A MATHEMATICAL TREATMENT OF THE PROBLEM OF DETERMINING THE EIGENVALUES ASSOCIATED WITH A PARTITION FUNCTION OF AN ATOM IN THE INTERIOR OF A PLASMA

by E. Baylis Shanks
George C. Marshall Space Flight Center
Huntsville, Alabama
A MATHEMATICAL TREATMENT OF THE PROBLEM OF DETERMINING
THE EIGENVALUES ASSOCIATED WITH A PARTITION FUNCTION
OF AN ATOM IN THE INTERIOR OF A PLASMA

By E. Baylis Shanks

George C. Marshall Space Flight Center
Huntsville, Alabama

TECHNICAL NOTE D-1111
A MATHEMATICAL TREATMENT OF THE PROBLEM OF DETERMINING THE
EIGENVALUES ASSOCIATED WITH A PARTITION FUNCTION OF AN ATOM
IN THE INTERIOR OF A PLASMA

By E. Baylis Shanks

SUMMARY

This paper is concerned with the determination of the numerical values of some of
the eigenvalues and the total number of eigenvalues of the differential equation \(x^2 p'' + [2dx^{-x} - k (k+1) - u^2 x^2] p = 0 \). The problem arises in treating the effective ion­
ization potential of an atom in the interior of a plasma, but is essentially a mathematical
problem.

The problem is first treated from a theoretical standpoint. Then numerical tech­
niques are developed that lead to approximations of the eigenvalues. An approximate
inequality is obtained for the number of eigenvalues and an approximate equation is ob­
tained for the eigenvalues. Tabular data are shown listing a total of 55 of these eigen­
values for nine different cases.

I. INTRODUCTION

The problem treated in this note arises in the context of theoretical physics. It
is concerned with the partition function of an atom in the interior of a plasma as dis­
cussed by G. Ecker and W. Weizel. (See the Reference at the end of this note.) The
following is quoted from the cited paper: "As regards the partition function there is a
well-known divergence difficulty whose elimination is of interest both numerically and
as a matter of principle. Existing attempts to limit the number of terms either start
from impermissible assumptions or content themselves with a crude cutting-off of the
series of terms. Measurements of the effective ionization potential by various proce­
dures have given results that are in marked contradiction with each other. In the way
of a theoretical determination of the lowering of the ionization potential, only rough es­
timates are available." The difficulty mentioned in this quotation is primarily that of
determining the eigenvalues of the differential equation.
\[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{2m}{h^2} (E + \frac{Ze^2}{r} e^{\frac{-r}{D}}) - \frac{L(L+1)}{r^2} R = 0,
\]

where \(m, h, E, Z, D, L \) are constants having special physical significance as explained in the cited paper.

This note will be restricted to a mathematical treatment of the problem of determining the eigenvalues of a differential equation equivalent to the one above. The methods used are applications of classical procedures commonly used in mathematics. Unless explicitly defined, no symbols will be used other than the usual symbols of mathematics.

Acknowledgement is made to Mr. Neal Shepard and to Mr. A. Anderson of the General Electric Computation Unit at Marshall Space Flight Center in Huntsville, Alabama for their work in programming the evaluation of large determinants and a routine based on a recursion formula, respectively.

II. DISCUSSION OF THE DIFFERENTIAL EQUATION

The differential equation mentioned in the introduction can be transformed by substitution to the following form:

\[
x^2 P'' + \left[2dx e^{-x} - k(k+1) - u^2d^2x^2 \right] P = 0,
\]

where \(d, k, u \) are constants and the equation is subject to the boundary conditions \(P(x) \to 0 \) as \(x \to 0 \) and \(P(x) \to 0 \) as \(x \to \infty \). The parameter \(d \) is to assume positive values which may be taken as integral powers of ten; the parameter \(k \) is to assume non-negative integral values; and the parameter \(u^2 \) gives the eigenvalues that will cause the solution \(P(x) \) to satisfy the boundary conditions. It may be noted that a sign factor has been introduced so that the eigenvalues will be positive in our treatment, whereas they are negative in the treatment by Ecker and Weizel, which treatment concerns the case \(k = 0 \) and eliminates the term involving \(k \) in equation 1.

This equation is a second order differential equation with a regular singular point at the origin and no other singularities in the finite complex plane. There is an irregular singular point at infinity and the object is to find the values of \(u^2 \) (or equivalently the values of \(u \)) such that the boundary condition \(P(x) \to 0 \) as \(x \to \infty \) along the real axis is satisfied. The solution \(P(x) = 0 \) is ruled out as trivial in the following.

The roots of the indicial equation are readily found to be \(-k \) and \(k + 1 \). Since these are integers, only the largest, namely \(k + 1 \), leads to an analytic solution. Thus the smallest exponent of \(x \) in the power series for \(P(x) \) must be \(k + 1 \). From this it follows that \(P(0) = 0 \) as required by one of the two boundary conditions (since \(k = 0, 1, \ldots \)).
From equation 1 and the condition \(P \to O \) as \(x \to \infty \), we see that \(P'' - u^2d^2P = 0 \) will roughly determine \(P \) for extremely large values of \(x \). Since the general solution of this equation is \(ae^{ux} + be^{-ux} \), the condition that is to be satisfied requires the choice of \(e^{-ux} \) as a rough approximation to \(P(x) \) near infinity. This suggests that the substitution \(P(x) = e^{-ux}y \) be made in equation 1. This leads in a straightforward manner to the equation

\[
x^2y'' - 2 u dx^2 y' + [2dx e^{-x} - k (k+1)] y = 0.
\]

Taking into account the substitution and our previous knowledge about equation 1, we substitute the series \(y = \sum a_i x^i \) into equation 2, which gives the following recursion formula for the determination of the coefficients in the power series for \(y \).

\[
\frac{i (i+2k+1)}{2d} a_i+1 = \left[(k+i) u-1 \right] a_i + \sum_{j} \frac{(-1)^{i+1} a_{i-j}}{j!},
\]

where \(i \geq 1 \) and only the first term on the right side of 3 is to be used when \(i = 1 \). It is convenient to set \(a_i = (-1)^{i+1} b_i \), \(u_i = (k+i) u-1 \), and \(i(i+2k+1) = 2dd_i+1 \) in equation 3, which leads to the formula

\[
d_{i+1} b_{i+1} = -u_i b_i + \sum_{j} \frac{b_{i-j}}{j!}.
\]

From this result, it will be shown that \(b_{i+1} \) is a polynomial in \(u \) of degree \(i \). We may take the first coefficient \(b_1 \) as an arbitrary but fixed nonzero constant. Then \(d_2 b_2 = 1 - u(k+1)b_1 \), a polynomial in \(u \) of degree one with the root \(u = \frac{1}{k+1} \). Similarly, the first term on the right side of equation 4, in each case, is one degree higher in \(u \) than \(b_1 \). For each root \(u \) of this polynomial, equation 4 holds for \(i = 1, 2, \ldots, i-1 \) and the equation

\[
O = -u_i b_i + \sum_{j} \frac{b_{i-j}}{j!}
\]

holds. For the system of equations 4 and 5 to hold simultaneously and yield non-trivial solutions, it is necessary and sufficient that the determinant of the coefficients vanish, namely
where we have set $e_j = \frac{1}{j!}$. The determinant P_i in equation 6 is a polynomial in u of degree i and each root of $b_{i+1} = 0$ is a root of $P_i = 0$, and conversely. Hence, the two polynomials differ only by a constant multiple. Comparing the leading coefficients, we readily deduce the relation

$$P_i = d_2 d_3 \ldots d_{i+1} b_{i+1}. \quad (7)$$

By a careful analysis of the determinant P_i, it is found that the coefficients of u^i, u^{i-1}, u^{i-2}, and u^{i-3} are respectively

$$(-1)^i \frac{(k+i)!}{k!}, \quad (-1)^{i-1} \frac{(k+1)!}{k!} \sum_{1}^{i} \frac{1}{k+j},$$

$$(-1)^{i-2} \frac{(k+i)!}{k!} \left[\sum_{j>m} \frac{1}{(k+m)(k+j)} + \sum_{1}^{i-1} \frac{e_j}{(k+j)(k+j+1)} \right],$$

$$(-1)^{i-3} \frac{(k+1)!}{k!} \left[\sum_{p>j>m} \frac{1}{(k+m)(k+j)(k+p)} + \sum_{1}^{i-2} \frac{e_2 d_j + d_{j+2} d_{j+1}}{(k+j+2)(k+j+1)(k+j+1)} \right].$$

It follows that the sum of the roots of P_i is $\sum \frac{1}{(k+j)}$; the sum of the products of the roots taken two at a time is

$$\sum_{j>m} \frac{1}{(k+m)(k+j)} + \sum_{1}^{i-1} \frac{d_{j+1}}{(k+j)(k+j+1)}.$$
which simplifies to

\[
\frac{i(i-1)}{2d(k+i)} + \sum_{j>m} \frac{1}{(k+m)(k+j)};
\]

everything else.

the sum of the squares of the roots is

\[
-\frac{i(i-1)}{d(k+i)} + \sum_{j=1}^i \frac{1}{(k+j)^2}
\]

since \(\sum x_j^2 = (\sum x_j)^2 - 2 \sum_{j>m} x_m x_j\). These considerations provide precise information concerning the roots. The roots deviate about the values \(\frac{1}{k+j}\) and the deviations have a net sum of zero so that some are positive and some are negative (the positive deviations might be accounted for mostly because of pairs of conjugate imaginary roots).

The average deviation of the squares of the roots from the values \(\frac{1}{(k+j)^2}\) is \(\frac{i(i-1)}{d(k+i)}\), which definitely suggests the presence of imaginary roots in many cases for \(i > 1\). When \(i\) is increased by 1, a new root is introduced and the net effect on the sum of the roots is as though the roots of \(P_{i+1}\) are \(\frac{1}{k+i+1}\) and the roots of \(P_i\). However, each real root of \(P_i\) is greater than \(\frac{1}{k+i}\) as is verified by an analysis of the determinant \(P_1\), which has a positive value when \(u \leq \frac{1}{k+1}\). This may be shown by substituting such a value in \(P_1\) for \(u\) and successively eliminating the \(-d_j\), leaving only positive values down the main diagonal and zeroes everywhere below it; or, in case \(u = \frac{1}{k+1}\), one can eliminate all the \(-d_j\) except \(-d_i\) and, as before, \(P_1\) has a positive value. Since the eigenvalues are given by \(u^2\) and \(\sum u^2 = -\frac{i(i-1)}{d(k+i)} + \sum \frac{1}{(k+j)^2}\), we have this condition on the potential eigenvalues. The sum of the products of the roots taken three at a time is

\[
\sum_{p > j > m} \frac{1}{(k+m)(k+j)(k+p)} + \frac{1}{8d^2} \sum_{j=1}^{i-2} \frac{j(j+1)(j+2k+1)(j+2k+2)}{(j+k)(j+k+1)(j+k+2)},
\]

the second summation having the value \(\frac{(i-2)(i+1)}{2}\) when \(k=0\), so that the net deviation in this case is \(\frac{(i-2)(i+1)}{16d^2}\). Considering all of these facts, there is an indication that for \(d\) large, the deviations are small and vice versa, that there are a few large positive deviations in the most recently introduced roots and in the case of conjugate imaginary roots, and that the less recently introduced roots (which are the largest) tend to stabilize slightly below a value \(\frac{1}{k+j}\) at the square root of a potential eigenvalue. One might...
take $u^2 = \frac{1}{(k+j)^2} - \frac{1}{d}$ as an approximation to an eigenvalue since the average deviation of the squares of the roots from the values $\frac{1}{(k+j)^2}$ is $-\frac{i-1}{d(k+i)}$, which approaches $-\frac{1}{d}$ as i becomes infinite. This suggests the inequality $d \geq (k+j)^2$ as a first approximate limit to the number of eigenvalues where d is finite. This will be reconsidered later.

The coefficient $2d e^{-x}$ of one term in y or equation 2 is approaching zero at a weakly varying rate for extremely large values of x, when compared to the other coefficients. It might be expected that a reasonable approximation would be obtained by treating e^{-x} as a constant, leading to the equation

$$d_{i+1} a_{i+1} = [(k+i) u - e^{-c}] a_i$$

and the eigenvalues

$$u = \frac{e^{-c_n}}{k+n},$$

where the notation c_n indicates that the constant varies with n, which takes into account the fact that 8 is only an approximation to equation 3. Through the first two terms, when e^{-c_n} is expended into a Taylor series, this agrees with the discussion for $k=0$ of Ecker and Weizel provided we take c_n equal to $\frac{1}{d}$ $(k+n)^2$. Thus we have as a second estimate to the eigenvalues

$$u = \frac{1}{k+n} e^{-\frac{(k+n)^2}{d}}.$$

To check these approximations further, the determinant equation 6 was solved numerically for $i = 1, 2, \ldots, 10$. In addition, the values so obtained were further refined by evaluations of the determinants $P_{20}, P_{40},$ and P_{41}. Finally a routine was devised based on the recursion formula 4 and the calculations made including the cases $i = 1, 2, \ldots, 75$. The latter routine was especially efficient, giving information in 75 cases instead of one case and in about one-fifth of the time taken for the one case.

III. CONCLUDING REMARKS

On the basis of the above and other considerations, the following is presented as the best estimate of the values of the eigenvalues

$$u = \frac{1}{k+n} - \frac{k+n}{d} + \frac{(k+n)^2 - 2k(n+1)}{4d^2}.$$
The values u of equation 10 are thought to be a little more than the true values, leading to the implication that the number of eigenvalues are limited by the following inequality.

$$2d \geq (k+n)^2 + \left| 2k(n+1)(k+n) \right|^{\frac{1}{2}}, \tag{11}$$

where n is to take positive integral values and satisfy the inequality. The number of eigenvalues is not greater than the maximum such n (this assumes the correctness of the previous remark).

The numerical results obtained as explained above are summarized in the following tabular data. The values taken for d have been used on the basis of numerical convenience in machine computation. The values themselves are not as important as the general magnitude of this parameter, which may take on any non-negative real value. The parameter k, on the other hand, must be a non-negative integer. The tabular data could be expanded on the basis of the techniques already developed. In fact, the predictor equation 10 may be sufficiently accurate for most cases, the truncation error apparently being of the order of d^{-3} (this remark is based on theoretical reasons as well as on the tabular data below).

<table>
<thead>
<tr>
<th>$k = 0$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 0$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99900025</td>
<td>0.49800199</td>
<td>0.33034004</td>
<td>0.24601583</td>
<td>0.19503074</td>
<td>0.16071941</td>
</tr>
<tr>
<td>0.3303384</td>
<td>0.24601383</td>
<td>0.19502323</td>
<td>0.15271597</td>
<td>0.12285380</td>
<td>0.12136559</td>
</tr>
<tr>
<td>0.16071640</td>
<td>0.12454326</td>
<td>0.12285380</td>
<td>0.12136559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.13593672</td>
<td>0.12454326</td>
<td>0.12136559</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In general, as i increases in P_i, the roots for k and n large make their initial appearance. The tabular data indicates a definite trend in agreement with inequality 11 and equation 10 agrees with the data in a remarkable way, as one may verify by evaluation of u in equation 10. The estimate due to Ecker and Weizel is equivalent to

$$\frac{1}{n} - \frac{n^3}{6d^2} - \ldots,$$

if we take x_0 to be $\frac{n^2}{d}$, which gives the most favorable choice in
general. It may be seen from the tabular data that by our choice of \(x_0 \), the results are good but do not give an estimate as good as equation 10.

For each such eigenvalue, the eigenfunction \(F_n \) is given by the equation

\[
F_n = e^{-ux} \sum_{j=1}^{\infty} (-1)^{j+1} b_j x^{k+j},
\]

\[(12) \]

where \(b_j \) is an arbitrary constant not zero, \(b_{j+1} = P_j (d_3 \ldots d_{j+1})^{-1} \), \(d_{j+1} = \frac{1}{2d} \) \(j(j+2k+1) \), \(P_j \) is the determinant in equation 6, \(u \) is determined by equation 10 (approximately), and \(n \) satisfies the restriction 11.
REFERENCE