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ABSTRACT

The purpose of this study is to infer the effects of
second stage engine characteristics on trajectory shape,
welght at cutoff, and optimum control histories of the
second stage for a two stage vehicle fulfilling circular
orbit mission criteria. The first stage was taken to be
an S-I booster and the second stage 1s defined by an
inltlal thrust to weight ratio, F/w , and a specific impulse,

value, Cilrcular orbit missions were considered at 100,

8 and 300 km altitudes.

By the consideration of the value of a parameter at
the terminal point of the trajectory, we can systematically
study the geometrical shape of the trajectory.

Welght at cutoff is shown as a function of F/wy, for
different Igp values, circular injection altitudes, and
first stage gllt programs.,

Examples of optimum control histories for the second
stage are glven,
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IN STAGE CHARACTERISTICS ON OPTIMIZED TRAJECTORY SHAPING

PART I: TWO STAGE VEHICLE INJECTION INTO CIRCULAR ORBITS

By M. C. Davidson, Jr.

SUMMARY

The purpose of this study 1is to infer the effects of
second stage englne characteristics on trajectory shape,
welght at cutoff, and optimum control histories of the
second stage for a two stage vehicle fulfilling circular
orbit mission criteria. The first stage was taken to be
an S-I booster and the second stage 1s defined by an
initial thrust to welght ratio, F/wo, and a specific impulse,
Isn, value. Cilrcular orblt missions were consldered at 100,
208, and 300 km altitudes.

By the consideration of the value of a parameter at
the terminal polint of the trajJectory, we can systematically
study the geometrical shape of the trajectory.

Welght at cutoff is shown as a function of F/wg for
different Isp values, clrcular injectlon altitudes, and
first stage %ilt programs.

Examples of optimum control histories for the second
stage are glven,






SECTION I. PROBLEM DESCRIPTION AND OUTLINE OF APPROACH

We are to study the effects of second stage engine
characteristics on trajectory shape, weight into orbit,
and optimum control histories of a two stage vehicle ful-
filling circular orbit mission criteria. In particular,
the first stage is taken to be an S-I booster flying in
two dimensilons a one parameter set of angle of attack pro-
grams 1n the environment of a spherical non-rotating earth
with atmosphere. The second stage initial conditions are
obtained by addlng the earth's rotational effect at cutoff
of the first stage under the assumption of a ninety degree
azimuth at launch. The second stage 1s to fly a two dimen-
sional calculus of varlation path, minimizling the time of
flight, in the gravitational field of a spherilcal earth
free of atmosphere. In a (r, v, §) coordinate system,
the particular three first stages we are to study give
initial conditions for the second stage of

|
Vo = 76.87 (km) Yo = 70.37 (km) Yo = 63.21 (xm)
Vo = 2884 (m/s) Vo = 2937 (m/s) vo = 2991 (m/s)p (1)
3o = 63.8 (deg) 30 = 68.1 (deg) S0 = 72.4 (deg)

where y is the altitude, y = r - Ry, Rg beilng the radlus of
the earth. We will refer to these first stage end condltions
by their earth-fixed theta values, %1 = 60, 65, and 70 degrees,
respectively.

We wish to connect these initial conditions, (1), through
a continuous burning second stage characterized by an 1nitial
thrust to weight ratio, F/wo, and a specific impulse, Igp,
value to circular orbit conditions at altitudes of
Ve = 100, 200, and 300 km, The variation in 1ift-off welght
produced by varying the welght of the second stage 1n the
form F/Wo is ignored. The selection of a ¥7, F/wo, Isp, and
ye leads to a discrete minimal time calculus of variation
second stage trajectory. The method of constructing such a
trajectory is a numerical 1solation procedure determining
the initial values of the angle of attack and its time
derivative, @ and dg. This i1s a numerical procedure for
solving the two point boundary value problem. The four
parameters of the study are taken to have the following
restriction on thelr values:






31 = 60, 65, and 70 (deg) )
.5 S Ffug & 2.0 (2)
Isp & 1500 (sec)
Yo = 100, 200, and 300 (km)
/

The followlng section deals with the physlical shape of
the trajectory.
SECTiON II. TRAJECTORY SHAPE
This section deals with the geometrical shape of the
trajectory. In order to explaln the classification, let
us conslider the equations of motion for the second stage.
In a (r, v, §) coordinate system, they are as follows:

r =V cos §

v = F/m cos a - g cos #§ (3)

.
i

1 v2
;7-{F/m sin a + (g - =) sin %}

where F 1s the thrust magnitude, m is the instantaneous
mass, and g is the magnitude of the local gravity force.
Differentiating the first of (3) gives

P - Vcos $-v §sin § . (4)

Now let us examine the second stage trajectory as it
enters the injection or cutoff polnt. The conditions for
clrcular Injection are

2
Ve

9 = 90 deg and g = o | (5)



where r, 1s the radius of injection. Now let us evaluate
(3) and (4) at this point common to trajectory and orbit.
We obtain from (3)

roe =0, V= é; cos &, , and 50 = - v sin a, , (6)
and (4) becomes

re = - Vg S . (7)
Combining (6) and (7) we have

gc = - %; sin Qo - (8)

Now assume we have applied the calculus of variations
to minimize the time of flight subject to the differential
equation constraints, (3), and with the particular values
of yec, $1, F/wgy, and Igp choosen, the solution to the two
point boundary value problem ylelds a trajectory with an
angle of attack at cutoff, ac, of zero. Equation (8)
states r¢c = 0, or that the trajectory is flat in the
nelghborhood of cutoff; here we assume that the range on
the trajectory is a monotonic increasing function of time.
Ef we assume conditions which lead to an @¢ > O, hence
e < 0, the trajectory 1s concave down at cutoff. In this
cage the vehicle entered the circular orbit from below.

In a simllar manner if ¥; < O we have a concave up tra-
Jectory entering the orbit from above.

Next, let us Introduce a notation to express the general
character of the trajectory shape: we say a trajectory is
of class Tp 1f 1t has crossed the desired free flight orbit,
in this case a circle, exactly n times prior to cutoff.
Since in our study all initial altitudes of the second stage
are less than the lowest circular altitude considered (100 km),
the To, Tp, T4... trajectories inject from below and have
e > 0. Similarly the T3, Tz, Ts... trajectories inject from
above having ¥¢c < 0. TLet us further denote a class dividing
trajectory (ec = 0) by Tij, where this trajectory divides



trajectories of class T4 and of class Tj (i<J). For example,
class To has «@¢ > 0, and class Ty has o¢ < 0, then the
dividing trajectory would be designated by To:1 and have

¥c = 0. Here, of course, we are assumlng the necessary
functional properties between points on the trajectory and
g,

For discussion let us fix the values of y¢, 41, and
F/wWo and examlne the family of trajectorlies produced by
allowlng Isp to take on different values. The study then
proceeds by considering «¢ as a function of Isp, noting the
values of Isp for which @c¢ = 0. These are the dividing
trajectories. Here we should say that

d .Q/C
— £ 0

d Isp

Figure 1 gives, as an example, this information for
Ye = 200 km, $1 = 65 deg, and F/wg = .5 . It is noted

that two such dividing trajectories are encountered in the
range of Isp investigated, a Toi at Igsp = 160 and a Tyz

at Isp = 625. Thus, we have the following classes of
trajectories:

To , Igp < 160
Ty , 160 < Igp < 625

T2 3 625 < Isp <

where the upper limit for T, type trajectories is not
encountered. Figure 2 gives altitude as a function of

range for this case. The broken lines indicate dividing
trajectorles, and the solid lines indicate typical examples
for the classes encountered. Filgures 3 through 11 gilve

@c as a function of Igp for values of the parameters con-
sistent with (2). These figures are to be compared with
Figures 12 through 26 which illustrate the trajectory shapes.

The case of F/wy = .5 ylelds extreme convergency problems
in the 1solation scheme for higher values of Igp: thus, some
of the information for such cases is missing. Eor all values
of F/wg, Isp was taken as low as practically possible.



In the next section, we give the weight at cutoff
information.

SECTION III., WEIGHT AT CUTOFF

In this section we are to lnvestigate cutoff welght
for values of the parameters consistent with (2). Let us
consider the normalized cutoff weight, w¢/wo, where we is
the actual cutoff weight and wg is the initial weight of
the second stage, as a function of F/Wo. This information
is presented in Figures 27 through 47. Each figure corre-
sponds to a different combination of the altitude of
Injection, yec, and the Igp value, while the curves of each
figure are characterized by a first stage, $7.

We observe 1n many cases that there occurs a maximum
of we/Wo with respect to F/wo for fixed yc, Igp, and 1
values. The optimization of wc/wo with respecg to §1 is
not presented due to the small range of $1 considered.

Although not included in this report, we/wo as a
functlon of Igp reveals a monotonlc increasing behavior,

The following section gives examples of the control
histories.

SECTION IV, CONTROL HISTORIES

Here, we glve typical examples of the angle of attack
(¢) and chi (x) as a function of time on the trajectory.
Chi 1s the angle measured from the vertical at launch to
the vehicle longitudinal axls and is related to o as

X =¢ + & +a,

where ¢ 1is the central angle. Figures 48, 49, and 50 give
examples of a as a function of time and Figures 51, 52,

and 53 give the corresponding x functions. It 1s noted

that for high F/wy and high Igp values X is nearly linear
while this 1s not true for eitﬁer low F/wo or low Isp values.
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