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SUMMARY 

A higher order theory of the motion of close satellites in the vicin­

ity of the critical inclination is developed for the case of small ec­

centricity as well as moderate eccentricity. Terms up to the third 

order of magnitude are included for a potential which is plane sym­

metrical. It is shown that solutions up to this order can be obtained by 

using only Jacobian elliptic functions for the case of small eccentricity. 

However, for moderate eccentricity, elliptic integrals of the second 

kind or the Jacobian zeta-function are required. To obtain further ap­

proximations, elliptic integrals of the third kind are necessary for the 

case of small eccentricity; but, for the case of moderate eccentricity 

only the Jacobian elliptic functions and elliptic integrals of the second 

kind are required. In any case, the solutions are, in general, periodic 

functions-as is well known from the form of the equations of motion. 
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INTRODUCTION 

A CONTRIBUTION TO THE THEORY OF CRITICAL 
INCLINATION OF CLOSE EARTH SATELLlTES* 

by 
Shinko Aoki t 

Goddard SPace Flight Center 

Many authors have shown their interest in the motion of close earth satellites near the critical 

inclination (for example, References 1-5). However, almost all of these authors have considered only 

the first terms, which are of the order of the square of J 2 in the equations of motion. However, it was 
first shown by Izsak (Reference 5) that continuations of the ordinary treatment of the libration to the 
higher approximations would break down; and, in the case of small eccentricity, some lib ration of a 
peculiar kind including the next order of magnitude would occur. The first term, which has e o

2 as a 
factor, is so small that the next order term-which would be considered as a higher order of magni­
tude in the normal case-becomes the same order of magnitude as the preceding term. However, he 
presented this only for a consideration of the form of the Hamiltonian; he did not try to solve the 
equations of motion with time as the independent variable. 

Here some expressions for these solutions will be presented, not only for the case of small ec­

centricity, but also for the normal case including terms up to the third order of J 2 in the original 
equations of motion, where J 2 is the coefficient of second zonal harmonics of the earth's potential and 

J
4 

is assumed to be of the order of the square of J 2 and, further, J 6 to be of the third order of magni­
tude. The odd harmonics will be totally neglected. A higher order theory including these terms is 

under consideration, but must be treated in the future. 

The method adopted is to introduce intermediary solutions, of which the argument A.U is only 

slightly different from time (the independent variable) except for a constant factor, and such that by 

which the amplitude of the lib ration or the change of states-in other words, a transition from revolu­
tion to libration-is fully determined. In the case of small eccentricity, the intermediary solution can 

be obtained by the following integration: 

·Published in substantially the same form in Astronom. J. 68(7):355-364, August 1963. 
tNAS-NASA Research Associate. 
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where 71/2 - w l is the mean value of the argument of perigee and 'A is constant; this integration can be 

performed even if only the Jacobian elliptic functions are used, as will be seen in a later section. * 

Further approximations, beyond the aforementioned order of magnitude, would require more com­

plicated calculations. Some comments will be made on the subject although explicit formulas are not 

included. Izsak, after removing the so-called periodic perturbations, wrote the equations of motion: 

dp a <II 
dT aw ' 

dw a <II 
dT - ap , 

where w is the mean value of the argument of perigee; p is some function of G, the conjugate variable 

to w; and 

<II = A(pl + j B(pl cos 2 w , 

A(pl 

B(pl 

- 2 [1 + O( j l] , 

Since T has a factor of J 2' the terms of the order of j in <II correspond to those of the order of J 22 or 

J
4
in the original equations of motion. 

In this paper we have started with a Hamiltonian similar to the one used by Izsak but have added 

some additional terms in order to more easily consider the higher order terms; although this explicit 

evaluation, from the coefficients of zonal harmonics of the earth's potential and from the integration 

• A list of symbols is given in Appendix A. 
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constants, is not given. We are concerned with the solutions of the equations of motion which contain 
the Hamiltonian up to the order of j 2: 

<I> = A(p) + j B(p) cos 2 w + j2C(p) cos 4 w , 

although some comments will be made on obtaining higher order approximations. 

EQUATIONS OF MOTION 

We shall now consider the following equations: 

dp = a<l> 
dT aw ' 

(1) 

where 

A(p) + j B(p) cos 2 w + j 2 C(p) cos 4 w , 

A(p) 

B(p) 

C(p) 

and an' f3n, y n are constants which satisfy a 2 > 0, 130 > o. 

In order to remove the first degree term of p in the Hamiltonian function, we change the variable 
p't~' x = p - P (cos'2 w) such that . . 

o . (2) 

If we take the terms up to j 2 in Equation 2, we have 
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from which 

p (3) 

Thus, the equations, 

dX a'll 
dT aw , 

(4) 
dw a'll 
dT == - ax 

, 

are obtained with 

where 

== 

(5) 

We have considered terms up to the order of j 2 in'll, assuming x is the order of j 1/2. We know 

that 

'II (6) 

where r is constant, is an integral of Equation 4. Neglecting higher order terms, we can easily obtain 
an expression for x from Equation 6: 

(7) 
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where 

a;l j [- f3 0 COS
2 

CU + j (!- f3 1
2 
a;l -/'0) COS

4 CU 

+ j (r - f30 COS
2 

CU) ~ f3 2 a 2-
1 + ~ a 3 f3 1 a;2) COS

2 CU] • 

Rewriting x/ in the form 

where 

and putting cu 1 = 7T/2- cu, we have 

(8) 
ciT • 

where 

Xo = -1 -1/2 
a 2 a 2 f.1. Xl 

y1 + P sin2 CU 1 +Q sin4 CU 1 

(9) 

P = f3 r- 1 .~ -1 3 f3 -2) - 0 + J 2 a 2 - T a 3 1 a 2 

Q = . _1(1 2 -1 f3 f3 -1 3 f3 f3 -2) Jr 4'f3 1 a 2 -/'0- 0 2 a 2 +2"a3 0 l a 2 
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INTERMEDIARY SOLUTIONS 

From the denominator on the right side of Equation 8 we can see that it will be zero if, and only 

if, Xo = 0, provided fL = O( jrJ is small. This means that the essential character of the trajectory is 

determined entirely by Xo' In the case when wI is real-which includes, in general, j 2 terms of the 

equation of motion. Thus, Xo discriminates among three kinds of motion: libration, revolution, and 

the critical case. 

Therefore, we first must consider 

Putting sin 2 WI x, we have 

du = 

and, putting y = x-I, we have 

du = 
-dy 

or 

du 
- dz 

where 

and 

Thus, we have 

6 

= V (1 - a sin2 
WI) (1 - f3 sin wI) 

du . 

dx 

= 
-dy 

P-l 
z y + -3- , 

(10) 

(11) 



where ~u is the Weierstrassian elliptic function of the second order. We assume that the integration 
constant is such that 

U o = o. 

which corresponds to the initial condition of wI = 0 when u = 0, as will be seen later. Then we have 

(. p- 1 yl 
\SOU - ---r-J 

or 

cotw1 = ±fju, 

and 

In the above expressions, f ju is an associated primitive elliptic function of the first order (Reference 

6), whose poles are u = 0 and 2wg and whose zeros are u = wf and wf + 2wg within a parallelogram 

(2wf' 4wg) ,where we have 

with p = f, g, hand w
f 

+ Wg + wh = O. The other gj u and hj u are given by permutations of (f, g, h). 

However, this expression is so general that, at first glance, we cannot see how the function be­

haves for real values of u, which is the only case of interest. Therefore, in order to clarify its 

behavior, we shall divide the problem into several cases. 

(i) a, j3 real: Libration and critical cases 

(a) 1~j3<a~y, Zibration within - a- I/ 2 2 sinwI 2 a- I/ 2 

Since 

P -1 a - 1 
sou = 1 + -3- + sn2 (f.-U, k) , (12) 
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where A. 2= a - 1 and k2 

and 

)(0 = 

(13 - 1)/( a - 1), we have 

a - cn 2 (A.U, k) 

( a - 1) cn A. u dtJ. A. u 

a-cn2 (A.U, k) 

(13) 

The case 1 ~ y .::; 13 ~ a does not correspond to any real case in the theory of the critical inclina­

tion of close artificial satellites (Reference 5); therefore, we omit this case here, although similar 

expressions are obtainable if we substitute sin cu = cos CUt instead of sin CUi in Equation 1. 

(b) (3 < 1 < as. y, libration within - a -1/2 ~ sin CUi ~ a- 1/ 2 

Since 

P-l a-(3 
,\OU 13 + -3- + sn2 (A.U, k) 

where A 2 = a - (3 and k 2 (1 - 13)/( a - (3), we have 

sn2 (A.U, k) 

a - (3 cn 2 (A.U, k) 

and 

( a - (3) cn (A.U, k) 

)(0 a-(3cn2 (A.U, k) 

(c) (3~a< 1s.y, revolution 

Since 

P-1 1-13 
gou 13 + -3- + sn 2 (AU, k) , 

where fe2 1-(3andk2 (a-j3)/(1-j3), we have 

sn 2 (feu, k) 

1 - (3 cn2 (A.U, k) , 



and 

Xo 
( 1 - ,6) dn (t..u, k) 
1 - ,6 cn 2 (t..u, k) 

(a') 1 <,6 = a.:S y, critical 

Since sn t..u ~ tanh t..u when k ~ 1, we have 

= 
a cosh2 t..u - 1 

where A2 a-I and 

a-I 

Xo acosh2t..u-l 

(b ~ ,6 < 1 = a.:S y, critical 

From either case b or c, when k ~ 1, we have 

and 

where t.. 2 1 - ,6. 

(ii) a,,6 imaginary: Revolution 

sin h 2 t..u 

cosh2 AU -,6 

( 1 - ,6) cosh t..~ 
XQ cosh 2 AU -,6 < 

Here the direct transformation from 8" - functions to Jacobian elliptic functions does not give a 

real function. Therefore, another type of transformation is used, as is described by Whittaker 

and Watson (Reference 7, p. 513), since p and Q are real. 

If we apply the transformation 

x-B 
y c x -A 

where 

-1-il+P+Q 
A:= p + Q 
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B 
-1 + i1+p+Q 

P + Q 

c - 2 - P - Q - 2 .,,1 + P + Q 
P + Q 

to Equation 11, we then have 

where 

Accordingly, we obtain 

du 
dcu

l 
" 

1"1 + P sin2 cuI + Q sin4 
CUl 

= dy 

2A. y(1 - y2) (k 12 + k2 y2)' 

Y1 + P + Q := 

- P - 2 + 2 Y1 + P+ Q 

4 Y1 + P+ Q 

i'D-a) (1-,8) 

a+,8-2 1 
4 Y(1-a) (1-,8) +2" 

(14) 

It should be noted that the form of y in Equation 14 yields a real function, when A. 2 ~ 0 and 1 ~ k2 ~ 0 • 

This is made possible by choosing an appropriate sign of the above root function (which is, of 

course, a double-valued function) in such a way that 

i1+P+Q~O; 

this is possible because P and Q are real and satisfy the inequalities 
\ I' 

1 + P + Q 

(p+2)2 cS. 4(1+P+Q) , 

since 

/':, p2 - 4Q cS. 0 . 
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.... .... 

Table 1 

List of Solutions for dWI Xodu, X02 = (1- ax) (1-,8x), x 

Case' Designation x 

ia '1 ~ ,8 ~ a ~ x-I 
sn 2 (,\u, k) 

a - cn 2 (,\u, k) 

sn 2 (,\u, k) 

ib ',8 ~ 1 < a ~ x-II a - ,8cn 2 (,\u, k) 

ic ',8 . -1 I sn 2 ('\u,k) < a < 1 < x 
- 1 - 13 cn 2 (,\u, k) 

ia' 'I < ,8 a < X-I sinh2 AU 

a cosh 2 ,\u - 1 

ib' 
',8 < 1 a < x-I I sin h 2 '\u 

cosh2 '\u - ,8 

Xo 

(a - 1) cn'\u dn AU 

a - cn 2 (,\u, k) 

( a - ,8) cn'\u 

a - 13 cn 2 (,\u, k) 

( 1 - ,8) dn'\u 

1 - ,8 cn 2 (,\u, k) 

a-I 

a cosh 2 ,\u - 1 

(1 -,8) cos h '\u 

cosh2 '\u - ,8 

ii a 1,8, imaginary 
1 ~ x-I 

sn 2 (,\U, k) ,\ 2 (1 - k 2 sn 2 '\u cd 2 AU) 11 (, 
1 - cn2'\ut,\2cd2'\ul 1 - cn2'\ut,\2cd2,\u 2\1 

iii a =,8 1 < x-I 
u 2 1 

1 t u 2 1 t u 2· 

k 2 

13-1 
a-I 

1-,8 
~ 

a-,8 
1-,8 

2-a-j3 ~ 
2 r (l-a)( 1-,8)) 

sin 2 wI cos 2 w. 

A2 Character of the Motion 

a-I I ibration between 

-a- 1I2 ~ sinwI ~ a-l/2 

a - ,8 
I I ibration between 

-a -1/2 ~ sinwI .2: a- 1I2 

1 - ,8 revolution 

critical, limiting case of ia, 

a·- 1 when k 2 -. 1 

1 - ,8 
critica I, I imiting case of both 
ib and ie, when k 2 ~ 1 

revolution 
i( I-a) (1:-,8) 

critical 



Choosing the integration constant U o = 0, and using the addition theorem, we have the following 
expressions: 

x = 
sn2 (AU, k) 

1 - en 2 AU + A 2 cd 2 AU 

and 

A 2 (1 - k 2 sn2 AU cd2 AU) 

X 0 1 - en 2 AU + A 2 cd 2 AU 

Consider the critical case when the descriminant /',. goes to zero. If - P = a + 13 > 2, then k 2 

approaches to unity; and the above expressions, of course, tend to Case ia. On the other hand, if 

- P = a + 13 < 2 , then k 2 ~ 0; and this case tends to be a special case of Case ic. 

(iii) a = 13 = 1 , critical. 

In this case Equation 10 may be expressed directly as 

dw 
sin 2 w 

from which we obtain sin w = 1/ p+1 , or 

= - du , 

U 

where the integration constant is chosen such that Wi = Owhen U 

Xo = cos 2 
Wi 

Table 1 summarizes the data from the three cases. 

O. Consequently, 

THE CASE OF SMAll ECCENTRICITY 

If 130 (~e02) and f are of the same order of magnitude as j ,then the argument given for the equa­
tions of motion becomes somewhat simpler because x is of the order of j so that the terms a 3 x

3 and 

a
4 

X4 in Equations 5 are negligible provided we include terms up to the second order in these equations. 

Moreover, in the expression /LX02 it is sufficient to consider only terms up to the second order. In 

the case of small eccentricity near the critical inclination, yo itself (Equations 5) would be of the 
order of j 2, which is also negligible (Reference 8). 

Thus, in this case, the intermediary solutions descrJbed in a previous section would give suf­

ficient accuracy provided that we take Equations 1 to the second order. 

Now putting 130 = jf3~, f = jf' we have 

12 



from which we obtain 

(a, (3) 

From Equation 8 we have 

where 

If r' > 13
0
' 2 a 2 13;2, a and 13 become imaginary so that this case corresponds to the Case ii . 

On the other hand,f' 5..(30'2 a2(31-2correspondsto Case i or Case iii. The subdivision within Case i 

can be obtained easily 

if then Case ia; 

if 

(3/ 
o < r' < (30' - 4a

2 
then Case ib; 

and if 

(3/ f3~ 
f' > (3~ - 4a

2 
and """2 ' then Case ic. 

Rewriting the above and combining it with the real/imaginary criterion results in the following scheme: 

Case A 

13 



if 

if 

if 

Case B 

if 

if 

if 

/3/ 
/3

0
' <--2a 2 

/3/ 
o < f' < /3 0' then - 4a

2 
• 

. then 

/3/ 
o < f' < /3 0' - -4-' then a 2 

/3 0' 
<-

2 

/3/ /30' 2 a 2 
/30' - 4a

2 
< f' < /3/ • then 

/3 0' 2 a 2 
/3/ < f' • then 

Case ib; 

Case ic; 

Case ii. 

Case ib; 

Case ia; 

Case ii. 

The critical cases are easily obtained by comparing the above scheme with Table 1. In order to be 
able to distinguish between the different cases, a diagram is drawn with the parameters expressed by 

f' and /30' in units of /31/4a 2 (Figure 1). 

Now, the period of sinwl in terms of T is given by 

4K 
T 

where the complete elliptic integral of the first kind, 

K (15) 

Accordingly, if in Figure 1 we take a point which is moving around the critical point iii in a 

counterclockwise direction, we will find the change of the period and of the character of the motion as 

given in Table 2. 

14 



In any case the solutions of Equations 1 up 
to the order considered here, are given in case 

ia by using Equations 3, 7, 9, 12 and 13; 

eos 2 w 

p :: p + X 

where 

sn 2 A.U 

p + /JY2 xo 

~
' ( a - 1) en A.U dn A.U + j - --------

a 2 a-en2 A.u 

,B - 1 
a-=-T ' A.U 

3r-------------------~1--------~ 

2 

0 

CASE B 

ii 

I 
I 
I 
I 
I 
I 
I 
I 

CASE A 

I "" (" 

!/.;11 :; 
i r'-(3 I {3,' I - 0--
, 4"" 

iii 

,/1 
a b I 

I 
I 

2 3 

4 (30' "" 

-----;;r-
Figure 1-Criterion for several cases, expressed by pa­
rameters f' and ,Bo'in units of (1/4)~12ail) The respec­
tive cases are described in Table 1. 

For the other cases, we can easily obtain the results from Table 1 in a similar manner. 

Table 2 

Behavior of the Period and the Character of the Motion. 

Case ii a' a b b b' c c ii 

/ '" i(a-l)~' • 2a 2 j / "" 2:rr 

. 2a
2

j / Period T 00 00 V( 1 - a) f' 

Character* R C L L L C R R R 

. 
,B :: a ,B :: 1 :: 1 ,B :: 

Remark a a 
k :: 1 k :: 0 k :: 1 k :: 0 

'The abbreviations are as follows: E.evolution, ~ritical, and !"ibration. 
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THE CASE OF MODERATE ECCENTRICITY 

In this case, we expand a and f3 into power series in j. From the expressions of Equation 9 it fol­

fows, by neglecting high order terms, that 

a 

(16) 

f3 

Here, except for the critical case, we have only one of two cases: ib or ic 

Case ib: Libration 

From Equations 8 and lOwe obtain 

du 

(17) 

from which, expanding it into a power series in 0 112 , we obtain 

(18) 

up to the order 0 := O( j ) , which corresponds to j 2 in Equation 1. We also have, from Equations 7 

and 8, 

x 

NOW, putting 

(19) 

into Equation 18 and using Xo := en feu to the required order, we have 

16 



It is known that (Reference 9, pp. 58 and 62) 

k- I sin (k sn v) , 0< k 2 < 1 , 

where E( v) is the elliptic integral of the second kind such as 

Accordingly, 

(20) 

Z(v) E(v) - EK- I v , 

s (21) 

E r7T12 

J
o 

(1 - k 2 sin 2 v) 1/2 dv 

and K is given by Equation 15. 

Equation 20 has a form 

AU I = A (1 + u 2 ,us) U + (periodic terms in AU with the period 4K). 

Therefore, by inversion, it follows that 

17 



where 

Thus 

AU = VT - 0"1 fiL k - 1 sin - 1 (k sn VT) 

(22) 

where 

and k2 = (1- 13) (0;- 13)-1 • The other notations, 0"1 and 0"2' are given by Equations 19; s by Equation 21; 
and a, 13 by Equations 16. Then, 

x COS 2 cv = 

Therefore, we have, neglecting higher orders, the following forms as the solutions of Equation 1, 

cos cv 

p 

18 

1 a 3 r 
en AU - - -- j en 2 AU 2 a 2 

2 



where 'AU is given by Equation 22. The order of magnitude adopted here corresponds to the second 

order of Equation 7. 

Case ic: Revolution 

In this case a formula similar to the aforementioned one can be given: 

from which we have 

(23) 

Putting 

v 2a
2 

f-L 1/2 (1 - (3) 1/2 (1 + a 1 f-L 1/2 % K- 1 + a 2 f-L EK- ~ -1 , 

we have, by inversion, 

where 

We note that a 1 f-L 1/2 am AU, the second term of the right side of Equation 23, also contributes to the 
change of the period- contrary to Case ib, where the corresponding term, a 1 f-L 1/2 k- 1 sin - 1 (k sn All) ,'is 

purely periodic provided 0.::: k 2 .::: 1. It is easily seen that, roughly speaking, Case c corresponds to 

Case b where k> 1. At any rate, for the former case we have the following solutions of Equation 1: 

cos w 

19 



p p + x ~
T 1 /3 1 1 f'a 3 

- dn leu - - j - sn 2 leu - - j - dn 2 leu 
a 2 2 a 2 2 a 2 

2 

. j r 1 I Yo j r 3/2 1 a 4 5 a 3 

( 
/3 2) () ~ 2) - J ~ "4 a
2

/3
0 

- /3
0 

sn
2 

leu dn leu + a
2 

- "2 a;- + 8" a
2
2 dn 3 leu . 

GENERAL SCHEME OF THE FURTHER APPROXIMATIONS 

In order to solve the equations with higher order terms, it is first necessary to solve an equation 
such as Equation 6 which contains these terms. Even if the original equations of motion are limited 

to finite terms, the Equation 6-type of equation is, in general, an algebraic equation with cos 2 W as the 
unknown. When combined with the second equation of Equation 4, we find that (d/dT) (cos 2 w) is equal to 

an algebraic function in cos 2 w. The solution of a differential equation of this kind would involve 

Abelian integrals- many valued functions, more complicated than the elliptic integrals. Therefore, 

the solution becomes so complicated that we cannot see the general character of the motion at a first 

glance. However, if we restrict ourselves to the solution of a real function, the complicacy would be 

much reduced. 

In this section we are concerned with the cases where the character of motion is quite similar to 

the former cases, except for slight changes caused by the higher order terms. 

Now, we consider the equations of motion in the form: 

dX alP 
ciT - aWl 

, 

dW
I alP 

dT ax' 
where 

and an (n = 2,3, ... ) is a power series in j , a 2 (s in 2 wI' 0) = a 2 ,0 and is a constant which corresponds 

to the previous case if a 2 ,0 = a 2 • 

From the integral IP - j r = 0, we obtain 

from which 

= TI + 1: b Tin • 
I n 

20 



Thus, we have 

= dT 

or 

If the solution of 7)-1 dW
I 

= du* could be obtained in a simple way, as in the previous cases, then 

using u* as an intermediary parameter would be a direct extension of the previous cases. But this 

integral is, in general, an Abelian integral as we have just stated. A general treatment is not suitable 

for practical purposes. As an alternative, we shall consider the following situations. 

a: Case of moderate eccentricity 

Let a o (sin 2 
GU 1 , 0) = a O,1 sin 2 GU 1 , a O• 1 > 0 ; then the solution of a o (sin 2 wI' 0) - r = 0 is 

(24) 

Now, we denote one of the solutions by a-I 

the first approximation of which is Equation 24. We then have 

where !-1-1 4 r a 2• 0 j • Therefore, 

where ~2 

Now 

du . (25) 

Here we again divide the problem into two subcases: 

Case ib: a> 1 

We have 
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then .. 

or 

(26) 

where gn is a power series in j with the coefficients polynomials in a-I sn2 AU. Therefore, the in­
tegration of Equation 26 is expressed as 

U + 2: B Jcnn AU du = II. 1/2 T n ,1' (27) 

where Bn is a numerical constant. This integration is carried out by the use of the Jacobian elliptic 
function and the Jacobian zeta-function (see Reference 10, p. 164). Thus, the final form is expressed 

by 

AU +. a periodic function of AU = constant· T , 

where the constant factor in the right side is fLt2 A [1 + O( j l]. This is an extension of Equation 20. 

Case ic: a < 1 

From Equation 25 we have 

therefore, 
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or 

In this case we have, instead of Equation 27, 

where the integration will be carried out, as above, by using the Jacobian elliptic function and the 
Jacobian zeta-function. Thus we have 

uta periodic function of u constant . T, 

where the constant factor in the right side again is iLl 1/2 [1 + O( j l]. 

/3: Case of small eccentricity 

In this case the most important factor in r - a o (sin2 wI' j) is not the 1 - a sin 2 wI term, as in the 
previous case, but is (1 - a sin 2 WI) (1 - /3 sin 2 w) , where both a and /3 are of the order of 1. Therefore 
we cannot expand each of the above factors into power series beginning with a constant term. 

Or more concretely, hereafter a o , I is assumed to be of the order of j : a OI = j a~ ,I and, also, it 
is assumed that 

where ao',1 corresponds to /30" and a O,2 to - (1/4) /3/ a 2-
1. Also, we denote by a-I, /3-1 the solutions of 

which approach the solutions of 
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As before, we have 

where fL1 = 4r' a
2

•
0 

j 2. Therefore, 

and, as before, 

. (28) 

Since )(0- 1 dW 1 =du, we have, for case i (except for the critical cases): 

sn 2 (feu, k) 
x (29) 

where fe, k, p, and q can be obtained in Table 1, according to the respective cases. Further, 

£ £; 
(p - q) en 1 feu dn 2 feu 

Xo p - q en 2 (feU 1 k) (30) 

where £1' E2 = 0 or 1, but both are not zero at the same time. 

NOW, from Equation 28 we have 

or 

(31) 

where gn is a polynomial of x. Thus, for n even, gn has the form 

(32) 

where G1 denotes a rational function of the argument. The integration of Equation 32 produces an el­

liptic integral of the third kind, in general, unlike Case a (Reference 10, p. 164). On the other hand, 
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for n odd, 

e: E 
gn G2 {sn 2rcu) en 1 rcu dn lrcu, 

the integration of which requires only the Jacobian elliptic functions. 

For Case ii, however, the equations corresponding to Equations 29 and 30 have the different 

forms; but all the functions gn have a single form such as Equation 32. 

In any case, we have, after integration of Equations 28 or 32, the form 

rcu + a periodic function of rcu = constant· T, 

from which we obtain 

rcu = constant· T + a periodic function of constant· T. 

It should be noted that the odd power terms in Equation 31 do not contribute any change to the 

period of lib ration, where e: I = 0, which corresponds to the case of libration. 

DISCUSSION 

The denominator of the right side of Equation 11 is a square root of a quartic of x. A general 
treatment of such a case was carried out by Andoyer (Reference 11) and extended by Hagihara (Refer­
ence 12) in connection with the libration problem of asteroids (see also Reference 13). Both of them 
used the s-function of Weierstrass; nevertheless, we feel the integration form described here is more 
suitable for this special case, owing to the fact that only real functions are involved. For example, if 
f3 ~ 0 in Equation 10, 

du , 

where k2 = a, from which, if 0 < a< 1, we have sin WI = sn u, which is, of course, a limiting case of 

ie, etc. Thus the present work represents some natural extensions of the derivation of well-known 

Jacobian elliptic functions. 

For the numerical computation, integrating Equation 17 in the literal form may not necessarily 
be the best way, for a direct numerical integration of Equation 17 is more effective, since its de­
nominator generally does not become very small-otherwise, the numerical integration would lose its 

validity. However, the problem of inversion of a numerical function still would remain. 
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CONCLUSION 

Equations 1, which have terms up to second order of j, have been solved both for the case of 

small eccentricity and for moderate eccentricity. In the former, the intermediary solutions them­

selves are sufficient for the present discussion, since the solutions have an accuracy of the order of 
1 for cos w (neglecting the order of j) and of the order of j for p (neglecting j 2). This accuracy cor­
responds to the order of j 2 in the Hamiltonian, since p has the factor of j and the argument of the 
solution is neither T alone nor multiplied by a constant factor of order of 1, but T multiplied by that 
of order j. 

On the other hand, in the second or normal cases, the solutions have the accuracy of order j for 
cos wand j 3/2 for p, which corresponds to j 2 in the Hamiltonian. 
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Appendix A 

List of Symbols 

Jacobian elliptic functions (see pages 12, 8, and 9) 

Parameter of Weierstrassian elliptic function (see page 6) 

Complete elliptic integral of the second order (see page 17) 

First order elliptic function associated with the (SJ -function (see Reference 6. 

and page 7) 

Harmonic coefficient of the earth's potential (see page 2) 

Modulus of the Jacobian elliptic function (see pages 7 and 11) 

Complete elliptic integral of the first order (see page 14) 

Weierstrassian elliptic function (see page 6) 

Jacobian elliptic function (see page 8) 

Time 

Period of the solutions (see page 14) 

u will equal t, except for the constant factor, if higher orders are neglected 
(see page 13) 

Constants 

Energy constant (see page 4) 

Constant factor in the argument of the Jacobian elliptic functions (see 
page 12) 

Variable related to the eccentricity (see Reference 5 and page 2) 

Mean argument of the perigee 

w f ' wg ' wh Semi-periods associated with the Weierstrassian elliptic function (see page 7) 
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