: a solution of a set of 
overdetermined linear equations such that 
the sum of the squares of the residuals is a 
minimum. 

Legendre polynomials: the coefficients P n (c) 

in the expansion (1 - 2ch + h 2 ) -1/2 = 

n 
P~ (c) h where PO (c) 1, PI (c) 

n=O 

1/2 (3c 2 - 1), P
3 

(c) = 1/2 (5c 3 - 3c), or, in 

general, (n + 1) P + 1 (c) - (2n + 1) c P (c ) 
n n 

+ nP n _ 1 (c) = O. 

Libration: (1) apparent or optical and physical 
tilting and side-to-side movements of the moon 
that render 18 percent of its surface alternately 
visible and inVlsible, (2) long-period orbital 
motions of the Trojan asteroids around the 
equilateral triangle points of the three -body 
Lagrangian solutions, (3) periodic perturba­
tive oscillations in orbital elements. 

J 
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Lift: the force arising from the passage of a ve­
hicle through a resistive medium when the ve­
hicle presents an asymmetrical form or orien­
tation; which force acts in a direction normal 
to the object's motion relative to the medium. 

Limb: the edge of the visible disk of the sun, 
moon, planet, etc. 

Line of apsides: a line connecting the near to 
the far apsis, i. e., defines the major or 
transverse axis. 

Line of nodes: the intersection of a reference 
plane and the orbit plane. 

Line -of - sight: the apparent or observed direction 
of an object. 

Longitude, celestial: the angular distance 
measured along the ecliptic from the vernal 
equinox eastward to the great circle passing 
through the object and normal to the ecliptic. 

Longitude, ephemeris: analogous to ordinary 
geographic longitude, but referred to the 
ephemeris meridian, rather than to the 
Meridian of Greenwich. 

Longitude, geocentric: the angular distance 
from the foot of the Greenwich meridian, 
measured along the equator, east or west, 
to the foot of the Imeridian through the place. 

Longitude of ascending node: the angular dis­
tance from the vernal equinox measured east­
ward in the fundamental plane (ecliptic or 
equator) to the point of intersection with the 
orbit plane at the point that the object crosses 
from south to north. 

Longitude of perifocus: sum of the angle in the 
fundamental plane between the vernal equinox 
and the line of nodes and the angle in the 
orbit plane between the line of nodes and the 
line of apsides, measured in the direction 
of motion. 

Lunar equation: a factor required for reducing 
observations to the barycenter of the earth! 
moon system. 

Lunar theory : the analytical theory of the motion 
of the moon. The lunar theories of Delavnay, 
Hansen, and Hill-Brown are used most fre­
quently today. 

Lunar unit (LU): the mean distance from the center 
of the earth to the center of a fictitious unper­
turbed moon having the mass and sidereal period 
of the moon. One lunar unit is approximately 
equal to 384,747 km or 239,122 statute miles. 

Lunicentric : referred to the moon's center as 
origin; selenocentric. 

M 
Mach number: the ratio of the speed of a vehicle 

to the local speed of sound. 

A-7 

Macrometeorites: meteorites that are sufficiently 
massive to become fallen meteorites (and 
whose origin appears to be related to that of 
minor planets). 

Magnetic storms: extensive disturbances in the 
earth's magnetic field. 

Magnitude, stellar: a measure of the brightness 
of a star. A difference of five magnitudes 
represents a factor of 100 in brightness. 

Mean anomaly: the angle through which an object 
would move at the uniform average angular 

speed n, measured from Perifocus; M = to' 

Mean center of moon (MCP): the point on the 
lunar surface intersected by the lunar radius 
that is directed toward the earth's center 
when the moon is at the mean ascending node 
and when the node coincides with the mean 
perigee or the mean apogee. The MCP is a 
specified distance from the crater Mosting A 
iT1 the Sinus Medii. 

Mean distance: the semimajor axis (it can be con­
sidered as an histor.ical term). 

Mean equinox of date: a fictitious equinox whose 
pOSition is that of the vernal equinox at a 
particular date with the effect of nutation re­
moved. 

Mean free path: the path of a molecule when mol­
ecules are assumed to be smooth, rigid spheres 
with no external field of force acting on them i 
each molecule travels freely on a straight line 
between impacts with other molecules. The 
distance traversed between two successive im­
pacts is called the free path and the average 
value of this distance the mean free path. 

Mean solar day: the elapsed time between suc­
cessive passage of the mean fictitious sun 
across the observer's meridian, 86,400 mean 
solar sec, the mean fictitious sun being a 
fictitious sun that moves along the celestial 
equator with the mean speed with which the 
true sun apparently moves along the ecliptic 
throughout the year. 

Meridian: (1) Terrestrial meridians: great 
circles passing through North and South Poles, 
e. g., the observer's local meridian passes 
through his local zenith and the North and 
South Poles. (2) Celestial meridian: a great 
circle on the celestial sphere in the plane of 
the observer's terre strial meridian. 

Meridian, ephemeris: the geographical meridian 
which lies east of Greenwich by the amount 
1. 002738 times the difference (ET-UT). 

Meridian passage: also called "transit " or 
"culmination" of a c elestial object is marked 
by its crossing an observer's meridian. 



Mesometeorites: intermediate meteorites 
having characteristic dimension of the order 
of a fraction of a n inch that a re stopped by 
the atmosphere, consumed, and are seen as 
common "meteors . " The origin of these 
bodies appears to be related to that of comets 

Meteor swarms: a large collection of mesome­
teorites (probably the remains of an "old" 
comet) that enters the earth's atmosphere 
and is seen as a swarm of ,meteors. The 
term is often applied to the actual collection 
of mesometeorites on heliocentric orbits in 
space. 

Micrometeorites: very small meteorites (having 
a character istic dimension of a few microns) 
that are stopped by the atmosphere without 
being consumed in flight or without producing 
luminous phenomena visible at the earth's 
surface. 

Minor planets (or asteroids): small planets 
revolving about the sun, estimated to number 
more than 30,000, with diameters of more 
than 1 mile. The largest, Ceres, has a 
diameter of 488 miles. 

Molecular scale temperature: the actual tempera' 
ture of the atmosphere at any given height 
multiplied by the ratio of the mean molecular 
weight of the atmosphere at sea level to the 
mean molecular weight of the atmosphere at 
the given height. 

Month, nodal: the time for one revolution of the 
moon with respect to eithe r node. 

Month, sidereal: the time between two successive 
arrivals of the moon at a given apparent place 
on the celestial sphere as indicated by the 
stars. 

Month, synodic: the time for one revolution of 
the moon with respect to the apparent place 
of the sun, e. g. , the time between conjunc­
tions. 

Moon'S celestial equator: a great circle on the 
celestial sphere in the plane of the moon's 
equator, i. e .• in a plane perpendicular to 
the moon's axis of rotation. 

Moon's orbital plane (MOP): the instantaneous 
orbital plane of the moon around the earth, 
defined by the moon's geocentric radius and 
velocity vectors. 

N 
Nadir: the downward plumb-bob direction,or 

the point where the downward extension of the 
direction of a plumb-bob intersects the celes­
tial sphere. 

Navigation: the process of determining the po­
sition and velocity of a submarine, ship, air­
plane, or space vehicle by making observa­
tions from the vehicle of objects in the en­
vironment of the vehicle. 
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n-body problem: concerned with the gravitational 
interactions of masses m., m ., i. j = 1, 2, ... , n 

1 J 
which are assumed homogeneous in spherical 
layers, under the Newtonian law. If n = 2. one 
has a two-body problem, while n = 3 is known 
as the three -body problem. 

Newton's law s: Law of gravitation: Every par­
ticle of matter in the universe attracts every 
other particle with a force varying directly as 
the product of their masses and inversely as the 
square of the distance between them. Laws 
of motion: (1) Every particle continues in its 
state of rest, or of uniform motion in a 
straight line, unless it is compelled to change 
that state by a force impressed upon it . 
(2) The rate of change of momentum is pro­
portional to the force impressed, and takes 
place in the direction of the straight line in 
which the force acts . (3) To every action 
there is an equal and opposite reaction; or the 
mutual actions of two bodies are always equal 
and oppositely directed. 

Nodal passage, time of: the time Tn when an ob­

ject passes through the node from the southern 
hemisphere to the northern hemisphere. 

Node: the points of intersection of the great circle 
on the celestial sphere cut by the orbit plane and 
a reference plane (e. g., the ecliptic or equator 
reference plane). 

Node, ascending: the node in the reference plane 
through which the body passes from South to 
No'rth. 

Node. descending: the node in the reference 
plane through which the body passes from North 
to South. 

Node, longitude of ascending: see longitude of as­
cending node. 

Nominal orbit: the true or ideal orbit in which 
space vehicle is expected to travel. 

Normal places: curve formed, when several ob­
servations are available very close together 
in time, by smoothing observed coordinates. 

Numerical differentiation: a process that allows 
for the numerical evaluation of the derivative 
of quantity, given tabular values of the quantity. 

Numerical integration: a process that allows for 
the numerical evaluation of a definite integral. 

Nutation: short period terms in the precession 
arising from the obliquity. the eccentricity , 
and the inclination of the moon's orbit and the 
regression of its nodes (approximately a 19-
year period). 

o 
Obliquity of the ecliptic: the inclination of the 

ecliptic to the celestial equator; the angle of 
approximately 23° 27' between the earth's or­
bital plane and its equator. 



Occultation: the interruption of the light from 
one celestial body by the intervention of another. 

Opposition: the position of an object when its ce­
lestial longitude is 180 0 from sun, i. e . , op ­
posite to sun. (Configuration possible only 
with moon and superior planets. ) 

Orientation angles: the classical orientation ele­
ments, i. e., the inclination, longitude of the 
ascending node, and longitude of perifocus. 

Osculating orbit: an orbit tangent to the actual or 
disturbed trajectory, having the same coordinates 
and velocity at that instant. 

p 
Parallactic angle: the angle between the hour 

circle of and the vertical circle through a body. 

Parallactic inequality: a secondary effect on the 
solar perturbations in the moon's longitude due 
to the ellipticity of the earth ' s orbit. 

Parallax: (1) Geocentric parallax : the angle at the 
object subtended by the earth ' s equatorial radius; 
applied to objects in the solar system. (2) 
Heliocentric parallax: the angle at a star, etc . , 
subtended by the radius of the earth's orbit; 
applied to objects outside the solar system. 

Pericynthion: the point on a selenocentric orbit 
nearest the moon ' s center. 

Perifocus: the point on an orbit nearest the central 
force. 

Perigee: the point on a geocentric orbit nearest 
the earth's center . . 

Perihelion: the point on a heliocentric orbit nearest 
the sun. 

Period: the time required for one compl ete circuit 
of the orbit. 

Period, anomalistic: interval of time from one 
perifocus passage to the next. 

Period, nodal (also draconic): interval of time 
from one nodal crossing to the next. 

Period , sidereal: the time required for the pro ­
jection of a planet or other body to make a com ­
plete circuit of the celestial sphere. This is 
the true period. 

Period, synodic: the time between successive 
oppositions of a superior planet or success ive 
inferior conjunctions of an inferior planet. 
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Perturbations : deviations from exact reference 
motion caused by the gravitational attractions 
of other bodies or other forces . 

General perturbations: A method of calculating 
the perturbative effects by expanding and 
integrating in series. 

Special perturbations : methods of deriving the 
disturbed orbit by numerically integrating 
the rectangular coordinates or the elements. 

Piecewise continuous : a function that can be di­
vided into a finite number of pieces such that 
the function is continuous on the interior of 
each piece and such that the function approaches 
a finite limit at the point of connection of one 
piece with another . In the context of the tem­
perature profile discussion the term is used in 
a more restricted sense to imply a function 
that is divided into a finite number or series 
of connected linear pieces (straight line seg ­
ments). 

Planetocentric: referred to the center of a planet 
as dynamical center or origin of coordinates . 

Planets: bodies in the solar system which move 
in essentially elliptical paths around the sun 
(see Kepler ' s laws ). 

Inferior planets: 

Mercu ry 
Venus 

Superior planets : 

Mars 
Asteroids 
Jupiter 
Saturn 
Uranus 
Neptun e 
P luto 

Inner, or terrestrial, 
planets : 

Mercury 
Venus 
Earth 
Mars 

Asteroids, or minor 
planets. 

Outer;, or major, planets': 

Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

Plasma: a collection of positive and negative ions 
that has no overall or gross charge. 

Polar satellite: a satellite that passes over the 
north and south poles of the earth , i. e. , that 
has an inclination of 900 with respect to the 
earth ' s equator. 

Polar distance, ecliptic: complement of the ce­
lestial latitude. 

Polar distance , north: complement of the dec­
lination . 

Poles, celestial: the points in which the axis 
of rotation intersects the celestial sphere. 

Poles, ecliptic: the points in which the normal 
to the ecliptic through the origin intersects 
the celestial sphere . 
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Poles, galactic: the points in which the funda ­
mental galactic axis intersects the celestial 

sphere. The north galactic pole is at 12h 44m 

right ascension and +27 0 declination. 

Position, apparent: coordinates of a celestial 
body as seen by an observer at the center of 
the earth referred to a coordinate s ystem de ­
fined by the instantaneous equator , ecliptic, 
and equinox. The tabulated positions of the 
sun, moon, and planets in the American 
Ephemeris and Nautical Almanac are usually 
apparent positions. 

Position, mean: coordinates of a celestial body 
referred to a coordinate system defined by the 
mean equator , ecliptic and equinox of date. 
This means that the periodic effects of nutation 
have been neglected. 

Position, t rue: coordinates of a celestial body if 
corrections for planetary aberration are ap­
plied to the apparent position. A sequence of 
true positions as a function of time is known 
as a geometric ephemeris. 

Potential function : see gravitational potential. 

Poynting-Robertson effect : the gradual decrease 
in the orbital semimajor axis and eccentricity 
of a micrometeorite caused by the re -emission 
of radiant energy from the micrometeorite. 
The theory was first announced by Poynting and 
later improved and brought into conformity with 
the theory of relativity by Robertson. 

Precession of the equinoxes: the slow , 26 ,000-
year period westward motion of the equinoxes 
(and equator ) along the ecliptic, arising from 
solar and lunar perturbations on the earth 's 
equatorial bulge, which cause the earth ' s axis 
to precess. 

Predicting a satellite ' s position: the six elements 
are the same in number as the three coordinates 
of position and the three components of velocity 
required to specify the launching conditions 
completely. 

Primary: the body having the strongest gravita­
tional field (most ponderous mass) in a system 
of bodies revolving about their common center 
of gravity. (Sun is the solar system's primary , 
earth is earth-moon system primary, etc . ) 

Prime meridian: the meridian defining 00 and 
1800 E or 1800 W longitude. On earth the 
Greenwich meridian is the prime meridian. 

R 
Radiation pressure: the pressure acting on a sur­

face exposed to incident electromagnetic radia­
tion caused by the momentum transferred to the 
surface by the absorption and reflection of the 
radiation. 
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Ratios of the triangles: in the orbit determination 
methods of Gauss, Olbers, et al., the ratios 
of the triangles formed by the radii and the 
chords are assumed in a first approximation 
to be ratios of the sectors, which are the ratios 
of the corresponding time intervals by Kepler 's 
second law. 

Rectilinear orbit: a trajectory for which ped­
focus distance is zero and eccentricity is one. 

Red shift, gravitational : an effect predicted by the 
General Theory of Relativity in which the fre­
quency of light emitted by atoms in stellar atmo ­
spheres is decreased by a factor proportional 
to the (mass/radius ) quotient of the star: con ­
firmed observationally by the spectra of white 
dwarfs. 

Re-entry: portion of a trajectory in the atmos­
phere of a planet; in the case of the earth it is 
usually taken as the portion below 400 , 000 ft 
or 122 km. 

Re-entry corridor: all possible re-entry trajec­
tories which do not produce excess ive aero­
dynamic heating or deceleration. 

Reduction to orbit: quantity added to celestial 
heliocentric longitude to give true longitude, 
q.v. 

Reference e llipsoid (or spheroid): oblate spheroid 
closely approximating the geoid. 

Reference orbit: an orbit, usually but not ex­
clusively the best two-body orbit available, 
on the basis of which the perturbations are 
computed. 

Refractive index (of a medium): the ratio of the 
speed of light in a vacuum to that in the medium, 
hence it is a measure of how greatly e lectro­
magnetic radiation rays are bent during their 
transit through a medium such as the earth's 
atmosphere. 

Regression of the moon's nodes: the movement 
of the nodes of the moon's orbit westward 
along the ecliptic, due to solar perturbations, 
with period ~ 19 years. 

Relativity effects: effects on a space vehicle tra­
jectory and on time measurement arising by 
use of Einstein's special theory of relativity or 
of Einstein's general theory of relativity instead 
of the customary Newtonian mechanics for de ­
termining the trajectory. The fundamentals of 
these theories of relativity are discussed in 
Chapter IV of the Lunar Flight Handbook. Rela­
tivity effects are small in the weak gravitational 
field of the solar system if the space vehicle 
velocity is small compared to the speed of light . 
There are many such effects , the most prominent 
of which are: the time dilation predicted from 
the Lorentz transformation of special relativity; 
the time dilation, secular advance of perigee, 
and red-shift of spectral lines predicted by 
general relativity. 
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Rendezvous: the approach and contact of two ve ­
hicles in space. 

Representation: the computation of the position 
of a space vehicle given the orbital e lements 
and the time. 

Residuals (0 - C ): differences between the ob ­
served and computed coordinates in the sense 
observed minus computed. 

Residuals (0 - 1): differences between the pre­
computed ideal observational data and the 
actual observed data on, for example, an 
interplanetary voyage. 

Restricted n-body problem: the motion of n 
masses under their mutual gravitational at­
traction, but with one of the n masses having 
negligible mass and hence not influnencing the 
motion of the other (n - 1) masses . Thi s 
term is usually applied to n = 3 (see a ls o n­
body problem) . 

Retrograde motion: westward or clockwise motion 
as seen from the North Pole , i. e. , motion in 
an orbit in which i > 90 degrees (opposite earth's 
rotation). 

Retrorocket: a rocket attached to a space vehic le 
whose thrust is directed in a genera l direction 
against the inertial velocity of the space ve­
hicle . 

Reynolds number: the ratio of inertial forces to 
viscous forces--it is proportional to the Mach 
number, vehicle diameter, and the density, 
or, in equivalent terms, proportional to the 
diameter of the space vehicle in mean free 
paths and the vehicle speed measured in terms 
of the average thermal speeds of gas mole ­
cules that constitute the oncoming flow. 

Right ascension: angular position of an object 
(e. g., star) measured eastward along the 
celestial equator from the vernal equinox to 
the great circle pass ing through the north 
celestial pole and the star (hour circle ). Right 
ascension is often expressed in hours, minutes, 

h and seconds (1 = 15°). 

s 
Scale height: the distance in which an isothermal 

atmosphere decreases in den sity from 1 to 
1 Ie. 

Secular terms: expressions for perturbations that 
are proportional to the time . 

Selenocentric: referred to the center of the moon; 
lunicentric . 

Selenocentric equatorial coordinates: a right­
handed coordinate system centered at the moon 
with its three axes defined by the vernal e quinox, 
north celestial pole (of the earth), and a direction 
perpendicular to these two , i. e . , an equatorial 
coordinate system translated to the moon. 

Selenographic coordinates: coordinates that are 
rigidly attached to the moon (as geographic 
coordinates are attached to the earth) defined 
by the moon's equator and prime meridian. 
See mean center of moon. 

Semimajor axis: the distance from the center of 
an ellipse to an apsis; one-half the longest diam­
eter ; one of the orbital elements. 

Semiminor axis: one -half the shortest diameter 
of an ellipse . 

Semiparameter: semilatus rectum; the perpen­
dicular distance from the conic to the semi­
major axis through e ither focus (not to be con­
fused with the generic term "parameters "). 

Setting circles: a graduated scale that can be read 
visually and indicates the direction (e. g., alti­
tude and azimuth or right ascension and de­
clination) in which a telescope is pointed. Ordi­
narily they are employed to set or point a con­
ventional astronomical telescope in the proper 
direction to make a given observation. 

Sidereal period of a planet: see period, sidereal. 

Sidereal time: the hour angle of the vernal equinox. 
(See Chapter II for conversion of sidereal time 
to mean solar time) . 

Sidereal year: time required by the earth to com­
plete one revolution of its orbit; equal to 
365.25636 mean solar days. 

Slip flow: a flow regime in aerodynamics in which 
there is some departure from continuum flow 
and the layer of compressibl e fluid immediately 
adjacent to the surface of an object is no longer 
at rest but has a finite tangential "slipping" 
velOCity. 

Solar flares: short-lived areas of brilliance 
(covering areas of 10 million square miles or 
so ) on the s un's chromosphere that are as­
sociated with other solar activity. Often .ac­
companied by bursts of emitted charged cor­
puscles and electromagnetic radiation. They 
reach several times normal brightness within 
one or two minutes and then subside slowly 
over 15 to 30 minutes . 

Solar parallax: the ratio of the earth's equatorial 
radius to its mean distance from the sun. 

Solar time, mean: hour angle of fictitious mean 
sun increased by 12 hours. (The fictitious 
mean sun is a fictitious sun moving on the 
celestial equator with a mean motion of the real 
sun.) See pages 474 to 476, American Ephemeris 
and Nautical Almanac for conversion of mean 
solar time to sidereal time. 

Solar wind : those low energy particles, i. e. , 
corpuscular radiation (electrons and protons) 
emanating from the sun. Typical flux rates 
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are 10 to 10 partlcles per cm per second, 
and typical energies are 1000 to 100,000 
electron volts for the protons and a few elec­
tron volts for the electrons. 



Solstices: the two times a year when the sun's 
declination is greatest north or south (about 
June 22 and December 22). 

Space range system: a system or network of 
observation stations, together with their 
associated communication links and compu ­
tational facilities, that are utilized to observe 
and track space vehicles, e. g., the Pacific 
Missile Range, the National Space Surveillance 
System, etc. 

Specular reflection: characterized by the relation 
that the angle of incidence equals the angle of 
reflection, in contrast to diffuse reflection. 

Sphere, celestial: an imaginary reference sphere; 
generally considered to be of infinite radius, 
and having its visible representation in the sky. 

Spheroid: an oblate ellipsoid which closely approx­
imates the mean sea -level figure of the earth 
or geoid. 

Stability of a point or orbit: a point or orbit is 
stable if the space vehicle will remain near 
the point or orbit if given a small displace­
ment and velocity. The point or orbit is un ­
stable if the space vehicle will depart from it 
rapidly. 

Standard atmosphere: a table of atmospheric 
density as a function of altitude which is 
accepted as a standard and used as a model 
to portray a typical average atmospheric 
density variation. 

Standard deviation: the square root of the arith­
me tic mean of the squares of the deviations 
from the mean; also called root mean square 
error and sigma deviation. 

Stationary points: points in the apparent path of 
a planet, etc., against the star background 
where the object appears to stand still because 
relative to the observer it is moving only in 
the line of sight. Such a point occurs when a 
planet changes its apparent motion from direct 
to retrograde and vice-versa . 

Station error: small, usually negligible, dif­
ferences between the astronomical and geodetic 
latitudes, due to certain anomalies (such as a 
mountain) in the local gravitational field. 

Stratosphere: a region in which the temperature 
remains constant from about 18 km up to a 
height of 30 to 35 km. 

Surface-circular satellite: a hypothetical satellite 
on a circular orbit about the earth having a 
semimajor axis equal to the earth's equatorial 
radius. Hence, such a satellite would "skim 
the surface of the earth" as it revolved on its 
orbit. 

Synodic satellite: a hypothetical satellite, situated 
0.84 of the distance to the moon on a line join­
ing the centers of the earth and moon and having 
the same period of revolution as the moon, ac­
cording to the Lagrangian "straight line solu­
tion" of the t hree-body problem. 
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Terminator: the boundary between the illuminated 

and dark sides of a planet or satellite . Usually 
one distinguishes between a morning and an 
evening terminator. 

Three-body problem: the problem of integrating 
the equations of motion of three bodies (e . g. , 
sun-moon - earth) moving under their mutual 
gravitational attractions: directly soluble 
only in particular cases . See Lagrangian 
solutions. 

Thrust: the force exerted on a vehicle, by the 
discharge of a gas or propellant, in accordance 
with the conservation of linear momentum. 

Time, ephemeris : time reckoning based upon 
"constant" frequency rather than frequency 
of earth ' s rotation. The current difference 
between ephemeris and universal time is 
about 35 seconds. 

Time dilation: the apparent slowing- down of 
moving clocks. This effect arises from the 
special and general theory of relativity . 

Time of perifocal passage: the time when a space 
vehicle traveling upon an orbit passes by the 
nearer apsis or perifocal point. 

Topocentric: referred to the position of the ob­
server on the surface of the earth, as origin. 

Topocentric parallax: the difference between the 
geocentric and topocentric positions of a 
satellite. 

Topocentric equatorial coordinates: a right­
handed coordinate system centered at the ob­
server with its three axes defined by the vernal 
equinox, north celestial pole, and a direction 
perpendicular to these two, i. e., an equatorial 
coordinate system translated to the topos. 

Tracking: the process of determining the posi­
tion and velocity of a celestial body by making 
observations from earth by optical or electro­
magnetic means . 

Trajectory sensitivities: the partial derivatives 
of dependent trajectory variables with respect 
to independent trajectory variables. 

Transitional flow: a flow regime in aerodynamics 
between the free - molecule flow and slip-flow 
regimes in which the molecules emitted from 
the surface of an object affect the flow of on­
coming molecules, i. e., in which the mean 
free path of the emitted molecules becomes 
comparable to a characteristic linear dimension 
of an object. 

Transearth trajectory: trajectory from the vi­
cinity of the moon to the vicinity of the earth. 

Translunar trajectory: trajectory from the vi ­
cinity of the earth to the vicinity of the moon. 
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Transverse axis: the distance between the apsides 
--identical to the semirnajor axis for elliptical 
orbits. 

Triaxial ellipsoid: a solid aspherical figure which 
when cut or sectioned in three (orthogonal, 
normal or mutually perpendicular) directions 
exhibits three e lliptical cross sections of dif­
fering semimajor axes and eccentricities. 

Tropopause: the height (varying from about 9 km 
over the poles to 18 km over the equator ) where 
the gradual decrease in temperature with ele ­
vat ion above sea level ceases. 

True anomaly: the angle about the focus between 
the perifocus and the radius vector in the 
direction of the motion . 

True equinox of date: the actual position of the 
equinox including both precession and nutation. 

Twenty-four-hour satellite: a satellite whose 
orbital period is approximately 24 hr. If 
such a satellite is on circular equator ia l orbit, 
then it will theoretically remain fixed or 
"stationary " relative to the rotating earth . 

Two-body orbit: the motion of a body of negligible 
mass around a center of attraction. 

u 
Umbra: the dark central portion of the shadow 

of a large body such as the earth or moon 
(used in connection with eclipses ). The outer, 
less dark shadow is known as the penumbra. 

Unit vector: a vector whose magnitude or length 
is unity --utilized to define directions in space. 

Universal time (UT) : mean so lar time referred 
to the meridian of Greenwich, slightly non­
uniform owing to the irregu1ar rotation of the 
earth. 

v 
Van Allen radiation belt: two toroidal-

shaped zones or belts of charged particles 
roughly situated in the plane of earth ' s equator. 
The inner belt commences at about one -fifth 
on an earth's radius above the equator and' 
extends out to a little less than one earth's 
radius. The outer belt is located at about 
two-and one-half earth radii from the earth 
at the equator and i s about one - earth radius 
thick. Actually the outer belt has a cross 
section that is shaped somewhat like a banana 
and extends north and south of the equatorial 
plane two earth radi i. The northern and 
southern extremes of the belt's cross section 
(at about 45 degrees latitude ) approach the 
earth one-half of an earth radiu s c loser than 
at the equator. 
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Variant orbits: computed orbits in which one of 
the initial conditions (or parameters) is varied 
slightly from those of the nominal trajectory-­
such orbits are utilized to compute numerical 
partial derivatives or to determine the effects 
of errors in launch conditions. 

Variation of latitude: small periodic changes in 
the position of the earth ' s pole s due to a 
"wobbling" of the axis of rotation about the 
geometrical axis (the shortest diameter) of 
the earth. 

Vector component: the projection of a vector on 
a given axis in space, e. g., if it is the x­
axis then the component of the vector A on 
this axis is denoted by Ax' 

Vector equation: an equation, whose terms in­
clude vectors, that can be resolved into 

_ -/.!r component equations; e. g., r --r 
r 

actually represents the three component 
equations: 

-/.!x/r 
3 x 

y -/.!y /r 
3 

Z -J1,z/r 3 

where!. has been replaced by its three com­

ponents X, y, and z and r by its three com-
ponents x, y, and z. -

Velocity, circular: the magnitude of the velocity 
required of a body at a given point in a gravita­
tional field which will result in the body fol­
lowing a circular orbital path about the center 
of the field . 

Velocity, escape (also parabolic velocity): the 
minimum magnitude of the velocity required 
of a body at a given point in a gravitational 
field which will permit the body to escape from 
the field. 

Velocity, orbital: with respect to the planets, 
usually the mean magnitude of the velocity in 
orbit--computed as the total distance traVeled 
in one circuit divided by the period. 

Vernal equinox: that point of intersection of the 
ecliptic and celestial equator where the sun 
crosses the equator from south to north in its 
apparent annual motion along the ecliptic. 

Vis viva integral: see energy integral. 

Voice trajectory program (Volume of Influence 
Calculated Envelopes): a patched conic lunar 
m ission trajectory program. It uses the ana ­
lytical solutions of the two-body trajectories 
to construct a complete trajectory from the 
vicinity of the earth to the moon and back. 

y 
Year: the orbital period of the earth. When un­

qualified , it refers to the equatorial or to the 
calendar year, depending on its use. 



"Year , anomalistic: the time interval between 
successive passes through perihelion = 
365.259,641,34 + 0. 000 , 003,04 T days (T 
denotes centuries since 1900). 

Year, Besselian: a time reckoning in terms of 
actual rather than calendar years. 

Year , calendar: a variable year containing e ither 
365 or 366 days. 

Year, equatorial (also tropical or ordinary year, 
not calendar year): interval between transits 
of the sun through the moon equator 365 . 242 , 
198,79 - 0. 000, 006 , 14 T days . 

Year , Julian: the year of the Julian calendar = 
365.25 days . 

Year , sidereal: the period of the earth relative 
to the stars = 365.256,360 , 42 + O. ODD , 000 , 11 
T days. 
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Zedir technique : the use of two cameras on a 

satellite whose optical axes are parallel, on e 
of which photographs the sky (zenith ) while 
the other simultaneously photographs the 
ground (nadir). Upon development and meas­
urement, the photographs can be utilized to 
f ind the attitude of the camera 1 s optical axis 
at the time of photograph. 

Zenith: the point where the upward extension of 
the plumb - bob direction intersects the celestial 
s phere. 
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1. THE ASTRONOMICAL UNIT AND THE SOLAR PARALLAX 

The astronomical unit (A.U.), or the Earth's mean distance from the Sun, is connected with 
the solar parallax (170 ) by the following relation (with Re'= 6378.170 ± 0.020 km the equato­

rial radius of the Earth): 

1 A.U. = Re 
sin % 17; sin I'" 

206264."806247 R = 13155920001- 4000 
e 

(1) 
rr" o rr" o 

Modern determinations of the solar parallax usually are included between the two values 170 '= 

8.N 790 ± 07001 (H. Spencer Jones, 1941) and 170 = 8:'79835 ± 0:'00039 (E. Rabe, 1949). The 

mean value of both determinations, 170 = 8~' 794 ± 0:" 002, has been accepted by C. W. Allen 

(Ref. 1, p. 131) in his book on "Astrophysical Quantities" (1955). Exactly in the middle of 

these two values are also the recently obtained data of radar echoes from Venus, which have a 
considerably higher accuracy than previous determinations. Furthermore, agreement of the 
different radio observatories is also very good, as shown in the following table: 

Radio Observatory Author (Year) Ref. Radar Frequency Astronomical Unit Solar Parallax 
(Me/ sec) (km) (Re= 6378.170km 

Millstone (Lincoln Pettengill, Price 2 440 149597850 ± 400 8 .... 79419 1 
Lab., M.LT.) et. al. (1961) 

Goldstone (J.P.L.) Victor, Stevens and 3 2388 149598 845 ± 250 8.'" 79413 2 

Muhlemann (1961) 

Jodrell Bank (U. of Thomson et. al. 408 149601000 ± 5000 8."794005 
Manchester) (1961) 

Moorestown (R.CA.) Maron et. al. (1961) ---- 149596000 8."794299 

U.S.S.R. Kotelnikov (1961) 700 149599500 ± 800 8:'79409
4 

8."794144 

According to Newcomb and de Sitter the semimajor axis of the Earth's orbit around the Sun 

is given by a(D = 1.000000236 ± 0.000000004 A.U. (or approximately 35 km more than 1 A.U.). 

F or practical purpos es both distances will be assumed equal to 

a(ll '= 149598700 ± 400 = 149598700 (1 1- 2.7 x 10-6) km 

The corresponding solar parallax will be 

Re 6 6" 6 . 1 N = 20 2 4. 80 247 
a(ll SIn 

6378 .170 ± 0.020 
149598700 ± 400 

± 0."00005 

Taking as best value for the light velocity the value determined by Froome (Ref. 4) in 1958: 

c = 299792 .5 ± 0.1 = 299792 .5 (1 ± 3.3 x 10-7 ) km/ sec 
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the light-time for unit distance (l A. U.) is therefore 

am 
r = -­

c 
499.0075 ± 0.018 499.0075 (1 ± 3.6 x 10 - 5) sec 

2. DEFINITION OF TIME UNITS, MEAN ORBITAL MOTIONS, 

AND ROTATIONAL ANGULAR VELOCITIES OF EARTH 

AND MOON 

(5) 

There are three different times which are in use, namely, the Greenwich mean solar time or 

universal time (U.T.), the Greenwich mean siderial time (G.M.S.T.) and the ephemeris time (E.T.) 

or Newtonian time. Due to the variable rotation of the Earth, the mean solar time and the mean 

siderial time do not ha ve a constant rate. The observations are therefore functions of a variable 

time, while the gravitational theories for the Sun and the planets use a uniform time. The ephe­
meris time, having a constant rate is defined by the orbital motion of the Earth as given by 
Newcomb's Tables of the Sun. It is therefore necessary to apply corrections to our practical 
determinations of time. In addition to the fluctuations and the tidal slowing down of the Earth's 

rotation, the Moon also shows a real diminution in the angular mean motion which is not given by 

Brown's lunar th eory . 

The correction to Newcomb's tabulated tropical mean longitude of the Sun (Ref. 5) 

Lo = 279°41"48."04 + 129602768 .... 13 TE + 1:'089 TJ (6) 

is, a ccording to H. Spencer Jones (Ref. 6), 

(7) 

when the observation times are in U. T. The time T is in Julian centuries of 36525 d counted 
from 1900 Jan. 0, 12h U. T. (Greenwich mean noon) and B is the irregular fluctuatiOD in the Moorr's 

mean longitude in arc seconds (time of observation again expressed in U. T.). The Sun's tropical 

mean longitude, Lo , increases at the rate of 1" in 86400/(0.9856473354 x 3600) = 24.349 48 
sec, so that the correction to universal time, required to obtain ephemeris time is, according to 
H. Clemence (Ref. 7), 

11 t == tE - t u= 24.34948 11 Le = + 24~ 349 + 72: 318 T + 29~950 T2 + 1.82134 B (8) 

H. Spencer Jones gives for the irregular fluctuation fReE. 6) 

B = (L, ' obs.- L, 'tabular) + 10:'71 sin (l40?0 T + 240? 7) - 4.
H 65 - 12." 96 T - 5:"22 T 2 (9) 

The periodic term is Brown's empirical term in his lunar theory. Therefore the correction to the 

Moon's mean longitude, as given by Brown's Tables of the Motion of the Moon (ReE. 8), is 

I1L , == L, ' obs. - L. >tabular = + 4~65 + 12-:'96 T + 5-:'22 T2 + B -10:'71 sin (140?0 T + 240?7) 

(10) 

10 order to obtain the actual mean longitude determined by observations 1n U.T. In the time 
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interval tJ. t = tE - t u the Moon's mean longitude increases by (n 

= 0.549016522" / sec) 

Therefore the correction to Brown's Tables is 

13.1763965268 x 3600/ 86400= 

(11) 

when the observations are in ephemeris time. Brown's theory is now reduced to a gravitational 

theory with the same measure of time as defined by Newcomb's Tables of the Sun. Clemence's 
corrected value for the Moon's me an longitude (Ref. 7) 

L. = 270° 26' 2:' 99 + 1732564379:' 31 TE - 4:' 08 T i + 0:' 0068 Tk (13) 

is used in the American Ephemeris and Nautical Almanac. 

By means of equation (6) the tropical year, from mean equinox to mean equinox, thus has 
the length 

217 1296000" x 36525
dE 

Ptrop = L(!j = 129602768." 13 + 2:' 178 T 

31556925.SE 9747 - O.SE 5303 T (14) 

In 1957 the ephemeris second has been adopted as the fundamental invariable unit of time, 

and it is the fraction 1/ 31556925.9747 of the tropical year for 1900 Jan. 0, 12h E.T. (Ref. 9) 

The basis for all civil time-keeping is the universal time which is non-uniform. In practical 
life, however, the difference be tween mean solar time and ephemeris time can be neglected be­
cause there is Id =: (1 ± 10-8 ) dE. To define universal time Newcomb introduced a fictitious 

mean Sun which moves with the same constant siderial rate, in the equator, as the mean siderial 

motion is for the true Sun, affected by aberration (20:'50) in the ecliptic. According to Newcomb, 

the right ascension of the fictitious mean Sun is (neglecting nutation in right ascension) 

RE = 279° 41 ' 27:' 54 + 129602768." 13 T E + 1":394 T~ 

I8 h 38m 45:" 836 + 8640 184.s 542 TE + 0:" 0929 T; (15) 

Defining a point on the equator whose right ascension, measured from the mean equinox of date, 

1S 

R u = 18 h 38 m 45.s 836 + 8640184:" 542 T u + O~ 0929 TJ ' (16) 

and where RE differs from Ru by 0 .002738 f::.. t (see equation 8), the Greenwich hour angle 
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TGr (RU) of the point whose right ascenSIOn IS Ru [equal to universal time (U.T.) ± 12h], in­

creased by the right ascension R u , is the Greenwich hour angle, TGr(rr),ofthemean vernal 
equi nox of date which is Greenw ich mean siderial time, ® 0. That is, 

U.T. ± 12h + Ru =TGr(Ru ) + Ru=To. (rr);: ®o. (17) 

Adding the East longitude to both sides gives the local mean time on the left side of the equation 

and the local mean siderial time on the right side, because 

® = ® Gr + Ie east. 

The time rate of the right ascension, given by differientation of equation (16), is 

Ru = 8640184.542 + 0.1858 Tu [sec/JuI. century] 

129602 768.13 + 2.788 Tu [" / Jul.century] 

3548.3304074 + 0.00007633 T u [N I d'] 

0.9856473354 + 2.1203 x 10- 8 T u [O l d], (18) 

Adding to this the time rate of the hour angle, ; = 360 old = 1296000 "/ d, the time rate of the 
mean side rial tim e is then 

®m= 1299548.3304074 + 0.00007633 r ["/ d] 

360.9856473354 + 2.1203 x 10- 8 r [ Ol d] 

15 .04106863897 + 8.835 x 10- lO T ["/ s or 0/h] 

l.002737909265 + 0.5890 x 10- 10 r [d. / d or s. / s] 

7 .29211585458 x 10. 5 + 4.283 X 10- 15 T [rad/s] (19) 

This motion is the result of the spin of the Earth and the motion of the vernal equinox (pre­
cession). Because the latter motion takes place in the ecliptic the equatorial component or the 
general precession in right ascension, m, must be used here. The mean angular velocity of the 

Earth's rotatio n is, th e re fore, 

® -m m (20) 

It is very probable that Newcomb's value for the general precession 1fl longitude, p, must be 

increased by /). P = + 0:'80 per tropical century (see Part 9), thus 

p = 5026 .441 + 2.2229 r + 0.00026 r 2 [" / trop . century] 

= 0.1376194 + 0.000060861 r + 0.712 x 10- 8 r 2 ["/ d] 

= 0.00003822761 + 0.000000016906 r + 1.98 x 10- 12 r 2 [ Ol d] (21) 

B-4 

____________ _ J 



Neglecting the correction in planetary precession (D. A = 0) the correction for the general pre­

cession in right ascension would be D. m = D. P • cos (= 0.'" 80 x 0.917 = + 0:' 73. Thus, 

m = 4609 .236 + 2.7945 T + 0.00012 T2 [ N / trop. century] 

= 0.1261967 + 0.000076511 T + 0.33 X 10-8 T2 [ o /d' ] 

=0.00003505464 + 0.000000021253T + 0.92 x 10-1~2 [ Old] (22) 

The angular velocity of the Earth's rotation is, therefore, 

Om = 1299548.2042107 - 0.00000018 T [ Ol d] 

360.9856122808 - 0.0050 x 10- 8 T [ Ol d] 

15 .04106717837-0.021 X 10- 10 T[O / s or 0;\1] 

1.002737811 891 - 0.0014 x 10- lOT [rot/ d] 

7.29211514646 x 10- 5 - 0.010 X 10- 15 T [rad/s ] (23) 

Using equations (19) and (23) the following periods are obtained: 

1. Mean solar day (culmination period of the mean Sun) 

1d=1~·002737909265 +O~· 589 x lO- 1O T 

= 1.rot 002737811 891 - o~ot 001 4 x 10-10 T 

(24) 

2. Mean siderial day or mean equinoctial day (culmination period of the vernal equinox) 

o? 997269566414 - o? 587 x 10- 10 T 

86164~ 09053817 - o~ 0507168 x lO"- 4 T 

23h 56 m 04~ 090 53817 - O~ 0507168 x 10- 4 T 

~= 1 - .!!!- = (1 - 0.000000097 lO8rt - O:ot 589 x 10 -10 T 
e 8 

o~ot 999999902892 - (f.0t 589 x 10 -10 T (25) 
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3. Period of th e Earth's rotation (culmination period of an equatorial star without proper motion) 

® m 
1rot = n= 1 + n = 1~· 000000097108 + o:t- 589 x 10-10 T 

86400~. 008 390 13 + o.s. 0508896 x 10-4 T 

1 d - o~ 002730336743 + o~ 0014 X 10- 10 T 

1d - 235:'90109460+ 0:' 00012096 x 10-4 T 

0~997269663257 + 0~0014 x 10- lO T 

86164~ 09890540 + O~ 0012096 X 10- 5 T (26) 

Because 

= 235~ 90940183 + 0:' 0507168 x 10 - 4 T 

or 

1h_ 1h • = 9~.856473 = ~ 829561 

the change of mean siderial time against mean solar time is 9~. 85647 in a mean solar hour and 
9:' 829 56 in a mean siderial hour. 

In order to apply Kepler's third law, the siderial mean angular motions of the Earth about 

the Sun and the Moon a bout the Earth will be needed. Differentiation of equation (6) gives the 

tropical mean motion of the Earth: 

nEll (trop.) = La = 129602 768.13 + 2.178 T ["/ Jul. century 1 

3548.3304074 + 0.00005963 T [" Id'1 

0.9856473354 + 1.6564 x 10 -8 T [ Ol d] (27) 

Subtracting from this the general precession in longitude (equation 21) yields the siderial mean 

motion of the Earth: 

. 
nEll (sid.) = Le - P = 3548 .1927880 - 0.00000123 T ["/ d] 

0.9856091078 - 0.0342 x 10 - 8 T [ Ol d] 

0.04106704616-0 .1424 x 10- 10 T [" l s1 

1.9909865820 X 10-7 
- 0.69037468 X 10- 16 T [rad / s] (28) 

Differentiating equation (13) provides the tropical mean motion of the Moon: 
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n, (trop.) = L, = 1732564379.31 - 8.16 T + 0.0204 T2 [ "/ Iu!. century] 

= 47435 .027496 5 - 2.234 X 10-4 T + 0.559 X 10- 6 T 2 
[ " / d] 

13.1763965268 - 6.2 06 x 10- 8 T + 1.55 X 10-10 T 2 [ Ol d] 

0.549016521950 - 2.586 x 10-9 T + 6.46 x 10- U T2 [ " I s] (29) 

and subtra ction of the general precession in longitude, p, gives the siderial mean motion of the 
Moon: 

n, (sid .) =L, -p =47434.8898771- 2 .843xlO- 4 T +0.552x10- 6 T2["/ dJ 

13.1 763582992 - 7.897 x 10-8 T + 1.53 X 10-10 T 2 [Ol d] 

0.549014929133 - 3.290 x 10-8 T + 6.38 X 10"12 T2 [ " I s J 

2.66 1 69948773 X 10-6 -1. 595 x 1O-13 T + 3.09 x 10- 17 T 2 [rad / s] (30) 

Becau se the distance of the Earth to the Sun is now known more accurately than before, it 
IS possible to give the mean orbital velociry of the Earth about the Sun with high accuracy, 

namely 

Ve = ae n e = 29784.90 ± 0.08 [m/ s] (31) 

There are two constants connected with this velociry. Taking e = 0.01675 for the orbital eccen­

tri c iry of the Earth the value for the constant of aberration will be 

K = 
vel c 

VI - e 2 sin 1" sin 1" 
= 20:' 4956 ± 0: ' 0007, (32) 

and using the formula of de Sitter (Ref. 10) the geode tic precession, due to the special theory of 

relati vi ry, is 

(33) 

3. THE LUNAR DISTANCE AND THE LUNAR PARALLAX 

The mean observed dis tance , 7;, of the Moon from the Earth is connected with the mean per­

tur bed lunar parallax, 7T. , a nd the constant 7T: of the sine of the perturbed lunar parallax by the 

following relation: 

1 1 
7T,' sin 1 " 

Dividing both sides of the series development 

s in n; 1 . 3 +"6 sm n; 
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by s in 1" yields (because 17; = sin 1T, / sin 1") 

, 1 ( ') 3 ( . 1") 2 , 17, + 6 17 • SIn + ••• = 17, 

= 17,' x 1.000045885 = 17; + 0." 157 

Newer detennina tion s are 

1T,' = 3422:' 54 
3422.526 ± 0.009 
3422.419 ± 0.024 
3422.493 

1T, = 3422.70 
3422.683 ± 0.009 
3422.576 ± 0.024 
3422.650 

(E.W. Brown, Ref. 8) 
(W. deSitter, Ref. 10) 
(H. Jeffreys, Ref. 11, p . 193) 
(Herrick, Baker, Ref. 12) 

(35) 

Recent determinations of the mean lunar distance, T, , by means of radar echoes to the Moon are 
in very close agreement (see Reference 13). This value is given by 

thus 

and 

T, = 384 402.0 + 1.0 = 384402.0 (1 ± 2.6 x 10- 6 ) km (36) 

384402.0 (1 ± 2.6 x 10-6
) 

6378.170 (1 ± 3.2 x 10- 6) 

11' = , sin 17, 
sin 1" = 

206 264:' 806 247 
(T, I Re) 

60.26838 (1 ± 5 .8 x 10- ~ = 60.26838 ± 0.00035 

(37) 

3422 : ' 438 ± 0: ' 020 (38) 

17, = 3422." 595 + 0." 020 (39) 

To obtain the semi-major axis, a, , it is necessary to add to the mean lunar distance the constant 
part of the solar perturbations according to Brown's lunar theory. There is now 

a . = 1. 000907 681 r; = 384750.9 ± 1.0 km (40) 

and the mean orbital velocity of the Moon about the Earth is 

v, = a, n, = 1024.091 ± 0.003 rnzl s (41) 

4. MASS RATIOS OF THE SUN AND THE EARTH-MOON SYSTEM 

Taking the already given values for a Ell , nEIl (sid . ), and a, , n, (sid . ) then Kepler's third law 

gives 

(42) 

(43) 
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with 

v K (44) 

Dividing the two equations yields 

= 328898.6 (1 ± 1.6 x 10 -5) = 328898.6 ± 5.2 (45) 

This value is approximately in the middle between the value 329390 obtained by S. Newcomb 
(Ref. 14), adopted by Am. Ephemeris, and the value 328446± 43 determined by E. Rabe (Ref. 15). 

The second equation gives 

/le (1 + K) = n~ a,J = v/ a. = 403512.3 ± 3.2 km 3/ s2 (46) 

which connects the gravitational parameter /le= CMe for the Earth with K, the ratio of the Moon's 
mass to the Earth's mass. 

5. 1HE CONSTANT OF LUNAR INEQUALIlY AND TIlE 

PARALLACTIC INEQUALIlY IN MOON'S ECLIPTIC 

LONGITUDE 

The Parallactic Inequality in the Moon's ecliptic longitude is given by E. W. Brown's lunar 

theory as follows 

(49853." 2 ± l." 2) ~ TTO, = (49853:'2 + 1" 2) 11K - 1 
1 + K TT, _. 11K + 1 

or with the newest data for the lunar distance and the astronomical unit 

P* = (128:' 1005 ± 0:' 0037) ~j:: ~ 

Newer determinations are: 

p * = 124:' 86 ± 0:' 15 
125.154 
124.93 
124.969 ± 0.042 

(J. Bauschinger, Ref. 16) 
(E. W.Brown, Ref. 8) 
(H. Battermann, Ref. 17) 
(D. Brouwer and o. B. Watts, Ref. 18) 

On the other hand, the constant of Lunar Inequality is defined by W. deSitter (Ref. 10) as 

L K ~_ 
~ sin TT, -

206 264:' 806 247 
11K + 1 
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Newcomb used the lunar inequality in the Sun's longitude which is, according to deSitter, L s = 

1.00450L. The ratio of P * and L, depending only on K, is 

49853:'2 ± 1:'2 
p. / L = "206264:' 806 247 

(1 1K - 1) = (0.241695 ± 0.000006) (I l K - 1) (50) 

The mass ratio is therefore 

11K = (4 .13744 4 ± 0.00010) ~* + 1 
530 ." 0089 ± 0:' 0028 _ 1 

L 
128." 1005 + P * 
128:' 1005 - P * 

(51) 

Observed values for the constant of Lunar Inequality are: 

L = 6:'456 ± 0:'012 (Newcomb, Ref. 14) From observations of Sun 
6 . 414 ± 0.009 (D. Gill, Ref. 19) II Victoria 
6.4305 ±0.0031 (A.R . Hinks, Ref. 20) " Eros (opp. of 1901) 

6.4390 ± 0.0015 (H . Spencer Jones, Ref.21) " Eros (opp. of 1931) 

6.450 ± 0.010 (Morgan and Scott, Ref. 22) " Sun 

6.. 4378± 0.0015 (H. Jeffreys, Ref. 23) " Eros (opp . of 1931) 
6 . 4356± 0.0028 (E. Rabe, Ref. 15) " Eros (opp. of 1931) 
6.4428± 0.0014) 

(E. Delano, Ref. 24) " Eros (opp. of 1931) 
6.4430 ± 0.0017) 

The latest reevaluation of all Eros observations during the opposition of 1930/ 31 by E. 
Delano (Ref. 24) gave 

L = 6:' 4428 ± 0:'0014 
L = 6.4430 ± 0.0017 

(from right as censions of Eros) 
(from declinations of Eros) 

Delano used the old value 170 = 8~' 790 for the solar parallax and obtained therefore 11K = 

81.222 ± O. 027 and 81. 219 ± o. 030, respectively. With the newest values for 170 and 17.' there is 
now 

respectively. 

11K = 81.2637 and 

6. ANOTHER METHOD FOR THE DETERMINATION OF THE 
RA TIO OF THE MASSES OF EARTH AND MOON 

The mass of the Earth is given by 

M Ell = + 17 R; (l - j) P Ell (52) 

where f is the flattening (oblateness) and P Ell is the mean density of the Earth. On the other 
hand the mass of the triaxial figure of the Moon is given by 

4 
317abcp, 
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Because the longest axis is always directed to the Earth (neglecting the small librations) and 
can never be seen , the lunar radius of the visible disk is 

R -~ 
• - 2 

That yields for the mass of the moon 

The mass ratio is therefore 

where 

k 

M. 

sin S 4 

sin 17, 

R. l(~ + :)= = a 
a 2 a 

4 R3 (bl a)( ci a) 
3 

17 • a 3 P • 

(1- j) a
3 (pP,EIl-l 

(bl a)( ci a) ) 
Cl-f}a 3 

(bl a)( ci a) 

, 
S f -,-
17. 

Sf - 0." 003 
17, - 0:' 157 

is given by the lunar parallax, 17., and the apparent semi-diameter of the Moon, s, 

(54) 

(55) 

(56) 

(57) 

A reevaluation of Sir Harold Jeffrey's best data on the Moon's figure by the author gave 
(see section 12) 

b 

a 
0.9998116 

c 

a 
0.9993720 a 0.9995918 

From the secular perturbations of artificial Earth satellites there follows as best value for the 
Earth obla teness 

1/ / 298.30 1 - / 0.99664767 

so that 

0.9962409 (58) 

Taking for the mean densities the well-known and frequently used values 

Pe = 5.517 ± 0.004 gl cm 3 (Heyl) ; p. = 3.342 ± 0.005 gl cm 3 (Jeffreys) 

the density ratio, independent from the assumed value of the gravitational constant, G, becomes 

P e / P. = 1.6508. Therefore 

1. 6446/k3 (59) 
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With 7T; = 3422:' 438 and various values for s, the following table is obtained 

932:' 58 (Newcomb , Ref. 25) 

932.63 (American Ephem., Ref. 26) 

932.80 + 0.07 (Hirose & Manabe, Ref. 27) 

k 

0.2724891 

0.2725037 

0.2725534 

81.286 

81.272 

81.228 

The American Ephemeris is using k = 0.2724 953, based on Brown's lunar parallax. The values 
for 11K obtained in the previous paragraph are between the two latter values in this table. The 

arithmetic mean of these two latter values will be taken as the presently best value, namely 

11K ;: ~ e = 81.250 (1 ± 3 x 10 -4) = 81.250 ± 0.024 
f 

(60) 

an d th erefore 

0.2725289 ± 0.0000273 (61) 

The la s t equation of paragraph 4 now gives 

II e;: G M = 403512.3 = 398606.4 ± 4.9 km 3 / sec 2 

r e 1.0123077 
(62) 

for the Earth, while, for the Moon, 

Il. ;: GM., = Kll e=4905.92±1.52 km 3 / sec 2 (63) 

7. GEODYNAMIC (TERRESTRIAL) RELATIONS 

The surface of t~e Earth (geoid) can be approximated as the surface of an spheroid assumed 

as an eq uipotential surface. The equation for the Earth's radius, as function of the latitude, is 
then gi ven by 

where cP is the geodetic (geographic) latitude and ¢ the geocentric latitude. They are related by 

tan ¢ = (1 - f) 2 tan cp ~ = ( 1 - e 2) tan cp (65) 

where e = vi (2 - f) is the eccentricity of the meridian ellipse of the Earth. The equation of 
the Earth-ellipsoid is obtained by setting K = O. The maximum depression, - K R e ' of the sphe­
roid from the ellips oid is reached at the latitude 45°. It will never be more than 5.17 m. For the 
spheroi d as equipotential surface there is 

= - 1 - ~ ] n - P n (SlO ¢) + - n R cos ¢ = const. GM [ 00 (R ) . 0 1 2 2 2 

R n = 2 Re 2 
(66) 
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and the acceleration of gravity at this surface is 

where .0 is the angular velocity of the Earth's rotation, f3 and yare constant gravity coefficients 
and In or I and K are constant oblateness coefficients. These coefficients depend only on /, 
K, and a parameter containing .0 2 (centrifugal force parameter). This latter parameter is a little 
different in the various second-order theories which have been developed. Taking 

.0 = 7.292115146 X 10- 5 rad/ sec 

1/ / = 298.30 1 - / = 0.996647670 

p = 5.51 7 g/ cm 3 

m 
G Pm = 3.679839 X 10-7 (68) 

then the follow ing parameters could be used 

m 

.02 R 3 ___ v = 
GM 

.0 2 
. 

4/317 G Pm (1- j) = 0.003461369 [Hernck, (Ref.12) (69) 

.02 

4/ 317Gpm =wo-/) = 0.003449766 [Jeffreys, Ref.ll) (70) 

w(1-/+21- ~K)=(J'(l+2/-~ K)=0.003449843[deSitter, 
Ref.lO] 

(71) 

1-A-eJ + I + 1/ 2 K 

0.003467730 [Darwin, Ref.28; Helmert, Ref.29) (72) 

where R v = Re (1 - f) 1/ 3 is the radius for a sphere of same volume as the Earth and R 1 = 
R e (1 - 1/ 3 / + 5/ 9 /2 - 8/9K) is the mean radius for which P2 (sin <p) = 0 or <p= sin- 1v'I73= 
35°15'51."8. A = 0.88 X 10- 6 is the mass of the Earth's atmosphere (expressed in mass of the 
Earth) which does not contribute to the surface gravity of the Earth. Different assumptions have 
been made for K. Bullard (Ref.30) found lOti K = 0.68. This value was accepted later by Herrick, 
Baker, and Hilton (Ref.12) On the other hand, deSitter found values of only 10 6 K = 0.47 to 0.52 
and used the round mean value 10 6 K = 0.50. The theoretical limits are according to deSitter (Ref. 

31) 

o ~ K ~ 1~ fill - ~ /2= 0.62 - 2.81) x 10- 6 = 0.81 x 10-6 (73) 

The different formula systems now yield 
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y 

l 

4 + -K 
7 

= / _ ~ W / _ ~ / 2 + 1 /w / + 4 K 
2 2 7 7 

1/2 1/~ 4 "2 + 7 CUi + 7 K 

1 
= I - :2 m -

3/ 2 15/~' 24 -7 cu +-=r K 

=2.w'-I - ~ rw'+.!2.w'2+~ K 
2 14 4 7 

5 ~ / 17 I 15 "'"'2 8 :2 CUi - - 14 ?Vi + 4 CUi +"7 K 

5 17 8 
"2 m - I - 141m + 7 K 

~ j2 - ~ 11i) - 3 K 

8 8 

1 /2 _ 5 /~ / 3 -
8 8" cu - K 

~ /2 _ 5 I'" 3 K "8 CUi -
8 

! 12 - 5 - 3 K -1m 
8 8 
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2 1 
X=ge l (GM I R e )=l-A-cv+J+ 2K 

1 - A - ~ w + 1+ 12 - ~ 17:; + 1; K 

3 '"" 12 27 16 1-A-2"w 1 +1 + -14 / ?LJ 1 +]K 

3 2 27 9 2 16 
= 1- A - 2" m + I + I - 141m + 4 m +7 K 

(78) 

Us ing these equations and the above-given consta nts for the Earth then the following table 
is obtained with J 2 = (C - A)I (M R; ) = ~ T and J 4 = - ...! K = - ~ D: 

3 J 15 35 

Coefficient K=O K = 0.50 X 10-6 K = 0.68 X 10- 6 

10 6 J 1623.48 1623.77 1623.87 
10 6 K 8.85 10.56 11.18 

10 6 J2 1082.32 1082.51 1082.58 
106 J4 - 2.36 - 2.82 - 2.98 

10 6 (3 5302.92 5303 .49 5303.70 
10 6 Y - 5.85 - 7.35 - 7.89 

X 0. 99816566 0.99816680 0.9981 6721 
I 

The numerical values for IJ 4 I are a little higher th an the values derived from the observed secu­
lar perturba tions of artificial sa tellites. Thus the data for K = 0 will be used here. 

The gravitational parameter of the Ea rth is now given by 

fie =GM tIl = i l7Gpe R3 (1-0= geR~ = 398606.4±4.9 km 3 / sec 2 (79) 
3 e X 

which corresponds to l / K = 81.250. Taking, furthermore, ~ 17 = 4.188790204; 1 - I = 0.996647670; 
X= 0.99816566 that yields 

g e R; = X fie = 397875 . 2 ± 4.9 km 2 / sec 2 = 3.978752 x 1014 m 3/ sec 2 (80) 

and 

ge = 4 17 (1-/) XG Pe = 4. 167090090Gp e Re 3 (81) 
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,~-

or with G = 6.670 X 10- 8 cm 3 / g _ sec 2 

Pe 
(ge I R e) x l0 7 

2.77945 
(82) 

8. EXPERIMENTAL VALUES OF THE GRAVITATIONAL 

ACCELERATION OF THE EARTH 

The observed gravitational acceleration at the surface of the rotating Earth can be repre­
sented by the formula 

g = g e [ 1 + {3 sin 2 cP + Y sin 2 2 cP + 0 cos 2 cP cos 2 (A - AO)] (83) 

where A is the geographic longitude measured eastwards of Greenwich meridian. The first term 

corresp onds to a sphere. The next two terms give the contribution due to the oblateness of the 
Earth spheroid, while the longitude term is due to the non-ellipticity of the equator when the 
Earth i s assumed as a triaxial figure. The longitude, AO' gives the direction of the longest semi­
ax is o f the equator. 0 is connected with the difference B - A of the equatorial moments of inertia 
or with the flattening, fe' of the equator by the relation 

3 
8 f e 

becau s e the inhomogenity factor of the Earth is given by 

c 1 
"6 

(84) 

(85) 

T he most important determinations from gravity measurements SInce 1915 have been compiled in 
a tabl e on the following page. 

All these gravity measurements are still based on the standard gravity value of Potsdam 

( cP = 52° 22.' 86; A = + 13° 4: 06; h = 87 m) 

g = 981.2740 gal 

obtained by F . Kuhnen and Ph. Furtwangler (Ref. 43). It is necessary to revise the Potsdam 
system. For the correction of the Potsdam value, the following data are given (Refs. 44 and 45): 

P . R. Heyl and G. S. Cook (Wash. D.C.) 

Bullard (Teddington, G. Brit.) 
J . S. Clarke (Teddington, Gt. Brit . ) 

Ivanoff (Leningrad, U.S.S.R.) 

P.R.Heyl 
Bullard and Browne 
Morelli (1954) 
H. Jeffreys 

Wollard 

A. Berroth 

Morelli (1959) 

: - 20 
: - 15 
: - 13 
:- 4 

: - 15 
: - 16 
: - 16 
: - 13.4 
: - 14 to - 18 

: - 12.5 
: - 12.9 
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td 
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Author 

F. R. Helmert 

A. Berroth 

W. Heiskanen 

II 

II 

II 

II 

II 

N. F. Shuravlev 

E. Niskanen 

H. Jeffreys 

H. Sch~tte 

U. A. Uotila 

Heiskanen & Uotila 

Mean Value 

Year Ref. 

1915 32 

1916 33 

1924 34 

1924 34 

1928 35 

1928 35 

1938 3.6 

1938 36 

1940 37 
1945 38 

1948 39 

1950 40 

1957 41 

1957 42 

8 e 106 f3 106 Y 
(gal) 

978.052 5285 
± 3 ± 5 

978.046 5296 

978.048 5293 
± 3 .::!:6 

978 .052 5285 
-7 

± 3 ±6 

978.049 5289 
± 1 

978.049 5293 
± 1 

978.0451 5302.7 

978.0524 5297.0 

978.0484 5303 
978.0468 5297.8 -5.9 

978.0513 5285.9 

978.0520 5282.7 
± 33 ± 6.0 

978.0516 5291.0 

978.0496 5293.4 

978.049 5 5292. 4 
-- ---

----- ---- . . _-- ---- -_. --------.-. 

, 

10 6 8 >"0 f.. R e 1: f 1 1: f 2 1: f m 1 : f e 

(m) 

18 ± 3 - 17° ± 4 230 ± 51 296.7 28000 
±0.4 

1l.6 ± 4 - 10 150 ± 58 296.7 298.8 297.8 42000 
± 0.7 

--- --- --- --- --- 297.4 ---
± 0.5 

27 ± 3 + 18 ± 5 345 ± 38 294.3 299.0 296.7 18700 
± 0.6 ± 0.6 ± 0.5 

--- --- --- --- --- 297.06 ---

19 ± 3 o ± 5 242 295.7 299.0 297.3 26703 

--- --- --- --- --- 298.25 ---
± 0.3 

27.6 - 25 352 ± 30 295 .3 300.2 297.8 18314 
+0.4 + 0.4 ± 0.4 

--- --- --- --- --- 298.3 ---
23.0 - 3.9 293 295.7 299.8 297.8 21550 

± 0.2 ± 0.2 ± 0.2 

--- --- --- --- --- 296.85 ---
± 0.66 

--- --- --- --- --- 296.3 ---

10.6 -6 --- --- --- 297.2 47600 

--- --- --- --- --- 297.4 ---

297.3 



Taking for g e the latest determination of Heiskanen and Uotila (Ref. 42 ) which is nearly in 
agreement with the average value of all determinations, and using the correction due to H.] effreys 
(Ref.39) the follow ing va lue is obtained 

ge = 978.0496 - 0.0134 = 978.0362 gal = 9.780362 m/ sec 2 

9. THE DYNAMIC OBLATENESS AND THE CONSTANTS 

OF PRECESSION AND NUT A nON 

(86) 

The dynamic flattening H = ( C - AJI C is connected with Newcomb ' s constant of precession , 

P, by the re la tion 

P "4 94419319" 16 932" 29 H = 530977. 0 + l / K +-1- = 78 . for l / K = 81.250 

while the constant of nutation, N, is given by 

N 
H 

252871 N 

l / K + 1 
cos ( 

231982 " 
l / K + 1 

2820." 45 for l / K = 81.250 

(87) 

(88) 

where cos ( = 0.9173917 (for 1900.0) has been used for the cosine of the obliquity, (, of the 
ecliptic. The constants in the equations are obtained from Brown's theory of the motion of the 
Moon and are well koown . Both equations yield 

P 
N 2.288872 (l / K + 1) + 407.01140 = 595.271 for l / K = 81.250 

while observed modern values of P and N lead to 

~ = 1493 ." 62 = 596 614 and thus 
N 9:'208 . 

PI N 
l / K = 2.288872 - 178.8218 = 81.84 

This value for 1/ K is by far too large. H.] effreys (Ref. 39) has shown that in the equation for 

the constant of nutation, N, another constant H' for the dynamic flattening must be used due to 
the deviation of the Earth's interior from the isostatic equilibrium (H' < H). Therefore H can be 
determined only from P and 1/ K. With Po = PG + p ,the lunisolar precession, P = 2. !:l n , the 

• II 2 c 2 e 
geodetic precession (a relativistic term due to W. deSitter), p, the general precession in longitude, 
and A, the planetary precession in right ascension, Newcomb's precessional constant is 

P Po (89) 
cos ( cos ( 

Values for 1900.0 detived from observations are (for a tropical century) 

P = 5490:' 66 

5493.156 ± 0.175 

5493.847 

P = 5025:'641 
5026.000 
5026:'650 

11.= 12:' 473 
12.493 
12.469 

P
II 

= 0 (Newcomb & Andoyer, Ref. 46) 
1.915 (deSitter & Brouwer, Ref.10) 
1.921 (Clemence , Ref.7) 

According to newer investigations, Newcomb's value of the general precession in longltude 
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must be corrected by t1p = + 0.:'75 (H. R. Morgan, Ref. 47..), t1p = + 0.:71 (J. H. Oort, Ref. 48), 
t1p = + D~'86 (Dirk Brouwer, Ref. 48), t1p = + 0.."84 (Poulkovo Obs., Ref. 48). The average value 

for the correction may be t1p = + 0. ."80.. All these investigators take t1'A = O. In another paper, 

J. H. Oort (1943, Ref. 49) takes t1'A = + D ~' 0.2 , a correction also used by deSitter. The correction 
fot P is therefore 

t1 P = t1 P + t1 p /I + (1).. = 0.."80. + 1.92 
0..9173917 

+ 0..0.0. = 2:'96 
cos ( 

The value 

will be accepted here. The dynamic flattening is now 

C-A 
H = -C-

and thus 

and 

549Y' 62 
1678932:'29 

q = 

1 
= 0..0.0.3272 0.91 

30.5.6 15 ± D..D5 

0. .496160 ± 0. .0.0.0.17 

D.33D773 ± 0..0.0.0.11 

(90.) 

(91) 

(92) 

(93) 

(94) 

The quan tity q may be calculated in another way. Clairant's theory for the Earth in hydro­

static equilibrium has been developed to the second order by Radau (Ref. 50.), Callandreau (Ref. 

51), and Darwin (Ref. 28). deSi tter (Ref . 31) gives 

(95) 

where 

- 2 (96) 

and 1 + 'A 1 is an average value of Radau' s function, f Cry), depending on the internal density 

distribution of the Ea rth. The most reliable value, 1 + 'A 1 = 1.0.0.0.16, was derived by Bullard 

(Ref. 3D). With the above data for f and (Vi the above-mentioned equations give, for K = 0., 

ry 1 = 0..57440. q = 0..498 15 

2 
"3 q= 0..33210. 
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These data are not compatible with the previously derived data (eqs. 93 and 94), showing that 
the hypothesis of hydrostatic equilibrium is not fulfilled for the Earth. 

10. DENSITY DISTRIBUTION WITHIN THE MOON 

I t is very difficult to derive a consistent system of lunar constantS. Most reports on this 
subject are based on the work of Sir Harold Jeffreys. However, not even this source is free 
of inconsistencies. The reason is that many lunar constants are coupled with each other by rela­
tions. Therefore a systematic investigation of these relations will be necessary. 

It is assumed that the density p within the Moon is constant over concentric ellipsoidal 
shells 

where Il varies from 0 at the center to 1 at the surface, and where 

~/a 

TJ / b 

(, / e 

Il cos ¢ cos e 
Il cos ¢ sln e 
Il sin ¢ 

are the relative coordinates of the mass element 

(97) 

(98) 

(99) 

The angle ¢ is the lunicentric latitude and e the longitude. a is the longest semi-axis of the 
surface ellipsoid pointing toward the Earth, b the smallest semi-axis in the lunar equator, and e 

the rotational or polar semi-axis. 

Using equations (98) and (99) after observing that 

2rz; 

f
217 

sin 2 e 
( 0 

J 0 cos
2 e 1

17/2 

d e = 17 ; cos 3 ¢ 
4 J 11/ 2 

d ¢ = -; sin2 ¢ cos ¢ 
3 -17/ 2 -17/ 2 

the moments of inertia around the a, b, e axes, respectively, become 

A = 5 M ( 71 2 + (,2) dm = AM ( b 2 + e 2 ) 
o 

B = ~: ((,2 + e) dm = AM (e 2 + a 2) 

C = JM (e + 71 2) 
o 

d¢ 
2 

3" 

(100) 

where the integrations are taken from 0 to 217 with respect to e, from - 17/ 2 to 17/ 2 with respect to 
¢ and from 0 to 1 with respect to Jl. In the last equation M = 4/ 3 17 abe pm is the total mass 
(Pm is the mean density) and the inhomogenity factor, A, is given by 

J Ip Il 4 dll flpp.4 dll 
o 0 

(101) 
-=-:----3Ia Ipll2 dll p 

m 

L ~ 
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Because a > b > c, there is A < B < C. A constant density model gives A. = 1/ 5 = 0.2. For 
Jeffreys compressional model with constant bulk modulus (Ref. 52 ) Roche's density law [with 

Pm = 3.342 g / cm 3 (mean density), Po = 3 .290 g / cm3 (surface density) and Pc = 3.420 g/ cm3 (cen­
tral density)] becomes 

The inhomogenity factor is, therefore, 

0.1991 ± 0.0001 

1 

5 

5 
Pc - "7 (p c - Po) 

3 
pc-S(pc-p o) 

0.9955 
5 

11. CONSTANTS OF THE PHYSICAL LIBRATION OF THE MOON 

(102) 

(103) 

The values of f :; C - B and the inclination of the Moon's equator to the ecliptic can be 
C - A 

determined from observations of the physical libration of the Moon. Due to the difficulty of 

observations near the irregular limb of varied illumination the values for f scatter widely, as 

can be seen from the following table (Refs. 11 and 13 ): 

Author Year 
C-B f :; --;:,-----,--
C- A 

F . Hayn 1907 0.75 ± 0.04 

F . Hayn 0.85 ± 0.07 

J. Stratton 1909 0.50 ± 0.03 
I. V. Belkovich 1936 0.84 ± 0.08 

1. V. Belkovich 1949 0.67 ± 0.03 
K. Koziel 1949 0.71 ± 0.051 
K. Koziel 1949 0.60 ± 0.055 

A.A. Nefedjev 1950 0.65 ± 0.045 
A.A. Yakovkin 1950 0.85 ± 0.03 

T. Weimer 1954 0.60 

Mean Value 0.70 2 

Sir Harold Jeffreys used f = 0.84 in his book The Earth (Ref. 11). Later he recommended f = 0.67 

(Ref. 53 ) and used f = 0.639 ± 0.014 in his latest paper (Ref.54 ). 

The secular motions of the perigee and node of the lunar orbit are also influenced by the 

Moon's oblateness coefficients (L and K). From Jeffreys equation for the perigee motion follows 
(Ref.l1 ): 

380 L - 1192 K = 6.420 - 3896 Ie ~ 0 
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and thus 

K 380 812 
/ = 1 - r ~ 1 - 1192 = 1192 = 0.6812 

The mean value of the table is consistent with this lower limit for / and therefore 

/ = 0.70 ± 0.02 (104) 

will be adopted in this paper. 

A new investigation of the libration of the Moon's axis by H. Jeffreys (Ref. 54 ) leads to 

C -A 
f3 = -C- = 0.0006279 ± 0.0000010 (105) 

taking into account a solar effect not evaluated by Hayn. 

The three quantities A, /, and f3 are sufficient to calculate all other quantities, provided the 
mass and the mean radius of the Moon are known. 

12. RELATIONS AND NUMERlCAL VALUES FOR THE DIMENSIONLESS 
MOMENT OF INERTIA PARAMETERS 

The same symbols for moment of inertia parameters will be used as they have been intro ­
duced mainly by H. Jeffreys (Ref. 11). The numerical values are based on the above-given 
parameters A, /, and f3; namely 

A = 

/ 

A B C 
M (b 2 + c 2 ) M(c 2 +a 2 ) M (a 2 + b 2

) 

C - B C-A C -B 
M (b2 _ c 2) M(a 2 _ c 2 ) M(P - c 2 ) 

0.1991 ± 0.0001 

a C -B 2J-K 
73 = C - A = 2J + K 

C-A 
C 

J + 1/2 K 
g 

J - 1/ 2 K 
L 

b 2 _ c 2 

a2 - c 2 
0.70 ± 0.02 

L 

g 

a 2 _ c 2 

a 2 + b 2= 0.0006279 ± 0.0000010 

The other parameters can be derived from these as follows: 

1 - / =~ 
B - A K K a 2 - b2 3i\ - g H / g - 1 

1/2 K 
-

f3 C-A J + L a 2 _ C 2 L f3 

0.30 ± 0.02 
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L 

a 

y 

g 

L 

] 

C-B 
C 

=((3 
] - 1/ 2 K 

g 
L-K 

g 

b 2 _ C 2 
2 b 2 = 0.0004395 ± 0.0000133 

a + 

(1l0) 

B - A K ( /) a 2 - b 2 
-C- =(3 -a=- = 1- (3= 2 b 2 = 0.0001884± 0.0000129 

g a + 
(1l1) 

3. C 3A 3 
A 

a 2 + b2 
= 0.5972 ± 0.0003 (1l2) 

2 M a 2 = ~= 2 a 2 

3 C-A 
=] + 

1 
=g(3= ~ A 

a 2 _ c 2 
0.0003750 ± 0.0000008 2" MaT" 2" K 

2 a 2 

C- A + B 
3 2 
2" M a 2 

L _ 1 K 
2 

(113) 

a 2 + b2 ---=--_ C 2 

!2L L = ~ 1 + ( K = ~ A __ 2--,;,.-_ 
2 2 1-( 2 a 2 

= g ((3 - ~ Y) =g a;(3 =g(a+ ~ y) = 0.000 31875 ± 0.0000044 (114) 

3 B - A 3 a 2 - b2 
K = "2 ~ = (1- () L = gy ="2 A a 2 = 0.0001125 ±O.ooooon (115) 

The dimensionless moments of inertia and their differences are obtained from the above-men­

tion ed data as: 

C -A 
MQ2 

2 
-L 
3 

C - B ~ (L 
Ma2 - 3 

2]+K =A 
3 

a 2 c 2 
~ = 0.0002500 ± 0.000 0005 

a 

2]-K =A b 2 -c 2 

3 a 2 = 0.0001750 ± 0.000 0054 

B-A 2 
(1 - j) L = 

2 
K =A 

a 2 _ b 2 
0.0000750 ± 0.0000051 

~=3 3 a 2 

A 2 
(1-(3)= 2 

(g - L) = A 
b 2 + C 2 

M a 2 3" g 3" a 2 0.3978 77 ± 0.0002 

B 2 2 
(g - (L) = A 

c 2 + a2 
M a 2 - g (1- a) = 

3 a 2 = 0.3979
52 

± 0.0002 
3 
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C 2 2>.. a 2 +b2 
Ma2 = 3 g = T+"Y = >.. a 2 0.3981 27 ± 0.0002 (121) 

The ratios of the semi-axes now become 

~ =) 1- Y , = J 1- ~= 0.9998116 ± 0.0000129 
a l+y l+y 

(122) 

~ =J 1 - 12: y ' = j - (1 _ /)~r + y) = 0.9993720 ± 0.0000010 (123) 

These data seem, at present, to be the most reasonable. H. Jeffreys' value 

3 C 
g - 2" M a2 0.5956 ± 0.0010 

is slightly low, and affords a higher density concentration towards the center as has been as ­

sumed by Jeffreys . 

13. THE FINAL DETERMINATION OF THE DIMENSIONS, 

MASSES AND MOMENTS OF INERTIA FOR THE EARTH 

AND THE MOON 

Using the obtained value of the gravitational acceleration, g e' at the equator (eq. 86) in the 
relations (eq . 80) and (eq. 82) at the end of Section 7 there follows at once Re="';Xf.L(f/g~= 
6378169.835 ·m and PEIl = 5.516964 gl cm 3 • The final values, adopted for the Earth, will be 
taken as 

6378170 (1 ±3.2 x 1O- 6)m 6378170 ± 20 m (124) 

and 

PEIl = 5.5170 (1 ± 7.3 x 1O-4)gl cm 3 = 5.5170 ± 0.0040 g / cm 3 (125) 

The volume of the Earth is 

= (1.083225 ± 0.000011) x 10 27 cm 3 (126) 

while the mass is given by 

MEIl = 'CEIl = VEIl PEIl = 5.9761 X 10 27 (1 ± 7.2 X 10-4
) g = (5.9761 ± 0.0043) x 10 27 g 

(127) 

and the polar radius now becomes 

R =R (1-j)=6356788(l±3.7 x lO-6 )m =6356788±24 m 
p e 

(128) 
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The unit for the moments of inertia is 

and therefore 

c - A = 12 X Me R; = 2.6313 x 1042 (1 ± 9.1 x 10- 4)g cm 2 = (2.6313 ± 0.0024) x 10 42 g cm 2 

(130) 

c = ~ q X Me R2e = 8.0415 X 1044 (l ± 1.07 x 1O-3)g cm2 = (8.0415 ± 0.0086) x 1044 g cm 2 
3 

(131) 

It is now possible to give corresponding data for the Moon. The mass is given by 

M. = KMe = 7.3552 x 10 25 (1 ± 1.02 x 10- 3 )g= (7.3552 ±0.0075) x 1025 g (132) 

while the mean visible radius is 

R. = kRe = 1738236 (1 ± 1.0 x 10- 4 ) = 1738236 ± 174 m 

and therefore the semi-axes of the three-axial Moon are 

R 
a = _. = 1 738 946 :T 186 m 

a 

b = a (: ) = 1738618 ± 209 m 

c = a (~) = 1737854 ± 188 m 

The unit for the Moon's moments of inertia is 

(133) 

(134) 

(135) 

(136) 

M. a2 = 2.2241
6 

x 10 42 (1 ±1.23 x 10-3 )g cm 2 = (2.2241
6

± 0.0027) x 1042g cm 2 

(137) 

and thus the moments of inertia are 

42 ± - 3 2 4 + ) 1 42 2 A = 0.8849 42 X 10 (1 1:73 x 10 ) g cm = (0.88 942 - 0.00153 X 0 g cm 

B = 0.8851
09 

x 10 42 (1 ± 1.73 x 10-3
) g cm2 = (0.8851 09 ± 0.00153 ) x 1042 g cm2 

C = 0.8854
98 

x 1Q42 (1 ± 1.73 x 10-3 ) g cm 2 = (0.8854 98 ± 0.0015 3 ) x 1042:g cm 2 

C _ A; B = (0.000473 ± 0.000007) x 10 42 g cm 2 

B - A = (0.000167 ± 0.000012) x 10 42 g cm 2 

The oblateness coefficients of the potential function of the Moon are 

C - (A + B) / 2 
12 = f 1 = 0.0002125 ± 0.0000029 
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J
2
(2) = B - A 

4 M, a 2 
~ K = 0.0000188 t 0.0000013 (144) 

The derived value for the equatorial radius of the Earth (eq. 124) is in good agreement wi th 
the following values: 

Author Year Ref. R e 

W. M. Kaula 1961 55 6378163 ± 21 m 
V. C. Clarke, Jr. 1962 56 6378165 ± 25 
I. Fischer 1962 57 6 378166 
Present Report 1962 6378170 ± 20 

I. Fisher's value for 11K = Mm 1M, = 81.268 is also in good agreement with the value in this 

report. The presented system of constants is not only a consistent one, but the most serious 

discrepancy has been removed in determining the gravitational parameter 11m from terrestrial 

data and, on the other hand, from the lunar mean motion in combination with radar measurements 
of the Moon's distance. 

Finally, the present data for the Moon's moments of inertia are compared wi th the values of 
other authors in the following table: 

A B C C - (A+ B)12 
Author Ref. 

35t 2 10 Kg.m 3~ 2 10 (g.rn 1dS:kg.m2 Id\g.m 2 

B. E. Kalensher 58 0.87976 0.87985 0.88032 0.00051 
Makemson, Baker, Wes trom 13 0.88837 0.88856 0.88893 0.00047 
V. C. Clarke, Jr. 56 0.88746 0.88764 0.88801 0.00046 
Present Report --- 0.88494 0.88511 0.88550 0.00047 

The values of V. C. Clarke, Jr. are used for the Ranger Program. 

14. THE EARTH ELLIPSOID 

The equation of the rotational ellipsoid or spheroid is 

where 

x = R cos ¢ cos A R e cos if; cos A Pn cos cP cos A 

y R cos ¢ sin A Recosif; sin A Pn cos cp sin A 

z R SIn ¢ R SIn if; Pn 0- e 2) sin cp 
p 
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B - A 

1dSkg,m 
2 

0.00009 
0.00019 
0.00018 
0.00017 

(145) 

(146) 

(147) 

(148) 



and Reis the equatorial Earth radius, Rp the polar Earth radius, R the local Earth radius, Pn the 
normal radius of curvature, A the geographic longitude (positive eastward of Greenwich), ¢ the 
geocentric latitude, rf; the reduced latitude, cP the geodetic or geographic ('" astronomical) lati­
tude, and e the first eccentricity of the meridian ellipse. Introducing the second eccentricity, 
f, and the flattening (oblateness, ellipticity), /, the following relations hold 

1 
e 4 + ••• + 

8 
1 • 1 • 3· 5· •• (2 /( - 3) 2/( 

4 6 e- T'" 2 • • • 8" • • (lK) 

(149) 

/ (2 - f) 2/- j2 (150) 

R2 _ R2 
e p 

R~ 
(151) 

thus 

~'" 1 - / = ,/1 - e 2 

Re 

1 (152) 

The different latitude angles are related by 

tan ¢ = y'1 - e 2 tan rf; (153) 

tan ¢ = (1 - f) tan rf; (1 - f)2 tan cP (154) 

By differentiation the relation 

(155) 

follows. 

Thus the line element is 

2 2 2 2 2 2 2 2 2 2 2 2 2 d ,1,2 2 2 d \ 2 ds '" dx + dy + dz = dr + r d ¢ + r cos ¢ d A = R e (1 - e cos rf;) 'f' + R e cos rf; 1\ 

(156) 

The parameter P 1S the mean radius of curvature, and 1S correlated with the normal radius of 
curvature 

(1 - e 2 si n 2 cp ) Y, 

cos ¢ 
cos cp 

R [1 + ~ e2 sin 2 cp + i e4 sin 4 cp + ~ e 6 sin 6 cp + ... ] 
e 2 8 16 

and to the meridional radius of curvature 
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(1- e 2 sin2 CP )3/ 2 (1 + (2COS 2 cP ) 3 / 2 

by the relation 

P = Y Pm Pn 

The radius of a parallel of latitude is Pn cos cP = R e cos rjJ = R cos ¢ . Because l or e2 are small 
qua ntities the latitudes ¢ , rjJ, and cP will not differ very much from each other. Therefore it is 
very useful to have rapidly converging series developments available for the differences ¢ - <P 

and rjJ - CP . With 

there is 

and wi th 

there i s 

m= 
1-(1- e 2

) e 2 
12 1 4 

1 + (1 - e 2) = 2~ = I + "2 I - "4 I + ... 

m 2 m 3 
¢ = cP - m sin 2 cP + - sin 4 cP - - sin 6 cP ± ... 

2 3 

¢ . ¢ m 2 m 3 
<P = + m SlO 2 + "2 sin 4 ¢ + 3 sin 6 ¢ + ... 

n 
1 - (1 - f) 
l + Cl-f) 

n 2 n 3 
cP - n sin 2 CP+ "2 sin 4 cP - "3 sin 6 cP ± ... 

cP = t/J + n sin 2 t/J + r sin 4 t/J + ; 3 sin 6 t/J + ... 

An accurate formula for the difference cP - ¢ is given by 

e 2 tan cP 
tan ( cP - ¢) = 1 + (1 _ e 2) tan 2 cP 

e 2 sin cP cos cP 

1 - e 2 sin 2 cP 

The local Earth radius (radius vector) can be accurately calculated from the relations 

R=yx 2 +y 2 +z 2 = Rp =Re y 1- e 2sin2t/J = R /1-e
2
(2-e

2
) sin cp' 

y 1- e 2 cos 2 ¢' e",j 1- e 2sin 2 cp 

R 
" 

1 - 4 m (1 + m)-2sin 2 <p 

1 - 4n (1 + n;-2sin 2 cP 

B-28 

1 + m 2 + 2 m cos 2 <p 

1 + n 2 + 2 n cos 2 cP 
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(161 ) 

(162 ) 

(163) 

(164) 

(165 ) 
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By taking the logarithm of the last relation the re follow s 

R 
In R-;:= In 

1 + nIl 
1 + m + 2" In (1 + m 2 + 2m cos 2 cP ) - 2 In (1 + n 2 + 2 n cos 2 cP ) 

or, using a known series development, 

R 1 + n [ 
log R; = log 1 + m + M (m - n) cos 2 cP 

m 2 - n 2 m 3 - n3 J 
-2- cos 4CP + --3- cos 6 cP =t=... (168) 

where M is the module(M = 0.4342944819). This series is due to Encke. 

Conventional power series for R1 Re can be obtained as follows: 

R (1 2· 2,/.. )-1 / 2 1 1 2 . 2,/.. 3 4 . 4,/.. 5 6 • 6 ,/.. ± ... If = + ( s 10 'f' = - 2" ( S10 'f' + 8 ( SIn 'f' - 16( SlO 'f' 
e 

(169) 

The above-mentioned power series for the local Earth radius can also be written 

or 

R I . 2,/.. (3 2 1 3)' 2 5 /3 . 2 . 2 ,/.. - = 1 - SIn 'f' - - I + -2 / SIn 2 1> + 8 SIn 1> sIn 2 'f' + ... 
Re 8 

(171) 

using eq. (151). 

In order to obtain power series for the local Earth radius as a function of the geodetic lati­
tude, cP ,it is use ful to set 

k 
4m e 2 (2 _ e 2) ; k' 4 n / (2 _ f) = e 2 

= (1+ n)F kl k'= 2 - e 2 (172) 

the non-dimensional local Earth radius is now 

or 

(174) 

Because 
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_ OJ 

2 - e2 =2-2/+/ 2 

there i s, also, 

= - SIn cP + - - - sIn cP + - SIn 1 / , 2 (5/2 1/3~ ' 22 13/ 3 . 2 
828 

1 5 2 5 3 ( ' 1 13 3) (5 2 5 3) 13 3 
"2/+16/+3"2/ + "2/- 64/ cos2CP - 16/+3"2/ cos4CP+64/ cos6CP+ ... 

(175) 

It is also important to know the arc corresponding to lOin longitude, namely 

TT 
V = 180 P n cos cP 

TT 

180 
R" cos cP 

TT (1 1 2 3 4) cP _ (.:.2 _9_ 4) cP 3 4 
180 R" 0 + 8 e + D4 e cos 8 +128 e cos 3 + 128 e cos 5 CP=f .. . 

(176) 

and the arc corresponding to 1° in latitude, namely 

TT _ _ TT_ R" (1 - e 2 ) _ Y- R (1 _ 2) fl i 0 • 2 ~ 4 . 4 1 
p. = 180 Pm - 180 (1 - e 2 sin2 cP ) 3/ 2 - 180" e L + 2 e., SlO cP + 8 e Sill cP + .. . 

TT R2 [ 3 2 45 4 (3 2 15 4) 15 4 
= l80 l<!" 1 + -:[ e + 64 e - "4 e + ~ cos 2 cP + 64 e cos 4 cP (177) 

(178) 
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The volume of the Earth spheroid is simply given by 

4 2 4 3 V = - 7T R R = - 7T R (1 - f) 3 e p 3 e (179) 

while the surface area follows from 

27TR2 [1+(I_~(2+2L4 __ 5_L6± •• )( 1_!(2 3 4 ~6+ ••• )l 
e 6 40 < 112 < 2 + S( - 16( - 'J 

47T R2 (1 _ ! L2 + 4 4 8 6 ) 4 R2 (1 2/ 1 /2 4 /3 Y180) 
e 3 < is ( - 35 ( - ... = 7T e - 3" + 15 + 105 T'" r 

These formulas will now be used to derive the Earth's dimensions and other Earth parameters. 

Taking Re = 6378170 ± 20 m and 1// = 298.30 ± 0.05 yields 

e 2 == 0.006693422 e 0.081813 334 

(2 == 0.006738525 ( 0.082088522 

m 0.003357949 692:' 627 

n 0.001678979 346:'314 

The mean radius is 

R 2 Re + Rp 
3 

= 6371 043 ± 21 m (181) 

The radius for the geodetic latitude cp = sin - V 1/ 3 = 35° 15' 51:' 8 ( ¢ = 35° 4' 59:' 5) is 

J e
2 

(1 - e
2 

) [ 1 5 1 j R 1 == R 1 - == R 1 - -/ + _/2 + _/2 + ... = 6.371 083 ± 21 m 
e 3 - e 2 e 3 9 3 

(182) 

The radius for the geocentric latitude ¢ = sin- 1 V 1/ 3 == 35° 15' 51." 8 (cp = 35° 26' 45:'5) is 

The radius for a sphere of equal area is 

R = (S/4 7T)1 /2= R (1-! /2_ ~/3 + ~ / + ... ) 
s e 3 45 945 

6371 041 ± 21 m (184) 

while the radius for a sphere of equal volume is 

(185) 
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The surface area is 

2( 2 1 2 4 3 ) S = 47TRe 1 --3 1+ - 1 +--1 + ••• 
15 105 

(5.100711 ± 0.000034) x 10 14 m 2 (186) 

while the volume is given by 

v = 177 R! (1 - f) = (1.083225± 0.000011) x 10
21 

m 3 (187) 

The radius of curva ture at the pole is 

2 
P p = R e / Rp = R e / (1 - f) = 6399624 ± 24 m (188) 

while the meridional radius of curvature at the equator is given by 

(189) 

'The length of an equatorial quadrant is 

Qe=; Re= 10018806±31m (190) 

while the length of a meridional quadrant is 

7T ( 1 1 1 2 1 3 ) Qm= T Re 1 -"2 + T01 + 32 1 + ... = 10002020 ± 34 m (191) 

Therefore the arc corresponding to 1° in longitude is at the equator 

Ve = Q e / 90 = 1;0 Re = 111320.07 ± 0.35 m (192) 

whi l e the arc corresponding to 1° in latitude is at the equator 

1;0 R e (1 - f)2 = 110574.95 ± 0.47 m (193) 

at the pole 

(194) 

and in the average 

- 7T ( 1 1213) 
11 = Qm / 90 = 180 Re ,1- 7. 1 + 16 1 +"321 + ... = 111133.56 ± 0.38 m 

(195) 

Finally, a few series developments are given for the Earth radius, for the various definitions of 

latitude, and for the radii of curvature: 
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1> = cp - 692." 627 sin 2 cp + 1." 163 sin 4 cp "'f .. . 

cp 1> + 692: ' 627 sin 2 1> + 1:' 163 sin 41>+'" 

and 

I/J cp - 346." 314 sin 2 cp + 0:' 291 sin 4 cp + ... 

cp I/J + 346." 314 sin 2 I/J + 0."291 sin 4 I/J + ... 

furthermore 

R 
log R = 9.99927266 + 0.00072917 cos 2 cp - 0.00000184 cos 4 cp + ... 

" 
and 

R 
- = 1- 0.003369263 sin2 1> + 0.000017028 sin4 1> - 0.000000096 sin6 1> ± ... 
R" 

(196) 

(197) 

(198) 

= 1 - 0.003352330 sin 2 1> - 0.000004233 sin 2 2 1>+ 0.000000024 sin 21> sin 22 1> + ... 

= 0.998321724 + 0.00167 6162 cos 2 1>+ 0.000002111 cos 4 1> + 0.000000003 cos 6 1> + ... 

(199) 

or 

R = 63781 70.0 - 21489.7 sin2 1> + 108.6 sin 4 1> - 0.6 sin6 1> ± ... 

= 6378170.0 - 21381.7 sin
2 

1> - 27 .0 sin
2 

21> + 0. 2 sin
2 

1> sin
2 

21> + ... 

= 6367465. 7 + 10690.8 cos 2 cP + 13. 5 cos 4 cP + 0.0 2 cos 6 cP+'" (200) 

and 

~ = 1- 0.00332 4310 sin 2 
cP - 0.000027777 sin 4 cP - 0.000000241 sin 6 cp - ... 

" 
= 1 - 0.003352330 sin 2 cp - 0.000007004 sin 2 2 1>+ 0.000000060 sin 2 1> sin 22 1> + ... 

= 0.998320349 + 0.00167 6156 cos 2 cp + 0.000003487 cos 4 cP + 0.000000008 cos 6 cP + ... 

(201) 

or 

R = 63781 70.0 - 21203.0 sin 2 cP - 177.2 sin 4 cP -1.5 s in 6 cP - .. . 

= 6378170.0 - 21381.7 sin2 cP - 44.7 sin 2 2 cP + 0.4 sin 2 cP sin2 2 cp + ... 

= 6367 456.9 + 10690.8 cos 2 cp + 22 .2 cos 4 cp + 0.0 5 cos 6 cp + ... (202) 
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and 

1 + 0.010040132 sin2 cP + 0.000084004 sin 4 cP 

= 1.005051568 - 0.005062068 cos 2 cP + 0.000010500 cos 4 cP + ... (203) 

or 
!l = 110574.95 + 1110.19 sin

2 
cP + 9.29 sin4 cp + .•• 

= 111133.53 - 559.74 cos 2 cP + 1.16 cos 4 cP :t ..• (204) 

..!:.. = ~ n cos cP = 1.000838785 cos cP - 0.000839841 cos 3 cP + 0.000001059 cos 5 cP + •.• 
V e e 

(205) 
or 

v = 111413.44 cos cP - 93.49 cos 3 cP + 0.12 cos 5 cP (206) 

and 

-En. 
R 

+ ... = 1 + 0.003346711 sin
2 

cP + 0.000016801 sin4 cP + 0.000000094 sin
6 

cP 
e 

= 1 + 0.003363605 sin
2 

cP - 0.000004224 sin
2 

2 cP - 0.000000023 sin
2 

cp sin
2

2 cp 

= 1.001679685 - 0.001681800 cos 2 cP + 0.00000211 8 cos 4 cP - 0.000000003 cos 6 cP 

(207) 
or 

P = 6378170.0 + 21345.9 sin2 cp + 107 .2 sin 4 cp + 0.6 sin6 cp + ••• 
n 

= 6378170.0 + 21453.6 sin 2 cp - 26. 9 sin2 2 cp - O.ls sin 2 cp sin2 2 cp + ••• 

= 6388883.3 - 10726.8 cos 2 cp + 13 .5 cos 4 cp (208) 
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SUMMARY 

An internally consistent sy stem of astrodynamic constants is derived based upon theoretical 
coupling relationships and the most recent available experimental data. A previously existing 
discrepancy in the value of the gravitational parameter of the earth (as derived by different 
methods) has been eliminated. Likewise, several inconsistencies in the previously available 

system of lunar constants have been removed. 

A new method of determining the ratio of the masses of the Earth and Moon has been derived 
and the results are in agreement with other determinati ms. 

An error study of each const:fnt is presented; both relative and absolute probable errors are 

listed. 

The results of this study can be summarized in the following list of astrodynamic constants: 
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1. GENERAL CONSTANTS 

1. Newton's gravitation constant: 

G = 6.670 (1 ± 0.0007) x 10- 8 = (6.670 ± 0.005) x 10- 8 cm3 g-l s-2(dyn cm 2 g-2) 

2. Velocity of light : 

- 7 
C = 299792.5 (1 ± 3.3 x 10 ) = 299792.5 ± 0.1 km / s 

3. Solar parallax (Sun's equatorial horizontal parallax) : 

170 = 8:'79414 (1 ± 5.8 x 10 - 6) = 8:'79414 ± 0."00005 

4. Astronomical unit (mean Earth-Sun distance = R e / 170 sin 1"): 

a. u. = 149598700 (1 ± 2.7 x 10- 6) = 149598700 ± 400 km 

5. Light year (distance which light travels in a year = P c) : 
Ell 

1. y. = 31556925 .9747 c = (9.460530 ± 0.000003) x 10 12 km = 63239 .39 ± 0.15 a. u. 

6. Parsec (distance in which 1 a. u . appears as 1" = 1 a . u . / sin 1"): 

p c = 206264.806247 a . u. = 0.085695 ± 0.000008) x 1013 km = 3.261651 ±0.000008 1. y . 

7. Light time for 1 a . u. : 

T = a.u ./c = 499.008 (1 ± 3.6 x 10- 5) = 499.008 ± 0.018 s 

8. Constant of aberration: 

K = 20."4956 (1 ± 3.5 x 10- 5
) = 20:'4956 ± 0." 0007 

9. Obliquity of ecliptic 

cos ( = 0.9173917 ; sin ( = 0 .3979855 (1900 .0) 

10. Newcomb's const ant of precession (per tropical century ) : 

P = h- = 5493:' 62 - 0:'00364 T = (N + 2:'96) * 
cos ( 

11. Luni-solar precession in longitude: 

Po = Po + P. = 5039:'804 + 0." 4930 T - 0:'00004 T2 = (N + i:72) 

* N refers to Newcomb's precessional data 
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12. Geodetic preces sion in longitude: 

P II = ~ (ve / c)2 n e = 1."9188 ± 0:'0002 = (N + 1:'92) 

13. Observed luni-solar precession in longitude: 

PI = Po - P II = 5037:' 885 + 0:'4930 T - 0:'00004 T 2 = (N + 0:'80) 

14. Planetary precession in right ascension: 

,\ = - m + n cot ( = 12:'473 - 1 :'8870 T - 0:'00014 T 2 = (N + 0:'00) 

15. General precession in longitude: 

P = P 1 - ,\ cos ( = m cos ( + n sin (= 5026:'441 + 2:'2229 T + 0:'00026 T 2=(N + 0:'80) 

16. General precession in right ascension: 

m = PI cos ( - ,\ = 4609:'236 + 2:'7945 T + 0:'00012 T 2= (N + 0:'73) 

= 307.8 2824 + 0.8 18630 + 0.8 000008 T 2 = (N + 0.8 0487) 

17. General precession in declination: 

n = PI sin ( = 2005:'005 - 0:'8533 T - 0:'00037 T 2= (N + 0~~32) 

= 133~ 6670 - o.s 05689 T - o~ 000025 T2 = (N + o~ 0213) 

18. Mean siderial time rate (for 1950.0): 

® = 7.29211585479x lO- s rad/ s = 1.002737909294 d,/d (s. / s) 
m 

= 15.04106863941 " / s (o / h) = 360.9856473460 o l d 

2. EARTH CONSTANTS 

19. Semi -rna j or axis of the Earth's orbit: 

-6 
a e = 149598700 (1 ± 2.7 x 10 ) = 149598700 ± 400 km 

20. Siderial mean orbital motion (for 1950.0): 

n e == 0.9856091080 ol d = 0.04106704615 " / s (o/ h) 

== 1.990986581 7 x 10-7 rad/ s 

r 
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21. Mean orbital velocity: 

Ve = ae n e = 29784.90 (1 ± 2.7 x 1O-~ = 29784.90 ± 0.08 m/ s 

22 . Mass ratio of the Sun to the Earth-Moon system: 

v = M0 = 328898.6 (1 ± 1.6 x 10-5) = 328898.6 ± 5.2 
Me + M~ 

23. Mass ratio of the Sun to the Earth : 

v (1 + K) = ~0 = 332947.6 (1 ± 2.0 x 10-5) = 332947.6 ± 6.7 
Ell 

24. Gravitational parameter of the Earth: 

l1 e = GMe = 398606.4 (1 ± 1.23 x 10-5
) = 398606.4 ± 4.9 km

3 Is 2 

25. Mass : 

27 -4 27 
Me = 5.9761 x 10 (1 ± 7.2 x 10 ) = (5.9761 t 0.0043) x 10 g 

26. Equatorial radius: 

R e = 6378170 (1 ± 3.14x 1()6)= 6378170 ± 20 m 

27. Polar radius: 

R = 6356788 (1 ± 3.70 x 10 -6) = 6356788 ± 24 m 
p 

28. Flattening (oblateness , ellipticity): 

I = Re ~ R E. = 0.00335233 (1 ± 1. 7 x 10-4) = 0.00335233 ± 0.00000056 = 1: (298.30 ± 0.05) 
e 

29. First eccentricity of the meridian ellipse: 

e = 0.08181333 + 0.000006 80 

e 2 = 1(2 - f) = 0.00669342 + 0.000 00111 

30. Second eccentricity of the meridian ellipse: 

( = 0.08208852 ± 0.00000687 

e 2 
(2 = ~ = 0.00673853 ± 0.00000113 

1 - e 

31. Mean radius: 

Ii = (2 R +R ) / 3=6371043(1±3.3x10- 6)=6371043±21m 
e p 
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32. Radius for geodetic latitude cP = sirr1 ...; 1/3 = 35° 15' 51 :'8 

R 1 = 6371 083 (1 ± 3.3 x 10- 6) = 6371083 ±21 m 

33. Radius for geocentric latitude ¢ = sin-\/ 1/ 3 = 35°15'51:'8 

R 2 = 6371 019 (1 ± 3.3 x 10-6
) '" 6 371019 ± 21 m 

34. Radius for sphere of same surface area : 

Rs= 6371041 (1 ± 3.3 x 10-
6

) = 6371041 ± 21 m 

35. Radius for sphere of same volume: 

- 6 
R v =6371035 (1 ±3.3 x l0 )=6371035±21m 

36. Surface area: 

14 66 - 6 d4 2 Se = 5.100711 x 10 (1 ± . x 10 )'" (5.100711 ± 0.000034) x 1 m 

37 . Volume: 

38. Mean density: 

fie = 5.5170 (1 ± 7.3 x 10- 4
) = 5.5170 ± 0.0040 g/ cm 3 

39. Angular velocity of the Earth's rotation : 

- 5 
= 7 .29211514646 x 10 radl s = 1.002737 81189i rotl d 

m 

= 15.04106717837 " / s (O / h)= 360.9856122808 old 

40. Rotational velocity at the equator: 

- 6 
o,m Re = 465.1035 (1 ± 3.2 x 10 ) = 465.1035 ± 0.0015 m/ s 

41. Centrifugal acceleration at the equator: 

2 -6 2 
o,m Re = 0.03391588 (1 ± 3.2 x 10 ) = 0.03391588 ± 0.000000 II m/ s 

42. Centrifugal acceleration factor: 

0,2 R3 
We =~ = 3461.369 x 10- 6 (1 ± 2.2 x 10- 5 ) = (3461.369 ± 0.076) x 10- 6 

e 
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43. Oblateness coefficients of the Earth's potential: 

J = 1623.48 x 10- 6 (1 ± 1.8 x 10- ~ = (1623.48 ± 0.29) x 10 - 6 

K = ~ D = 8.85 x 10 - 6 
7 

J = ~ J = 1082.32 X 10- 6 (1 ± 1.8 x 10 -4) = (1082.32 ± 0.19) x 10 - 6 
2 3 

J 4 8 6-6 
4 = - T5 K = - 35 D = - 2.3 x 10 

44. Coefficients of the Earth's gravity formula: 

- 6 - 6 f3 = 5302.92 x 10 ; Y = - 5.85 x 10 

45. Mass of the Earth's atmosphere: 

M atm = ~o. Se = (10332.275 kg/m 2 ). SED 

= 5.270195 x 1018 (1 ± 6.6 x 10- 6) = (5.270195 ± 0.000 035) x Hj8 kg 

46. Relative mass of the Earth's atmosphere: 

A = Matm I MED = 0.88188 X 10- 6 (1 ± 7.3 x 10- 4 ) = (0.88188 ± 0.00064) x 10- 6 

47. Gravity acceleration correction factor: 

x = ge I (GMED I R!) = 0.99816566 (1 ± 4.0 x 10- 7
) = 0.99816566 ± 0.00000040 

1 - X = A + w - J - ~ K = 1834.34 X 10- 6 (1 ± 2.2 x 10-,,) = (1834.34 ± 0.40) x 10- 6 

48. Gravity acceleration at the Earth's equator: 

g e = 9.780 362 (1 ± 3.3 x 10- 6) = 9.780 362 ± 0.000 032 m/ s 2 

49. Dynamic oblateness: 

H = C ~ A = 3272.09 X 10- 6 (1 ± 1.6 x 10- 4
) = (3272.09 ± 0.54) x 10-6= 1/ 305.615 ± 0.05 

50. Moment of inertia parameter: 

- ~ c J 6 6 + 4 - 4) 4 6 6 + q - 2 M R2 = H = 0.49 1 (1 - 3. x 10 = o. 9 1 - 0.000 17 
ED e 

51. Dimensionless moments of inertia: 

M A R2 = J 2 (-~ - I) = 0.32969 ± 0.000 11 
ED e 

0.33077 ± 0.00011 
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52. Unit for the Earth's moments of inertia: 

2 38 - 4 38 2 
Me Re = 2.43114 X 10 (1 ± 7.3 x 10 ) = (2.43114 ± 0.0018) x 10 kg m 

53. Earth's moments of inertia: 

38 - 3 38 2 
A = 0.80152 x 10 (1 ± 1.07 x 10 ) = (0.80152 ± 0.00086) x 10 kg m 

C = 0.80415 x 1038 (1 ± 1.07 x 10- 3
) =(0.80415 ± 0.00086) x 10 38 kg m 2 

C-A = 2.6313 x 1035 (1 ± 9:1 X 10- 4) = (2.6313 ± 0.0024) x 1035 
kg m 2 

54. Angular momentum: 

Co = 5.8640 x 10
3
\1 ± 1.07 x 10-

3
) = (5.8640 ± 0.0063) x 10

33 
kg m2/ s 

55. Rotational energy: 

~ C0 2 = 2.1380 X 1029 (1 ± 1.07 x 10- 3
) = 2.1380 ± 0.0023) x 10

29 
kg m

2 
I s2(joule) 

56. Circular velocity at the Earth's equator: 

Vcir = V/lED1Re = 7905.404 (1 ± 7.7 x 10-
6

) = 7905.404 ± 0.061 ml s 

3. LUNAR CONSTANTS 

57. Mean observed distance from the Earth: 

r; = 384402.0 (1 ± 2.6 x 10-6
) = 384402.0 ± 1.0 km 

58 . Relative mean lunar distance: 

-6 
T. I Re = 11sin 77, = 60.26838 (1 ± 5.8 X 10 ) = 60.26838 ± 0.00035 

59. Constant part of the sine of the perturbed lunar parallax: 

77/ = s~n ~'" = 3422."438 (1 ± 5.8 x 10- 6) = 3422."438 ± 0."020 
SIn 

60. Mean perturbed equatorial horizontal parallax: 

77 = 3422."595 (1 ± 5.8 x 10-
6

) = 3422."595 ± 0."020 • 
61. Semi-major axis of the Moon's orbit: 

a, = 1.000907681 r; = 384750.9 (1± 2.6 x 10 - ~ = 384750.9 ± 1.0 km 

62. Siderial mean orbital motion (for 1950.0): 

n, = 13.1763582598 ol d == 0.549014912685 " Is ( o/h) 

-6 
= 2.66169940799 x 10 radl s 
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63. Mean orbital velocity: 

V f = a
f 

n, = 1024.091 (1 ± 2.9 x 10- 6
) = 1024.091 ± 0.003 m/ s 

64. Lunar inequality in the Moon's ecliptic longitude: 

65. Parallactic inequality in the Moon's ecliptic longitude: 

p. = 124:'986 (l ± 3.3 x 10- 5
) = 124:'986 ± 0:'004 

66. Mass ratio of the Earth to the Moon: 

I / K = Me 1M, = 81.250 (1 ± 3.0 x 10- 4) = 81.250 ± 0.024 

67. Mass ratio of the Earth-Moon system to the Earth: 

-6 
1 + K = (Me + M. )/Me = 1.0123077 (1 ± 3. 7 ~ 10 ) = 1.0123077 ± 0.0000037 

68. Gravitational parameter of the Moon: 

fl. = GM. = 4905.92 (1 ± 3.1 x 10- 4
) = 4905.~2 ± 1.52 km 3 / s 2 

69. Mass: 

M, = 7.3552 X HJ25 (1 ± 1.02 x 1O-~ = (7.3552 ± 0.0075) x 10 25 g 

70. Moon's semi-diameter at mean distance: 

71. Relative radius of the visible disk of the Moon: 

k = R, I Re = 0.2725289 (1 ± 1.0 x 10-
4

) = 0.2725289 ± 0.0000273 

72. Radius of the visible disk of the Moon: 

R, = b + c = 1738236(l±1.0 x l0- 4) = 1738236±174m 
2 

73. Longest semi-axis directed to the Earth: 

-4 
a = R, / 0 .9995918 = 1738946 (1 ± L07 x 10 ) = 1738946 ± 186 m 

74. Medium semi-axis in orbital direction: 

b = 0.9998116 a = 1738618 (1 ± 1.20 x 10- 4) = 1738618 ± 209 m 

75. Shortest semi-axis (rotational or polar radius): 

c = 0.9993720 a = 1737854 (1 ± 1.08 x 10- 4) = 1 737854 ± 188 m 
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76. Volume: 

v. .. ~ 11 a be = 2.20086 x 1025 (1 ± 3.35 x 10- 4
) = (2.20086 ± 0.00074) X 10 25 cm3 

77. Mean density: 

P, = 3.3420 (1 ± 1.5 x 10- 3
) = 3.3420 ± 0.0050 g/cm 3 

78. Surface density: 

p = 3.290 g/cm 3 
o 

79. Central density: 

p = 3.420 g/ cm 3 
c 

80. Inhomogenity factor of the Moon: 

,\ = 0.1991 (1 ± 5.0 x 10-
4

) = 0.1991 ± 0.0001 

81. Dimensionless moment of inertia parameters: 

C - B -2 f = C _ A = 0.70 (1 1- 2.86 x 10 ) = 0.70 ± 0.02 

C-B 
a = -C- = 0.0004395 (1 ± 3.03 x 10- 1

) = 0.0004395 ± 0.0000133 

f3 = C ~ A '" 0.OOOq279 (1 ± 1.6 x 10-
4

) = 0.0006279 ± 0.000 0001 

B-A 2 
Y = --C-- '" 0.0001884 (1 ± 6.85 x 10- ) = 0.0001884 ± 0.0000129 

g 3 C -4 T M.7 =0.5972 ( 1 ± 5.0 x 10 ) '" 0.5972 ± 0.0003 

J = ~ C - 1/ 2 (A + B) = 0.0003187 (1 ± 1.38 x 10- 2) = 0.0003187 ± 0.0000044 
2 M, a 2 

K 3 B -A 
'" 0.0001125 (1 ± 6.84 x 10- 2

) '" 0.0001125 ± 0.0000077 = 2" M. a2 

L 3 C-A 
= 0.0003750 (1 ±2 .1 x 10- 3

) = 0.0003750 ± 0.0000008 = "2 M;a2 

82. Dimensionless moment of inertia differences: 

C -A 3 
= 0.0002500 (1 ± 2.1 x 10- ) = 0.0002500 ± 0.0000005 M,Ii2 

C-B 2 
= 0.0001750 (1 ± 3.09 x 10- )= 0.0001750 ± 0.0000054 

~ 
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82. Dimensionless moment of inertia difference s (Continued) : 

a-A 
M.li2 

0.0000750 (1 ± 6 .84 x 10- 2) = 0.0000750 ± 0.0000051 

83. Dimensionless moments of inertia: 

C -4 
~ = 0.39812 7 (1 ± 5.0 x 10 ) = 0 .3981 2 7 ± 0.00020 

84. Axial ratios of the Moon: 

b 
a J1 - ~ = 0. 9998116 (1 ± l. 3 x 10- 5

) = 0. 9998116 ± 0.0000129 
1 + Y 

~ = )1 _~' 0.9993 720 (1 ± l.0 x 10 - 6) = 0.9993720 ± 0.0000010 
a 1 + Y 

a = R. / a = ~ ( !!.... + ~)= 0.999591 8 (l ± 7.0 X lO-6) = 0.9995 9 18± O . 000007 0 
2 a a 

85 . Oblateness coefficients of the potential function of the Moon: 

J = C - 1/ 2 (A + a) 
2 M. a 2 

2 "3 J = 0.000 2125 ± 0.0000029 

(2) a - A 1 
J 2 = 4 M.a2 = (5 K = 0.0000188 ± 0.0000013 

86. Unit for the Moon's moments of inertia: 

87. Moment of inertia differences : 

C - 1 (A + a) = 0.000473 x 10
35 

(1 ± l.50 x 10-
2

) = (0 .000473 ± 0.000007) x 10
35

kg m 2 
2 

35 - 2 35 2 a - A = 0_000167 x 10 (1 ± 6 .96 x 10 ) = (0.000167 ± 0.000012) x 10 kg m 

88. Moon's moments of inertia : 

A = 0.88494 X 1035 
(1 ± l.73 x 10- 3

) = (0.88494 ± 0.00153) x 1035 kg m
2 

a = 0.88511 x 10
35 

(1 ± l.73 x 10-
3

) = (0.88511 1: 0 .00153) x 10
35 

kg m
2 

35 - 3 35 2 
C = 0.88550 x 10 (1 ± 1.73 x 10 ) = (0.885501: 0.00153) x 10 kg m 
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