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TECHNICAL NOTE D-1111 

A MATHEMATICAL TREATMENT OF THE PROBLEM OF DETERMINING THE 
EIGENVALUES ASSOCIATED WITH A PARTITION FUNCTION OF AN ATOM 

IN THE INTERIOR OF A PLASMA 

By E. Baylis Shanks 

SUMMARY 

This paper is concerned with the determination of the numerical values of some of 
the eigenvalues and the total number of eigenvalues of the differential equation :x2p" + 
[2dxe-x - k (k+1) - u2d2x2 J P = O. The problem arises in treating the effective ioni
zation potential of an atom in the interior of a plasma, but is essentially a mathematical 
problem. 

The problem is first treated from a theoretical standpoint. Then numerical tech
niques are developed that lead to approximations of the eigenvalues. An approximate 
inequality is obtained for the number of eigenvalues and an approximate equation is ob
tained for the eigenvalues. Tabular data are shown listing a total of 55 of these eigen
values for nine different cases. 

I. INTRODUCTION 

The problem treated in this note arises in the context of theoretical physics. It 
is concerned with the partition function of an atom in the interior of a plasma as dis
cussed by G. Ecker and W. Weizel. (See the Reference at the end of this note.) The 
following is quoted from the cited paper: "As regards the partition function there is a 
well-known divergence difficulty whose elimination is of interest both numerically and 
as a matter of principle. Existing attempts to limit the number of terms either start 
from impermissible assumptions or content themselves with a crude cutting-off. of the 
series of terms. Measurements of the effective ionization potential by various proce
dures have given results that are in marked contradiction with each other. In the way 
of a theoretical determination of the lowering of the ionization potential, only rough es
timates are available." The difficulty mentioned in this quotation is primarily that of 
determining the eigenvalues of the differential equation 
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where m, h, E, Z, D, L are constants having special physical significance as explained 
in the cited paper. 

This note will be restricted to a mathem9.tical treatment of the problem of deter
mining the eigenvalues of a differential equation equivalent to the one above. The methods 
used are applications of classical procedures commonly used in mathematics. Unless 
explicitly defined, no symbols will be used other than the usual symbols of mathematics . 

Acknowledgement is made to Mr. Neal Shepard and to Mr. A. Anderson of the 
General Electric Computation Unit at Marshall Space Flight Center in Huntsville, Ala
bama for their work in programming the evaluation of large determinants and a routine 
based on a recursion formula, respectively. 

II . DISCUSSION OF THE DIFFERENTIAL EQUATION 

The differential equation mentioned in the introduction can be transformed by sub
stitution to the following form: 

( 1) 

where d, k, u are constants and the equation is subject to the boundary conditions P(x) 
-0 as x -0 and P(x} -0 as x - 00 . The parameter d is to assume positive values 
which may be taken as integral powers of ten; the parameter k is to assume non-negative 
integral values; and the parameter u2 gives the eigenvalues that will cause the solution 
P( x} to satisfy the boundary conditions. It may be noted that a sign factor has been in
troduced so that the eigenvalues will be positive in our treatment, whereas they are 
negative in the treatment by Ecker and Weizel, which treatment concerns the case k = 0 
and eliminates the term involving k in equation 1. . 

This equation is a second order differential equation with a regular Singular point 
at the origin and no other Singularities in the finite complex plane. There is an irreg
ular Singular point at infinity and the object is to find the values of u2 (or equivalently 
the values of u) such that the boundary condition P( x) - 0 as x - 00 along the real axis 
is satisfied. The solution P (x) = 0 is ruled out as trivial in the following . 

The roots of the indicial equation are readily found to be -k and k + 1. Since these 
are integers, only the largest, namely k + 1, leads to an analytic solution. Thus the 
smallest exponent of x in the power series for P(x) must be k + 1. From this it follows 
that P(O) = 0 as required by one of the two boundary conditions (since k = 0, 1, . .. ). 
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From equation 1 and the condition P ~ 0 as x - 00 , we see that pn - u2d2P = 0 
will roughly determine P for extremely large values of x. Since the general solution of 
this equation is aeudx + be -udx, the condition that is to be satisfied requires the choice 
of e-udx as a rougn approximation to P(x) near infinity. This suggests that the substi
tution P( x) = e -udxy be made in equation 1. This leads in a straightforward manner to 
the equation 

( 2) 

Taking into account the substitution and our previous knowledge about equation 1, we sub
stitute the series y = 2:ai 0+1into equation 2, which gives the following recursion for
mula for the determination of the coefficients in the power series for y. 

i (i+2k+1) 
2d ai+1 = [ (k+i) u-1] 

i-1 
a. + 2: 

1 1 
( 3) 

where i 2: 1 anq only the first term on the right side of 3 is to be used when i = 1. It is 
convenient to set ~ = (-1)i+1bi' ui = (k+i)u-1, and i(i+2k+1) = 2ddi+1 in equation 3, 
which leads to the formula 

i-1 b .. 
2: 1-J 
1 j!. 

( 4) 

From this result, it will be shown that bi+1 is a polynomial in u of degree i. We may 
take the first coefficient b i as an arbitrary but fixed nonzero constant. Then d2b2 = 1 -
u(k+1)b1> a polynomial in u of degree one with the root u = k:1' Similarly, the first 
term on the right side of equation 4, in each case, is one degree higher in u than bi . 
For each root u of this polynomial, equation 4 holds for i = 1, 2, ... , i-1 and the 
equation 

i-1 
0= -u.b. + 2: 

1 1 1 
( 5) 

holds. For the system of equations 4 and 5 to hold simultaneously and yield non-trivial 
solutions, it is necessary and sufficient that the determinant of the coefficients vanish, 
namely 
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( 6) 
o -d2 

where we have set ej = +. The determinant Pi in equation 6 is a polynomial in u of 
degree i and each root of b1+1 = 0 is a root of Pi = 0, and conversely. Hence, the two 
polynomials differ only by a constant multiple. Comparing the leading coefficients, we 
readily deduce the relation 

( 7) 

By a careful analysis of the determinant Pi, it is found that the coefficients of ui , ui - i , 
ul - 2 , and ui - 3 are respectively 

i 
(-1) i (~~i)! , (_1)i-i (k+i) L i -- , 

k! k+j 

[ iL 
i 

i-i 

l (-1) i-2 {k+i) 1 
~ 

dj+i 
k (k+m) (k+j) 

+ 
(k+j) (k+j+i) 

1 

! [~ 
p>j>m 

e2 d. 2 d. 1 J J+ J+ • 
(k+j+2) (k+j+ 1) (k+J) 

1 
+ 

i-2 

~ 
i 

(k+m) (kf.j) (k+p) 

It follows that the sum of the roots of Pi is L' (k~') .; the sum of the products of the 
roots taken two at a time is i ) 

i-1 d 
1 j+1 

j~m (k+m) (k+j) + ~ (k+j) (k+j+1) 
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which simplifies to 

i(i-1) 
2d(k+i) + L 

j>m 

the sum of the squares of the roots is 

i (i-i) 
d (k+i) 

1 
(k+tn) (k+j) 

i 

+ L 
1 

1 

since L x/ = ( L Xj) 2 - 2 o~ XmXj. These considerations provide precise information 

concerning the roots. The ~;:ts deviate about the values k:j and the deviations have 

a net sum of zero so that some are positive and some are negative (the positive devi
ations might be accounted for mostly because of pairs of conjugate imaginary roots) . 

The average deviation of the squares of the roots from the values (k:j) 2 is - ~(~+i) , 

which definitely suggests the presence of imaginary roots in many cases for i > 1. When 
i is increased by 1, a new root is introduced and the net effect on the sum of the roots is 

1 
as though the roots of POi are k 0 1 and the roots of P1o. However, each real root of 

1+ +1+ 

P10 is greater than 1 10 
<:+1 

positive value when u ::; 

as is verified by an analysis of the determinant Pi. which has a 
1 

-k-+-l-o -. This may be shown by substituting such a value in Pi 

for u and successively eliminating the -dj , leaving only positive values down the main 

diagonal and zeroes everywhere below it; or, in case u = k+~ ,one can eliminate all 

the -dj except -di.and, as before, Pi hai? a positive value. Since the eigenvalues are 

b 2 d ~ 2 i(i-i) ~ 1 h h O d°ti th given yuan u u = - "d(k+i) + U (k+j) 2 ,we ave t IS con 1 on on e po-

tential eigenvalues. The sum of the products of the roots taken three at a time is 

L 1 
p> j> m (k +m) (k+j) (k+p) 

1 
+ 8d2 

i-2 

L 
1 

j (j+l) (j+2k+i) (j+2k+2) 
(j+k) (j+k+i) (j+k+2) 

o 0 (i-2) (i+i) 
the second summation havmg the value 2 when k=O, so that the net deviation 

in this case is (i-~) ~~+1) . Considering all of these facts, there is an indication that 
for d large, the deJiations are small and vice versa, that there are a few large positive 
deviations in the most recently introduced roots and in the case of conjugate imaginary 
roots, and that the less recently introduced roots (which are the largest) tend to stabi-

lize slightly below a value -kio at the square root of a potential eigenvalue. One might 
+] 
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1 1 
take u2 = (k+j) 2 - d as an approximation to an eigenvalue .3ince the average deviation 

1 i-1 
of 1the squares of the roots from the values -(-k-+-j-)""2 is - d(k+i) ,which approaches 

- d as i becomes infinite. This suggests the inequality d ~ (k+j) 2 as a first approximate 

limit to the number of eigenva~ues where d is finite. This will be reconsidered later. 

The coefficient 2dxe -x of one term in y or equation 2 is approaching zero at a 
weakly varying rate for extremely large values of x, when compared to the other coef
ficients. It might be expected that a reasonable approximation would be obtained by 
treating e -x as a constant, leading to the equation 

and the eigenvalues 

-c 
di+1 ai+1 = [(k+i) u - e :J ai 

u= 
e-cn 

k+n 

( 8) 

where the notation cn indicates that the constant varies with n, which takes into account 
the fact that 8 is only an approximation to equation 3. Through the first tw terms, when 

e -cn is expended into a Taylor series, this agrees with the discussion for k=O of Ecker 

and Weizel provided we take cn equal to ~ (k+n) 2. Thus we have as a second estimate 
to the eigenvalues 

u= 
1 

k+n 

_ (k+n) 2 
e d ( 9) 

To check these approximations further, the determinant equation 6 was solved 
numerically for i = 1, 2, ... , 10. In addition, the values so obtained were further re
fined by evaluations of the determinants P20, P 40, and P41. Finally a routine was devised 
based on the recursion formula 4 and the calculations made including the cases i - = 1, 
2, ... , 75. The latter routine was especially efficient, giving information in 75 cases 
instead of one case and in about one-fifth of the time taken for the one case. 

III. CONCLUDING REMARKS 

On the basis of the above and other considerations, the following is presented as 
the best estimate of the values of the eigenvalues 

1 k+n (k+n) 3 - 2k(n+1) 
u = k+n - -d- + 4d2 ( 10) 
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The values u of equation 10 are thought to be a little more than the true values, leading 
to the implication that the number of eigenvalues are limited by the following inequality. 

1 
2d ~ (k+n) 2 + I 2k(n+1) (k+n) Ii, ( 11) 

where n is to take positive integral values and satisfy the inequality. The number of 
eigenvalues is not greater than the maximum such n (this assumes the correctness of 
the previous remark) . 

The numerical results obtained as explained above are summarized in the following 
tabular data. The values taken for d have been used on the basis of numerical conven
ience in machine computation. The values themselves are not as important as the gener
al magnitude of this parameter, which may take on any non-negative real value. The 
parameter k, on the other hand, must be a non-negative integer . The tabular data could 
be expanded on the basis of the techniques already developed. In fact, the predictor 
equation 10 may be sufficiently accurate for most cases, the truncation error apparently 
being of the order of d-' ( this remark is based on theoreti cal reasons as well as on 
the tabular data below) . 

d = 1000 

k=O k=1 k = 2 
.99900025 
.49800199 .49800099 
.33034004 .3303384 . 3'3033554 
.24601583 .24601383 . 24B00983 
.19503074 . 19502823 . 19502323 
. 16071941 . 16071640 . 16071040 
.13594022 .13593672 . 13592972 
.11712289 . 11711888 .11711085 
.10228432 . 10227976 . 10227081 
.090234950 .090229537 . 090219821 
.080219801 . 080214067 . 080201641 
.071725530 .071697400 . 071703049 
.064500631 .064424424 . 064505604 

k = O 
. 99002475 
. 48019431 
. 30396993 
. 21145270 
. 15271597 
. 12454326 

k = O 
. 90228380 
. 40339323 

d = 100 

k=1 

.48009421 

. 30381937 

. 21125064 

. 15246021 

.12285380 

d = 10 

k = 1 

. 39722151 

k=2 

. 30351756 

.21084493 

. 15194527 

.12136559 

k=2 

.37764286 

In general, as i increases in Pi, the roots for k and n large make their initial ap
pearance. The tabular data indicates a definite trend in agreement with inequality 11 
and equation 10 agrees with the data in a remarkable way, as one m ay verify by evalu
ation of u in equation 10. The estimate due to Ecker and Wcizel is equivalent to 

3 2 ! a + :d2 - ••• , if we take Xo to be T' which gives the most favorable choice in 
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general. It may be seen from the tabular data that by our choice of Xo, the results are 
good but do not give an estimate as good as equation 10. 

For each such eigenvalue, the eigenfunction F n is given by the equation 

-udx 
F == e n 

00 

L 
j=1 

-1 
where b i is an arbitrary constant not zero, b j+1 = P j (d2d3 ••• dj+1) 

(12) 

1 
dj+1 - 2d 

j(j+2k+1), Pi is the determinant in equation 6, u is determined by equation 10 (approxi
mately), and n satisfies the restriction 11. 
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