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Vacancy-Vacancy Interaction in Copper 

V. G. WEIZER AND L. A. GrRnAIco
Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio

(Received June 16, 1960) 

The binding energy of two vacancies in a static lattice as a function of their separation and the positions 
of their displaced neighboring atoms has been calculated using a Morse potential function model for copper. 
It was found that two vacancies attract one another at separation less than about 7 A. At separations greater 
than 7 A the vacancies do not interact appreciably. The most stable separation was found to be the first-
nearest-neighbor separation or the divacancy configuration, for which the binding energy was found to be 
0.64 ev. Based on these calculations, it is shown that third-stage annealing in irradiated copper may be 
accounted for by divacancy migration. The role of the divacancy in copper self-diffusion is also explained. 

INTRODUCTION 

A
NUMBER of solid-state phenomena, such as void 
formation and radiation damage annealing, are 

concerned with the interactions of lattice defects with 
one another. The vacancy-vacancy interaction in a 
static lattice, because of its simplicity, is the object of 
study in this paper. Both the energy of interaction of 
two vacancies as a function of their separation and the 
positions of their displaced neighboring atoms have been 
calculated using a Morse potential function model for 
copper. 

The Morse crystal employed consists of a 20X 20X20-
atom face-centered cubic lattice, which is equivalent to 
an infinite lattice for calculations performed on defects 
located near the center. 

The energy of interaction, cJ,,, between two isolated 
atoms, i and j, as a function of their separation, re,, is 
given by the Morse potential function as 

	

j= D[e"( r•i—ro) - 2e a ( niio)],	 (1) 

where D is the dissociation energy of the pair, ro is the 
equilibrium separation, and a is a constant. 

The energy of interaction of one atom i with every 
other atom j in the lattice is

	

2E je ( ' r ' 0) J.	 (2) 

To facilitate the calculation of interaction energies 
between two atoms neither of which is at the origin of 
the coordinate system, the origin is translated through 
a vector 6 1, 62, 33. If the following substitutions are made 
in Eqs. (1) and (2):

fl=ero, 

r,= [(m,,—oj)2+ (nj—ö2)2+ (l5_a)2]a, 

then 

cb j D(02 exp[_2aa((m,_ i)2+ (n,—s)2 
+ (16 3) 2) 1]20 exp[—aa((m1—ö,)2 

+ (n 1 —s)2+ 	 (3) 
and

=	 , exp[— 2aa((mj— 31)2+ (n5— ô2)2 
+ (11 —o3) 2) 4]-2	 exp[—aa((rn,—i)2 

+ (n,_82)2+ (11 _68)2)*]}, (4)

where 1,,, m1,, and njj are the position coordinates of 
atom j with respect to atom i, and a is the half-cell 
lattice spacing. 

The energy of cohesion, c1, is 

N 

where N is the number of atoms in the crystal. 
The values of the Morse function constants used in 

this work are
a 1.3588 A—', 

fl = 49.11, 
D=0.3429 cv. 

These values were deduced from the macroscopic prop-
erties of copper.','

CALCULATIONS 

The interaction energy, EB, of two vacancies both of 
which are on normal lattice sites is given by 

EB = ENN+EDR — 2EVR,	 (5) 

where ENN is the energy of interaction between two 
atoms at the same separation as the two vacancies, 
EDE is the relaxation energy of the atoms neighboring 
the pair, and EVE is the energy of relaxation of an iso-
lated vacancy.' 

For convenience in performing the calculations, the 
interaction energy, EB, was calculated for only four 
separations: first-, second-, fourth-, and eighth-nearest-
neighbor separations. It was found that at the eighth-
nearest-neighbor separation the vacancies exerted no 
appreciable effect upon each other, and thus calculations 
for larger separations were not performed. 

The term ENN is calculated by means of Eq. (1). The 
energy of vacancy relaxation, EVE, has been calculated 
by the authors in a previous publication and shown to 

1 L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687-690 
(1959). 

L. A. Girifalco and V. G. Weizer, National Aeronautics and 
Space Administration Report NASA TR R-5, 1959. 

3 L. A. Girifalco and V. G. Weizer, J . Phys. Chem. Solids 112, 
260-264 (1960). 
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Fic. 1. Vacancy-vacancy interaction energy versus separation.

The order in which the sets are displaced is based 
upon the estimated amount of relaxation, the set re-
laxing the most being displaced first. It should also be 
noted that the original positions of the atoms neighbor-
ing the vacancies are the positions of relaxed neighbors 
about an isolated vacancy-' 

The relaxation trajectories can be described as 
follows: The atoms are first allowed to relax radially 
toward or away from vacancy number one. Then, using 
the newly calculated positions as original positions, the 
atoms are allowed to relax radially toward or away 
from vacancy number two. This process is repeated, 
switching from vacancy number one to vacancy number 
two and back again until equilibrium is reached. This, 
then, is the final equilibrium configuration about a pair 
of vacancies. 

The energy of the crystal after relaxation is then sub-
tracted from the energy of the crystal before relaxation 
to give the relaxation energy of the vacancy pair. The 
relaxation energy is then combined with ENN and EVR 
in Eq. (5) to obtain the interaction energy EB. 

RESULTS 
be 0.56 ev. 3 Equation (4) is used to calculate EDR, the 
lattice summations being performed on a high-speed 
digital computer. 

The method used in calculating EDR is essentially the 
same as that used to calculate EVR.3 First, the atoms 
neighboring the pair of vacancies are grouped into sym-
metrical sets. In the vacancy relaxation these sets are 
the sets of nearest neighbors. Here, however, where the 
symmetry is much lower, the situation is not that 
simple. The criteria for placing an atom in a set are that 
it should be a certain distance A away from vacancy 
number one and a certain distance B away from vacancy 
number two. The first- and second-nearest neighbors 
to each vacancy were shown to be the only atoms 
contributing appreciably to the relaxation about the 
pair, resulting in eleven sets for the first-nearest-neigh-
bor separation, nine sets for the second-nearest-
neighbor separation, thirteen sets for the fourth-near-
est-neighbor separation, and ten sets for the eighth-
nearest-neighbor separation. 

These sets are then displaced, one at a time, along 
their relaxation trajectories, and the energy of the 
crystal is calculated as a function of these displacements. 
While the first set is being displaced, the remaining sets 
are held in their original positions. The point of mini-
mum crystal energy is taken to be the equilibrium posi-
tion of the first set to the first approximation. These new 
positions of the first set are then substituted for the 
original positions, and the second set is displaced in a 
similar manner. This process is continued until all the 
sets have been displaced. Then, because of the displace-
ment of the second and succeeding sets, the equilibrium 
position of the first set has been disturbed, and therefore 
the entire sequance must be repeated until further cal-

0..jlatio ycldo..new results. 
4	 $' ',	 ;,•',.'	 .	 ,	 - 

*._'I	 s,J-	 h-,,,	 '' •f

The interaction energy of two vacancies as a function 
of their separation is shown in Fig. 1. The points on the 
solid curve are the values calculated in this paper. The 
dotted curve is a Morse potential function which repre-
sents the interaction of two vacancies when no relaxa-
tion occurs, that is, when EvR—EDi=0. 

It should be noted, however, that the only points that 
are meaningful on these curves are the points at the 
different lattice neighbor separations. Between each of 
these points there is an energy barrier, over which the 
vacancy can travel only if it has the required activation 
energy. 

The most stable separation for the two vacancies is 
the first-nearest-neighbor separation called the di-
vacancy configuration with a binding energy of 0.64 ev. 
This is slightly above the range of values obtained by 
Bartlett and Dienes.' Using a bond-counting technique 
they arrived at the limiting values of 0.23 ev and 0.59 ev. 

Table I gives the positions of the atoms around the 
vacancies before and after relaxation. The first set of 
coordinates in each group is the set of coordinates of a 
typical atom of the group in its normal lattice position. 
The second set of coordinates in each group is the posi-
tion of the atom in its final relaxed position. The origin 
of the coordinate system is placed midway between the 
two vacancies in all four cases. The coordinates of the 
vacancies are given in the table. 

For purposes of computation the atoms neighboring 
the vacancies were divided into sets as described pre-
viously. However, inspection of the final configuration 
shows that because of the mirror symmetry existing 
between the two vacancies, many of these sets are 
equivalent, thus reducing the total number of sets by 

S. H. Bartlett and G. J . Dienes, Phys. Rev. 89, 848-852 (1953) 

•'
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almost a factor of two. The grouping in Table I reflects 
the fact that many of the sets previously used are 
equivalent. 

By comparison of the results of the eighth-nearest-
neighbor separation calculations with the calculations 
performed for a single vacancy, it can be seen that the 
configuration about two vacancies of eighth-nearest-
neighbor separation is very nearly the same as the con-
figuration about two isolated vacancies. 

The constants in the Morse function used in this 
paper were calculated to reflect the electron distribution 
of a perfect crystal. When this function is applied to an 
imperfect crystal, some error will probably be intro-
duced because of the electronic redistribution. However, 
in these calculations, where a subtractive process is 
used to calculate the binding energy, the errors will at 
least partially cancel themselves out. Thus, these cal-
culations should give a fairly accurate value of the 
binding energy of a divacancy and a reliable picture of 
the interaction of two vacancies. 

DISCUSSION 

It has been suggested by Li and Nowick5 that the 
divacancy mechanism might be responsible for third-
stage annealing' in deuteron-irradiated copper which 
shows an activation energy of 0.69 ev at about 
220°K. 7-11 Following this suggestion and noting Over-
hauser's7 observation that the third-stage annealing 
mechanism is bimolecular, it might be assumed that 
the process involves the migration of divacancies to the 
less mobile vacancies, which in this case act as sinks 
for the divacancies. The combination of a divacancy 
with a vacancy would form a trivacancy, which has been 
shown to be quite immobile in copper.'1 

If one then uses the value of 0.69 ev for the energy of 
migration of a clivacancy in copper, EmD , 1.0 ev for the 
energy of formation of a vacancy," E1V, and 0.64 ev for 

'C. Y. Li and A. S. Nowick, Phys. Rev. 103, 294 (1956). 
'G. J . Dienes and G. H. Vineyard, Radiation Effects in Solids 

(Interscience Publishers, Inc., New York, 1957), P. 163. 
A. W. Overhauser, Phys. Rev. 91, 448 (1953); Phys. Rev. 94 

1551 (1954). 
H. G. Cooper, J . S. Koehler, and J . W. Marx, Phys. Rev. 97, 

599 (1955). 
R. R. Eggleston, Acta Met. 1, 683(1953). 

'° M. J . Druyvesteyn and J . A. Manintveld, Nature 168, 868 
(1951); J . A. Manintveld, Nature 169, 623 (1952). 

"A. C. Damask,. G. J . Dienes, and V. G. Weizer, Phys. Rev. 
113, 781 (1959). 

"G. Airoldi, G. L. Bacchella, and E. Germagnoli, Phys. Rev. 
Letters 2, 145 (1959).

TABLE I. Positions of atoms around a pair of vacancies before
and after relaxation at different separations. See text. 

First-nearest-neighbor Second-nearest-neigh-
separation, vacancies bor separation, Va-
located at -, - cancies located at 
0, and	 ,4,0 1, 0,0, and -1,0,0 

Group	 Coordinates Group	 Coordinates 

1 0.50	 -0.50 1.00 1	 0.0	 1.00	 0.0 
0.46	 -0.46 0.92 0.0	 0.96	 0.0 

2 -1.50	 0.50 0.0 2	 1.00	 1.00	 1.00 
-1.49	 0.49 0.0 0.99	 0.98	 0.98 

3 -1.50	 -0.50 1.00 3	 2.00	 1.00	 0.0 
-1.48	 -0.50 0.98 1.98	 0.97	 0.0 

4 -1.50	 -1.50 0.0 4	 1.00	 2.00	 0.0 
-1.48	 -1.48 0.0 1.02	 2.02	 0.0 

5 -0.50	 -0.50 2.00 5	 3.00	 0.0	 0.0 
-0.50	 -0.50 2.00 3.01	 0.0	 0.0 

6 -2.50	 -0.50 0.0 
-2.51	 -0.50 0.0 

Fourth-nearest-neighbor Eighth-nearest-neigh-
separation, vacancies bor separation, va-
located at 1, 0, 1, cancies located at 
and -1,0, -1 -2,0,0,and 2, 0,0 

Group	 Coordinates Group	 Coordinates 

1 1.00	 0.0	 -1.00 1	 1.00	 1.00	 0.0 
1.01	 0.0	 -1.01 1.02	 0.98	 0.0, 

2 0.0	 1.00 1.00 2	 2.00	 1.00	 1.00 
0.03	 0.98 1.01 2.00	 0.98	 0.98 

3 0.0	 0.0 2.00 3	 2.00	 2.00	 0 
0.03	 0.0 1.99 2.00	 2.01	 0.0 

4 1.00	 2.00 1.00 4	 3.00	 1.00	 0.0 
1.00	 2.01 1.00 2.98	 0.98	 0.0 

5 1.00	 1.00 2.00 5	 4.00	 0.0	 0.0 
1.00	 0.99 1.99 4.01	 0.0	 0.0 

6 2.00	 0.0 2.00 
1.97	 0.0 1.97 

7 3.00	 0.0 1.00 
3.01	 0.0 1.01

the binding energy of a divacancy, EB, then the activa- 
tion energy for divacancy diffusion, EDO, given by 

E1Y= 2EiE+EmD 

is calculated to be 2.05 ev. 
The activation energies for diffusion for both vacan-

cies and divacancies are thus seen to be equal. This 
would explain why, if divacancies contribute to diffu-
sion, no deviation from linearity is seen in experimental 
In D against l/T curves. 

From these calculations, then, one is led to believe 
that the divacancy is probably responsible for third-
stage annealing in copper and is also active in the 
mechanism of self-diffusion in copper. 
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